LCOV - code coverage report
Current view: top level - src/libavfilter - f_ebur128.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 185 350 52.9 %
Date: 2017-01-24 04:42:20 Functions: 8 13 61.5 %

          Line data    Source code
       1             : /*
       2             :  * Copyright (c) 2012 Clément Bœsch
       3             :  *
       4             :  * This file is part of FFmpeg.
       5             :  *
       6             :  * FFmpeg is free software; you can redistribute it and/or
       7             :  * modify it under the terms of the GNU Lesser General Public
       8             :  * License as published by the Free Software Foundation; either
       9             :  * version 2.1 of the License, or (at your option) any later version.
      10             :  *
      11             :  * FFmpeg is distributed in the hope that it will be useful,
      12             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      13             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      14             :  * Lesser General Public License for more details.
      15             :  *
      16             :  * You should have received a copy of the GNU Lesser General Public
      17             :  * License along with FFmpeg; if not, write to the Free Software
      18             :  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
      19             :  */
      20             : 
      21             : /**
      22             :  * @file
      23             :  * EBU R.128 implementation
      24             :  * @see http://tech.ebu.ch/loudness
      25             :  * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
      26             :  * @todo implement start/stop/reset through filter command injection
      27             :  * @todo support other frequencies to avoid resampling
      28             :  */
      29             : 
      30             : #include <math.h>
      31             : 
      32             : #include "libavutil/avassert.h"
      33             : #include "libavutil/avstring.h"
      34             : #include "libavutil/channel_layout.h"
      35             : #include "libavutil/dict.h"
      36             : #include "libavutil/ffmath.h"
      37             : #include "libavutil/xga_font_data.h"
      38             : #include "libavutil/opt.h"
      39             : #include "libavutil/timestamp.h"
      40             : #include "libswresample/swresample.h"
      41             : #include "audio.h"
      42             : #include "avfilter.h"
      43             : #include "formats.h"
      44             : #include "internal.h"
      45             : 
      46             : #define MAX_CHANNELS 63
      47             : 
      48             : /* pre-filter coefficients */
      49             : #define PRE_B0  1.53512485958697
      50             : #define PRE_B1 -2.69169618940638
      51             : #define PRE_B2  1.19839281085285
      52             : #define PRE_A1 -1.69065929318241
      53             : #define PRE_A2  0.73248077421585
      54             : 
      55             : /* RLB-filter coefficients */
      56             : #define RLB_B0  1.0
      57             : #define RLB_B1 -2.0
      58             : #define RLB_B2  1.0
      59             : #define RLB_A1 -1.99004745483398
      60             : #define RLB_A2  0.99007225036621
      61             : 
      62             : #define ABS_THRES    -70            ///< silence gate: we discard anything below this absolute (LUFS) threshold
      63             : #define ABS_UP_THRES  10            ///< upper loud limit to consider (ABS_THRES being the minimum)
      64             : #define HIST_GRAIN   100            ///< defines histogram precision
      65             : #define HIST_SIZE  ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
      66             : 
      67             : /**
      68             :  * A histogram is an array of HIST_SIZE hist_entry storing all the energies
      69             :  * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
      70             :  * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
      71             :  * This fixed-size system avoids the need of a list of energies growing
      72             :  * infinitely over the time and is thus more scalable.
      73             :  */
      74             : struct hist_entry {
      75             :     int count;                      ///< how many times the corresponding value occurred
      76             :     double energy;                  ///< E = 10^((L + 0.691) / 10)
      77             :     double loudness;                ///< L = -0.691 + 10 * log10(E)
      78             : };
      79             : 
      80             : struct integrator {
      81             :     double *cache[MAX_CHANNELS];    ///< window of filtered samples (N ms)
      82             :     int cache_pos;                  ///< focus on the last added bin in the cache array
      83             :     double sum[MAX_CHANNELS];       ///< sum of the last N ms filtered samples (cache content)
      84             :     int filled;                     ///< 1 if the cache is completely filled, 0 otherwise
      85             :     double rel_threshold;           ///< relative threshold
      86             :     double sum_kept_powers;         ///< sum of the powers (weighted sums) above absolute threshold
      87             :     int nb_kept_powers;             ///< number of sum above absolute threshold
      88             :     struct hist_entry *histogram;   ///< histogram of the powers, used to compute LRA and I
      89             : };
      90             : 
      91             : struct rect { int x, y, w, h; };
      92             : 
      93             : typedef struct {
      94             :     const AVClass *class;           ///< AVClass context for log and options purpose
      95             : 
      96             :     /* peak metering */
      97             :     int peak_mode;                  ///< enabled peak modes
      98             :     double *true_peaks;             ///< true peaks per channel
      99             :     double *sample_peaks;           ///< sample peaks per channel
     100             :     double *true_peaks_per_frame;   ///< true peaks in a frame per channel
     101             : #if CONFIG_SWRESAMPLE
     102             :     SwrContext *swr_ctx;            ///< over-sampling context for true peak metering
     103             :     double *swr_buf;                ///< resampled audio data for true peak metering
     104             :     int swr_linesize;
     105             : #endif
     106             : 
     107             :     /* video  */
     108             :     int do_video;                   ///< 1 if video output enabled, 0 otherwise
     109             :     int w, h;                       ///< size of the video output
     110             :     struct rect text;               ///< rectangle for the LU legend on the left
     111             :     struct rect graph;              ///< rectangle for the main graph in the center
     112             :     struct rect gauge;              ///< rectangle for the gauge on the right
     113             :     AVFrame *outpicref;             ///< output picture reference, updated regularly
     114             :     int meter;                      ///< select a EBU mode between +9 and +18
     115             :     int scale_range;                ///< the range of LU values according to the meter
     116             :     int y_zero_lu;                  ///< the y value (pixel position) for 0 LU
     117             :     int *y_line_ref;                ///< y reference values for drawing the LU lines in the graph and the gauge
     118             : 
     119             :     /* audio */
     120             :     int nb_channels;                ///< number of channels in the input
     121             :     double *ch_weighting;           ///< channel weighting mapping
     122             :     int sample_count;               ///< sample count used for refresh frequency, reset at refresh
     123             : 
     124             :     /* Filter caches.
     125             :      * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
     126             :     double x[MAX_CHANNELS * 3];     ///< 3 input samples cache for each channel
     127             :     double y[MAX_CHANNELS * 3];     ///< 3 pre-filter samples cache for each channel
     128             :     double z[MAX_CHANNELS * 3];     ///< 3 RLB-filter samples cache for each channel
     129             : 
     130             : #define I400_BINS  (48000 * 4 / 10)
     131             : #define I3000_BINS (48000 * 3)
     132             :     struct integrator i400;         ///< 400ms integrator, used for Momentary loudness  (M), and Integrated loudness (I)
     133             :     struct integrator i3000;        ///<    3s integrator, used for Short term loudness (S), and Loudness Range      (LRA)
     134             : 
     135             :     /* I and LRA specific */
     136             :     double integrated_loudness;     ///< integrated loudness in LUFS (I)
     137             :     double loudness_range;          ///< loudness range in LU (LRA)
     138             :     double lra_low, lra_high;       ///< low and high LRA values
     139             : 
     140             :     /* misc */
     141             :     int loglevel;                   ///< log level for frame logging
     142             :     int metadata;                   ///< whether or not to inject loudness results in frames
     143             :     int dual_mono;                  ///< whether or not to treat single channel input files as dual-mono
     144             :     double pan_law;                 ///< pan law value used to calculate dual-mono measurements
     145             : } EBUR128Context;
     146             : 
     147             : enum {
     148             :     PEAK_MODE_NONE          = 0,
     149             :     PEAK_MODE_SAMPLES_PEAKS = 1<<1,
     150             :     PEAK_MODE_TRUE_PEAKS    = 1<<2,
     151             : };
     152             : 
     153             : #define OFFSET(x) offsetof(EBUR128Context, x)
     154             : #define A AV_OPT_FLAG_AUDIO_PARAM
     155             : #define V AV_OPT_FLAG_VIDEO_PARAM
     156             : #define F AV_OPT_FLAG_FILTERING_PARAM
     157             : static const AVOption ebur128_options[] = {
     158             :     { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, V|F },
     159             :     { "size",  "set video size",   OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
     160             :     { "meter", "set scale meter (+9 to +18)",  OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
     161             :     { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1},   INT_MIN, INT_MAX, A|V|F, "level" },
     162             :         { "info",    "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO},    INT_MIN, INT_MAX, A|V|F, "level" },
     163             :         { "verbose", "verbose logging level",     0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, "level" },
     164             :     { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|V|F },
     165             :     { "peak", "set peak mode", OFFSET(peak_mode), AV_OPT_TYPE_FLAGS, {.i64 = PEAK_MODE_NONE}, 0, INT_MAX, A|F, "mode" },
     166             :         { "none",   "disable any peak mode",   0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_NONE},          INT_MIN, INT_MAX, A|F, "mode" },
     167             :         { "sample", "enable peak-sample mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_SAMPLES_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
     168             :         { "true",   "enable true-peak mode",   0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_TRUE_PEAKS},    INT_MIN, INT_MAX, A|F, "mode" },
     169             :     { "dualmono", "treat mono input files as dual-mono", OFFSET(dual_mono), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|F },
     170             :     { "panlaw", "set a specific pan law for dual-mono files", OFFSET(pan_law), AV_OPT_TYPE_DOUBLE, {.dbl = -3.01029995663978}, -10.0, 0.0, A|F },
     171             :     { NULL },
     172             : };
     173             : 
     174             : AVFILTER_DEFINE_CLASS(ebur128);
     175             : 
     176             : static const uint8_t graph_colors[] = {
     177             :     0xdd, 0x66, 0x66,   // value above 0LU non reached
     178             :     0x66, 0x66, 0xdd,   // value below 0LU non reached
     179             :     0x96, 0x33, 0x33,   // value above 0LU reached
     180             :     0x33, 0x33, 0x96,   // value below 0LU reached
     181             :     0xdd, 0x96, 0x96,   // value above 0LU line non reached
     182             :     0x96, 0x96, 0xdd,   // value below 0LU line non reached
     183             :     0xdd, 0x33, 0x33,   // value above 0LU line reached
     184             :     0x33, 0x33, 0xdd,   // value below 0LU line reached
     185             : };
     186             : 
     187           0 : static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
     188             : {
     189           0 :     const int below0  = y > ebur128->y_zero_lu;
     190           0 :     const int reached = y >= v;
     191           0 :     const int line    = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
     192           0 :     const int colorid = 4*line + 2*reached + below0;
     193           0 :     return graph_colors + 3*colorid;
     194             : }
     195             : 
     196           0 : static inline int lu_to_y(const EBUR128Context *ebur128, double v)
     197             : {
     198           0 :     v += 2 * ebur128->meter;                            // make it in range [0;...]
     199           0 :     v  = av_clipf(v, 0, ebur128->scale_range);          // make sure it's in the graph scale
     200           0 :     v  = ebur128->scale_range - v;                      // invert value (y=0 is on top)
     201           0 :     return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
     202             : }
     203             : 
     204             : #define FONT8   0
     205             : #define FONT16  1
     206             : 
     207             : static const uint8_t font_colors[] = {
     208             :     0xdd, 0xdd, 0x00,
     209             :     0x00, 0x96, 0x96,
     210             : };
     211             : 
     212           0 : static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
     213             : {
     214             :     int i;
     215           0 :     char buf[128] = {0};
     216             :     const uint8_t *font;
     217             :     int font_height;
     218             :     va_list vl;
     219             : 
     220           0 :     if      (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
     221           0 :     else if (ftid == FONT8)  font = avpriv_cga_font,   font_height =  8;
     222           0 :     else return;
     223             : 
     224           0 :     va_start(vl, fmt);
     225           0 :     vsnprintf(buf, sizeof(buf), fmt, vl);
     226           0 :     va_end(vl);
     227             : 
     228           0 :     for (i = 0; buf[i]; i++) {
     229             :         int char_y, mask;
     230           0 :         uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
     231             : 
     232           0 :         for (char_y = 0; char_y < font_height; char_y++) {
     233           0 :             for (mask = 0x80; mask; mask >>= 1) {
     234           0 :                 if (font[buf[i] * font_height + char_y] & mask)
     235           0 :                     memcpy(p, color, 3);
     236             :                 else
     237           0 :                     memcpy(p, "\x00\x00\x00", 3);
     238           0 :                 p += 3;
     239             :             }
     240           0 :             p += pic->linesize[0] - 8*3;
     241             :         }
     242             :     }
     243             : }
     244             : 
     245           0 : static void drawline(AVFrame *pic, int x, int y, int len, int step)
     246             : {
     247             :     int i;
     248           0 :     uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
     249             : 
     250           0 :     for (i = 0; i < len; i++) {
     251           0 :         memcpy(p, "\x00\xff\x00", 3);
     252           0 :         p += step;
     253             :     }
     254           0 : }
     255             : 
     256           0 : static int config_video_output(AVFilterLink *outlink)
     257             : {
     258             :     int i, x, y;
     259             :     uint8_t *p;
     260           0 :     AVFilterContext *ctx = outlink->src;
     261           0 :     EBUR128Context *ebur128 = ctx->priv;
     262             :     AVFrame *outpicref;
     263             : 
     264             :     /* check if there is enough space to represent everything decently */
     265           0 :     if (ebur128->w < 640 || ebur128->h < 480) {
     266           0 :         av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
     267             :                "minimum size is 640x480\n", ebur128->w, ebur128->h);
     268           0 :         return AVERROR(EINVAL);
     269             :     }
     270           0 :     outlink->w = ebur128->w;
     271           0 :     outlink->h = ebur128->h;
     272             : 
     273             : #define PAD 8
     274             : 
     275             :     /* configure text area position and size */
     276           0 :     ebur128->text.x  = PAD;
     277           0 :     ebur128->text.y  = 40;
     278           0 :     ebur128->text.w  = 3 * 8;   // 3 characters
     279           0 :     ebur128->text.h  = ebur128->h - PAD - ebur128->text.y;
     280             : 
     281             :     /* configure gauge position and size */
     282           0 :     ebur128->gauge.w = 20;
     283           0 :     ebur128->gauge.h = ebur128->text.h;
     284           0 :     ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
     285           0 :     ebur128->gauge.y = ebur128->text.y;
     286             : 
     287             :     /* configure graph position and size */
     288           0 :     ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
     289           0 :     ebur128->graph.y = ebur128->gauge.y;
     290           0 :     ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
     291           0 :     ebur128->graph.h = ebur128->gauge.h;
     292             : 
     293             :     /* graph and gauge share the LU-to-pixel code */
     294           0 :     av_assert0(ebur128->graph.h == ebur128->gauge.h);
     295             : 
     296             :     /* prepare the initial picref buffer */
     297           0 :     av_frame_free(&ebur128->outpicref);
     298           0 :     ebur128->outpicref = outpicref =
     299           0 :         ff_get_video_buffer(outlink, outlink->w, outlink->h);
     300           0 :     if (!outpicref)
     301           0 :         return AVERROR(ENOMEM);
     302           0 :     outlink->sample_aspect_ratio = (AVRational){1,1};
     303             : 
     304             :     /* init y references values (to draw LU lines) */
     305           0 :     ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
     306           0 :     if (!ebur128->y_line_ref)
     307           0 :         return AVERROR(ENOMEM);
     308             : 
     309             :     /* black background */
     310           0 :     memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]);
     311             : 
     312             :     /* draw LU legends */
     313           0 :     drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
     314           0 :     for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
     315           0 :         y = lu_to_y(ebur128, i);
     316           0 :         x = PAD + (i < 10 && i > -10) * 8;
     317           0 :         ebur128->y_line_ref[y] = i;
     318           0 :         y -= 4; // -4 to center vertically
     319           0 :         drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
     320           0 :                  "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
     321             :     }
     322             : 
     323             :     /* draw graph */
     324           0 :     ebur128->y_zero_lu = lu_to_y(ebur128, 0);
     325           0 :     p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
     326           0 :                            + ebur128->graph.x * 3;
     327           0 :     for (y = 0; y < ebur128->graph.h; y++) {
     328           0 :         const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
     329             : 
     330           0 :         for (x = 0; x < ebur128->graph.w; x++)
     331           0 :             memcpy(p + x*3, c, 3);
     332           0 :         p += outpicref->linesize[0];
     333             :     }
     334             : 
     335             :     /* draw fancy rectangles around the graph and the gauge */
     336             : #define DRAW_RECT(r) do { \
     337             :     drawline(outpicref, r.x,       r.y - 1,   r.w, 3); \
     338             :     drawline(outpicref, r.x,       r.y + r.h, r.w, 3); \
     339             :     drawline(outpicref, r.x - 1,   r.y,       r.h, outpicref->linesize[0]); \
     340             :     drawline(outpicref, r.x + r.w, r.y,       r.h, outpicref->linesize[0]); \
     341             : } while (0)
     342           0 :     DRAW_RECT(ebur128->graph);
     343           0 :     DRAW_RECT(ebur128->gauge);
     344             : 
     345           0 :     return 0;
     346             : }
     347             : 
     348           1 : static int config_audio_input(AVFilterLink *inlink)
     349             : {
     350           1 :     AVFilterContext *ctx = inlink->dst;
     351           1 :     EBUR128Context *ebur128 = ctx->priv;
     352             : 
     353             :     /* Force 100ms framing in case of metadata injection: the frames must have
     354             :      * a granularity of the window overlap to be accurately exploited.
     355             :      * As for the true peaks mode, it just simplifies the resampling buffer
     356             :      * allocation and the lookup in it (since sample buffers differ in size, it
     357             :      * can be more complex to integrate in the one-sample loop of
     358             :      * filter_frame()). */
     359           1 :     if (ebur128->metadata || (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS))
     360           1 :         inlink->min_samples =
     361           1 :         inlink->max_samples =
     362           1 :         inlink->partial_buf_size = inlink->sample_rate / 10;
     363           1 :     return 0;
     364             : }
     365             : 
     366           1 : static int config_audio_output(AVFilterLink *outlink)
     367             : {
     368             :     int i;
     369           1 :     AVFilterContext *ctx = outlink->src;
     370           1 :     EBUR128Context *ebur128 = ctx->priv;
     371           1 :     const int nb_channels = av_get_channel_layout_nb_channels(outlink->channel_layout);
     372             : 
     373             : #define BACK_MASK (AV_CH_BACK_LEFT    |AV_CH_BACK_CENTER    |AV_CH_BACK_RIGHT| \
     374             :                    AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
     375             :                    AV_CH_SIDE_LEFT                          |AV_CH_SIDE_RIGHT| \
     376             :                    AV_CH_SURROUND_DIRECT_LEFT               |AV_CH_SURROUND_DIRECT_RIGHT)
     377             : 
     378           1 :     ebur128->nb_channels  = nb_channels;
     379           1 :     ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
     380           1 :     if (!ebur128->ch_weighting)
     381           0 :         return AVERROR(ENOMEM);
     382             : 
     383           3 :     for (i = 0; i < nb_channels; i++) {
     384             :         /* channel weighting */
     385           2 :         const uint16_t chl = av_channel_layout_extract_channel(outlink->channel_layout, i);
     386           2 :         if (chl & (AV_CH_LOW_FREQUENCY|AV_CH_LOW_FREQUENCY_2)) {
     387           0 :             ebur128->ch_weighting[i] = 0;
     388           2 :         } else if (chl & BACK_MASK) {
     389           0 :             ebur128->ch_weighting[i] = 1.41;
     390             :         } else {
     391           2 :             ebur128->ch_weighting[i] = 1.0;
     392             :         }
     393             : 
     394           2 :         if (!ebur128->ch_weighting[i])
     395           0 :             continue;
     396             : 
     397             :         /* bins buffer for the two integration window (400ms and 3s) */
     398           2 :         ebur128->i400.cache[i]  = av_calloc(I400_BINS,  sizeof(*ebur128->i400.cache[0]));
     399           2 :         ebur128->i3000.cache[i] = av_calloc(I3000_BINS, sizeof(*ebur128->i3000.cache[0]));
     400           2 :         if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
     401           0 :             return AVERROR(ENOMEM);
     402             :     }
     403             : 
     404             : #if CONFIG_SWRESAMPLE
     405           1 :     if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
     406             :         int ret;
     407             : 
     408           0 :         ebur128->swr_buf    = av_malloc_array(nb_channels, 19200 * sizeof(double));
     409           0 :         ebur128->true_peaks = av_calloc(nb_channels, sizeof(*ebur128->true_peaks));
     410           0 :         ebur128->true_peaks_per_frame = av_calloc(nb_channels, sizeof(*ebur128->true_peaks_per_frame));
     411           0 :         ebur128->swr_ctx    = swr_alloc();
     412           0 :         if (!ebur128->swr_buf || !ebur128->true_peaks ||
     413           0 :             !ebur128->true_peaks_per_frame || !ebur128->swr_ctx)
     414           0 :             return AVERROR(ENOMEM);
     415             : 
     416           0 :         av_opt_set_int(ebur128->swr_ctx, "in_channel_layout",    outlink->channel_layout, 0);
     417           0 :         av_opt_set_int(ebur128->swr_ctx, "in_sample_rate",       outlink->sample_rate, 0);
     418           0 :         av_opt_set_sample_fmt(ebur128->swr_ctx, "in_sample_fmt", outlink->format, 0);
     419             : 
     420           0 :         av_opt_set_int(ebur128->swr_ctx, "out_channel_layout",    outlink->channel_layout, 0);
     421           0 :         av_opt_set_int(ebur128->swr_ctx, "out_sample_rate",       192000, 0);
     422           0 :         av_opt_set_sample_fmt(ebur128->swr_ctx, "out_sample_fmt", outlink->format, 0);
     423             : 
     424           0 :         ret = swr_init(ebur128->swr_ctx);
     425           0 :         if (ret < 0)
     426           0 :             return ret;
     427             :     }
     428             : #endif
     429             : 
     430           1 :     if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) {
     431           0 :         ebur128->sample_peaks = av_calloc(nb_channels, sizeof(*ebur128->sample_peaks));
     432           0 :         if (!ebur128->sample_peaks)
     433           0 :             return AVERROR(ENOMEM);
     434             :     }
     435             : 
     436           1 :     return 0;
     437             : }
     438             : 
     439             : #define ENERGY(loudness) (ff_exp10(((loudness) + 0.691) / 10.))
     440             : #define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
     441             : #define DBFS(energy) (20 * log10(energy))
     442             : 
     443           2 : static struct hist_entry *get_histogram(void)
     444             : {
     445             :     int i;
     446           2 :     struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
     447             : 
     448           2 :     if (!h)
     449           0 :         return NULL;
     450       16004 :     for (i = 0; i < HIST_SIZE; i++) {
     451       16002 :         h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
     452       16002 :         h[i].energy   = ENERGY(h[i].loudness);
     453             :     }
     454           2 :     return h;
     455             : }
     456             : 
     457           1 : static av_cold int init(AVFilterContext *ctx)
     458             : {
     459           1 :     EBUR128Context *ebur128 = ctx->priv;
     460             :     AVFilterPad pad;
     461             : 
     462           2 :     if (ebur128->loglevel != AV_LOG_INFO &&
     463           1 :         ebur128->loglevel != AV_LOG_VERBOSE) {
     464           1 :         if (ebur128->do_video || ebur128->metadata)
     465           1 :             ebur128->loglevel = AV_LOG_VERBOSE;
     466             :         else
     467           0 :             ebur128->loglevel = AV_LOG_INFO;
     468             :     }
     469             : 
     470             :     if (!CONFIG_SWRESAMPLE && (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) {
     471             :         av_log(ctx, AV_LOG_ERROR,
     472             :                "True-peak mode requires libswresample to be performed\n");
     473             :         return AVERROR(EINVAL);
     474             :     }
     475             : 
     476             :     // if meter is  +9 scale, scale range is from -18 LU to  +9 LU (or 3*9)
     477             :     // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
     478           1 :     ebur128->scale_range = 3 * ebur128->meter;
     479             : 
     480           1 :     ebur128->i400.histogram  = get_histogram();
     481           1 :     ebur128->i3000.histogram = get_histogram();
     482           1 :     if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
     483           0 :         return AVERROR(ENOMEM);
     484             : 
     485           1 :     ebur128->integrated_loudness = ABS_THRES;
     486           1 :     ebur128->loudness_range = 0;
     487             : 
     488             :     /* insert output pads */
     489           1 :     if (ebur128->do_video) {
     490           0 :         pad = (AVFilterPad){
     491           0 :             .name         = av_strdup("out0"),
     492             :             .type         = AVMEDIA_TYPE_VIDEO,
     493             :             .config_props = config_video_output,
     494             :         };
     495           0 :         if (!pad.name)
     496           0 :             return AVERROR(ENOMEM);
     497           0 :         ff_insert_outpad(ctx, 0, &pad);
     498             :     }
     499           1 :     pad = (AVFilterPad){
     500           1 :         .name         = av_asprintf("out%d", ebur128->do_video),
     501             :         .type         = AVMEDIA_TYPE_AUDIO,
     502             :         .config_props = config_audio_output,
     503             :     };
     504           1 :     if (!pad.name)
     505           0 :         return AVERROR(ENOMEM);
     506           1 :     ff_insert_outpad(ctx, ebur128->do_video, &pad);
     507             : 
     508             :     /* summary */
     509           1 :     av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
     510             : 
     511           1 :     return 0;
     512             : }
     513             : 
     514             : #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
     515             : 
     516             : /* loudness and power should be set such as loudness = -0.691 +
     517             :  * 10*log10(power), we just avoid doing that calculus two times */
     518         526 : static int gate_update(struct integrator *integ, double power,
     519             :                        double loudness, int gate_thres)
     520             : {
     521             :     int ipower;
     522             :     double relative_threshold;
     523             :     int gate_hist_pos;
     524             : 
     525             :     /* update powers histograms by incrementing current power count */
     526         526 :     ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
     527         526 :     integ->histogram[ipower].count++;
     528             : 
     529             :     /* compute relative threshold and get its position in the histogram */
     530         526 :     integ->sum_kept_powers += power;
     531         526 :     integ->nb_kept_powers++;
     532         526 :     relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
     533         526 :     if (!relative_threshold)
     534           0 :         relative_threshold = 1e-12;
     535         526 :     integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
     536         526 :     gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
     537             : 
     538         526 :     return gate_hist_pos;
     539             : }
     540             : 
     541         280 : static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
     542             : {
     543             :     int i, ch, idx_insample;
     544         280 :     AVFilterContext *ctx = inlink->dst;
     545         280 :     EBUR128Context *ebur128 = ctx->priv;
     546         280 :     const int nb_channels = ebur128->nb_channels;
     547         280 :     const int nb_samples  = insamples->nb_samples;
     548         280 :     const double *samples = (double *)insamples->data[0];
     549         280 :     AVFrame *pic = ebur128->outpicref;
     550             : 
     551             : #if CONFIG_SWRESAMPLE
     552         280 :     if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
     553           0 :         const double *swr_samples = ebur128->swr_buf;
     554           0 :         int ret = swr_convert(ebur128->swr_ctx, (uint8_t**)&ebur128->swr_buf, 19200,
     555           0 :                               (const uint8_t **)insamples->data, nb_samples);
     556           0 :         if (ret < 0)
     557           0 :             return ret;
     558           0 :         for (ch = 0; ch < nb_channels; ch++)
     559           0 :             ebur128->true_peaks_per_frame[ch] = 0.0;
     560           0 :         for (idx_insample = 0; idx_insample < ret; idx_insample++) {
     561           0 :             for (ch = 0; ch < nb_channels; ch++) {
     562           0 :                 ebur128->true_peaks[ch] = FFMAX(ebur128->true_peaks[ch], fabs(*swr_samples));
     563           0 :                 ebur128->true_peaks_per_frame[ch] = FFMAX(ebur128->true_peaks_per_frame[ch],
     564             :                                                           fabs(*swr_samples));
     565           0 :                 swr_samples++;
     566             :             }
     567             :         }
     568             :     }
     569             : #endif
     570             : 
     571     1344278 :     for (idx_insample = 0; idx_insample < nb_samples; idx_insample++) {
     572     1343998 :         const int bin_id_400  = ebur128->i400.cache_pos;
     573     1343998 :         const int bin_id_3000 = ebur128->i3000.cache_pos;
     574             : 
     575             : #define MOVE_TO_NEXT_CACHED_ENTRY(time) do {                \
     576             :     ebur128->i##time.cache_pos++;                           \
     577             :     if (ebur128->i##time.cache_pos == I##time##_BINS) {     \
     578             :         ebur128->i##time.filled    = 1;                     \
     579             :         ebur128->i##time.cache_pos = 0;                     \
     580             :     }                                                       \
     581             : } while (0)
     582             : 
     583     1343998 :         MOVE_TO_NEXT_CACHED_ENTRY(400);
     584     1343998 :         MOVE_TO_NEXT_CACHED_ENTRY(3000);
     585             : 
     586     4031994 :         for (ch = 0; ch < nb_channels; ch++) {
     587             :             double bin;
     588             : 
     589     2687996 :             if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS)
     590           0 :                 ebur128->sample_peaks[ch] = FFMAX(ebur128->sample_peaks[ch], fabs(*samples));
     591             : 
     592     2687996 :             ebur128->x[ch * 3] = *samples++; // set X[i]
     593             : 
     594     2687996 :             if (!ebur128->ch_weighting[ch])
     595           0 :                 continue;
     596             : 
     597             :             /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
     598             : #define FILTER(Y, X, name) do {                                                 \
     599             :             double *dst = ebur128->Y + ch*3;                                    \
     600             :             double *src = ebur128->X + ch*3;                                    \
     601             :             dst[2] = dst[1];                                                    \
     602             :             dst[1] = dst[0];                                                    \
     603             :             dst[0] = src[0]*name##_B0 + src[1]*name##_B1 + src[2]*name##_B2     \
     604             :                                       - dst[1]*name##_A1 - dst[2]*name##_A2;    \
     605             : } while (0)
     606             : 
     607             :             // TODO: merge both filters in one?
     608     2687996 :             FILTER(y, x, PRE);  // apply pre-filter
     609     2687996 :             ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
     610     2687996 :             ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3    ];
     611     2687996 :             FILTER(z, y, RLB);  // apply RLB-filter
     612             : 
     613     2687996 :             bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
     614             : 
     615             :             /* add the new value, and limit the sum to the cache size (400ms or 3s)
     616             :              * by removing the oldest one */
     617     2687996 :             ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
     618     2687996 :             ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
     619             : 
     620             :             /* override old cache entry with the new value */
     621     2687996 :             ebur128->i400.cache [ch][bin_id_400 ] = bin;
     622     2687996 :             ebur128->i3000.cache[ch][bin_id_3000] = bin;
     623             :         }
     624             : 
     625             :         /* For integrated loudness, gating blocks are 400ms long with 75%
     626             :          * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
     627             :          * (4800 samples at 48kHz). */
     628     1343998 :         if (++ebur128->sample_count == 4800) {
     629             :             double loudness_400, loudness_3000;
     630         279 :             double power_400 = 1e-12, power_3000 = 1e-12;
     631         279 :             AVFilterLink *outlink = ctx->outputs[0];
     632         558 :             const int64_t pts = insamples->pts +
     633         279 :                 av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
     634             :                              outlink->time_base);
     635             : 
     636         279 :             ebur128->sample_count = 0;
     637             : 
     638             : #define COMPUTE_LOUDNESS(m, time) do {                                              \
     639             :     if (ebur128->i##time.filled) {                                                  \
     640             :         /* weighting sum of the last <time> ms */                                   \
     641             :         for (ch = 0; ch < nb_channels; ch++)                                        \
     642             :             power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch];   \
     643             :         power_##time /= I##time##_BINS;                                             \
     644             :     }                                                                               \
     645             :     loudness_##time = LOUDNESS(power_##time);                                       \
     646             : } while (0)
     647             : 
     648         279 :             COMPUTE_LOUDNESS(M,  400);
     649         279 :             COMPUTE_LOUDNESS(S, 3000);
     650             : 
     651             :             /* Integrated loudness */
     652             : #define I_GATE_THRES -10  // initially defined to -8 LU in the first EBU standard
     653             : 
     654         279 :             if (loudness_400 >= ABS_THRES) {
     655         276 :                 double integrated_sum = 0;
     656         276 :                 int nb_integrated = 0;
     657         276 :                 int gate_hist_pos = gate_update(&ebur128->i400, power_400,
     658             :                                                 loudness_400, I_GATE_THRES);
     659             : 
     660             :                 /* compute integrated loudness by summing the histogram values
     661             :                  * above the relative threshold */
     662     1217024 :                 for (i = gate_hist_pos; i < HIST_SIZE; i++) {
     663     1216748 :                     const int nb_v = ebur128->i400.histogram[i].count;
     664     1216748 :                     nb_integrated  += nb_v;
     665     1216748 :                     integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
     666             :                 }
     667         276 :                 if (nb_integrated) {
     668         276 :                     ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
     669             :                     /* dual-mono correction */
     670         276 :                     if (nb_channels == 1 && ebur128->dual_mono) {
     671           0 :                         ebur128->integrated_loudness -= ebur128->pan_law;
     672             :                     }
     673             :                 }
     674             :             }
     675             : 
     676             :             /* LRA */
     677             : #define LRA_GATE_THRES -20
     678             : #define LRA_LOWER_PRC   10
     679             : #define LRA_HIGHER_PRC  95
     680             : 
     681             :             /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
     682             :              * specs is ">" */
     683         279 :             if (loudness_3000 >= ABS_THRES) {
     684         250 :                 int nb_powers = 0;
     685         250 :                 int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
     686             :                                                 loudness_3000, LRA_GATE_THRES);
     687             : 
     688     1364049 :                 for (i = gate_hist_pos; i < HIST_SIZE; i++)
     689     1363799 :                     nb_powers += ebur128->i3000.histogram[i].count;
     690         250 :                 if (nb_powers) {
     691             :                     int n, nb_pow;
     692             : 
     693             :                     /* get lower loudness to consider */
     694         250 :                     n = 0;
     695         250 :                     nb_pow = LRA_LOWER_PRC  * nb_powers / 100. + 0.5;
     696      447747 :                     for (i = gate_hist_pos; i < HIST_SIZE; i++) {
     697      447747 :                         n += ebur128->i3000.histogram[i].count;
     698      447747 :                         if (n >= nb_pow) {
     699         250 :                             ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
     700         250 :                             break;
     701             :                         }
     702             :                     }
     703             : 
     704             :                     /* get higher loudness to consider */
     705         250 :                     n = nb_powers;
     706         250 :                     nb_pow = LRA_HIGHER_PRC * nb_powers / 100. + 0.5;
     707      824419 :                     for (i = HIST_SIZE - 1; i >= 0; i--) {
     708      824419 :                         n -= ebur128->i3000.histogram[i].count;
     709      824419 :                         if (n < nb_pow) {
     710         250 :                             ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
     711         250 :                             break;
     712             :                         }
     713             :                     }
     714             : 
     715             :                     // XXX: show low & high on the graph?
     716         250 :                     ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
     717             :                 }
     718             :             }
     719             : 
     720             :             /* dual-mono correction */
     721         279 :             if (nb_channels == 1 && ebur128->dual_mono) {
     722           0 :                 loudness_400 -= ebur128->pan_law;
     723           0 :                 loudness_3000 -= ebur128->pan_law;
     724             :             }
     725             : 
     726             : #define LOG_FMT "M:%6.1f S:%6.1f     I:%6.1f LUFS     LRA:%6.1f LU"
     727             : 
     728             :             /* push one video frame */
     729         279 :             if (ebur128->do_video) {
     730             :                 int x, y, ret;
     731             :                 uint8_t *p;
     732             : 
     733           0 :                 const int y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 + 23);
     734           0 :                 const int y_loudness_lu_gauge = lu_to_y(ebur128, loudness_400  + 23);
     735             : 
     736             :                 /* draw the graph using the short-term loudness */
     737           0 :                 p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
     738           0 :                 for (y = 0; y < ebur128->graph.h; y++) {
     739           0 :                     const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
     740             : 
     741           0 :                     memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
     742           0 :                     memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
     743           0 :                     p += pic->linesize[0];
     744             :                 }
     745             : 
     746             :                 /* draw the gauge using the momentary loudness */
     747           0 :                 p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
     748           0 :                 for (y = 0; y < ebur128->gauge.h; y++) {
     749           0 :                     const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
     750             : 
     751           0 :                     for (x = 0; x < ebur128->gauge.w; x++)
     752           0 :                         memcpy(p + x*3, c, 3);
     753           0 :                     p += pic->linesize[0];
     754             :                 }
     755             : 
     756             :                 /* draw textual info */
     757           0 :                 drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
     758             :                          LOG_FMT "     ", // padding to erase trailing characters
     759             :                          loudness_400, loudness_3000,
     760             :                          ebur128->integrated_loudness, ebur128->loudness_range);
     761             : 
     762             :                 /* set pts and push frame */
     763           0 :                 pic->pts = pts;
     764           0 :                 ret = ff_filter_frame(outlink, av_frame_clone(pic));
     765           0 :                 if (ret < 0)
     766           0 :                     return ret;
     767             :             }
     768             : 
     769         279 :             if (ebur128->metadata) { /* happens only once per filter_frame call */
     770             :                 char metabuf[128];
     771             : #define META_PREFIX "lavfi.r128."
     772             : 
     773             : #define SET_META(name, var) do {                                            \
     774             :     snprintf(metabuf, sizeof(metabuf), "%.3f", var);                        \
     775             :     av_dict_set(&insamples->metadata, name, metabuf, 0);                    \
     776             : } while (0)
     777             : 
     778             : #define SET_META_PEAK(name, ptype) do {                                     \
     779             :     if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {               \
     780             :         char key[64];                                                       \
     781             :         for (ch = 0; ch < nb_channels; ch++) {                              \
     782             :             snprintf(key, sizeof(key),                                      \
     783             :                      META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch);     \
     784             :             SET_META(key, ebur128->name##_peaks[ch]);                       \
     785             :         }                                                                   \
     786             :     }                                                                       \
     787             : } while (0)
     788             : 
     789         279 :                 SET_META(META_PREFIX "M",        loudness_400);
     790         279 :                 SET_META(META_PREFIX "S",        loudness_3000);
     791         279 :                 SET_META(META_PREFIX "I",        ebur128->integrated_loudness);
     792         279 :                 SET_META(META_PREFIX "LRA",      ebur128->loudness_range);
     793         279 :                 SET_META(META_PREFIX "LRA.low",  ebur128->lra_low);
     794         279 :                 SET_META(META_PREFIX "LRA.high", ebur128->lra_high);
     795             : 
     796         279 :                 SET_META_PEAK(sample, SAMPLES);
     797         279 :                 SET_META_PEAK(true,   TRUE);
     798             :             }
     799             : 
     800         558 :             av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
     801         279 :                    av_ts2timestr(pts, &outlink->time_base),
     802             :                    loudness_400, loudness_3000,
     803             :                    ebur128->integrated_loudness, ebur128->loudness_range);
     804             : 
     805             : #define PRINT_PEAKS(str, sp, ptype) do {                            \
     806             :     if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {       \
     807             :         av_log(ctx, ebur128->loglevel, "  " str ":");               \
     808             :         for (ch = 0; ch < nb_channels; ch++)                        \
     809             :             av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \
     810             :         av_log(ctx, ebur128->loglevel, " dBFS");                    \
     811             :     }                                                               \
     812             : } while (0)
     813             : 
     814         279 :             PRINT_PEAKS("SPK", ebur128->sample_peaks, SAMPLES);
     815         279 :             PRINT_PEAKS("FTPK", ebur128->true_peaks_per_frame, TRUE);
     816         279 :             PRINT_PEAKS("TPK", ebur128->true_peaks,   TRUE);
     817         279 :             av_log(ctx, ebur128->loglevel, "\n");
     818             :         }
     819             :     }
     820             : 
     821         280 :     return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
     822             : }
     823             : 
     824           1 : static int query_formats(AVFilterContext *ctx)
     825             : {
     826           1 :     EBUR128Context *ebur128 = ctx->priv;
     827             :     AVFilterFormats *formats;
     828             :     AVFilterChannelLayouts *layouts;
     829           1 :     AVFilterLink *inlink = ctx->inputs[0];
     830           1 :     AVFilterLink *outlink = ctx->outputs[0];
     831             :     int ret;
     832             : 
     833             :     static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE };
     834             :     static const int input_srate[] = {48000, -1}; // ITU-R BS.1770 provides coeff only for 48kHz
     835             :     static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
     836             : 
     837             :     /* set optional output video format */
     838           1 :     if (ebur128->do_video) {
     839           0 :         formats = ff_make_format_list(pix_fmts);
     840           0 :         if ((ret = ff_formats_ref(formats, &outlink->in_formats)) < 0)
     841           0 :             return ret;
     842           0 :         outlink = ctx->outputs[1];
     843             :     }
     844             : 
     845             :     /* set input and output audio formats
     846             :      * Note: ff_set_common_* functions are not used because they affect all the
     847             :      * links, and thus break the video format negotiation */
     848           1 :     formats = ff_make_format_list(sample_fmts);
     849           2 :     if ((ret = ff_formats_ref(formats, &inlink->out_formats)) < 0 ||
     850           1 :         (ret = ff_formats_ref(formats, &outlink->in_formats)) < 0)
     851           0 :         return ret;
     852             : 
     853           1 :     layouts = ff_all_channel_layouts();
     854           2 :     if ((ret = ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts)) < 0 ||
     855           1 :         (ret = ff_channel_layouts_ref(layouts, &outlink->in_channel_layouts)) < 0)
     856           0 :         return ret;
     857             : 
     858           1 :     formats = ff_make_format_list(input_srate);
     859           2 :     if ((ret = ff_formats_ref(formats, &inlink->out_samplerates)) < 0 ||
     860           1 :         (ret = ff_formats_ref(formats, &outlink->in_samplerates)) < 0)
     861           0 :         return ret;
     862             : 
     863           1 :     return 0;
     864             : }
     865             : 
     866           1 : static av_cold void uninit(AVFilterContext *ctx)
     867             : {
     868             :     int i;
     869           1 :     EBUR128Context *ebur128 = ctx->priv;
     870             : 
     871             :     /* dual-mono correction */
     872           1 :     if (ebur128->nb_channels == 1 && ebur128->dual_mono) {
     873           0 :         ebur128->i400.rel_threshold -= ebur128->pan_law;
     874           0 :         ebur128->i3000.rel_threshold -= ebur128->pan_law;
     875           0 :         ebur128->lra_low -= ebur128->pan_law;
     876           0 :         ebur128->lra_high -= ebur128->pan_law;
     877             :     }
     878             : 
     879           1 :     av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
     880             :            "  Integrated loudness:\n"
     881             :            "    I:         %5.1f LUFS\n"
     882             :            "    Threshold: %5.1f LUFS\n\n"
     883             :            "  Loudness range:\n"
     884             :            "    LRA:       %5.1f LU\n"
     885             :            "    Threshold: %5.1f LUFS\n"
     886             :            "    LRA low:   %5.1f LUFS\n"
     887             :            "    LRA high:  %5.1f LUFS",
     888             :            ebur128->integrated_loudness, ebur128->i400.rel_threshold,
     889             :            ebur128->loudness_range,      ebur128->i3000.rel_threshold,
     890             :            ebur128->lra_low, ebur128->lra_high);
     891             : 
     892             : #define PRINT_PEAK_SUMMARY(str, sp, ptype) do {                  \
     893             :     int ch;                                                      \
     894             :     double maxpeak;                                              \
     895             :     maxpeak = 0.0;                                               \
     896             :     if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {    \
     897             :         for (ch = 0; ch < ebur128->nb_channels; ch++)            \
     898             :             maxpeak = FFMAX(maxpeak, sp[ch]);                    \
     899             :         av_log(ctx, AV_LOG_INFO, "\n\n  " str " peak:\n"         \
     900             :                "    Peak:      %5.1f dBFS",                      \
     901             :                DBFS(maxpeak));                                   \
     902             :     }                                                            \
     903             : } while (0)
     904             : 
     905           1 :     PRINT_PEAK_SUMMARY("Sample", ebur128->sample_peaks, SAMPLES);
     906           1 :     PRINT_PEAK_SUMMARY("True",   ebur128->true_peaks,   TRUE);
     907           1 :     av_log(ctx, AV_LOG_INFO, "\n");
     908             : 
     909           1 :     av_freep(&ebur128->y_line_ref);
     910           1 :     av_freep(&ebur128->ch_weighting);
     911           1 :     av_freep(&ebur128->true_peaks);
     912           1 :     av_freep(&ebur128->sample_peaks);
     913           1 :     av_freep(&ebur128->true_peaks_per_frame);
     914           1 :     av_freep(&ebur128->i400.histogram);
     915           1 :     av_freep(&ebur128->i3000.histogram);
     916           3 :     for (i = 0; i < ebur128->nb_channels; i++) {
     917           2 :         av_freep(&ebur128->i400.cache[i]);
     918           2 :         av_freep(&ebur128->i3000.cache[i]);
     919             :     }
     920           2 :     for (i = 0; i < ctx->nb_outputs; i++)
     921           1 :         av_freep(&ctx->output_pads[i].name);
     922           1 :     av_frame_free(&ebur128->outpicref);
     923             : #if CONFIG_SWRESAMPLE
     924           1 :     av_freep(&ebur128->swr_buf);
     925           1 :     swr_free(&ebur128->swr_ctx);
     926             : #endif
     927           1 : }
     928             : 
     929             : static const AVFilterPad ebur128_inputs[] = {
     930             :     {
     931             :         .name         = "default",
     932             :         .type         = AVMEDIA_TYPE_AUDIO,
     933             :         .filter_frame = filter_frame,
     934             :         .config_props = config_audio_input,
     935             :     },
     936             :     { NULL }
     937             : };
     938             : 
     939             : AVFilter ff_af_ebur128 = {
     940             :     .name          = "ebur128",
     941             :     .description   = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
     942             :     .priv_size     = sizeof(EBUR128Context),
     943             :     .init          = init,
     944             :     .uninit        = uninit,
     945             :     .query_formats = query_formats,
     946             :     .inputs        = ebur128_inputs,
     947             :     .outputs       = NULL,
     948             :     .priv_class    = &ebur128_class,
     949             :     .flags         = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
     950             : };

Generated by: LCOV version 1.12