LCOV - code coverage report
Current view: top level - src/libavcodec - alsdec.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 659 1010 65.2 %
Date: 2017-01-28 02:43:52 Functions: 21 27 77.8 %

          Line data    Source code
       1             : /*
       2             :  * MPEG-4 ALS decoder
       3             :  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
       4             :  *
       5             :  * This file is part of FFmpeg.
       6             :  *
       7             :  * FFmpeg is free software; you can redistribute it and/or
       8             :  * modify it under the terms of the GNU Lesser General Public
       9             :  * License as published by the Free Software Foundation; either
      10             :  * version 2.1 of the License, or (at your option) any later version.
      11             :  *
      12             :  * FFmpeg is distributed in the hope that it will be useful,
      13             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      14             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      15             :  * Lesser General Public License for more details.
      16             :  *
      17             :  * You should have received a copy of the GNU Lesser General Public
      18             :  * License along with FFmpeg; if not, write to the Free Software
      19             :  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
      20             :  */
      21             : 
      22             : /**
      23             :  * @file
      24             :  * MPEG-4 ALS decoder
      25             :  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
      26             :  */
      27             : 
      28             : #include <inttypes.h>
      29             : 
      30             : #include "avcodec.h"
      31             : #include "get_bits.h"
      32             : #include "unary.h"
      33             : #include "mpeg4audio.h"
      34             : #include "bytestream.h"
      35             : #include "bgmc.h"
      36             : #include "bswapdsp.h"
      37             : #include "internal.h"
      38             : #include "mlz.h"
      39             : #include "libavutil/samplefmt.h"
      40             : #include "libavutil/crc.h"
      41             : #include "libavutil/softfloat_ieee754.h"
      42             : #include "libavutil/intfloat.h"
      43             : #include "libavutil/intreadwrite.h"
      44             : 
      45             : #include <stdint.h>
      46             : 
      47             : /** Rice parameters and corresponding index offsets for decoding the
      48             :  *  indices of scaled PARCOR values. The table chosen is set globally
      49             :  *  by the encoder and stored in ALSSpecificConfig.
      50             :  */
      51             : static const int8_t parcor_rice_table[3][20][2] = {
      52             :     { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
      53             :       { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
      54             :       { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
      55             :       {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
      56             :     { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
      57             :       { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
      58             :       {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
      59             :       {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
      60             :     { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
      61             :       { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
      62             :       {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
      63             :       {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
      64             : };
      65             : 
      66             : 
      67             : /** Scaled PARCOR values used for the first two PARCOR coefficients.
      68             :  *  To be indexed by the Rice coded indices.
      69             :  *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
      70             :  *  Actual values are divided by 32 in order to be stored in 16 bits.
      71             :  */
      72             : static const int16_t parcor_scaled_values[] = {
      73             :     -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
      74             :     -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
      75             :     -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
      76             :     -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
      77             :     -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
      78             :      -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
      79             :      -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
      80             :      -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
      81             :      -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
      82             :      -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
      83             :      -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
      84             :      -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
      85             :      -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
      86             :      -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
      87             :      -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
      88             :      -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
      89             :      -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
      90             :      -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
      91             :      -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
      92             :      -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
      93             :      -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
      94             :      -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
      95             :       -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
      96             :        46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
      97             :       143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
      98             :       244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
      99             :       349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
     100             :       458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
     101             :       571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
     102             :       688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
     103             :       810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
     104             :       935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
     105             : };
     106             : 
     107             : 
     108             : /** Gain values of p(0) for long-term prediction.
     109             :  *  To be indexed by the Rice coded indices.
     110             :  */
     111             : static const uint8_t ltp_gain_values [4][4] = {
     112             :     { 0,  8, 16,  24},
     113             :     {32, 40, 48,  56},
     114             :     {64, 70, 76,  82},
     115             :     {88, 92, 96, 100}
     116             : };
     117             : 
     118             : 
     119             : /** Inter-channel weighting factors for multi-channel correlation.
     120             :  *  To be indexed by the Rice coded indices.
     121             :  */
     122             : static const int16_t mcc_weightings[] = {
     123             :     204,  192,  179,  166,  153,  140,  128,  115,
     124             :     102,   89,   76,   64,   51,   38,   25,   12,
     125             :       0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
     126             :    -102, -115, -128, -140, -153, -166, -179, -192
     127             : };
     128             : 
     129             : 
     130             : /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
     131             :  */
     132             : static const uint8_t tail_code[16][6] = {
     133             :     { 74, 44, 25, 13,  7, 3},
     134             :     { 68, 42, 24, 13,  7, 3},
     135             :     { 58, 39, 23, 13,  7, 3},
     136             :     {126, 70, 37, 19, 10, 5},
     137             :     {132, 70, 37, 20, 10, 5},
     138             :     {124, 70, 38, 20, 10, 5},
     139             :     {120, 69, 37, 20, 11, 5},
     140             :     {116, 67, 37, 20, 11, 5},
     141             :     {108, 66, 36, 20, 10, 5},
     142             :     {102, 62, 36, 20, 10, 5},
     143             :     { 88, 58, 34, 19, 10, 5},
     144             :     {162, 89, 49, 25, 13, 7},
     145             :     {156, 87, 49, 26, 14, 7},
     146             :     {150, 86, 47, 26, 14, 7},
     147             :     {142, 84, 47, 26, 14, 7},
     148             :     {131, 79, 46, 26, 14, 7}
     149             : };
     150             : 
     151             : 
     152             : enum RA_Flag {
     153             :     RA_FLAG_NONE,
     154             :     RA_FLAG_FRAMES,
     155             :     RA_FLAG_HEADER
     156             : };
     157             : 
     158             : 
     159             : typedef struct ALSSpecificConfig {
     160             :     uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
     161             :     int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
     162             :     int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
     163             :     int msb_first;            ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
     164             :     int frame_length;         ///< frame length for each frame (last frame may differ)
     165             :     int ra_distance;          ///< distance between RA frames (in frames, 0...255)
     166             :     enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
     167             :     int adapt_order;          ///< adaptive order: 1 = on, 0 = off
     168             :     int coef_table;           ///< table index of Rice code parameters
     169             :     int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
     170             :     int max_order;            ///< maximum prediction order (0..1023)
     171             :     int block_switching;      ///< number of block switching levels
     172             :     int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
     173             :     int sb_part;              ///< sub-block partition
     174             :     int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
     175             :     int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
     176             :     int chan_config;          ///< indicates that a chan_config_info field is present
     177             :     int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
     178             :     int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
     179             :     int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
     180             :     int *chan_pos;            ///< original channel positions
     181             :     int crc_enabled;          ///< enable Cyclic Redundancy Checksum
     182             : } ALSSpecificConfig;
     183             : 
     184             : 
     185             : typedef struct ALSChannelData {
     186             :     int stop_flag;
     187             :     int master_channel;
     188             :     int time_diff_flag;
     189             :     int time_diff_sign;
     190             :     int time_diff_index;
     191             :     int weighting[6];
     192             : } ALSChannelData;
     193             : 
     194             : 
     195             : typedef struct ALSDecContext {
     196             :     AVCodecContext *avctx;
     197             :     ALSSpecificConfig sconf;
     198             :     GetBitContext gb;
     199             :     BswapDSPContext bdsp;
     200             :     const AVCRC *crc_table;
     201             :     uint32_t crc_org;               ///< CRC value of the original input data
     202             :     uint32_t crc;                   ///< CRC value calculated from decoded data
     203             :     unsigned int cur_frame_length;  ///< length of the current frame to decode
     204             :     unsigned int frame_id;          ///< the frame ID / number of the current frame
     205             :     unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
     206             :     unsigned int cs_switch;         ///< if true, channel rearrangement is done
     207             :     unsigned int num_blocks;        ///< number of blocks used in the current frame
     208             :     unsigned int s_max;             ///< maximum Rice parameter allowed in entropy coding
     209             :     uint8_t *bgmc_lut;              ///< pointer at lookup tables used for BGMC
     210             :     int *bgmc_lut_status;           ///< pointer at lookup table status flags used for BGMC
     211             :     int ltp_lag_length;             ///< number of bits used for ltp lag value
     212             :     int *const_block;               ///< contains const_block flags for all channels
     213             :     unsigned int *shift_lsbs;       ///< contains shift_lsbs flags for all channels
     214             :     unsigned int *opt_order;        ///< contains opt_order flags for all channels
     215             :     int *store_prev_samples;        ///< contains store_prev_samples flags for all channels
     216             :     int *use_ltp;                   ///< contains use_ltp flags for all channels
     217             :     int *ltp_lag;                   ///< contains ltp lag values for all channels
     218             :     int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
     219             :     int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
     220             :     int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
     221             :     int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
     222             :     int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
     223             :     int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
     224             :     int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
     225             :     ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
     226             :     ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
     227             :     int *reverted_channels;         ///< stores a flag for each reverted channel
     228             :     int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
     229             :     int32_t **raw_samples;          ///< decoded raw samples for each channel
     230             :     int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
     231             :     uint8_t *crc_buffer;            ///< buffer of byte order corrected samples used for CRC check
     232             :     MLZ* mlz;                       ///< masked lz decompression structure
     233             :     SoftFloat_IEEE754 *acf;         ///< contains common multiplier for all channels
     234             :     int *last_acf_mantissa;         ///< contains the last acf mantissa data of common multiplier for all channels
     235             :     int *shift_value;               ///< value by which the binary point is to be shifted for all channels
     236             :     int *last_shift_value;          ///< contains last shift value for all channels
     237             :     int **raw_mantissa;             ///< decoded mantissa bits of the difference signal
     238             :     unsigned char *larray;          ///< buffer to store the output of masked lz decompression
     239             :     int *nbits;                     ///< contains the number of bits to read for masked lz decompression for all samples
     240             : } ALSDecContext;
     241             : 
     242             : 
     243             : typedef struct ALSBlockData {
     244             :     unsigned int block_length;      ///< number of samples within the block
     245             :     unsigned int ra_block;          ///< if true, this is a random access block
     246             :     int          *const_block;      ///< if true, this is a constant value block
     247             :     int          js_blocks;         ///< true if this block contains a difference signal
     248             :     unsigned int *shift_lsbs;       ///< shift of values for this block
     249             :     unsigned int *opt_order;        ///< prediction order of this block
     250             :     int          *store_prev_samples;///< if true, carryover samples have to be stored
     251             :     int          *use_ltp;          ///< if true, long-term prediction is used
     252             :     int          *ltp_lag;          ///< lag value for long-term prediction
     253             :     int          *ltp_gain;         ///< gain values for ltp 5-tap filter
     254             :     int32_t      *quant_cof;        ///< quantized parcor coefficients
     255             :     int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
     256             :     int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
     257             :     int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
     258             :     int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
     259             : } ALSBlockData;
     260             : 
     261             : 
     262          12 : static av_cold void dprint_specific_config(ALSDecContext *ctx)
     263             : {
     264             : #ifdef DEBUG
     265             :     AVCodecContext *avctx    = ctx->avctx;
     266             :     ALSSpecificConfig *sconf = &ctx->sconf;
     267             : 
     268             :     ff_dlog(avctx, "resolution = %i\n",           sconf->resolution);
     269             :     ff_dlog(avctx, "floating = %i\n",             sconf->floating);
     270             :     ff_dlog(avctx, "frame_length = %i\n",         sconf->frame_length);
     271             :     ff_dlog(avctx, "ra_distance = %i\n",          sconf->ra_distance);
     272             :     ff_dlog(avctx, "ra_flag = %i\n",              sconf->ra_flag);
     273             :     ff_dlog(avctx, "adapt_order = %i\n",          sconf->adapt_order);
     274             :     ff_dlog(avctx, "coef_table = %i\n",           sconf->coef_table);
     275             :     ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
     276             :     ff_dlog(avctx, "max_order = %i\n",            sconf->max_order);
     277             :     ff_dlog(avctx, "block_switching = %i\n",      sconf->block_switching);
     278             :     ff_dlog(avctx, "bgmc = %i\n",                 sconf->bgmc);
     279             :     ff_dlog(avctx, "sb_part = %i\n",              sconf->sb_part);
     280             :     ff_dlog(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
     281             :     ff_dlog(avctx, "mc_coding = %i\n",            sconf->mc_coding);
     282             :     ff_dlog(avctx, "chan_config = %i\n",          sconf->chan_config);
     283             :     ff_dlog(avctx, "chan_sort = %i\n",            sconf->chan_sort);
     284             :     ff_dlog(avctx, "RLSLMS = %i\n",               sconf->rlslms);
     285             :     ff_dlog(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
     286             : #endif
     287          12 : }
     288             : 
     289             : 
     290             : /** Read an ALSSpecificConfig from a buffer into the output struct.
     291             :  */
     292          12 : static av_cold int read_specific_config(ALSDecContext *ctx)
     293             : {
     294             :     GetBitContext gb;
     295             :     uint64_t ht_size;
     296             :     int i, config_offset;
     297          12 :     MPEG4AudioConfig m4ac = {0};
     298          12 :     ALSSpecificConfig *sconf = &ctx->sconf;
     299          12 :     AVCodecContext *avctx    = ctx->avctx;
     300             :     uint32_t als_id, header_size, trailer_size;
     301             :     int ret;
     302             : 
     303          12 :     if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
     304           0 :         return ret;
     305             : 
     306          12 :     config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
     307          12 :                                                  avctx->extradata_size * 8, 1);
     308             : 
     309          12 :     if (config_offset < 0)
     310           0 :         return AVERROR_INVALIDDATA;
     311             : 
     312          12 :     skip_bits_long(&gb, config_offset);
     313             : 
     314          12 :     if (get_bits_left(&gb) < (30 << 3))
     315           0 :         return AVERROR_INVALIDDATA;
     316             : 
     317             :     // read the fixed items
     318          12 :     als_id                      = get_bits_long(&gb, 32);
     319          12 :     avctx->sample_rate          = m4ac.sample_rate;
     320          12 :     skip_bits_long(&gb, 32); // sample rate already known
     321          12 :     sconf->samples              = get_bits_long(&gb, 32);
     322          12 :     avctx->channels             = m4ac.channels;
     323          12 :     skip_bits(&gb, 16);      // number of channels already known
     324          12 :     skip_bits(&gb, 3);       // skip file_type
     325          12 :     sconf->resolution           = get_bits(&gb, 3);
     326          12 :     sconf->floating             = get_bits1(&gb);
     327          12 :     sconf->msb_first            = get_bits1(&gb);
     328          12 :     sconf->frame_length         = get_bits(&gb, 16) + 1;
     329          12 :     sconf->ra_distance          = get_bits(&gb, 8);
     330          12 :     sconf->ra_flag              = get_bits(&gb, 2);
     331          12 :     sconf->adapt_order          = get_bits1(&gb);
     332          12 :     sconf->coef_table           = get_bits(&gb, 2);
     333          12 :     sconf->long_term_prediction = get_bits1(&gb);
     334          12 :     sconf->max_order            = get_bits(&gb, 10);
     335          12 :     sconf->block_switching      = get_bits(&gb, 2);
     336          12 :     sconf->bgmc                 = get_bits1(&gb);
     337          12 :     sconf->sb_part              = get_bits1(&gb);
     338          12 :     sconf->joint_stereo         = get_bits1(&gb);
     339          12 :     sconf->mc_coding            = get_bits1(&gb);
     340          12 :     sconf->chan_config          = get_bits1(&gb);
     341          12 :     sconf->chan_sort            = get_bits1(&gb);
     342          12 :     sconf->crc_enabled          = get_bits1(&gb);
     343          12 :     sconf->rlslms               = get_bits1(&gb);
     344          12 :     skip_bits(&gb, 5);       // skip 5 reserved bits
     345          12 :     skip_bits1(&gb);         // skip aux_data_enabled
     346             : 
     347             : 
     348             :     // check for ALSSpecificConfig struct
     349          12 :     if (als_id != MKBETAG('A','L','S','\0'))
     350           0 :         return AVERROR_INVALIDDATA;
     351             : 
     352          12 :     ctx->cur_frame_length = sconf->frame_length;
     353             : 
     354             :     // read channel config
     355          12 :     if (sconf->chan_config)
     356           0 :         sconf->chan_config_info = get_bits(&gb, 16);
     357             :     // TODO: use this to set avctx->channel_layout
     358             : 
     359             : 
     360             :     // read channel sorting
     361          12 :     if (sconf->chan_sort && avctx->channels > 1) {
     362           0 :         int chan_pos_bits = av_ceil_log2(avctx->channels);
     363           0 :         int bits_needed  = avctx->channels * chan_pos_bits + 7;
     364           0 :         if (get_bits_left(&gb) < bits_needed)
     365           0 :             return AVERROR_INVALIDDATA;
     366             : 
     367           0 :         if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
     368           0 :             return AVERROR(ENOMEM);
     369             : 
     370           0 :         ctx->cs_switch = 1;
     371             : 
     372           0 :         for (i = 0; i < avctx->channels; i++) {
     373           0 :             sconf->chan_pos[i] = -1;
     374             :         }
     375             : 
     376           0 :         for (i = 0; i < avctx->channels; i++) {
     377             :             int idx;
     378             : 
     379           0 :             idx = get_bits(&gb, chan_pos_bits);
     380           0 :             if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
     381           0 :                 av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
     382           0 :                 ctx->cs_switch = 0;
     383           0 :                 break;
     384             :             }
     385           0 :             sconf->chan_pos[idx] = i;
     386             :         }
     387             : 
     388           0 :         align_get_bits(&gb);
     389             :     }
     390             : 
     391             : 
     392             :     // read fixed header and trailer sizes,
     393             :     // if size = 0xFFFFFFFF then there is no data field!
     394          12 :     if (get_bits_left(&gb) < 64)
     395           0 :         return AVERROR_INVALIDDATA;
     396             : 
     397          12 :     header_size  = get_bits_long(&gb, 32);
     398          12 :     trailer_size = get_bits_long(&gb, 32);
     399          12 :     if (header_size  == 0xFFFFFFFF)
     400           0 :         header_size  = 0;
     401          12 :     if (trailer_size == 0xFFFFFFFF)
     402           0 :         trailer_size = 0;
     403             : 
     404          12 :     ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
     405             : 
     406             : 
     407             :     // skip the header and trailer data
     408          12 :     if (get_bits_left(&gb) < ht_size)
     409           0 :         return AVERROR_INVALIDDATA;
     410             : 
     411          12 :     if (ht_size > INT32_MAX)
     412           0 :         return AVERROR_PATCHWELCOME;
     413             : 
     414          12 :     skip_bits_long(&gb, ht_size);
     415             : 
     416             : 
     417             :     // initialize CRC calculation
     418          12 :     if (sconf->crc_enabled) {
     419          12 :         if (get_bits_left(&gb) < 32)
     420           0 :             return AVERROR_INVALIDDATA;
     421             : 
     422          12 :         if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
     423           0 :             ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
     424           0 :             ctx->crc       = 0xFFFFFFFF;
     425           0 :             ctx->crc_org   = ~get_bits_long(&gb, 32);
     426             :         } else
     427          12 :             skip_bits_long(&gb, 32);
     428             :     }
     429             : 
     430             : 
     431             :     // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
     432             : 
     433          12 :     dprint_specific_config(ctx);
     434             : 
     435          12 :     return 0;
     436             : }
     437             : 
     438             : 
     439             : /** Check the ALSSpecificConfig for unsupported features.
     440             :  */
     441          12 : static int check_specific_config(ALSDecContext *ctx)
     442             : {
     443          12 :     ALSSpecificConfig *sconf = &ctx->sconf;
     444          12 :     int error = 0;
     445             : 
     446             :     // report unsupported feature and set error value
     447             :     #define MISSING_ERR(cond, str, errval)              \
     448             :     {                                                   \
     449             :         if (cond) {                                     \
     450             :             avpriv_report_missing_feature(ctx->avctx,   \
     451             :                                           str);         \
     452             :             error = errval;                             \
     453             :         }                                               \
     454             :     }
     455             : 
     456          12 :     MISSING_ERR(sconf->rlslms,    "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
     457             : 
     458          12 :     return error;
     459             : }
     460             : 
     461             : 
     462             : /** Parse the bs_info field to extract the block partitioning used in
     463             :  *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
     464             :  */
     465        3037 : static void parse_bs_info(const uint32_t bs_info, unsigned int n,
     466             :                           unsigned int div, unsigned int **div_blocks,
     467             :                           unsigned int *num_blocks)
     468             : {
     469        3037 :     if (n < 31 && ((bs_info << n) & 0x40000000)) {
     470             :         // if the level is valid and the investigated bit n is set
     471             :         // then recursively check both children at bits (2n+1) and (2n+2)
     472          72 :         n   *= 2;
     473          72 :         div += 1;
     474          72 :         parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
     475          72 :         parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
     476             :     } else {
     477             :         // else the bit is not set or the last level has been reached
     478             :         // (bit implicitly not set)
     479        2965 :         **div_blocks = div;
     480        2965 :         (*div_blocks)++;
     481        2965 :         (*num_blocks)++;
     482             :     }
     483        3037 : }
     484             : 
     485             : 
     486             : /** Read and decode a Rice codeword.
     487             :  */
     488     7227443 : static int32_t decode_rice(GetBitContext *gb, unsigned int k)
     489             : {
     490     7227443 :     int max = get_bits_left(gb) - k;
     491     7227443 :     int q   = get_unary(gb, 0, max);
     492     7227443 :     int r   = k ? get_bits1(gb) : !(q & 1);
     493             : 
     494     7227443 :     if (k > 1) {
     495     6978114 :         q <<= (k - 1);
     496     6978114 :         q  += get_bits_long(gb, k - 1);
     497      249329 :     } else if (!k) {
     498      197959 :         q >>= 1;
     499             :     }
     500     7227443 :     return r ? q : ~q;
     501             : }
     502             : 
     503             : 
     504             : /** Convert PARCOR coefficient k to direct filter coefficient.
     505             :  */
     506      106098 : static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
     507             : {
     508             :     int i, j;
     509             : 
     510     2187368 :     for (i = 0, j = k - 1; i < j; i++, j--) {
     511     2081270 :         int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
     512     2081270 :         cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
     513     2081270 :         cof[i]  += tmp1;
     514             :     }
     515      106098 :     if (i == j)
     516       52785 :         cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
     517             : 
     518      106098 :     cof[k] = par[k];
     519      106098 : }
     520             : 
     521             : 
     522             : /** Read block switching field if necessary and set actual block sizes.
     523             :  *  Also assure that the block sizes of the last frame correspond to the
     524             :  *  actual number of samples.
     525             :  */
     526        2893 : static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
     527             :                             uint32_t *bs_info)
     528             : {
     529        2893 :     ALSSpecificConfig *sconf     = &ctx->sconf;
     530        2893 :     GetBitContext *gb            = &ctx->gb;
     531        2893 :     unsigned int *ptr_div_blocks = div_blocks;
     532             :     unsigned int b;
     533             : 
     534        2893 :     if (sconf->block_switching) {
     535         109 :         unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
     536         109 :         *bs_info = get_bits_long(gb, bs_info_len);
     537         109 :         *bs_info <<= (32 - bs_info_len);
     538             :     }
     539             : 
     540        2893 :     ctx->num_blocks = 0;
     541        2893 :     parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
     542             : 
     543             :     // The last frame may have an overdetermined block structure given in
     544             :     // the bitstream. In that case the defined block structure would need
     545             :     // more samples than available to be consistent.
     546             :     // The block structure is actually used but the block sizes are adapted
     547             :     // to fit the actual number of available samples.
     548             :     // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
     549             :     // This results in the actual block sizes:    2 2 1 0.
     550             :     // This is not specified in 14496-3 but actually done by the reference
     551             :     // codec RM22 revision 2.
     552             :     // This appears to happen in case of an odd number of samples in the last
     553             :     // frame which is actually not allowed by the block length switching part
     554             :     // of 14496-3.
     555             :     // The ALS conformance files feature an odd number of samples in the last
     556             :     // frame.
     557             : 
     558        5858 :     for (b = 0; b < ctx->num_blocks; b++)
     559        2965 :         div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
     560             : 
     561        2893 :     if (ctx->cur_frame_length != ctx->sconf.frame_length) {
     562          10 :         unsigned int remaining = ctx->cur_frame_length;
     563             : 
     564          15 :         for (b = 0; b < ctx->num_blocks; b++) {
     565          15 :             if (remaining <= div_blocks[b]) {
     566          10 :                 div_blocks[b] = remaining;
     567          10 :                 ctx->num_blocks = b + 1;
     568          10 :                 break;
     569             :             }
     570             : 
     571           5 :             remaining -= div_blocks[b];
     572             :         }
     573             :     }
     574        2893 : }
     575             : 
     576             : 
     577             : /** Read the block data for a constant block
     578             :  */
     579           0 : static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
     580             : {
     581           0 :     ALSSpecificConfig *sconf = &ctx->sconf;
     582           0 :     AVCodecContext *avctx    = ctx->avctx;
     583           0 :     GetBitContext *gb        = &ctx->gb;
     584             : 
     585           0 :     if (bd->block_length <= 0)
     586           0 :         return AVERROR_INVALIDDATA;
     587             : 
     588           0 :     *bd->raw_samples = 0;
     589           0 :     *bd->const_block = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
     590           0 :     bd->js_blocks    = get_bits1(gb);
     591             : 
     592             :     // skip 5 reserved bits
     593           0 :     skip_bits(gb, 5);
     594             : 
     595           0 :     if (*bd->const_block) {
     596           0 :         unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
     597           0 :         *bd->raw_samples = get_sbits_long(gb, const_val_bits);
     598             :     }
     599             : 
     600             :     // ensure constant block decoding by reusing this field
     601           0 :     *bd->const_block = 1;
     602             : 
     603           0 :     return 0;
     604             : }
     605             : 
     606             : 
     607             : /** Decode the block data for a constant block
     608             :  */
     609           0 : static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
     610             : {
     611           0 :     int      smp = bd->block_length - 1;
     612           0 :     int32_t  val = *bd->raw_samples;
     613           0 :     int32_t *dst = bd->raw_samples + 1;
     614             : 
     615             :     // write raw samples into buffer
     616           0 :     for (; smp; smp--)
     617           0 :         *dst++ = val;
     618           0 : }
     619             : 
     620             : 
     621             : /** Read the block data for a non-constant block
     622             :  */
     623        3729 : static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
     624             : {
     625        3729 :     ALSSpecificConfig *sconf = &ctx->sconf;
     626        3729 :     AVCodecContext *avctx    = ctx->avctx;
     627        3729 :     GetBitContext *gb        = &ctx->gb;
     628             :     unsigned int k;
     629             :     unsigned int s[8];
     630             :     unsigned int sx[8];
     631             :     unsigned int sub_blocks, log2_sub_blocks, sb_length;
     632        3729 :     unsigned int start      = 0;
     633             :     unsigned int opt_order;
     634             :     int          sb;
     635        3729 :     int32_t      *quant_cof = bd->quant_cof;
     636             :     int32_t      *current_res;
     637             : 
     638             : 
     639             :     // ensure variable block decoding by reusing this field
     640        3729 :     *bd->const_block = 0;
     641             : 
     642        3729 :     *bd->opt_order  = 1;
     643        3729 :     bd->js_blocks   = get_bits1(gb);
     644             : 
     645        3729 :     opt_order       = *bd->opt_order;
     646             : 
     647             :     // determine the number of subblocks for entropy decoding
     648        3729 :     if (!sconf->bgmc && !sconf->sb_part) {
     649           0 :         log2_sub_blocks = 0;
     650             :     } else {
     651        3729 :         if (sconf->bgmc && sconf->sb_part)
     652         696 :             log2_sub_blocks = get_bits(gb, 2);
     653             :         else
     654        3033 :             log2_sub_blocks = 2 * get_bits1(gb);
     655             :     }
     656             : 
     657        3729 :     sub_blocks = 1 << log2_sub_blocks;
     658             : 
     659             :     // do not continue in case of a damaged stream since
     660             :     // block_length must be evenly divisible by sub_blocks
     661        3729 :     if (bd->block_length & (sub_blocks - 1)) {
     662           0 :         av_log(avctx, AV_LOG_WARNING,
     663             :                "Block length is not evenly divisible by the number of subblocks.\n");
     664           0 :         return AVERROR_INVALIDDATA;
     665             :     }
     666             : 
     667        3729 :     sb_length = bd->block_length >> log2_sub_blocks;
     668             : 
     669        3729 :     if (sconf->bgmc) {
     670         696 :         s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
     671        2121 :         for (k = 1; k < sub_blocks; k++)
     672        1425 :             s[k] = s[k - 1] + decode_rice(gb, 2);
     673             : 
     674        2817 :         for (k = 0; k < sub_blocks; k++) {
     675        2121 :             sx[k]   = s[k] & 0x0F;
     676        2121 :             s [k] >>= 4;
     677             :         }
     678             :     } else {
     679        3033 :         s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
     680        5313 :         for (k = 1; k < sub_blocks; k++)
     681        2280 :             s[k] = s[k - 1] + decode_rice(gb, 0);
     682             :     }
     683        7434 :     for (k = 1; k < sub_blocks; k++)
     684        3705 :         if (s[k] > 32) {
     685           0 :             av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
     686           0 :             return AVERROR_INVALIDDATA;
     687             :         }
     688             : 
     689        3729 :     if (get_bits1(gb))
     690           0 :         *bd->shift_lsbs = get_bits(gb, 4) + 1;
     691             : 
     692        3729 :     *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
     693             : 
     694             : 
     695        3729 :     if (!sconf->rlslms) {
     696        4674 :         if (sconf->adapt_order && sconf->max_order) {
     697         945 :             int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
     698         945 :                                                 2, sconf->max_order + 1));
     699         945 :             *bd->opt_order       = get_bits(gb, opt_order_length);
     700         945 :             if (*bd->opt_order > sconf->max_order) {
     701           0 :                 *bd->opt_order = sconf->max_order;
     702           0 :                 av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
     703           0 :                 return AVERROR_INVALIDDATA;
     704             :             }
     705             :         } else {
     706        2784 :             *bd->opt_order = sconf->max_order;
     707             :         }
     708        3729 :         if (*bd->opt_order > bd->block_length) {
     709           0 :             *bd->opt_order = bd->block_length;
     710           0 :             av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
     711           0 :             return AVERROR_INVALIDDATA;
     712             :         }
     713        3729 :         opt_order = *bd->opt_order;
     714             : 
     715        3729 :         if (opt_order) {
     716             :             int add_base;
     717             : 
     718        3729 :             if (sconf->coef_table == 3) {
     719           0 :                 add_base = 0x7F;
     720             : 
     721             :                 // read coefficient 0
     722           0 :                 quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
     723             : 
     724             :                 // read coefficient 1
     725           0 :                 if (opt_order > 1)
     726           0 :                     quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
     727             : 
     728             :                 // read coefficients 2 to opt_order
     729           0 :                 for (k = 2; k < opt_order; k++)
     730           0 :                     quant_cof[k] = get_bits(gb, 7);
     731             :             } else {
     732             :                 int k_max;
     733        3729 :                 add_base = 1;
     734             : 
     735             :                 // read coefficient 0 to 19
     736        3729 :                 k_max = FFMIN(opt_order, 20);
     737       49527 :                 for (k = 0; k < k_max; k++) {
     738       45798 :                     int rice_param = parcor_rice_table[sconf->coef_table][k][1];
     739       45798 :                     int offset     = parcor_rice_table[sconf->coef_table][k][0];
     740       45798 :                     quant_cof[k] = decode_rice(gb, rice_param) + offset;
     741       45798 :                     if (quant_cof[k] < -64 || quant_cof[k] > 63) {
     742           0 :                         av_log(avctx, AV_LOG_ERROR,
     743             :                                "quant_cof %"PRId32" is out of range.\n",
     744           0 :                                quant_cof[k]);
     745           0 :                         return AVERROR_INVALIDDATA;
     746             :                     }
     747             :                 }
     748             : 
     749             :                 // read coefficients 20 to 126
     750        3729 :                 k_max = FFMIN(opt_order, 127);
     751       64029 :                 for (; k < k_max; k++)
     752       60300 :                     quant_cof[k] = decode_rice(gb, 2) + (k & 1);
     753             : 
     754             :                 // read coefficients 127 to opt_order
     755        3729 :                 for (; k < opt_order; k++)
     756           0 :                     quant_cof[k] = decode_rice(gb, 1);
     757             : 
     758        3729 :                 quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
     759             : 
     760        3729 :                 if (opt_order > 1)
     761        3729 :                     quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
     762             :             }
     763             : 
     764      102369 :             for (k = 2; k < opt_order; k++)
     765       98640 :                 quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
     766             :         }
     767             :     }
     768             : 
     769             :     // read LTP gain and lag values
     770        3729 :     if (sconf->long_term_prediction) {
     771         696 :         *bd->use_ltp = get_bits1(gb);
     772             : 
     773         696 :         if (*bd->use_ltp) {
     774             :             int r, c;
     775             : 
     776         674 :             bd->ltp_gain[0]   = decode_rice(gb, 1) << 3;
     777         674 :             bd->ltp_gain[1]   = decode_rice(gb, 2) << 3;
     778             : 
     779         674 :             r                 = get_unary(gb, 0, 4);
     780         674 :             c                 = get_bits(gb, 2);
     781         674 :             if (r >= 4) {
     782           0 :                 av_log(avctx, AV_LOG_ERROR, "r overflow\n");
     783           0 :                 return AVERROR_INVALIDDATA;
     784             :             }
     785             : 
     786         674 :             bd->ltp_gain[2]   = ltp_gain_values[r][c];
     787             : 
     788         674 :             bd->ltp_gain[3]   = decode_rice(gb, 2) << 3;
     789         674 :             bd->ltp_gain[4]   = decode_rice(gb, 1) << 3;
     790             : 
     791         674 :             *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
     792         674 :             *bd->ltp_lag     += FFMAX(4, opt_order + 1);
     793             :         }
     794             :     }
     795             : 
     796             :     // read first value and residuals in case of a random access block
     797        3729 :     if (bd->ra_block) {
     798         696 :         if (opt_order)
     799         696 :             bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
     800         696 :         if (opt_order > 1)
     801         696 :             bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
     802         696 :         if (opt_order > 2)
     803         695 :             bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
     804             : 
     805         696 :         start = FFMIN(opt_order, 3);
     806             :     }
     807             : 
     808             :     // read all residuals
     809        3729 :     if (sconf->bgmc) {
     810             :         int          delta[8];
     811             :         unsigned int k    [8];
     812         696 :         unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
     813             : 
     814             :         // read most significant bits
     815             :         unsigned int high;
     816             :         unsigned int low;
     817             :         unsigned int value;
     818             : 
     819         696 :         ff_bgmc_decode_init(gb, &high, &low, &value);
     820             : 
     821         696 :         current_res = bd->raw_samples + start;
     822             : 
     823        2817 :         for (sb = 0; sb < sub_blocks; sb++) {
     824        2121 :             unsigned int sb_len  = sb_length - (sb ? 0 : start);
     825             : 
     826        2121 :             k    [sb] = s[sb] > b ? s[sb] - b : 0;
     827        2121 :             delta[sb] = 5 - s[sb] + k[sb];
     828             : 
     829        2121 :             ff_bgmc_decode(gb, sb_len, current_res,
     830             :                         delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
     831             : 
     832        2121 :             current_res += sb_len;
     833             :         }
     834             : 
     835         696 :         ff_bgmc_decode_end(gb);
     836             : 
     837             : 
     838             :         // read least significant bits and tails
     839         696 :         current_res = bd->raw_samples + start;
     840             : 
     841        2817 :         for (sb = 0; sb < sub_blocks; sb++, start = 0) {
     842        2121 :             unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
     843        2121 :             unsigned int cur_k         = k[sb];
     844        2121 :             unsigned int cur_s         = s[sb];
     845             : 
     846     1423939 :             for (; start < sb_length; start++) {
     847     1421818 :                 int32_t res = *current_res;
     848             : 
     849     1421818 :                 if (res == cur_tail_code) {
     850        8228 :                     unsigned int max_msb =   (2 + (sx[sb] > 2) + (sx[sb] > 10))
     851        4114 :                                           << (5 - delta[sb]);
     852             : 
     853        4114 :                     res = decode_rice(gb, cur_s);
     854             : 
     855        4114 :                     if (res >= 0) {
     856        2022 :                         res += (max_msb    ) << cur_k;
     857             :                     } else {
     858        2092 :                         res -= (max_msb - 1) << cur_k;
     859             :                     }
     860             :                 } else {
     861     1417704 :                     if (res > cur_tail_code)
     862       17223 :                         res--;
     863             : 
     864     1417704 :                     if (res & 1)
     865      650779 :                         res = -res;
     866             : 
     867     1417704 :                     res >>= 1;
     868             : 
     869     1417704 :                     if (cur_k) {
     870         765 :                         res <<= cur_k;
     871         765 :                         res  |= get_bits_long(gb, cur_k);
     872             :                     }
     873             :                 }
     874             : 
     875     1421818 :                 *current_res++ = res;
     876             :             }
     877             :         }
     878             :     } else {
     879        3033 :         current_res = bd->raw_samples + start;
     880             : 
     881        8346 :         for (sb = 0; sb < sub_blocks; sb++, start = 0)
     882     7112316 :             for (; start < sb_length; start++)
     883     7107003 :                 *current_res++ = decode_rice(gb, s[sb]);
     884             :      }
     885             : 
     886        3729 :     return 0;
     887             : }
     888             : 
     889             : 
     890             : /** Decode the block data for a non-constant block
     891             :  */
     892        3729 : static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
     893             : {
     894        3729 :     ALSSpecificConfig *sconf = &ctx->sconf;
     895        3729 :     unsigned int block_length = bd->block_length;
     896        3729 :     unsigned int smp = 0;
     897             :     unsigned int k;
     898        3729 :     int opt_order             = *bd->opt_order;
     899             :     int sb;
     900             :     int64_t y;
     901        3729 :     int32_t *quant_cof        = bd->quant_cof;
     902        3729 :     int32_t *lpc_cof          = bd->lpc_cof;
     903        3729 :     int32_t *raw_samples      = bd->raw_samples;
     904        3729 :     int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
     905        3729 :     int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
     906             : 
     907             :     // reverse long-term prediction
     908        3729 :     if (*bd->use_ltp) {
     909             :         int ltp_smp;
     910             : 
     911     1280397 :         for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
     912     1279723 :             int center = ltp_smp - *bd->ltp_lag;
     913     1279723 :             int begin  = FFMAX(0, center - 2);
     914     1279723 :             int end    = center + 3;
     915     1279723 :             int tab    = 5 - (end - begin);
     916             :             int base;
     917             : 
     918     1279723 :             y = 1 << 6;
     919             : 
     920     7671598 :             for (base = begin; base < end; base++, tab++)
     921     6391875 :                 y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
     922             : 
     923     1279723 :             raw_samples[ltp_smp] += y >> 7;
     924             :         }
     925             :     }
     926             : 
     927             :     // reconstruct all samples from residuals
     928        3729 :     if (bd->ra_block) {
     929       53974 :         for (smp = 0; smp < opt_order; smp++) {
     930       53278 :             y = 1 << 19;
     931             : 
     932     2692244 :             for (sb = 0; sb < smp; sb++)
     933     2638966 :                 y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
     934             : 
     935       53278 :             *raw_samples++ -= y >> 20;
     936       53278 :             parcor_to_lpc(smp, quant_cof, lpc_cof);
     937             :         }
     938             :     } else {
     939       55853 :         for (k = 0; k < opt_order; k++)
     940       52820 :             parcor_to_lpc(k, quant_cof, lpc_cof);
     941             : 
     942             :         // store previous samples in case that they have to be altered
     943        3033 :         if (*bd->store_prev_samples)
     944           9 :             memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
     945           9 :                    sizeof(*bd->prev_raw_samples) * sconf->max_order);
     946             : 
     947             :         // reconstruct difference signal for prediction (joint-stereo)
     948        3033 :         if (bd->js_blocks && bd->raw_other) {
     949             :             int32_t *left, *right;
     950             : 
     951           9 :             if (bd->raw_other > raw_samples) {  // D = R - L
     952           4 :                 left  = raw_samples;
     953           4 :                 right = bd->raw_other;
     954             :             } else {                                // D = R - L
     955           5 :                 left  = bd->raw_other;
     956           5 :                 right = raw_samples;
     957             :             }
     958             : 
     959         333 :             for (sb = -1; sb >= -sconf->max_order; sb--)
     960         324 :                 raw_samples[sb] = right[sb] - left[sb];
     961             :         }
     962             : 
     963             :         // reconstruct shifted signal
     964        3033 :         if (*bd->shift_lsbs)
     965           0 :             for (sb = -1; sb >= -sconf->max_order; sb--)
     966           0 :                 raw_samples[sb] >>= *bd->shift_lsbs;
     967             :     }
     968             : 
     969             :     // reverse linear prediction coefficients for efficiency
     970        3729 :     lpc_cof = lpc_cof + opt_order;
     971             : 
     972      109827 :     for (sb = 0; sb < opt_order; sb++)
     973      106098 :         lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
     974             : 
     975             :     // reconstruct raw samples
     976        3729 :     raw_samples = bd->raw_samples + smp;
     977        3729 :     lpc_cof     = lpc_cof_reversed + opt_order;
     978             : 
     979     8481359 :     for (; raw_samples < raw_samples_end; raw_samples++) {
     980     8477630 :         y = 1 << 19;
     981             : 
     982   329357942 :         for (sb = -opt_order; sb < 0; sb++)
     983   320880312 :             y += MUL64(lpc_cof[sb], raw_samples[sb]);
     984             : 
     985     8477630 :         *raw_samples -= y >> 20;
     986             :     }
     987             : 
     988        3729 :     raw_samples = bd->raw_samples;
     989             : 
     990             :     // restore previous samples in case that they have been altered
     991        3729 :     if (*bd->store_prev_samples)
     992           9 :         memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
     993           9 :                sizeof(*raw_samples) * sconf->max_order);
     994             : 
     995        3729 :     return 0;
     996             : }
     997             : 
     998             : 
     999             : /** Read the block data.
    1000             :  */
    1001        3729 : static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
    1002             : {
    1003             :     int ret;
    1004        3729 :     GetBitContext *gb        = &ctx->gb;
    1005        3729 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1006             : 
    1007        3729 :     *bd->shift_lsbs = 0;
    1008             :     // read block type flag and read the samples accordingly
    1009        3729 :     if (get_bits1(gb)) {
    1010        3729 :         ret = read_var_block_data(ctx, bd);
    1011             :     } else {
    1012           0 :         ret = read_const_block_data(ctx, bd);
    1013             :     }
    1014             : 
    1015        3729 :     if (!sconf->mc_coding || ctx->js_switch)
    1016        3033 :         align_get_bits(gb);
    1017             : 
    1018        3729 :     return ret;
    1019             : }
    1020             : 
    1021             : 
    1022             : /** Decode the block data.
    1023             :  */
    1024        3729 : static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
    1025             : {
    1026             :     unsigned int smp;
    1027        3729 :     int ret = 0;
    1028             : 
    1029             :     // read block type flag and read the samples accordingly
    1030        3729 :     if (*bd->const_block)
    1031           0 :         decode_const_block_data(ctx, bd);
    1032             :     else
    1033        3729 :         ret = decode_var_block_data(ctx, bd); // always return 0
    1034             : 
    1035        3729 :     if (ret < 0)
    1036           0 :         return ret;
    1037             : 
    1038             :     // TODO: read RLSLMS extension data
    1039             : 
    1040        3729 :     if (*bd->shift_lsbs)
    1041           0 :         for (smp = 0; smp < bd->block_length; smp++)
    1042           0 :             bd->raw_samples[smp] <<= *bd->shift_lsbs;
    1043             : 
    1044        3729 :     return 0;
    1045             : }
    1046             : 
    1047             : 
    1048             : /** Read and decode block data successively.
    1049             :  */
    1050        3033 : static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
    1051             : {
    1052             :     int ret;
    1053             : 
    1054        3033 :     if ((ret = read_block(ctx, bd)) < 0)
    1055           0 :         return ret;
    1056             : 
    1057        3033 :     return decode_block(ctx, bd);
    1058             : }
    1059             : 
    1060             : 
    1061             : /** Compute the number of samples left to decode for the current frame and
    1062             :  *  sets these samples to zero.
    1063             :  */
    1064           0 : static void zero_remaining(unsigned int b, unsigned int b_max,
    1065             :                            const unsigned int *div_blocks, int32_t *buf)
    1066             : {
    1067           0 :     unsigned int count = 0;
    1068             : 
    1069           0 :     while (b < b_max)
    1070           0 :         count += div_blocks[b++];
    1071             : 
    1072           0 :     if (count)
    1073           0 :         memset(buf, 0, sizeof(*buf) * count);
    1074           0 : }
    1075             : 
    1076             : 
    1077             : /** Decode blocks independently.
    1078             :  */
    1079        2132 : static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
    1080             :                              unsigned int c, const unsigned int *div_blocks,
    1081             :                              unsigned int *js_blocks)
    1082             : {
    1083             :     int ret;
    1084             :     unsigned int b;
    1085        2132 :     ALSBlockData bd = { 0 };
    1086             : 
    1087        2132 :     bd.ra_block         = ra_frame;
    1088        2132 :     bd.const_block      = ctx->const_block;
    1089        2132 :     bd.shift_lsbs       = ctx->shift_lsbs;
    1090        2132 :     bd.opt_order        = ctx->opt_order;
    1091        2132 :     bd.store_prev_samples = ctx->store_prev_samples;
    1092        2132 :     bd.use_ltp          = ctx->use_ltp;
    1093        2132 :     bd.ltp_lag          = ctx->ltp_lag;
    1094        2132 :     bd.ltp_gain         = ctx->ltp_gain[0];
    1095        2132 :     bd.quant_cof        = ctx->quant_cof[0];
    1096        2132 :     bd.lpc_cof          = ctx->lpc_cof[0];
    1097        2132 :     bd.prev_raw_samples = ctx->prev_raw_samples;
    1098        2132 :     bd.raw_samples      = ctx->raw_samples[c];
    1099             : 
    1100             : 
    1101        4305 :     for (b = 0; b < ctx->num_blocks; b++) {
    1102        2173 :         bd.block_length     = div_blocks[b];
    1103             : 
    1104        2173 :         if ((ret = read_decode_block(ctx, &bd)) < 0) {
    1105             :             // damaged block, write zero for the rest of the frame
    1106           0 :             zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
    1107           0 :             return ret;
    1108             :         }
    1109        2173 :         bd.raw_samples += div_blocks[b];
    1110        2173 :         bd.ra_block     = 0;
    1111             :     }
    1112             : 
    1113        2132 :     return 0;
    1114             : }
    1115             : 
    1116             : 
    1117             : /** Decode blocks dependently.
    1118             :  */
    1119         413 : static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
    1120             :                          unsigned int c, const unsigned int *div_blocks,
    1121             :                          unsigned int *js_blocks)
    1122             : {
    1123         413 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1124         413 :     unsigned int offset = 0;
    1125             :     unsigned int b;
    1126             :     int ret;
    1127         413 :     ALSBlockData bd[2] = { { 0 } };
    1128             : 
    1129         413 :     bd[0].ra_block         = ra_frame;
    1130         413 :     bd[0].const_block      = ctx->const_block;
    1131         413 :     bd[0].shift_lsbs       = ctx->shift_lsbs;
    1132         413 :     bd[0].opt_order        = ctx->opt_order;
    1133         413 :     bd[0].store_prev_samples = ctx->store_prev_samples;
    1134         413 :     bd[0].use_ltp          = ctx->use_ltp;
    1135         413 :     bd[0].ltp_lag          = ctx->ltp_lag;
    1136         413 :     bd[0].ltp_gain         = ctx->ltp_gain[0];
    1137         413 :     bd[0].quant_cof        = ctx->quant_cof[0];
    1138         413 :     bd[0].lpc_cof          = ctx->lpc_cof[0];
    1139         413 :     bd[0].prev_raw_samples = ctx->prev_raw_samples;
    1140         413 :     bd[0].js_blocks        = *js_blocks;
    1141             : 
    1142         413 :     bd[1].ra_block         = ra_frame;
    1143         413 :     bd[1].const_block      = ctx->const_block;
    1144         413 :     bd[1].shift_lsbs       = ctx->shift_lsbs;
    1145         413 :     bd[1].opt_order        = ctx->opt_order;
    1146         413 :     bd[1].store_prev_samples = ctx->store_prev_samples;
    1147         413 :     bd[1].use_ltp          = ctx->use_ltp;
    1148         413 :     bd[1].ltp_lag          = ctx->ltp_lag;
    1149         413 :     bd[1].ltp_gain         = ctx->ltp_gain[0];
    1150         413 :     bd[1].quant_cof        = ctx->quant_cof[0];
    1151         413 :     bd[1].lpc_cof          = ctx->lpc_cof[0];
    1152         413 :     bd[1].prev_raw_samples = ctx->prev_raw_samples;
    1153         413 :     bd[1].js_blocks        = *(js_blocks + 1);
    1154             : 
    1155             :     // decode all blocks
    1156         843 :     for (b = 0; b < ctx->num_blocks; b++) {
    1157             :         unsigned int s;
    1158             : 
    1159         430 :         bd[0].block_length = div_blocks[b];
    1160         430 :         bd[1].block_length = div_blocks[b];
    1161             : 
    1162         430 :         bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
    1163         430 :         bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;
    1164             : 
    1165         430 :         bd[0].raw_other    = bd[1].raw_samples;
    1166         430 :         bd[1].raw_other    = bd[0].raw_samples;
    1167             : 
    1168         430 :         if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
    1169             :             (ret = read_decode_block(ctx, &bd[1])) < 0)
    1170             :             goto fail;
    1171             : 
    1172             :         // reconstruct joint-stereo blocks
    1173         430 :         if (bd[0].js_blocks) {
    1174           4 :             if (bd[1].js_blocks)
    1175           0 :                 av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
    1176             : 
    1177       16388 :             for (s = 0; s < div_blocks[b]; s++)
    1178       16384 :                 bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
    1179         426 :         } else if (bd[1].js_blocks) {
    1180       10245 :             for (s = 0; s < div_blocks[b]; s++)
    1181       10240 :                 bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
    1182             :         }
    1183             : 
    1184         430 :         offset  += div_blocks[b];
    1185         430 :         bd[0].ra_block = 0;
    1186         430 :         bd[1].ra_block = 0;
    1187             :     }
    1188             : 
    1189             :     // store carryover raw samples,
    1190             :     // the others channel raw samples are stored by the calling function.
    1191         826 :     memmove(ctx->raw_samples[c] - sconf->max_order,
    1192         413 :             ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
    1193         413 :             sizeof(*ctx->raw_samples[c]) * sconf->max_order);
    1194             : 
    1195         413 :     return 0;
    1196             : fail:
    1197             :     // damaged block, write zero for the rest of the frame
    1198           0 :     zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
    1199           0 :     zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
    1200           0 :     return ret;
    1201             : }
    1202             : 
    1203        1740 : static inline int als_weighting(GetBitContext *gb, int k, int off)
    1204             : {
    1205        1740 :     int idx = av_clip(decode_rice(gb, k) + off,
    1206             :                       0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
    1207        1740 :     return mcc_weightings[idx];
    1208             : }
    1209             : 
    1210             : /** Read the channel data.
    1211             :   */
    1212         696 : static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
    1213             : {
    1214         696 :     GetBitContext *gb       = &ctx->gb;
    1215         696 :     ALSChannelData *current = cd;
    1216         696 :     unsigned int channels   = ctx->avctx->channels;
    1217         696 :     int entries             = 0;
    1218             : 
    1219        1735 :     while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
    1220         343 :         current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
    1221             : 
    1222         343 :         if (current->master_channel >= channels) {
    1223           0 :             av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
    1224           0 :             return AVERROR_INVALIDDATA;
    1225             :         }
    1226             : 
    1227         343 :         if (current->master_channel != c) {
    1228         343 :             current->time_diff_flag = get_bits1(gb);
    1229         343 :             current->weighting[0]   = als_weighting(gb, 1, 16);
    1230         343 :             current->weighting[1]   = als_weighting(gb, 2, 14);
    1231         343 :             current->weighting[2]   = als_weighting(gb, 1, 16);
    1232             : 
    1233         343 :             if (current->time_diff_flag) {
    1234         237 :                 current->weighting[3] = als_weighting(gb, 1, 16);
    1235         237 :                 current->weighting[4] = als_weighting(gb, 1, 16);
    1236         237 :                 current->weighting[5] = als_weighting(gb, 1, 16);
    1237             : 
    1238         237 :                 current->time_diff_sign  = get_bits1(gb);
    1239         237 :                 current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
    1240             :             }
    1241             :         }
    1242             : 
    1243         343 :         current++;
    1244         343 :         entries++;
    1245             :     }
    1246             : 
    1247         696 :     if (entries == channels) {
    1248           0 :         av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
    1249           0 :         return AVERROR_INVALIDDATA;
    1250             :     }
    1251             : 
    1252         696 :     align_get_bits(gb);
    1253         696 :     return 0;
    1254             : }
    1255             : 
    1256             : 
    1257             : /** Recursively reverts the inter-channel correlation for a block.
    1258             :  */
    1259        1039 : static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
    1260             :                                        ALSChannelData **cd, int *reverted,
    1261             :                                        unsigned int offset, int c)
    1262             : {
    1263        1039 :     ALSChannelData *ch = cd[c];
    1264        1039 :     unsigned int   dep = 0;
    1265        1039 :     unsigned int channels = ctx->avctx->channels;
    1266        1039 :     unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
    1267             : 
    1268        1039 :     if (reverted[c])
    1269         343 :         return 0;
    1270             : 
    1271         696 :     reverted[c] = 1;
    1272             : 
    1273        1735 :     while (dep < channels && !ch[dep].stop_flag) {
    1274         343 :         revert_channel_correlation(ctx, bd, cd, reverted, offset,
    1275         343 :                                    ch[dep].master_channel);
    1276             : 
    1277         343 :         dep++;
    1278             :     }
    1279             : 
    1280         696 :     if (dep == channels) {
    1281           0 :         av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
    1282           0 :         return AVERROR_INVALIDDATA;
    1283             :     }
    1284             : 
    1285         696 :     bd->const_block = ctx->const_block + c;
    1286         696 :     bd->shift_lsbs  = ctx->shift_lsbs + c;
    1287         696 :     bd->opt_order   = ctx->opt_order + c;
    1288         696 :     bd->store_prev_samples = ctx->store_prev_samples + c;
    1289         696 :     bd->use_ltp     = ctx->use_ltp + c;
    1290         696 :     bd->ltp_lag     = ctx->ltp_lag + c;
    1291         696 :     bd->ltp_gain    = ctx->ltp_gain[c];
    1292         696 :     bd->lpc_cof     = ctx->lpc_cof[c];
    1293         696 :     bd->quant_cof   = ctx->quant_cof[c];
    1294         696 :     bd->raw_samples = ctx->raw_samples[c] + offset;
    1295             : 
    1296        1039 :     for (dep = 0; !ch[dep].stop_flag; dep++) {
    1297             :         ptrdiff_t smp;
    1298         343 :         ptrdiff_t begin = 1;
    1299         343 :         ptrdiff_t end   = bd->block_length - 1;
    1300             :         int64_t y;
    1301         343 :         int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
    1302             : 
    1303         343 :         if (ch[dep].master_channel == c)
    1304           0 :             continue;
    1305             : 
    1306         343 :         if (ch[dep].time_diff_flag) {
    1307         237 :             int t = ch[dep].time_diff_index;
    1308             : 
    1309         237 :             if (ch[dep].time_diff_sign) {
    1310          91 :                 t      = -t;
    1311          91 :                 if (begin < t) {
    1312           0 :                     av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
    1313           0 :                     return AVERROR_INVALIDDATA;
    1314             :                 }
    1315          91 :                 begin -= t;
    1316             :             } else {
    1317         146 :                 if (end < t) {
    1318           0 :                     av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
    1319           0 :                     return AVERROR_INVALIDDATA;
    1320             :                 }
    1321         146 :                 end   -= t;
    1322             :             }
    1323             : 
    1324         474 :             if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
    1325         237 :                 FFMAX(end   + 1,   end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
    1326           0 :                 av_log(ctx->avctx, AV_LOG_ERROR,
    1327             :                        "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
    1328           0 :                        master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1,   end + 1 + t),
    1329           0 :                        ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
    1330           0 :                 return AVERROR_INVALIDDATA;
    1331             :             }
    1332             : 
    1333      481197 :             for (smp = begin; smp < end; smp++) {
    1334      961920 :                 y  = (1 << 6) +
    1335      961920 :                      MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
    1336      961920 :                      MUL64(ch[dep].weighting[1], master[smp        ]) +
    1337      961920 :                      MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
    1338      961920 :                      MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
    1339      480960 :                      MUL64(ch[dep].weighting[4], master[smp     + t]) +
    1340      480960 :                      MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
    1341             : 
    1342      480960 :                 bd->raw_samples[smp] += y >> 7;
    1343             :             }
    1344             :         } else {
    1345             : 
    1346         212 :             if (begin - 1 < ctx->raw_buffer - master ||
    1347         106 :                 end   + 1 > ctx->raw_buffer + channels * channel_size - master) {
    1348           0 :                 av_log(ctx->avctx, AV_LOG_ERROR,
    1349             :                        "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
    1350           0 :                        master + begin - 1, master + end + 1,
    1351           0 :                        ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
    1352           0 :                 return AVERROR_INVALIDDATA;
    1353             :             }
    1354             : 
    1355      216982 :             for (smp = begin; smp < end; smp++) {
    1356      433752 :                 y  = (1 << 6) +
    1357      433752 :                      MUL64(ch[dep].weighting[0], master[smp - 1]) +
    1358      216876 :                      MUL64(ch[dep].weighting[1], master[smp    ]) +
    1359      216876 :                      MUL64(ch[dep].weighting[2], master[smp + 1]);
    1360             : 
    1361      216876 :                 bd->raw_samples[smp] += y >> 7;
    1362             :             }
    1363             :         }
    1364             :     }
    1365             : 
    1366         696 :     return 0;
    1367             : }
    1368             : 
    1369             : 
    1370             : /** multiply two softfloats and handle the rounding off
    1371             :  */
    1372           0 : static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b) {
    1373             :     uint64_t mantissa_temp;
    1374             :     uint64_t mask_64;
    1375             :     int cutoff_bit_count;
    1376             :     unsigned char last_2_bits;
    1377             :     unsigned int mantissa;
    1378             :     int32_t sign;
    1379           0 :     uint32_t return_val = 0;
    1380           0 :     int bit_count       = 48;
    1381             : 
    1382           0 :     sign = a.sign ^ b.sign;
    1383             : 
    1384             :     // Multiply mantissa bits in a 64-bit register
    1385           0 :     mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
    1386           0 :     mask_64       = (uint64_t)0x1 << 47;
    1387             : 
    1388             :     // Count the valid bit count
    1389           0 :     while (!(mantissa_temp & mask_64) && mask_64) {
    1390           0 :         bit_count--;
    1391           0 :         mask_64 >>= 1;
    1392             :     }
    1393             : 
    1394             :     // Round off
    1395           0 :     cutoff_bit_count = bit_count - 24;
    1396           0 :     if (cutoff_bit_count > 0) {
    1397           0 :         last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
    1398           0 :         if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
    1399             :             // Need to round up
    1400           0 :             mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
    1401             :         }
    1402             :     }
    1403             : 
    1404           0 :     mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
    1405             : 
    1406             :     // Need one more shift?
    1407           0 :     if (mantissa & 0x01000000ul) {
    1408           0 :         bit_count++;
    1409           0 :         mantissa >>= 1;
    1410             :     }
    1411             : 
    1412           0 :     if (!sign) {
    1413           0 :         return_val = 0x80000000U;
    1414             :     }
    1415             : 
    1416           0 :     return_val |= (a.exp + b.exp + bit_count - 47) << 23;
    1417           0 :     return_val |= mantissa;
    1418           0 :     return av_bits2sf_ieee754(return_val);
    1419             : }
    1420             : 
    1421             : 
    1422             : /** Read and decode the floating point sample data
    1423             :  */
    1424           0 : static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
    1425           0 :     AVCodecContext *avctx   = ctx->avctx;
    1426           0 :     GetBitContext *gb       = &ctx->gb;
    1427           0 :     SoftFloat_IEEE754 *acf  = ctx->acf;
    1428           0 :     int *shift_value        = ctx->shift_value;
    1429           0 :     int *last_shift_value   = ctx->last_shift_value;
    1430           0 :     int *last_acf_mantissa  = ctx->last_acf_mantissa;
    1431           0 :     int **raw_mantissa      = ctx->raw_mantissa;
    1432           0 :     int *nbits              = ctx->nbits;
    1433           0 :     unsigned char *larray   = ctx->larray;
    1434           0 :     int frame_length        = ctx->cur_frame_length;
    1435           0 :     SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
    1436             :     unsigned int partA_flag;
    1437             :     unsigned int highest_byte;
    1438             :     unsigned int shift_amp;
    1439             :     uint32_t tmp_32;
    1440             :     int use_acf;
    1441             :     int nchars;
    1442             :     int i;
    1443             :     int c;
    1444             :     long k;
    1445             :     long nbits_aligned;
    1446             :     unsigned long acc;
    1447             :     unsigned long j;
    1448             :     uint32_t sign;
    1449             :     uint32_t e;
    1450             :     uint32_t mantissa;
    1451             : 
    1452           0 :     skip_bits_long(gb, 32); //num_bytes_diff_float
    1453           0 :     use_acf = get_bits1(gb);
    1454             : 
    1455           0 :     if (ra_frame) {
    1456           0 :         memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
    1457           0 :         memset(last_shift_value,  0, avctx->channels * sizeof(*last_shift_value) );
    1458           0 :         ff_mlz_flush_dict(ctx->mlz);
    1459             :     }
    1460             : 
    1461           0 :     for (c = 0; c < avctx->channels; ++c) {
    1462           0 :         if (use_acf) {
    1463             :             //acf_flag
    1464           0 :             if (get_bits1(gb)) {
    1465           0 :                 tmp_32 = get_bits(gb, 23);
    1466           0 :                 last_acf_mantissa[c] = tmp_32;
    1467             :             } else {
    1468           0 :                 tmp_32 = last_acf_mantissa[c];
    1469             :             }
    1470           0 :             acf[c] = av_bits2sf_ieee754(tmp_32);
    1471             :         } else {
    1472           0 :             acf[c] = FLOAT_1;
    1473             :         }
    1474             : 
    1475           0 :         highest_byte = get_bits(gb, 2);
    1476           0 :         partA_flag   = get_bits1(gb);
    1477           0 :         shift_amp    = get_bits1(gb);
    1478             : 
    1479           0 :         if (shift_amp) {
    1480           0 :             shift_value[c] = get_bits(gb, 8);
    1481           0 :             last_shift_value[c] = shift_value[c];
    1482             :         } else {
    1483           0 :             shift_value[c] = last_shift_value[c];
    1484             :         }
    1485             : 
    1486           0 :         if (partA_flag) {
    1487           0 :             if (!get_bits1(gb)) { //uncompressed
    1488           0 :                 for (i = 0; i < frame_length; ++i) {
    1489           0 :                     if (ctx->raw_samples[c][i] == 0) {
    1490           0 :                         ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
    1491             :                     }
    1492             :                 }
    1493             :             } else { //compressed
    1494           0 :                 nchars = 0;
    1495           0 :                 for (i = 0; i < frame_length; ++i) {
    1496           0 :                     if (ctx->raw_samples[c][i] == 0) {
    1497           0 :                         nchars += 4;
    1498             :                     }
    1499             :                 }
    1500             : 
    1501           0 :                 tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
    1502           0 :                 if(tmp_32 != nchars) {
    1503           0 :                     av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%d, %d).\n", tmp_32, nchars);
    1504           0 :                     return AVERROR_INVALIDDATA;
    1505             :                 }
    1506             : 
    1507           0 :                 for (i = 0; i < frame_length; ++i) {
    1508           0 :                     ctx->raw_mantissa[c][i] = AV_RB32(larray);
    1509             :                 }
    1510             :             }
    1511             :         }
    1512             : 
    1513             :         //decode part B
    1514           0 :         if (highest_byte) {
    1515           0 :             for (i = 0; i < frame_length; ++i) {
    1516           0 :                 if (ctx->raw_samples[c][i] != 0) {
    1517             :                     //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
    1518           0 :                     if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
    1519           0 :                         nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
    1520             :                     } else {
    1521           0 :                         nbits[i] = 23;
    1522             :                     }
    1523           0 :                     nbits[i] = FFMIN(nbits[i], highest_byte*8);
    1524             :                 }
    1525             :             }
    1526             : 
    1527           0 :             if (!get_bits1(gb)) { //uncompressed
    1528           0 :                 for (i = 0; i < frame_length; ++i) {
    1529           0 :                     if (ctx->raw_samples[c][i] != 0) {
    1530           0 :                         raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
    1531             :                     }
    1532             :                 }
    1533             :             } else { //compressed
    1534           0 :                 nchars = 0;
    1535           0 :                 for (i = 0; i < frame_length; ++i) {
    1536           0 :                     if (ctx->raw_samples[c][i]) {
    1537           0 :                         nchars += (int) nbits[i] / 8;
    1538           0 :                         if (nbits[i] & 7) {
    1539           0 :                             ++nchars;
    1540             :                         }
    1541             :                     }
    1542             :                 }
    1543             : 
    1544           0 :                 tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
    1545           0 :                 if(tmp_32 != nchars) {
    1546           0 :                     av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%d, %d).\n", tmp_32, nchars);
    1547           0 :                     return AVERROR_INVALIDDATA;
    1548             :                 }
    1549             : 
    1550           0 :                 j = 0;
    1551           0 :                 for (i = 0; i < frame_length; ++i) {
    1552           0 :                     if (ctx->raw_samples[c][i]) {
    1553           0 :                         if (nbits[i] & 7) {
    1554           0 :                             nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
    1555             :                         } else {
    1556           0 :                             nbits_aligned = nbits[i];
    1557             :                         }
    1558           0 :                         acc = 0;
    1559           0 :                         for (k = 0; k < nbits_aligned/8; ++k) {
    1560           0 :                             acc = (acc << 8) + larray[j++];
    1561             :                         }
    1562           0 :                         acc >>= (nbits_aligned - nbits[i]);
    1563           0 :                         raw_mantissa[c][i] = acc;
    1564             :                     }
    1565             :                 }
    1566             :             }
    1567             :         }
    1568             : 
    1569           0 :         for (i = 0; i < frame_length; ++i) {
    1570           0 :             SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
    1571           0 :             pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
    1572             : 
    1573           0 :             if (ctx->raw_samples[c][i] != 0) {
    1574           0 :                 if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
    1575           0 :                     pcm_sf = multiply(acf[c], pcm_sf);
    1576             :                 }
    1577             : 
    1578           0 :                 sign = pcm_sf.sign;
    1579           0 :                 e = pcm_sf.exp;
    1580           0 :                 mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
    1581             : 
    1582           0 :                 while(mantissa >= 0x1000000) {
    1583           0 :                     e++;
    1584           0 :                     mantissa >>= 1;
    1585             :                 }
    1586             : 
    1587           0 :                 if (mantissa) e += (shift_value[c] - 127);
    1588           0 :                 mantissa &= 0x007fffffUL;
    1589             : 
    1590           0 :                 tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
    1591           0 :                 ctx->raw_samples[c][i] = tmp_32;
    1592             :             } else {
    1593           0 :                 ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
    1594             :             }
    1595             :         }
    1596           0 :         align_get_bits(gb);
    1597             :     }
    1598           0 :     return 0;
    1599             : }
    1600             : 
    1601             : 
    1602             : /** Read the frame data.
    1603             :  */
    1604        1827 : static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
    1605             : {
    1606        1827 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1607        1827 :     AVCodecContext *avctx    = ctx->avctx;
    1608        1827 :     GetBitContext *gb = &ctx->gb;
    1609             :     unsigned int div_blocks[32];                ///< block sizes.
    1610             :     unsigned int c;
    1611             :     unsigned int js_blocks[2];
    1612        1827 :     uint32_t bs_info = 0;
    1613             :     int ret;
    1614             : 
    1615             :     // skip the size of the ra unit if present in the frame
    1616        1827 :     if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
    1617           0 :         skip_bits_long(gb, 32);
    1618             : 
    1619        1827 :     if (sconf->mc_coding && sconf->joint_stereo) {
    1620           0 :         ctx->js_switch = get_bits1(gb);
    1621           0 :         align_get_bits(gb);
    1622             :     }
    1623             : 
    1624        3306 :     if (!sconf->mc_coding || ctx->js_switch) {
    1625        1479 :         int independent_bs = !sconf->joint_stereo;
    1626             : 
    1627        4024 :         for (c = 0; c < avctx->channels; c++) {
    1628        2545 :             js_blocks[0] = 0;
    1629        2545 :             js_blocks[1] = 0;
    1630             : 
    1631        2545 :             get_block_sizes(ctx, div_blocks, &bs_info);
    1632             : 
    1633             :             // if joint_stereo and block_switching is set, independent decoding
    1634             :             // is signaled via the first bit of bs_info
    1635        2545 :             if (sconf->joint_stereo && sconf->block_switching)
    1636         109 :                 if (bs_info >> 31)
    1637          22 :                     independent_bs = 2;
    1638             : 
    1639             :             // if this is the last channel, it has to be decoded independently
    1640        2545 :             if (c == avctx->channels - 1)
    1641        1066 :                 independent_bs = 1;
    1642             : 
    1643        2545 :             if (independent_bs) {
    1644        2132 :                 ret = decode_blocks_ind(ctx, ra_frame, c,
    1645             :                                         div_blocks, js_blocks);
    1646        2132 :                 if (ret < 0)
    1647           0 :                     return ret;
    1648        2132 :                 independent_bs--;
    1649             :             } else {
    1650         413 :                 ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
    1651         413 :                 if (ret < 0)
    1652           0 :                     return ret;
    1653             : 
    1654         413 :                 c++;
    1655             :             }
    1656             : 
    1657             :             // store carryover raw samples
    1658        5090 :             memmove(ctx->raw_samples[c] - sconf->max_order,
    1659        2545 :                     ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
    1660        2545 :                     sizeof(*ctx->raw_samples[c]) * sconf->max_order);
    1661             :         }
    1662             :     } else { // multi-channel coding
    1663         348 :         ALSBlockData   bd = { 0 };
    1664             :         int            b, ret;
    1665         348 :         int            *reverted_channels = ctx->reverted_channels;
    1666         348 :         unsigned int   offset             = 0;
    1667             : 
    1668        1044 :         for (c = 0; c < avctx->channels; c++)
    1669         696 :             if (ctx->chan_data[c] < ctx->chan_data_buffer) {
    1670           0 :                 av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
    1671           0 :                 return AVERROR_INVALIDDATA;
    1672             :             }
    1673             : 
    1674         348 :         memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
    1675             : 
    1676         348 :         bd.ra_block         = ra_frame;
    1677         348 :         bd.prev_raw_samples = ctx->prev_raw_samples;
    1678             : 
    1679         348 :         get_block_sizes(ctx, div_blocks, &bs_info);
    1680             : 
    1681         696 :         for (b = 0; b < ctx->num_blocks; b++) {
    1682         348 :             bd.block_length = div_blocks[b];
    1683         348 :             if (bd.block_length <= 0) {
    1684           0 :                 av_log(ctx->avctx, AV_LOG_WARNING,
    1685             :                        "Invalid block length %u in channel data!\n",
    1686             :                        bd.block_length);
    1687           0 :                 continue;
    1688             :             }
    1689             : 
    1690        1044 :             for (c = 0; c < avctx->channels; c++) {
    1691         696 :                 bd.const_block = ctx->const_block + c;
    1692         696 :                 bd.shift_lsbs  = ctx->shift_lsbs + c;
    1693         696 :                 bd.opt_order   = ctx->opt_order + c;
    1694         696 :                 bd.store_prev_samples = ctx->store_prev_samples + c;
    1695         696 :                 bd.use_ltp     = ctx->use_ltp + c;
    1696         696 :                 bd.ltp_lag     = ctx->ltp_lag + c;
    1697         696 :                 bd.ltp_gain    = ctx->ltp_gain[c];
    1698         696 :                 bd.lpc_cof     = ctx->lpc_cof[c];
    1699         696 :                 bd.quant_cof   = ctx->quant_cof[c];
    1700         696 :                 bd.raw_samples = ctx->raw_samples[c] + offset;
    1701         696 :                 bd.raw_other   = NULL;
    1702             : 
    1703         696 :                 if ((ret = read_block(ctx, &bd)) < 0)
    1704           0 :                     return ret;
    1705         696 :                 if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
    1706           0 :                     return ret;
    1707             :             }
    1708             : 
    1709        1044 :             for (c = 0; c < avctx->channels; c++) {
    1710         696 :                 ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
    1711             :                                                  reverted_channels, offset, c);
    1712         696 :                 if (ret < 0)
    1713           0 :                     return ret;
    1714             :             }
    1715        1044 :             for (c = 0; c < avctx->channels; c++) {
    1716         696 :                 bd.const_block = ctx->const_block + c;
    1717         696 :                 bd.shift_lsbs  = ctx->shift_lsbs + c;
    1718         696 :                 bd.opt_order   = ctx->opt_order + c;
    1719         696 :                 bd.store_prev_samples = ctx->store_prev_samples + c;
    1720         696 :                 bd.use_ltp     = ctx->use_ltp + c;
    1721         696 :                 bd.ltp_lag     = ctx->ltp_lag + c;
    1722         696 :                 bd.ltp_gain    = ctx->ltp_gain[c];
    1723         696 :                 bd.lpc_cof     = ctx->lpc_cof[c];
    1724         696 :                 bd.quant_cof   = ctx->quant_cof[c];
    1725         696 :                 bd.raw_samples = ctx->raw_samples[c] + offset;
    1726             : 
    1727         696 :                 if ((ret = decode_block(ctx, &bd)) < 0)
    1728           0 :                     return ret;
    1729             :             }
    1730             : 
    1731         348 :             memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
    1732         348 :             offset      += div_blocks[b];
    1733         348 :             bd.ra_block  = 0;
    1734             :         }
    1735             : 
    1736             :         // store carryover raw samples
    1737        1044 :         for (c = 0; c < avctx->channels; c++)
    1738        1392 :             memmove(ctx->raw_samples[c] - sconf->max_order,
    1739         696 :                     ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
    1740         696 :                     sizeof(*ctx->raw_samples[c]) * sconf->max_order);
    1741             :     }
    1742             : 
    1743        1827 :     if (sconf->floating) {
    1744           0 :         read_diff_float_data(ctx, ra_frame);
    1745             :     }
    1746             : 
    1747        1827 :     if (get_bits_left(gb) < 0) {
    1748           0 :         av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
    1749           0 :         return AVERROR_INVALIDDATA;
    1750             :     }
    1751             : 
    1752        1827 :     return 0;
    1753             : }
    1754             : 
    1755             : 
    1756             : /** Decode an ALS frame.
    1757             :  */
    1758        1827 : static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
    1759             :                         AVPacket *avpkt)
    1760             : {
    1761        1827 :     ALSDecContext *ctx       = avctx->priv_data;
    1762        1827 :     AVFrame *frame           = data;
    1763        1827 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1764        1827 :     const uint8_t *buffer    = avpkt->data;
    1765        1827 :     int buffer_size          = avpkt->size;
    1766             :     int invalid_frame, ret;
    1767             :     unsigned int c, sample, ra_frame, bytes_read, shift;
    1768             : 
    1769        1827 :     if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
    1770           0 :         return ret;
    1771             : 
    1772             :     // In the case that the distance between random access frames is set to zero
    1773             :     // (sconf->ra_distance == 0) no frame is treated as a random access frame.
    1774             :     // For the first frame, if prediction is used, all samples used from the
    1775             :     // previous frame are assumed to be zero.
    1776        1827 :     ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
    1777             : 
    1778             :     // the last frame to decode might have a different length
    1779        1827 :     if (sconf->samples != 0xFFFFFFFF)
    1780        1827 :         ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
    1781             :                                       sconf->frame_length);
    1782             :     else
    1783           0 :         ctx->cur_frame_length = sconf->frame_length;
    1784             : 
    1785             :     // decode the frame data
    1786        1827 :     if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
    1787           0 :         av_log(ctx->avctx, AV_LOG_WARNING,
    1788             :                "Reading frame data failed. Skipping RA unit.\n");
    1789             : 
    1790        1827 :     ctx->frame_id++;
    1791             : 
    1792             :     /* get output buffer */
    1793        1827 :     frame->nb_samples = ctx->cur_frame_length;
    1794        1827 :     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
    1795           0 :         return ret;
    1796             : 
    1797             :     // transform decoded frame into output format
    1798             :     #define INTERLEAVE_OUTPUT(bps)                                                   \
    1799             :     {                                                                                \
    1800             :         int##bps##_t *dest = (int##bps##_t*)frame->data[0];                          \
    1801             :         shift = bps - ctx->avctx->bits_per_raw_sample;                               \
    1802             :         if (!ctx->cs_switch) {                                                       \
    1803             :             for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
    1804             :                 for (c = 0; c < avctx->channels; c++)                                \
    1805             :                     *dest++ = ctx->raw_samples[c][sample] << shift;                  \
    1806             :         } else {                                                                     \
    1807             :             for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
    1808             :                 for (c = 0; c < avctx->channels; c++)                                \
    1809             :                     *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
    1810             :         }                                                                            \
    1811             :     }
    1812             : 
    1813        1827 :     if (ctx->avctx->bits_per_raw_sample <= 16) {
    1814        1827 :         INTERLEAVE_OUTPUT(16)
    1815             :     } else {
    1816           0 :         INTERLEAVE_OUTPUT(32)
    1817             :     }
    1818             : 
    1819             :     // update CRC
    1820        1827 :     if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
    1821           0 :         int swap = HAVE_BIGENDIAN != sconf->msb_first;
    1822             : 
    1823           0 :         if (ctx->avctx->bits_per_raw_sample == 24) {
    1824           0 :             int32_t *src = (int32_t *)frame->data[0];
    1825             : 
    1826           0 :             for (sample = 0;
    1827           0 :                  sample < ctx->cur_frame_length * avctx->channels;
    1828           0 :                  sample++) {
    1829             :                 int32_t v;
    1830             : 
    1831           0 :                 if (swap)
    1832           0 :                     v = av_bswap32(src[sample]);
    1833             :                 else
    1834           0 :                     v = src[sample];
    1835             :                 if (!HAVE_BIGENDIAN)
    1836           0 :                     v >>= 8;
    1837             : 
    1838           0 :                 ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
    1839             :             }
    1840             :         } else {
    1841             :             uint8_t *crc_source;
    1842             : 
    1843           0 :             if (swap) {
    1844           0 :                 if (ctx->avctx->bits_per_raw_sample <= 16) {
    1845           0 :                     int16_t *src  = (int16_t*) frame->data[0];
    1846           0 :                     int16_t *dest = (int16_t*) ctx->crc_buffer;
    1847           0 :                     for (sample = 0;
    1848           0 :                          sample < ctx->cur_frame_length * avctx->channels;
    1849           0 :                          sample++)
    1850           0 :                         *dest++ = av_bswap16(src[sample]);
    1851             :                 } else {
    1852           0 :                     ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
    1853           0 :                                         (uint32_t *) frame->data[0],
    1854           0 :                                         ctx->cur_frame_length * avctx->channels);
    1855             :                 }
    1856           0 :                 crc_source = ctx->crc_buffer;
    1857             :             } else {
    1858           0 :                 crc_source = frame->data[0];
    1859             :             }
    1860             : 
    1861           0 :             ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
    1862           0 :                               ctx->cur_frame_length * avctx->channels *
    1863           0 :                               av_get_bytes_per_sample(avctx->sample_fmt));
    1864             :         }
    1865             : 
    1866             : 
    1867             :         // check CRC sums if this is the last frame
    1868           0 :         if (ctx->cur_frame_length != sconf->frame_length &&
    1869           0 :             ctx->crc_org != ctx->crc) {
    1870           0 :             av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
    1871           0 :             if (avctx->err_recognition & AV_EF_EXPLODE)
    1872           0 :                 return AVERROR_INVALIDDATA;
    1873             :         }
    1874             :     }
    1875             : 
    1876        1827 :     *got_frame_ptr = 1;
    1877             : 
    1878        3654 :     bytes_read = invalid_frame ? buffer_size :
    1879        1827 :                                  (get_bits_count(&ctx->gb) + 7) >> 3;
    1880             : 
    1881        1827 :     return bytes_read;
    1882             : }
    1883             : 
    1884             : 
    1885             : /** Uninitialize the ALS decoder.
    1886             :  */
    1887          12 : static av_cold int decode_end(AVCodecContext *avctx)
    1888             : {
    1889          12 :     ALSDecContext *ctx = avctx->priv_data;
    1890             :     int i;
    1891             : 
    1892          12 :     av_freep(&ctx->sconf.chan_pos);
    1893             : 
    1894          12 :     ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
    1895             : 
    1896          12 :     av_freep(&ctx->const_block);
    1897          12 :     av_freep(&ctx->shift_lsbs);
    1898          12 :     av_freep(&ctx->opt_order);
    1899          12 :     av_freep(&ctx->store_prev_samples);
    1900          12 :     av_freep(&ctx->use_ltp);
    1901          12 :     av_freep(&ctx->ltp_lag);
    1902          12 :     av_freep(&ctx->ltp_gain);
    1903          12 :     av_freep(&ctx->ltp_gain_buffer);
    1904          12 :     av_freep(&ctx->quant_cof);
    1905          12 :     av_freep(&ctx->lpc_cof);
    1906          12 :     av_freep(&ctx->quant_cof_buffer);
    1907          12 :     av_freep(&ctx->lpc_cof_buffer);
    1908          12 :     av_freep(&ctx->lpc_cof_reversed_buffer);
    1909          12 :     av_freep(&ctx->prev_raw_samples);
    1910          12 :     av_freep(&ctx->raw_samples);
    1911          12 :     av_freep(&ctx->raw_buffer);
    1912          12 :     av_freep(&ctx->chan_data);
    1913          12 :     av_freep(&ctx->chan_data_buffer);
    1914          12 :     av_freep(&ctx->reverted_channels);
    1915          12 :     av_freep(&ctx->crc_buffer);
    1916          12 :     if (ctx->mlz) {
    1917           0 :         av_freep(&ctx->mlz->dict);
    1918           0 :         av_freep(&ctx->mlz);
    1919             :     }
    1920          12 :     av_freep(&ctx->acf);
    1921          12 :     av_freep(&ctx->last_acf_mantissa);
    1922          12 :     av_freep(&ctx->shift_value);
    1923          12 :     av_freep(&ctx->last_shift_value);
    1924          12 :     if (ctx->raw_mantissa) {
    1925           0 :         for (i = 0; i < avctx->channels; i++) {
    1926           0 :             av_freep(&ctx->raw_mantissa[i]);
    1927             :         }
    1928           0 :         av_freep(&ctx->raw_mantissa);
    1929             :     }
    1930          12 :     av_freep(&ctx->larray);
    1931          12 :     av_freep(&ctx->nbits);
    1932             : 
    1933          12 :     return 0;
    1934             : }
    1935             : 
    1936             : 
    1937             : /** Initialize the ALS decoder.
    1938             :  */
    1939          12 : static av_cold int decode_init(AVCodecContext *avctx)
    1940             : {
    1941             :     unsigned int c;
    1942             :     unsigned int channel_size;
    1943             :     int num_buffers, ret;
    1944          12 :     ALSDecContext *ctx = avctx->priv_data;
    1945          12 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1946          12 :     ctx->avctx = avctx;
    1947             : 
    1948          12 :     if (!avctx->extradata) {
    1949           0 :         av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
    1950           0 :         return AVERROR_INVALIDDATA;
    1951             :     }
    1952             : 
    1953          12 :     if ((ret = read_specific_config(ctx)) < 0) {
    1954           0 :         av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
    1955           0 :         goto fail;
    1956             :     }
    1957             : 
    1958          12 :     if ((ret = check_specific_config(ctx)) < 0) {
    1959           0 :         goto fail;
    1960             :     }
    1961             : 
    1962          12 :     if (sconf->bgmc) {
    1963           2 :         ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
    1964           2 :         if (ret < 0)
    1965           0 :             goto fail;
    1966             :     }
    1967          12 :     if (sconf->floating) {
    1968           0 :         avctx->sample_fmt          = AV_SAMPLE_FMT_FLT;
    1969           0 :         avctx->bits_per_raw_sample = 32;
    1970             :     } else {
    1971          24 :         avctx->sample_fmt          = sconf->resolution > 1
    1972          12 :                                      ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
    1973          12 :         avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
    1974          12 :         if (avctx->bits_per_raw_sample > 32) {
    1975           0 :             av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
    1976             :                    avctx->bits_per_raw_sample);
    1977           0 :             ret = AVERROR_INVALIDDATA;
    1978           0 :             goto fail;
    1979             :         }
    1980             :     }
    1981             : 
    1982             :     // set maximum Rice parameter for progressive decoding based on resolution
    1983             :     // This is not specified in 14496-3 but actually done by the reference
    1984             :     // codec RM22 revision 2.
    1985          12 :     ctx->s_max = sconf->resolution > 1 ? 31 : 15;
    1986             : 
    1987             :     // set lag value for long-term prediction
    1988          24 :     ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
    1989          12 :                               (avctx->sample_rate >= 192000);
    1990             : 
    1991             :     // allocate quantized parcor coefficient buffer
    1992          12 :     num_buffers = sconf->mc_coding ? avctx->channels : 1;
    1993             : 
    1994          12 :     ctx->quant_cof        = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
    1995          12 :     ctx->lpc_cof          = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
    1996          12 :     ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
    1997             :                                             sizeof(*ctx->quant_cof_buffer));
    1998          12 :     ctx->lpc_cof_buffer   = av_malloc_array(num_buffers * sconf->max_order,
    1999             :                                             sizeof(*ctx->lpc_cof_buffer));
    2000          12 :     ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
    2001             :                                                    sizeof(*ctx->lpc_cof_buffer));
    2002             : 
    2003          24 :     if (!ctx->quant_cof              || !ctx->lpc_cof        ||
    2004          36 :         !ctx->quant_cof_buffer       || !ctx->lpc_cof_buffer ||
    2005          12 :         !ctx->lpc_cof_reversed_buffer) {
    2006           0 :         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2007           0 :         ret = AVERROR(ENOMEM);
    2008           0 :         goto fail;
    2009             :     }
    2010             : 
    2011             :     // assign quantized parcor coefficient buffers
    2012          26 :     for (c = 0; c < num_buffers; c++) {
    2013          14 :         ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
    2014          14 :         ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
    2015             :     }
    2016             : 
    2017             :     // allocate and assign lag and gain data buffer for ltp mode
    2018          12 :     ctx->const_block     = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
    2019          12 :     ctx->shift_lsbs      = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
    2020          12 :     ctx->opt_order       = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
    2021          12 :     ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
    2022          12 :     ctx->use_ltp         = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
    2023          12 :     ctx->ltp_lag         = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
    2024          12 :     ctx->ltp_gain        = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
    2025          12 :     ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
    2026             : 
    2027          24 :     if (!ctx->const_block || !ctx->shift_lsbs ||
    2028          36 :         !ctx->opt_order || !ctx->store_prev_samples ||
    2029          36 :         !ctx->use_ltp  || !ctx->ltp_lag ||
    2030          24 :         !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
    2031           0 :         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2032           0 :         ret = AVERROR(ENOMEM);
    2033           0 :         goto fail;
    2034             :     }
    2035             : 
    2036          26 :     for (c = 0; c < num_buffers; c++)
    2037          14 :         ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
    2038             : 
    2039             :     // allocate and assign channel data buffer for mcc mode
    2040          12 :     if (sconf->mc_coding) {
    2041           2 :         ctx->chan_data_buffer  = av_mallocz_array(num_buffers * num_buffers,
    2042             :                                                  sizeof(*ctx->chan_data_buffer));
    2043           2 :         ctx->chan_data         = av_mallocz_array(num_buffers,
    2044             :                                                  sizeof(*ctx->chan_data));
    2045           2 :         ctx->reverted_channels = av_malloc_array(num_buffers,
    2046             :                                                  sizeof(*ctx->reverted_channels));
    2047             : 
    2048           2 :         if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
    2049           0 :             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2050           0 :             ret = AVERROR(ENOMEM);
    2051           0 :             goto fail;
    2052             :         }
    2053             : 
    2054           6 :         for (c = 0; c < num_buffers; c++)
    2055           4 :             ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
    2056             :     } else {
    2057          10 :         ctx->chan_data         = NULL;
    2058          10 :         ctx->chan_data_buffer  = NULL;
    2059          10 :         ctx->reverted_channels = NULL;
    2060             :     }
    2061             : 
    2062          12 :     channel_size      = sconf->frame_length + sconf->max_order;
    2063             : 
    2064          12 :     ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
    2065          12 :     ctx->raw_buffer       = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
    2066          12 :     ctx->raw_samples      = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
    2067             : 
    2068          12 :     if (sconf->floating) {
    2069           0 :         ctx->acf               = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
    2070           0 :         ctx->shift_value       = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
    2071           0 :         ctx->last_shift_value  = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
    2072           0 :         ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
    2073           0 :         ctx->raw_mantissa      = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
    2074             : 
    2075           0 :         ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
    2076           0 :         ctx->nbits  = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
    2077           0 :         ctx->mlz    = av_mallocz(sizeof(*ctx->mlz));
    2078             : 
    2079           0 :         if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
    2080           0 :             || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
    2081           0 :             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2082           0 :             ret = AVERROR(ENOMEM);
    2083           0 :             goto fail;
    2084             :         }
    2085             : 
    2086           0 :         ff_mlz_init_dict(avctx, ctx->mlz);
    2087           0 :         ff_mlz_flush_dict(ctx->mlz);
    2088             : 
    2089           0 :         for (c = 0; c < avctx->channels; ++c) {
    2090           0 :             ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
    2091             :         }
    2092             :     }
    2093             : 
    2094             :     // allocate previous raw sample buffer
    2095          12 :     if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
    2096           0 :         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2097           0 :         ret = AVERROR(ENOMEM);
    2098           0 :         goto fail;
    2099             :     }
    2100             : 
    2101             :     // assign raw samples buffers
    2102          12 :     ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
    2103          24 :     for (c = 1; c < avctx->channels; c++)
    2104          12 :         ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
    2105             : 
    2106             :     // allocate crc buffer
    2107          12 :     if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
    2108           0 :         (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
    2109           0 :         ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
    2110           0 :                                           avctx->channels *
    2111           0 :                                           av_get_bytes_per_sample(avctx->sample_fmt),
    2112             :                                           sizeof(*ctx->crc_buffer));
    2113           0 :         if (!ctx->crc_buffer) {
    2114           0 :             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2115           0 :             ret = AVERROR(ENOMEM);
    2116           0 :             goto fail;
    2117             :         }
    2118             :     }
    2119             : 
    2120          12 :     ff_bswapdsp_init(&ctx->bdsp);
    2121             : 
    2122          12 :     return 0;
    2123             : 
    2124             : fail:
    2125           0 :     decode_end(avctx);
    2126           0 :     return ret;
    2127             : }
    2128             : 
    2129             : 
    2130             : /** Flush (reset) the frame ID after seeking.
    2131             :  */
    2132           0 : static av_cold void flush(AVCodecContext *avctx)
    2133             : {
    2134           0 :     ALSDecContext *ctx = avctx->priv_data;
    2135             : 
    2136           0 :     ctx->frame_id = 0;
    2137           0 : }
    2138             : 
    2139             : 
    2140             : AVCodec ff_als_decoder = {
    2141             :     .name           = "als",
    2142             :     .long_name      = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
    2143             :     .type           = AVMEDIA_TYPE_AUDIO,
    2144             :     .id             = AV_CODEC_ID_MP4ALS,
    2145             :     .priv_data_size = sizeof(ALSDecContext),
    2146             :     .init           = decode_init,
    2147             :     .close          = decode_end,
    2148             :     .decode         = decode_frame,
    2149             :     .flush          = flush,
    2150             :     .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
    2151             : };

Generated by: LCOV version 1.12