LCOV - code coverage report
Current view: top level - src/libavcodec - alsdec.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 659 1012 65.1 %
Date: 2017-08-17 10:06:07 Functions: 21 27 77.8 %

          Line data    Source code
       1             : /*
       2             :  * MPEG-4 ALS decoder
       3             :  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
       4             :  *
       5             :  * This file is part of FFmpeg.
       6             :  *
       7             :  * FFmpeg is free software; you can redistribute it and/or
       8             :  * modify it under the terms of the GNU Lesser General Public
       9             :  * License as published by the Free Software Foundation; either
      10             :  * version 2.1 of the License, or (at your option) any later version.
      11             :  *
      12             :  * FFmpeg is distributed in the hope that it will be useful,
      13             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      14             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      15             :  * Lesser General Public License for more details.
      16             :  *
      17             :  * You should have received a copy of the GNU Lesser General Public
      18             :  * License along with FFmpeg; if not, write to the Free Software
      19             :  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
      20             :  */
      21             : 
      22             : /**
      23             :  * @file
      24             :  * MPEG-4 ALS decoder
      25             :  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
      26             :  */
      27             : 
      28             : #include <inttypes.h>
      29             : 
      30             : #include "avcodec.h"
      31             : #include "get_bits.h"
      32             : #include "unary.h"
      33             : #include "mpeg4audio.h"
      34             : #include "bgmc.h"
      35             : #include "bswapdsp.h"
      36             : #include "internal.h"
      37             : #include "mlz.h"
      38             : #include "libavutil/samplefmt.h"
      39             : #include "libavutil/crc.h"
      40             : #include "libavutil/softfloat_ieee754.h"
      41             : #include "libavutil/intfloat.h"
      42             : #include "libavutil/intreadwrite.h"
      43             : 
      44             : #include <stdint.h>
      45             : 
      46             : /** Rice parameters and corresponding index offsets for decoding the
      47             :  *  indices of scaled PARCOR values. The table chosen is set globally
      48             :  *  by the encoder and stored in ALSSpecificConfig.
      49             :  */
      50             : static const int8_t parcor_rice_table[3][20][2] = {
      51             :     { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
      52             :       { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
      53             :       { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
      54             :       {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
      55             :     { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
      56             :       { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
      57             :       {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
      58             :       {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
      59             :     { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
      60             :       { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
      61             :       {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
      62             :       {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
      63             : };
      64             : 
      65             : 
      66             : /** Scaled PARCOR values used for the first two PARCOR coefficients.
      67             :  *  To be indexed by the Rice coded indices.
      68             :  *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
      69             :  *  Actual values are divided by 32 in order to be stored in 16 bits.
      70             :  */
      71             : static const int16_t parcor_scaled_values[] = {
      72             :     -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
      73             :     -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
      74             :     -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
      75             :     -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
      76             :     -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
      77             :      -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
      78             :      -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
      79             :      -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
      80             :      -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
      81             :      -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
      82             :      -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
      83             :      -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
      84             :      -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
      85             :      -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
      86             :      -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
      87             :      -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
      88             :      -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
      89             :      -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
      90             :      -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
      91             :      -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
      92             :      -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
      93             :      -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
      94             :       -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
      95             :        46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
      96             :       143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
      97             :       244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
      98             :       349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
      99             :       458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
     100             :       571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
     101             :       688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
     102             :       810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
     103             :       935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
     104             : };
     105             : 
     106             : 
     107             : /** Gain values of p(0) for long-term prediction.
     108             :  *  To be indexed by the Rice coded indices.
     109             :  */
     110             : static const uint8_t ltp_gain_values [4][4] = {
     111             :     { 0,  8, 16,  24},
     112             :     {32, 40, 48,  56},
     113             :     {64, 70, 76,  82},
     114             :     {88, 92, 96, 100}
     115             : };
     116             : 
     117             : 
     118             : /** Inter-channel weighting factors for multi-channel correlation.
     119             :  *  To be indexed by the Rice coded indices.
     120             :  */
     121             : static const int16_t mcc_weightings[] = {
     122             :     204,  192,  179,  166,  153,  140,  128,  115,
     123             :     102,   89,   76,   64,   51,   38,   25,   12,
     124             :       0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
     125             :    -102, -115, -128, -140, -153, -166, -179, -192
     126             : };
     127             : 
     128             : 
     129             : /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
     130             :  */
     131             : static const uint8_t tail_code[16][6] = {
     132             :     { 74, 44, 25, 13,  7, 3},
     133             :     { 68, 42, 24, 13,  7, 3},
     134             :     { 58, 39, 23, 13,  7, 3},
     135             :     {126, 70, 37, 19, 10, 5},
     136             :     {132, 70, 37, 20, 10, 5},
     137             :     {124, 70, 38, 20, 10, 5},
     138             :     {120, 69, 37, 20, 11, 5},
     139             :     {116, 67, 37, 20, 11, 5},
     140             :     {108, 66, 36, 20, 10, 5},
     141             :     {102, 62, 36, 20, 10, 5},
     142             :     { 88, 58, 34, 19, 10, 5},
     143             :     {162, 89, 49, 25, 13, 7},
     144             :     {156, 87, 49, 26, 14, 7},
     145             :     {150, 86, 47, 26, 14, 7},
     146             :     {142, 84, 47, 26, 14, 7},
     147             :     {131, 79, 46, 26, 14, 7}
     148             : };
     149             : 
     150             : 
     151             : enum RA_Flag {
     152             :     RA_FLAG_NONE,
     153             :     RA_FLAG_FRAMES,
     154             :     RA_FLAG_HEADER
     155             : };
     156             : 
     157             : 
     158             : typedef struct ALSSpecificConfig {
     159             :     uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
     160             :     int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
     161             :     int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
     162             :     int msb_first;            ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
     163             :     int frame_length;         ///< frame length for each frame (last frame may differ)
     164             :     int ra_distance;          ///< distance between RA frames (in frames, 0...255)
     165             :     enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
     166             :     int adapt_order;          ///< adaptive order: 1 = on, 0 = off
     167             :     int coef_table;           ///< table index of Rice code parameters
     168             :     int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
     169             :     int max_order;            ///< maximum prediction order (0..1023)
     170             :     int block_switching;      ///< number of block switching levels
     171             :     int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
     172             :     int sb_part;              ///< sub-block partition
     173             :     int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
     174             :     int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
     175             :     int chan_config;          ///< indicates that a chan_config_info field is present
     176             :     int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
     177             :     int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
     178             :     int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
     179             :     int *chan_pos;            ///< original channel positions
     180             :     int crc_enabled;          ///< enable Cyclic Redundancy Checksum
     181             : } ALSSpecificConfig;
     182             : 
     183             : 
     184             : typedef struct ALSChannelData {
     185             :     int stop_flag;
     186             :     int master_channel;
     187             :     int time_diff_flag;
     188             :     int time_diff_sign;
     189             :     int time_diff_index;
     190             :     int weighting[6];
     191             : } ALSChannelData;
     192             : 
     193             : 
     194             : typedef struct ALSDecContext {
     195             :     AVCodecContext *avctx;
     196             :     ALSSpecificConfig sconf;
     197             :     GetBitContext gb;
     198             :     BswapDSPContext bdsp;
     199             :     const AVCRC *crc_table;
     200             :     uint32_t crc_org;               ///< CRC value of the original input data
     201             :     uint32_t crc;                   ///< CRC value calculated from decoded data
     202             :     unsigned int cur_frame_length;  ///< length of the current frame to decode
     203             :     unsigned int frame_id;          ///< the frame ID / number of the current frame
     204             :     unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
     205             :     unsigned int cs_switch;         ///< if true, channel rearrangement is done
     206             :     unsigned int num_blocks;        ///< number of blocks used in the current frame
     207             :     unsigned int s_max;             ///< maximum Rice parameter allowed in entropy coding
     208             :     uint8_t *bgmc_lut;              ///< pointer at lookup tables used for BGMC
     209             :     int *bgmc_lut_status;           ///< pointer at lookup table status flags used for BGMC
     210             :     int ltp_lag_length;             ///< number of bits used for ltp lag value
     211             :     int *const_block;               ///< contains const_block flags for all channels
     212             :     unsigned int *shift_lsbs;       ///< contains shift_lsbs flags for all channels
     213             :     unsigned int *opt_order;        ///< contains opt_order flags for all channels
     214             :     int *store_prev_samples;        ///< contains store_prev_samples flags for all channels
     215             :     int *use_ltp;                   ///< contains use_ltp flags for all channels
     216             :     int *ltp_lag;                   ///< contains ltp lag values for all channels
     217             :     int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
     218             :     int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
     219             :     int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
     220             :     int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
     221             :     int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
     222             :     int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
     223             :     int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
     224             :     ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
     225             :     ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
     226             :     int *reverted_channels;         ///< stores a flag for each reverted channel
     227             :     int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
     228             :     int32_t **raw_samples;          ///< decoded raw samples for each channel
     229             :     int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
     230             :     uint8_t *crc_buffer;            ///< buffer of byte order corrected samples used for CRC check
     231             :     MLZ* mlz;                       ///< masked lz decompression structure
     232             :     SoftFloat_IEEE754 *acf;         ///< contains common multiplier for all channels
     233             :     int *last_acf_mantissa;         ///< contains the last acf mantissa data of common multiplier for all channels
     234             :     int *shift_value;               ///< value by which the binary point is to be shifted for all channels
     235             :     int *last_shift_value;          ///< contains last shift value for all channels
     236             :     int **raw_mantissa;             ///< decoded mantissa bits of the difference signal
     237             :     unsigned char *larray;          ///< buffer to store the output of masked lz decompression
     238             :     int *nbits;                     ///< contains the number of bits to read for masked lz decompression for all samples
     239             : } ALSDecContext;
     240             : 
     241             : 
     242             : typedef struct ALSBlockData {
     243             :     unsigned int block_length;      ///< number of samples within the block
     244             :     unsigned int ra_block;          ///< if true, this is a random access block
     245             :     int          *const_block;      ///< if true, this is a constant value block
     246             :     int          js_blocks;         ///< true if this block contains a difference signal
     247             :     unsigned int *shift_lsbs;       ///< shift of values for this block
     248             :     unsigned int *opt_order;        ///< prediction order of this block
     249             :     int          *store_prev_samples;///< if true, carryover samples have to be stored
     250             :     int          *use_ltp;          ///< if true, long-term prediction is used
     251             :     int          *ltp_lag;          ///< lag value for long-term prediction
     252             :     int          *ltp_gain;         ///< gain values for ltp 5-tap filter
     253             :     int32_t      *quant_cof;        ///< quantized parcor coefficients
     254             :     int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
     255             :     int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
     256             :     int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
     257             :     int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
     258             : } ALSBlockData;
     259             : 
     260             : 
     261          12 : static av_cold void dprint_specific_config(ALSDecContext *ctx)
     262             : {
     263             : #ifdef DEBUG
     264             :     AVCodecContext *avctx    = ctx->avctx;
     265             :     ALSSpecificConfig *sconf = &ctx->sconf;
     266             : 
     267             :     ff_dlog(avctx, "resolution = %i\n",           sconf->resolution);
     268             :     ff_dlog(avctx, "floating = %i\n",             sconf->floating);
     269             :     ff_dlog(avctx, "frame_length = %i\n",         sconf->frame_length);
     270             :     ff_dlog(avctx, "ra_distance = %i\n",          sconf->ra_distance);
     271             :     ff_dlog(avctx, "ra_flag = %i\n",              sconf->ra_flag);
     272             :     ff_dlog(avctx, "adapt_order = %i\n",          sconf->adapt_order);
     273             :     ff_dlog(avctx, "coef_table = %i\n",           sconf->coef_table);
     274             :     ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
     275             :     ff_dlog(avctx, "max_order = %i\n",            sconf->max_order);
     276             :     ff_dlog(avctx, "block_switching = %i\n",      sconf->block_switching);
     277             :     ff_dlog(avctx, "bgmc = %i\n",                 sconf->bgmc);
     278             :     ff_dlog(avctx, "sb_part = %i\n",              sconf->sb_part);
     279             :     ff_dlog(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
     280             :     ff_dlog(avctx, "mc_coding = %i\n",            sconf->mc_coding);
     281             :     ff_dlog(avctx, "chan_config = %i\n",          sconf->chan_config);
     282             :     ff_dlog(avctx, "chan_sort = %i\n",            sconf->chan_sort);
     283             :     ff_dlog(avctx, "RLSLMS = %i\n",               sconf->rlslms);
     284             :     ff_dlog(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
     285             : #endif
     286          12 : }
     287             : 
     288             : 
     289             : /** Read an ALSSpecificConfig from a buffer into the output struct.
     290             :  */
     291          12 : static av_cold int read_specific_config(ALSDecContext *ctx)
     292             : {
     293             :     GetBitContext gb;
     294             :     uint64_t ht_size;
     295             :     int i, config_offset;
     296          12 :     MPEG4AudioConfig m4ac = {0};
     297          12 :     ALSSpecificConfig *sconf = &ctx->sconf;
     298          12 :     AVCodecContext *avctx    = ctx->avctx;
     299             :     uint32_t als_id, header_size, trailer_size;
     300             :     int ret;
     301             : 
     302          12 :     if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
     303           0 :         return ret;
     304             : 
     305          12 :     config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
     306          12 :                                                  avctx->extradata_size * 8, 1);
     307             : 
     308          12 :     if (config_offset < 0)
     309           0 :         return AVERROR_INVALIDDATA;
     310             : 
     311          12 :     skip_bits_long(&gb, config_offset);
     312             : 
     313          12 :     if (get_bits_left(&gb) < (30 << 3))
     314           0 :         return AVERROR_INVALIDDATA;
     315             : 
     316             :     // read the fixed items
     317          12 :     als_id                      = get_bits_long(&gb, 32);
     318          12 :     avctx->sample_rate          = m4ac.sample_rate;
     319          12 :     skip_bits_long(&gb, 32); // sample rate already known
     320          12 :     sconf->samples              = get_bits_long(&gb, 32);
     321          12 :     avctx->channels             = m4ac.channels;
     322          12 :     skip_bits(&gb, 16);      // number of channels already known
     323          12 :     skip_bits(&gb, 3);       // skip file_type
     324          12 :     sconf->resolution           = get_bits(&gb, 3);
     325          12 :     sconf->floating             = get_bits1(&gb);
     326          12 :     sconf->msb_first            = get_bits1(&gb);
     327          12 :     sconf->frame_length         = get_bits(&gb, 16) + 1;
     328          12 :     sconf->ra_distance          = get_bits(&gb, 8);
     329          12 :     sconf->ra_flag              = get_bits(&gb, 2);
     330          12 :     sconf->adapt_order          = get_bits1(&gb);
     331          12 :     sconf->coef_table           = get_bits(&gb, 2);
     332          12 :     sconf->long_term_prediction = get_bits1(&gb);
     333          12 :     sconf->max_order            = get_bits(&gb, 10);
     334          12 :     sconf->block_switching      = get_bits(&gb, 2);
     335          12 :     sconf->bgmc                 = get_bits1(&gb);
     336          12 :     sconf->sb_part              = get_bits1(&gb);
     337          12 :     sconf->joint_stereo         = get_bits1(&gb);
     338          12 :     sconf->mc_coding            = get_bits1(&gb);
     339          12 :     sconf->chan_config          = get_bits1(&gb);
     340          12 :     sconf->chan_sort            = get_bits1(&gb);
     341          12 :     sconf->crc_enabled          = get_bits1(&gb);
     342          12 :     sconf->rlslms               = get_bits1(&gb);
     343          12 :     skip_bits(&gb, 5);       // skip 5 reserved bits
     344          12 :     skip_bits1(&gb);         // skip aux_data_enabled
     345             : 
     346             : 
     347             :     // check for ALSSpecificConfig struct
     348          12 :     if (als_id != MKBETAG('A','L','S','\0'))
     349           0 :         return AVERROR_INVALIDDATA;
     350             : 
     351          12 :     ctx->cur_frame_length = sconf->frame_length;
     352             : 
     353             :     // read channel config
     354          12 :     if (sconf->chan_config)
     355           0 :         sconf->chan_config_info = get_bits(&gb, 16);
     356             :     // TODO: use this to set avctx->channel_layout
     357             : 
     358             : 
     359             :     // read channel sorting
     360          12 :     if (sconf->chan_sort && avctx->channels > 1) {
     361           0 :         int chan_pos_bits = av_ceil_log2(avctx->channels);
     362           0 :         int bits_needed  = avctx->channels * chan_pos_bits + 7;
     363           0 :         if (get_bits_left(&gb) < bits_needed)
     364           0 :             return AVERROR_INVALIDDATA;
     365             : 
     366           0 :         if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
     367           0 :             return AVERROR(ENOMEM);
     368             : 
     369           0 :         ctx->cs_switch = 1;
     370             : 
     371           0 :         for (i = 0; i < avctx->channels; i++) {
     372           0 :             sconf->chan_pos[i] = -1;
     373             :         }
     374             : 
     375           0 :         for (i = 0; i < avctx->channels; i++) {
     376             :             int idx;
     377             : 
     378           0 :             idx = get_bits(&gb, chan_pos_bits);
     379           0 :             if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
     380           0 :                 av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
     381           0 :                 ctx->cs_switch = 0;
     382           0 :                 break;
     383             :             }
     384           0 :             sconf->chan_pos[idx] = i;
     385             :         }
     386             : 
     387           0 :         align_get_bits(&gb);
     388             :     }
     389             : 
     390             : 
     391             :     // read fixed header and trailer sizes,
     392             :     // if size = 0xFFFFFFFF then there is no data field!
     393          12 :     if (get_bits_left(&gb) < 64)
     394           0 :         return AVERROR_INVALIDDATA;
     395             : 
     396          12 :     header_size  = get_bits_long(&gb, 32);
     397          12 :     trailer_size = get_bits_long(&gb, 32);
     398          12 :     if (header_size  == 0xFFFFFFFF)
     399           0 :         header_size  = 0;
     400          12 :     if (trailer_size == 0xFFFFFFFF)
     401           0 :         trailer_size = 0;
     402             : 
     403          12 :     ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
     404             : 
     405             : 
     406             :     // skip the header and trailer data
     407          12 :     if (get_bits_left(&gb) < ht_size)
     408           0 :         return AVERROR_INVALIDDATA;
     409             : 
     410          12 :     if (ht_size > INT32_MAX)
     411           0 :         return AVERROR_PATCHWELCOME;
     412             : 
     413          12 :     skip_bits_long(&gb, ht_size);
     414             : 
     415             : 
     416             :     // initialize CRC calculation
     417          12 :     if (sconf->crc_enabled) {
     418          12 :         if (get_bits_left(&gb) < 32)
     419           0 :             return AVERROR_INVALIDDATA;
     420             : 
     421          12 :         if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
     422           0 :             ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
     423           0 :             ctx->crc       = 0xFFFFFFFF;
     424           0 :             ctx->crc_org   = ~get_bits_long(&gb, 32);
     425             :         } else
     426          12 :             skip_bits_long(&gb, 32);
     427             :     }
     428             : 
     429             : 
     430             :     // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
     431             : 
     432          12 :     dprint_specific_config(ctx);
     433             : 
     434          12 :     return 0;
     435             : }
     436             : 
     437             : 
     438             : /** Check the ALSSpecificConfig for unsupported features.
     439             :  */
     440          12 : static int check_specific_config(ALSDecContext *ctx)
     441             : {
     442          12 :     ALSSpecificConfig *sconf = &ctx->sconf;
     443          12 :     int error = 0;
     444             : 
     445             :     // report unsupported feature and set error value
     446             :     #define MISSING_ERR(cond, str, errval)              \
     447             :     {                                                   \
     448             :         if (cond) {                                     \
     449             :             avpriv_report_missing_feature(ctx->avctx,   \
     450             :                                           str);         \
     451             :             error = errval;                             \
     452             :         }                                               \
     453             :     }
     454             : 
     455          12 :     MISSING_ERR(sconf->rlslms,    "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
     456             : 
     457          12 :     return error;
     458             : }
     459             : 
     460             : 
     461             : /** Parse the bs_info field to extract the block partitioning used in
     462             :  *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
     463             :  */
     464        3037 : static void parse_bs_info(const uint32_t bs_info, unsigned int n,
     465             :                           unsigned int div, unsigned int **div_blocks,
     466             :                           unsigned int *num_blocks)
     467             : {
     468        3037 :     if (n < 31 && ((bs_info << n) & 0x40000000)) {
     469             :         // if the level is valid and the investigated bit n is set
     470             :         // then recursively check both children at bits (2n+1) and (2n+2)
     471          72 :         n   *= 2;
     472          72 :         div += 1;
     473          72 :         parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
     474          72 :         parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
     475             :     } else {
     476             :         // else the bit is not set or the last level has been reached
     477             :         // (bit implicitly not set)
     478        2965 :         **div_blocks = div;
     479        2965 :         (*div_blocks)++;
     480        2965 :         (*num_blocks)++;
     481             :     }
     482        3037 : }
     483             : 
     484             : 
     485             : /** Read and decode a Rice codeword.
     486             :  */
     487     7227443 : static int32_t decode_rice(GetBitContext *gb, unsigned int k)
     488             : {
     489     7227443 :     int max = get_bits_left(gb) - k;
     490     7227443 :     int q   = get_unary(gb, 0, max);
     491     7227443 :     int r   = k ? get_bits1(gb) : !(q & 1);
     492             : 
     493     7227443 :     if (k > 1) {
     494     6978114 :         q <<= (k - 1);
     495     6978114 :         q  += get_bits_long(gb, k - 1);
     496      249329 :     } else if (!k) {
     497      197959 :         q >>= 1;
     498             :     }
     499     7227443 :     return r ? q : ~q;
     500             : }
     501             : 
     502             : 
     503             : /** Convert PARCOR coefficient k to direct filter coefficient.
     504             :  */
     505      106098 : static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
     506             : {
     507             :     int i, j;
     508             : 
     509     2187368 :     for (i = 0, j = k - 1; i < j; i++, j--) {
     510     2081270 :         int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
     511     2081270 :         cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
     512     2081270 :         cof[i]  += tmp1;
     513             :     }
     514      106098 :     if (i == j)
     515       52785 :         cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
     516             : 
     517      106098 :     cof[k] = par[k];
     518      106098 : }
     519             : 
     520             : 
     521             : /** Read block switching field if necessary and set actual block sizes.
     522             :  *  Also assure that the block sizes of the last frame correspond to the
     523             :  *  actual number of samples.
     524             :  */
     525        2893 : static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
     526             :                             uint32_t *bs_info)
     527             : {
     528        2893 :     ALSSpecificConfig *sconf     = &ctx->sconf;
     529        2893 :     GetBitContext *gb            = &ctx->gb;
     530        2893 :     unsigned int *ptr_div_blocks = div_blocks;
     531             :     unsigned int b;
     532             : 
     533        2893 :     if (sconf->block_switching) {
     534         109 :         unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
     535         109 :         *bs_info = get_bits_long(gb, bs_info_len);
     536         109 :         *bs_info <<= (32 - bs_info_len);
     537             :     }
     538             : 
     539        2893 :     ctx->num_blocks = 0;
     540        2893 :     parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
     541             : 
     542             :     // The last frame may have an overdetermined block structure given in
     543             :     // the bitstream. In that case the defined block structure would need
     544             :     // more samples than available to be consistent.
     545             :     // The block structure is actually used but the block sizes are adapted
     546             :     // to fit the actual number of available samples.
     547             :     // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
     548             :     // This results in the actual block sizes:    2 2 1 0.
     549             :     // This is not specified in 14496-3 but actually done by the reference
     550             :     // codec RM22 revision 2.
     551             :     // This appears to happen in case of an odd number of samples in the last
     552             :     // frame which is actually not allowed by the block length switching part
     553             :     // of 14496-3.
     554             :     // The ALS conformance files feature an odd number of samples in the last
     555             :     // frame.
     556             : 
     557        5858 :     for (b = 0; b < ctx->num_blocks; b++)
     558        2965 :         div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
     559             : 
     560        2893 :     if (ctx->cur_frame_length != ctx->sconf.frame_length) {
     561          10 :         unsigned int remaining = ctx->cur_frame_length;
     562             : 
     563          15 :         for (b = 0; b < ctx->num_blocks; b++) {
     564          15 :             if (remaining <= div_blocks[b]) {
     565          10 :                 div_blocks[b] = remaining;
     566          10 :                 ctx->num_blocks = b + 1;
     567          10 :                 break;
     568             :             }
     569             : 
     570           5 :             remaining -= div_blocks[b];
     571             :         }
     572             :     }
     573        2893 : }
     574             : 
     575             : 
     576             : /** Read the block data for a constant block
     577             :  */
     578           0 : static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
     579             : {
     580           0 :     ALSSpecificConfig *sconf = &ctx->sconf;
     581           0 :     AVCodecContext *avctx    = ctx->avctx;
     582           0 :     GetBitContext *gb        = &ctx->gb;
     583             : 
     584           0 :     if (bd->block_length <= 0)
     585           0 :         return AVERROR_INVALIDDATA;
     586             : 
     587           0 :     *bd->raw_samples = 0;
     588           0 :     *bd->const_block = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
     589           0 :     bd->js_blocks    = get_bits1(gb);
     590             : 
     591             :     // skip 5 reserved bits
     592           0 :     skip_bits(gb, 5);
     593             : 
     594           0 :     if (*bd->const_block) {
     595           0 :         unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
     596           0 :         *bd->raw_samples = get_sbits_long(gb, const_val_bits);
     597             :     }
     598             : 
     599             :     // ensure constant block decoding by reusing this field
     600           0 :     *bd->const_block = 1;
     601             : 
     602           0 :     return 0;
     603             : }
     604             : 
     605             : 
     606             : /** Decode the block data for a constant block
     607             :  */
     608           0 : static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
     609             : {
     610           0 :     int      smp = bd->block_length - 1;
     611           0 :     int32_t  val = *bd->raw_samples;
     612           0 :     int32_t *dst = bd->raw_samples + 1;
     613             : 
     614             :     // write raw samples into buffer
     615           0 :     for (; smp; smp--)
     616           0 :         *dst++ = val;
     617           0 : }
     618             : 
     619             : 
     620             : /** Read the block data for a non-constant block
     621             :  */
     622        3729 : static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
     623             : {
     624        3729 :     ALSSpecificConfig *sconf = &ctx->sconf;
     625        3729 :     AVCodecContext *avctx    = ctx->avctx;
     626        3729 :     GetBitContext *gb        = &ctx->gb;
     627             :     unsigned int k;
     628             :     unsigned int s[8];
     629             :     unsigned int sx[8];
     630             :     unsigned int sub_blocks, log2_sub_blocks, sb_length;
     631        3729 :     unsigned int start      = 0;
     632             :     unsigned int opt_order;
     633             :     int          sb;
     634        3729 :     int32_t      *quant_cof = bd->quant_cof;
     635             :     int32_t      *current_res;
     636             : 
     637             : 
     638             :     // ensure variable block decoding by reusing this field
     639        3729 :     *bd->const_block = 0;
     640             : 
     641        3729 :     *bd->opt_order  = 1;
     642        3729 :     bd->js_blocks   = get_bits1(gb);
     643             : 
     644        3729 :     opt_order       = *bd->opt_order;
     645             : 
     646             :     // determine the number of subblocks for entropy decoding
     647        3729 :     if (!sconf->bgmc && !sconf->sb_part) {
     648           0 :         log2_sub_blocks = 0;
     649             :     } else {
     650        3729 :         if (sconf->bgmc && sconf->sb_part)
     651         696 :             log2_sub_blocks = get_bits(gb, 2);
     652             :         else
     653        3033 :             log2_sub_blocks = 2 * get_bits1(gb);
     654             :     }
     655             : 
     656        3729 :     sub_blocks = 1 << log2_sub_blocks;
     657             : 
     658             :     // do not continue in case of a damaged stream since
     659             :     // block_length must be evenly divisible by sub_blocks
     660        3729 :     if (bd->block_length & (sub_blocks - 1)) {
     661           0 :         av_log(avctx, AV_LOG_WARNING,
     662             :                "Block length is not evenly divisible by the number of subblocks.\n");
     663           0 :         return AVERROR_INVALIDDATA;
     664             :     }
     665             : 
     666        3729 :     sb_length = bd->block_length >> log2_sub_blocks;
     667             : 
     668        3729 :     if (sconf->bgmc) {
     669         696 :         s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
     670        2121 :         for (k = 1; k < sub_blocks; k++)
     671        1425 :             s[k] = s[k - 1] + decode_rice(gb, 2);
     672             : 
     673        2817 :         for (k = 0; k < sub_blocks; k++) {
     674        2121 :             sx[k]   = s[k] & 0x0F;
     675        2121 :             s [k] >>= 4;
     676             :         }
     677             :     } else {
     678        3033 :         s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
     679        5313 :         for (k = 1; k < sub_blocks; k++)
     680        2280 :             s[k] = s[k - 1] + decode_rice(gb, 0);
     681             :     }
     682        7434 :     for (k = 1; k < sub_blocks; k++)
     683        3705 :         if (s[k] > 32) {
     684           0 :             av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
     685           0 :             return AVERROR_INVALIDDATA;
     686             :         }
     687             : 
     688        3729 :     if (get_bits1(gb))
     689           0 :         *bd->shift_lsbs = get_bits(gb, 4) + 1;
     690             : 
     691        3729 :     *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
     692             : 
     693             : 
     694        3729 :     if (!sconf->rlslms) {
     695        4674 :         if (sconf->adapt_order && sconf->max_order) {
     696         945 :             int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
     697         945 :                                                 2, sconf->max_order + 1));
     698         945 :             *bd->opt_order       = get_bits(gb, opt_order_length);
     699         945 :             if (*bd->opt_order > sconf->max_order) {
     700           0 :                 *bd->opt_order = sconf->max_order;
     701           0 :                 av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
     702           0 :                 return AVERROR_INVALIDDATA;
     703             :             }
     704             :         } else {
     705        2784 :             *bd->opt_order = sconf->max_order;
     706             :         }
     707        3729 :         if (*bd->opt_order > bd->block_length) {
     708           0 :             *bd->opt_order = bd->block_length;
     709           0 :             av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
     710           0 :             return AVERROR_INVALIDDATA;
     711             :         }
     712        3729 :         opt_order = *bd->opt_order;
     713             : 
     714        3729 :         if (opt_order) {
     715             :             int add_base;
     716             : 
     717        3729 :             if (sconf->coef_table == 3) {
     718           0 :                 add_base = 0x7F;
     719             : 
     720             :                 // read coefficient 0
     721           0 :                 quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
     722             : 
     723             :                 // read coefficient 1
     724           0 :                 if (opt_order > 1)
     725           0 :                     quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
     726             : 
     727             :                 // read coefficients 2 to opt_order
     728           0 :                 for (k = 2; k < opt_order; k++)
     729           0 :                     quant_cof[k] = get_bits(gb, 7);
     730             :             } else {
     731             :                 int k_max;
     732        3729 :                 add_base = 1;
     733             : 
     734             :                 // read coefficient 0 to 19
     735        3729 :                 k_max = FFMIN(opt_order, 20);
     736       49527 :                 for (k = 0; k < k_max; k++) {
     737       45798 :                     int rice_param = parcor_rice_table[sconf->coef_table][k][1];
     738       45798 :                     int offset     = parcor_rice_table[sconf->coef_table][k][0];
     739       45798 :                     quant_cof[k] = decode_rice(gb, rice_param) + offset;
     740       45798 :                     if (quant_cof[k] < -64 || quant_cof[k] > 63) {
     741           0 :                         av_log(avctx, AV_LOG_ERROR,
     742             :                                "quant_cof %"PRId32" is out of range.\n",
     743           0 :                                quant_cof[k]);
     744           0 :                         return AVERROR_INVALIDDATA;
     745             :                     }
     746             :                 }
     747             : 
     748             :                 // read coefficients 20 to 126
     749        3729 :                 k_max = FFMIN(opt_order, 127);
     750       64029 :                 for (; k < k_max; k++)
     751       60300 :                     quant_cof[k] = decode_rice(gb, 2) + (k & 1);
     752             : 
     753             :                 // read coefficients 127 to opt_order
     754        3729 :                 for (; k < opt_order; k++)
     755           0 :                     quant_cof[k] = decode_rice(gb, 1);
     756             : 
     757        3729 :                 quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
     758             : 
     759        3729 :                 if (opt_order > 1)
     760        3729 :                     quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
     761             :             }
     762             : 
     763      102369 :             for (k = 2; k < opt_order; k++)
     764       98640 :                 quant_cof[k] = (quant_cof[k] * (1 << 14)) + (add_base << 13);
     765             :         }
     766             :     }
     767             : 
     768             :     // read LTP gain and lag values
     769        3729 :     if (sconf->long_term_prediction) {
     770         696 :         *bd->use_ltp = get_bits1(gb);
     771             : 
     772         696 :         if (*bd->use_ltp) {
     773             :             int r, c;
     774             : 
     775         674 :             bd->ltp_gain[0]   = decode_rice(gb, 1) << 3;
     776         674 :             bd->ltp_gain[1]   = decode_rice(gb, 2) << 3;
     777             : 
     778         674 :             r                 = get_unary(gb, 0, 4);
     779         674 :             c                 = get_bits(gb, 2);
     780         674 :             if (r >= 4) {
     781           0 :                 av_log(avctx, AV_LOG_ERROR, "r overflow\n");
     782           0 :                 return AVERROR_INVALIDDATA;
     783             :             }
     784             : 
     785         674 :             bd->ltp_gain[2]   = ltp_gain_values[r][c];
     786             : 
     787         674 :             bd->ltp_gain[3]   = decode_rice(gb, 2) << 3;
     788         674 :             bd->ltp_gain[4]   = decode_rice(gb, 1) << 3;
     789             : 
     790         674 :             *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
     791         674 :             *bd->ltp_lag     += FFMAX(4, opt_order + 1);
     792             :         }
     793             :     }
     794             : 
     795             :     // read first value and residuals in case of a random access block
     796        3729 :     if (bd->ra_block) {
     797         696 :         if (opt_order)
     798         696 :             bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
     799         696 :         if (opt_order > 1)
     800         696 :             bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
     801         696 :         if (opt_order > 2)
     802         695 :             bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
     803             : 
     804         696 :         start = FFMIN(opt_order, 3);
     805             :     }
     806             : 
     807             :     // read all residuals
     808        3729 :     if (sconf->bgmc) {
     809             :         int          delta[8];
     810             :         unsigned int k    [8];
     811         696 :         unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
     812             : 
     813             :         // read most significant bits
     814             :         unsigned int high;
     815             :         unsigned int low;
     816             :         unsigned int value;
     817             : 
     818         696 :         ff_bgmc_decode_init(gb, &high, &low, &value);
     819             : 
     820         696 :         current_res = bd->raw_samples + start;
     821             : 
     822        2817 :         for (sb = 0; sb < sub_blocks; sb++) {
     823        2121 :             unsigned int sb_len  = sb_length - (sb ? 0 : start);
     824             : 
     825        2121 :             k    [sb] = s[sb] > b ? s[sb] - b : 0;
     826        2121 :             delta[sb] = 5 - s[sb] + k[sb];
     827             : 
     828        2121 :             ff_bgmc_decode(gb, sb_len, current_res,
     829             :                         delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
     830             : 
     831        2121 :             current_res += sb_len;
     832             :         }
     833             : 
     834         696 :         ff_bgmc_decode_end(gb);
     835             : 
     836             : 
     837             :         // read least significant bits and tails
     838         696 :         current_res = bd->raw_samples + start;
     839             : 
     840        2817 :         for (sb = 0; sb < sub_blocks; sb++, start = 0) {
     841        2121 :             unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
     842        2121 :             unsigned int cur_k         = k[sb];
     843        2121 :             unsigned int cur_s         = s[sb];
     844             : 
     845     1423939 :             for (; start < sb_length; start++) {
     846     1421818 :                 int32_t res = *current_res;
     847             : 
     848     1421818 :                 if (res == cur_tail_code) {
     849        8228 :                     unsigned int max_msb =   (2 + (sx[sb] > 2) + (sx[sb] > 10))
     850        4114 :                                           << (5 - delta[sb]);
     851             : 
     852        4114 :                     res = decode_rice(gb, cur_s);
     853             : 
     854        4114 :                     if (res >= 0) {
     855        2022 :                         res += (max_msb    ) << cur_k;
     856             :                     } else {
     857        2092 :                         res -= (max_msb - 1) << cur_k;
     858             :                     }
     859             :                 } else {
     860     1417704 :                     if (res > cur_tail_code)
     861       17223 :                         res--;
     862             : 
     863     1417704 :                     if (res & 1)
     864      650779 :                         res = -res;
     865             : 
     866     1417704 :                     res >>= 1;
     867             : 
     868     1417704 :                     if (cur_k) {
     869         765 :                         res  *= 1 << cur_k;
     870         765 :                         res  |= get_bits_long(gb, cur_k);
     871             :                     }
     872             :                 }
     873             : 
     874     1421818 :                 *current_res++ = res;
     875             :             }
     876             :         }
     877             :     } else {
     878        3033 :         current_res = bd->raw_samples + start;
     879             : 
     880        8346 :         for (sb = 0; sb < sub_blocks; sb++, start = 0)
     881     7112316 :             for (; start < sb_length; start++)
     882     7107003 :                 *current_res++ = decode_rice(gb, s[sb]);
     883             :      }
     884             : 
     885        3729 :     return 0;
     886             : }
     887             : 
     888             : 
     889             : /** Decode the block data for a non-constant block
     890             :  */
     891        3729 : static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
     892             : {
     893        3729 :     ALSSpecificConfig *sconf = &ctx->sconf;
     894        3729 :     unsigned int block_length = bd->block_length;
     895        3729 :     unsigned int smp = 0;
     896             :     unsigned int k;
     897        3729 :     int opt_order             = *bd->opt_order;
     898             :     int sb;
     899             :     int64_t y;
     900        3729 :     int32_t *quant_cof        = bd->quant_cof;
     901        3729 :     int32_t *lpc_cof          = bd->lpc_cof;
     902        3729 :     int32_t *raw_samples      = bd->raw_samples;
     903        3729 :     int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
     904        3729 :     int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
     905             : 
     906             :     // reverse long-term prediction
     907        3729 :     if (*bd->use_ltp) {
     908             :         int ltp_smp;
     909             : 
     910     1280397 :         for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
     911     1279723 :             int center = ltp_smp - *bd->ltp_lag;
     912     1279723 :             int begin  = FFMAX(0, center - 2);
     913     1279723 :             int end    = center + 3;
     914     1279723 :             int tab    = 5 - (end - begin);
     915             :             int base;
     916             : 
     917     1279723 :             y = 1 << 6;
     918             : 
     919     7671598 :             for (base = begin; base < end; base++, tab++)
     920     6391875 :                 y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
     921             : 
     922     1279723 :             raw_samples[ltp_smp] += y >> 7;
     923             :         }
     924             :     }
     925             : 
     926             :     // reconstruct all samples from residuals
     927        3729 :     if (bd->ra_block) {
     928       53974 :         for (smp = 0; smp < opt_order; smp++) {
     929       53278 :             y = 1 << 19;
     930             : 
     931     2692244 :             for (sb = 0; sb < smp; sb++)
     932     2638966 :                 y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
     933             : 
     934       53278 :             *raw_samples++ -= y >> 20;
     935       53278 :             parcor_to_lpc(smp, quant_cof, lpc_cof);
     936             :         }
     937             :     } else {
     938       55853 :         for (k = 0; k < opt_order; k++)
     939       52820 :             parcor_to_lpc(k, quant_cof, lpc_cof);
     940             : 
     941             :         // store previous samples in case that they have to be altered
     942        3033 :         if (*bd->store_prev_samples)
     943           9 :             memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
     944           9 :                    sizeof(*bd->prev_raw_samples) * sconf->max_order);
     945             : 
     946             :         // reconstruct difference signal for prediction (joint-stereo)
     947        3033 :         if (bd->js_blocks && bd->raw_other) {
     948             :             int32_t *left, *right;
     949             : 
     950           9 :             if (bd->raw_other > raw_samples) {  // D = R - L
     951           4 :                 left  = raw_samples;
     952           4 :                 right = bd->raw_other;
     953             :             } else {                                // D = R - L
     954           5 :                 left  = bd->raw_other;
     955           5 :                 right = raw_samples;
     956             :             }
     957             : 
     958         333 :             for (sb = -1; sb >= -sconf->max_order; sb--)
     959         324 :                 raw_samples[sb] = right[sb] - left[sb];
     960             :         }
     961             : 
     962             :         // reconstruct shifted signal
     963        3033 :         if (*bd->shift_lsbs)
     964           0 :             for (sb = -1; sb >= -sconf->max_order; sb--)
     965           0 :                 raw_samples[sb] >>= *bd->shift_lsbs;
     966             :     }
     967             : 
     968             :     // reverse linear prediction coefficients for efficiency
     969        3729 :     lpc_cof = lpc_cof + opt_order;
     970             : 
     971      109827 :     for (sb = 0; sb < opt_order; sb++)
     972      106098 :         lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
     973             : 
     974             :     // reconstruct raw samples
     975        3729 :     raw_samples = bd->raw_samples + smp;
     976        3729 :     lpc_cof     = lpc_cof_reversed + opt_order;
     977             : 
     978     8481359 :     for (; raw_samples < raw_samples_end; raw_samples++) {
     979     8477630 :         y = 1 << 19;
     980             : 
     981   329357942 :         for (sb = -opt_order; sb < 0; sb++)
     982   320880312 :             y += MUL64(lpc_cof[sb], raw_samples[sb]);
     983             : 
     984     8477630 :         *raw_samples -= y >> 20;
     985             :     }
     986             : 
     987        3729 :     raw_samples = bd->raw_samples;
     988             : 
     989             :     // restore previous samples in case that they have been altered
     990        3729 :     if (*bd->store_prev_samples)
     991           9 :         memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
     992           9 :                sizeof(*raw_samples) * sconf->max_order);
     993             : 
     994        3729 :     return 0;
     995             : }
     996             : 
     997             : 
     998             : /** Read the block data.
     999             :  */
    1000        3729 : static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
    1001             : {
    1002             :     int ret;
    1003        3729 :     GetBitContext *gb        = &ctx->gb;
    1004        3729 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1005             : 
    1006        3729 :     *bd->shift_lsbs = 0;
    1007             :     // read block type flag and read the samples accordingly
    1008        3729 :     if (get_bits1(gb)) {
    1009        3729 :         ret = read_var_block_data(ctx, bd);
    1010             :     } else {
    1011           0 :         ret = read_const_block_data(ctx, bd);
    1012             :     }
    1013             : 
    1014        3729 :     if (!sconf->mc_coding || ctx->js_switch)
    1015        3033 :         align_get_bits(gb);
    1016             : 
    1017        3729 :     return ret;
    1018             : }
    1019             : 
    1020             : 
    1021             : /** Decode the block data.
    1022             :  */
    1023        3729 : static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
    1024             : {
    1025             :     unsigned int smp;
    1026        3729 :     int ret = 0;
    1027             : 
    1028             :     // read block type flag and read the samples accordingly
    1029        3729 :     if (*bd->const_block)
    1030           0 :         decode_const_block_data(ctx, bd);
    1031             :     else
    1032        3729 :         ret = decode_var_block_data(ctx, bd); // always return 0
    1033             : 
    1034        3729 :     if (ret < 0)
    1035           0 :         return ret;
    1036             : 
    1037             :     // TODO: read RLSLMS extension data
    1038             : 
    1039        3729 :     if (*bd->shift_lsbs)
    1040           0 :         for (smp = 0; smp < bd->block_length; smp++)
    1041           0 :             bd->raw_samples[smp] <<= *bd->shift_lsbs;
    1042             : 
    1043        3729 :     return 0;
    1044             : }
    1045             : 
    1046             : 
    1047             : /** Read and decode block data successively.
    1048             :  */
    1049        3033 : static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
    1050             : {
    1051             :     int ret;
    1052             : 
    1053        3033 :     if ((ret = read_block(ctx, bd)) < 0)
    1054           0 :         return ret;
    1055             : 
    1056        3033 :     return decode_block(ctx, bd);
    1057             : }
    1058             : 
    1059             : 
    1060             : /** Compute the number of samples left to decode for the current frame and
    1061             :  *  sets these samples to zero.
    1062             :  */
    1063           0 : static void zero_remaining(unsigned int b, unsigned int b_max,
    1064             :                            const unsigned int *div_blocks, int32_t *buf)
    1065             : {
    1066           0 :     unsigned int count = 0;
    1067             : 
    1068           0 :     while (b < b_max)
    1069           0 :         count += div_blocks[b++];
    1070             : 
    1071           0 :     if (count)
    1072           0 :         memset(buf, 0, sizeof(*buf) * count);
    1073           0 : }
    1074             : 
    1075             : 
    1076             : /** Decode blocks independently.
    1077             :  */
    1078        2132 : static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
    1079             :                              unsigned int c, const unsigned int *div_blocks,
    1080             :                              unsigned int *js_blocks)
    1081             : {
    1082             :     int ret;
    1083             :     unsigned int b;
    1084        2132 :     ALSBlockData bd = { 0 };
    1085             : 
    1086        2132 :     bd.ra_block         = ra_frame;
    1087        2132 :     bd.const_block      = ctx->const_block;
    1088        2132 :     bd.shift_lsbs       = ctx->shift_lsbs;
    1089        2132 :     bd.opt_order        = ctx->opt_order;
    1090        2132 :     bd.store_prev_samples = ctx->store_prev_samples;
    1091        2132 :     bd.use_ltp          = ctx->use_ltp;
    1092        2132 :     bd.ltp_lag          = ctx->ltp_lag;
    1093        2132 :     bd.ltp_gain         = ctx->ltp_gain[0];
    1094        2132 :     bd.quant_cof        = ctx->quant_cof[0];
    1095        2132 :     bd.lpc_cof          = ctx->lpc_cof[0];
    1096        2132 :     bd.prev_raw_samples = ctx->prev_raw_samples;
    1097        2132 :     bd.raw_samples      = ctx->raw_samples[c];
    1098             : 
    1099             : 
    1100        4305 :     for (b = 0; b < ctx->num_blocks; b++) {
    1101        2173 :         bd.block_length     = div_blocks[b];
    1102             : 
    1103        2173 :         if ((ret = read_decode_block(ctx, &bd)) < 0) {
    1104             :             // damaged block, write zero for the rest of the frame
    1105           0 :             zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
    1106           0 :             return ret;
    1107             :         }
    1108        2173 :         bd.raw_samples += div_blocks[b];
    1109        2173 :         bd.ra_block     = 0;
    1110             :     }
    1111             : 
    1112        2132 :     return 0;
    1113             : }
    1114             : 
    1115             : 
    1116             : /** Decode blocks dependently.
    1117             :  */
    1118         413 : static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
    1119             :                          unsigned int c, const unsigned int *div_blocks,
    1120             :                          unsigned int *js_blocks)
    1121             : {
    1122         413 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1123         413 :     unsigned int offset = 0;
    1124             :     unsigned int b;
    1125             :     int ret;
    1126         413 :     ALSBlockData bd[2] = { { 0 } };
    1127             : 
    1128         413 :     bd[0].ra_block         = ra_frame;
    1129         413 :     bd[0].const_block      = ctx->const_block;
    1130         413 :     bd[0].shift_lsbs       = ctx->shift_lsbs;
    1131         413 :     bd[0].opt_order        = ctx->opt_order;
    1132         413 :     bd[0].store_prev_samples = ctx->store_prev_samples;
    1133         413 :     bd[0].use_ltp          = ctx->use_ltp;
    1134         413 :     bd[0].ltp_lag          = ctx->ltp_lag;
    1135         413 :     bd[0].ltp_gain         = ctx->ltp_gain[0];
    1136         413 :     bd[0].quant_cof        = ctx->quant_cof[0];
    1137         413 :     bd[0].lpc_cof          = ctx->lpc_cof[0];
    1138         413 :     bd[0].prev_raw_samples = ctx->prev_raw_samples;
    1139         413 :     bd[0].js_blocks        = *js_blocks;
    1140             : 
    1141         413 :     bd[1].ra_block         = ra_frame;
    1142         413 :     bd[1].const_block      = ctx->const_block;
    1143         413 :     bd[1].shift_lsbs       = ctx->shift_lsbs;
    1144         413 :     bd[1].opt_order        = ctx->opt_order;
    1145         413 :     bd[1].store_prev_samples = ctx->store_prev_samples;
    1146         413 :     bd[1].use_ltp          = ctx->use_ltp;
    1147         413 :     bd[1].ltp_lag          = ctx->ltp_lag;
    1148         413 :     bd[1].ltp_gain         = ctx->ltp_gain[0];
    1149         413 :     bd[1].quant_cof        = ctx->quant_cof[0];
    1150         413 :     bd[1].lpc_cof          = ctx->lpc_cof[0];
    1151         413 :     bd[1].prev_raw_samples = ctx->prev_raw_samples;
    1152         413 :     bd[1].js_blocks        = *(js_blocks + 1);
    1153             : 
    1154             :     // decode all blocks
    1155         843 :     for (b = 0; b < ctx->num_blocks; b++) {
    1156             :         unsigned int s;
    1157             : 
    1158         430 :         bd[0].block_length = div_blocks[b];
    1159         430 :         bd[1].block_length = div_blocks[b];
    1160             : 
    1161         430 :         bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
    1162         430 :         bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;
    1163             : 
    1164         430 :         bd[0].raw_other    = bd[1].raw_samples;
    1165         430 :         bd[1].raw_other    = bd[0].raw_samples;
    1166             : 
    1167         430 :         if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
    1168             :             (ret = read_decode_block(ctx, &bd[1])) < 0)
    1169             :             goto fail;
    1170             : 
    1171             :         // reconstruct joint-stereo blocks
    1172         430 :         if (bd[0].js_blocks) {
    1173           4 :             if (bd[1].js_blocks)
    1174           0 :                 av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
    1175             : 
    1176       16388 :             for (s = 0; s < div_blocks[b]; s++)
    1177       16384 :                 bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
    1178         426 :         } else if (bd[1].js_blocks) {
    1179       10245 :             for (s = 0; s < div_blocks[b]; s++)
    1180       10240 :                 bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
    1181             :         }
    1182             : 
    1183         430 :         offset  += div_blocks[b];
    1184         430 :         bd[0].ra_block = 0;
    1185         430 :         bd[1].ra_block = 0;
    1186             :     }
    1187             : 
    1188             :     // store carryover raw samples,
    1189             :     // the others channel raw samples are stored by the calling function.
    1190         826 :     memmove(ctx->raw_samples[c] - sconf->max_order,
    1191         413 :             ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
    1192         413 :             sizeof(*ctx->raw_samples[c]) * sconf->max_order);
    1193             : 
    1194         413 :     return 0;
    1195           0 : fail:
    1196             :     // damaged block, write zero for the rest of the frame
    1197           0 :     zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
    1198           0 :     zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
    1199           0 :     return ret;
    1200             : }
    1201             : 
    1202        1740 : static inline int als_weighting(GetBitContext *gb, int k, int off)
    1203             : {
    1204        1740 :     int idx = av_clip(decode_rice(gb, k) + off,
    1205             :                       0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
    1206        1740 :     return mcc_weightings[idx];
    1207             : }
    1208             : 
    1209             : /** Read the channel data.
    1210             :   */
    1211         696 : static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
    1212             : {
    1213         696 :     GetBitContext *gb       = &ctx->gb;
    1214         696 :     ALSChannelData *current = cd;
    1215         696 :     unsigned int channels   = ctx->avctx->channels;
    1216         696 :     int entries             = 0;
    1217             : 
    1218        1735 :     while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
    1219         343 :         current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
    1220             : 
    1221         343 :         if (current->master_channel >= channels) {
    1222           0 :             av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
    1223           0 :             return AVERROR_INVALIDDATA;
    1224             :         }
    1225             : 
    1226         343 :         if (current->master_channel != c) {
    1227         343 :             current->time_diff_flag = get_bits1(gb);
    1228         343 :             current->weighting[0]   = als_weighting(gb, 1, 16);
    1229         343 :             current->weighting[1]   = als_weighting(gb, 2, 14);
    1230         343 :             current->weighting[2]   = als_weighting(gb, 1, 16);
    1231             : 
    1232         343 :             if (current->time_diff_flag) {
    1233         237 :                 current->weighting[3] = als_weighting(gb, 1, 16);
    1234         237 :                 current->weighting[4] = als_weighting(gb, 1, 16);
    1235         237 :                 current->weighting[5] = als_weighting(gb, 1, 16);
    1236             : 
    1237         237 :                 current->time_diff_sign  = get_bits1(gb);
    1238         237 :                 current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
    1239             :             }
    1240             :         }
    1241             : 
    1242         343 :         current++;
    1243         343 :         entries++;
    1244             :     }
    1245             : 
    1246         696 :     if (entries == channels) {
    1247           0 :         av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
    1248           0 :         return AVERROR_INVALIDDATA;
    1249             :     }
    1250             : 
    1251         696 :     align_get_bits(gb);
    1252         696 :     return 0;
    1253             : }
    1254             : 
    1255             : 
    1256             : /** Recursively reverts the inter-channel correlation for a block.
    1257             :  */
    1258        1039 : static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
    1259             :                                        ALSChannelData **cd, int *reverted,
    1260             :                                        unsigned int offset, int c)
    1261             : {
    1262        1039 :     ALSChannelData *ch = cd[c];
    1263        1039 :     unsigned int   dep = 0;
    1264        1039 :     unsigned int channels = ctx->avctx->channels;
    1265        1039 :     unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
    1266             : 
    1267        1039 :     if (reverted[c])
    1268         343 :         return 0;
    1269             : 
    1270         696 :     reverted[c] = 1;
    1271             : 
    1272        1735 :     while (dep < channels && !ch[dep].stop_flag) {
    1273         343 :         revert_channel_correlation(ctx, bd, cd, reverted, offset,
    1274         343 :                                    ch[dep].master_channel);
    1275             : 
    1276         343 :         dep++;
    1277             :     }
    1278             : 
    1279         696 :     if (dep == channels) {
    1280           0 :         av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
    1281           0 :         return AVERROR_INVALIDDATA;
    1282             :     }
    1283             : 
    1284         696 :     bd->const_block = ctx->const_block + c;
    1285         696 :     bd->shift_lsbs  = ctx->shift_lsbs + c;
    1286         696 :     bd->opt_order   = ctx->opt_order + c;
    1287         696 :     bd->store_prev_samples = ctx->store_prev_samples + c;
    1288         696 :     bd->use_ltp     = ctx->use_ltp + c;
    1289         696 :     bd->ltp_lag     = ctx->ltp_lag + c;
    1290         696 :     bd->ltp_gain    = ctx->ltp_gain[c];
    1291         696 :     bd->lpc_cof     = ctx->lpc_cof[c];
    1292         696 :     bd->quant_cof   = ctx->quant_cof[c];
    1293         696 :     bd->raw_samples = ctx->raw_samples[c] + offset;
    1294             : 
    1295        1039 :     for (dep = 0; !ch[dep].stop_flag; dep++) {
    1296             :         ptrdiff_t smp;
    1297         343 :         ptrdiff_t begin = 1;
    1298         343 :         ptrdiff_t end   = bd->block_length - 1;
    1299             :         int64_t y;
    1300         343 :         int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
    1301             : 
    1302         343 :         if (ch[dep].master_channel == c)
    1303           0 :             continue;
    1304             : 
    1305         343 :         if (ch[dep].time_diff_flag) {
    1306         237 :             int t = ch[dep].time_diff_index;
    1307             : 
    1308         237 :             if (ch[dep].time_diff_sign) {
    1309          91 :                 t      = -t;
    1310          91 :                 if (begin < t) {
    1311           0 :                     av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
    1312           0 :                     return AVERROR_INVALIDDATA;
    1313             :                 }
    1314          91 :                 begin -= t;
    1315             :             } else {
    1316         146 :                 if (end < t) {
    1317           0 :                     av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
    1318           0 :                     return AVERROR_INVALIDDATA;
    1319             :                 }
    1320         146 :                 end   -= t;
    1321             :             }
    1322             : 
    1323         474 :             if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
    1324         237 :                 FFMAX(end   + 1,   end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
    1325           0 :                 av_log(ctx->avctx, AV_LOG_ERROR,
    1326             :                        "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
    1327           0 :                        master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1,   end + 1 + t),
    1328           0 :                        ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
    1329           0 :                 return AVERROR_INVALIDDATA;
    1330             :             }
    1331             : 
    1332      481197 :             for (smp = begin; smp < end; smp++) {
    1333      961920 :                 y  = (1 << 6) +
    1334      961920 :                      MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
    1335      961920 :                      MUL64(ch[dep].weighting[1], master[smp        ]) +
    1336      961920 :                      MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
    1337      961920 :                      MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
    1338      480960 :                      MUL64(ch[dep].weighting[4], master[smp     + t]) +
    1339      480960 :                      MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
    1340             : 
    1341      480960 :                 bd->raw_samples[smp] += y >> 7;
    1342             :             }
    1343             :         } else {
    1344             : 
    1345         212 :             if (begin - 1 < ctx->raw_buffer - master ||
    1346         106 :                 end   + 1 > ctx->raw_buffer + channels * channel_size - master) {
    1347           0 :                 av_log(ctx->avctx, AV_LOG_ERROR,
    1348             :                        "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
    1349           0 :                        master + begin - 1, master + end + 1,
    1350           0 :                        ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
    1351           0 :                 return AVERROR_INVALIDDATA;
    1352             :             }
    1353             : 
    1354      216982 :             for (smp = begin; smp < end; smp++) {
    1355      433752 :                 y  = (1 << 6) +
    1356      433752 :                      MUL64(ch[dep].weighting[0], master[smp - 1]) +
    1357      216876 :                      MUL64(ch[dep].weighting[1], master[smp    ]) +
    1358      216876 :                      MUL64(ch[dep].weighting[2], master[smp + 1]);
    1359             : 
    1360      216876 :                 bd->raw_samples[smp] += y >> 7;
    1361             :             }
    1362             :         }
    1363             :     }
    1364             : 
    1365         696 :     return 0;
    1366             : }
    1367             : 
    1368             : 
    1369             : /** multiply two softfloats and handle the rounding off
    1370             :  */
    1371           0 : static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b) {
    1372             :     uint64_t mantissa_temp;
    1373             :     uint64_t mask_64;
    1374             :     int cutoff_bit_count;
    1375             :     unsigned char last_2_bits;
    1376             :     unsigned int mantissa;
    1377             :     int32_t sign;
    1378           0 :     uint32_t return_val = 0;
    1379           0 :     int bit_count       = 48;
    1380             : 
    1381           0 :     sign = a.sign ^ b.sign;
    1382             : 
    1383             :     // Multiply mantissa bits in a 64-bit register
    1384           0 :     mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
    1385           0 :     mask_64       = (uint64_t)0x1 << 47;
    1386             : 
    1387             :     // Count the valid bit count
    1388           0 :     while (!(mantissa_temp & mask_64) && mask_64) {
    1389           0 :         bit_count--;
    1390           0 :         mask_64 >>= 1;
    1391             :     }
    1392             : 
    1393             :     // Round off
    1394           0 :     cutoff_bit_count = bit_count - 24;
    1395           0 :     if (cutoff_bit_count > 0) {
    1396           0 :         last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
    1397           0 :         if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
    1398             :             // Need to round up
    1399           0 :             mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
    1400             :         }
    1401             :     }
    1402             : 
    1403           0 :     mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
    1404             : 
    1405             :     // Need one more shift?
    1406           0 :     if (mantissa & 0x01000000ul) {
    1407           0 :         bit_count++;
    1408           0 :         mantissa >>= 1;
    1409             :     }
    1410             : 
    1411           0 :     if (!sign) {
    1412           0 :         return_val = 0x80000000U;
    1413             :     }
    1414             : 
    1415           0 :     return_val |= (a.exp + b.exp + bit_count - 47) << 23;
    1416           0 :     return_val |= mantissa;
    1417           0 :     return av_bits2sf_ieee754(return_val);
    1418             : }
    1419             : 
    1420             : 
    1421             : /** Read and decode the floating point sample data
    1422             :  */
    1423           0 : static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
    1424           0 :     AVCodecContext *avctx   = ctx->avctx;
    1425           0 :     GetBitContext *gb       = &ctx->gb;
    1426           0 :     SoftFloat_IEEE754 *acf  = ctx->acf;
    1427           0 :     int *shift_value        = ctx->shift_value;
    1428           0 :     int *last_shift_value   = ctx->last_shift_value;
    1429           0 :     int *last_acf_mantissa  = ctx->last_acf_mantissa;
    1430           0 :     int **raw_mantissa      = ctx->raw_mantissa;
    1431           0 :     int *nbits              = ctx->nbits;
    1432           0 :     unsigned char *larray   = ctx->larray;
    1433           0 :     int frame_length        = ctx->cur_frame_length;
    1434           0 :     SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
    1435             :     unsigned int partA_flag;
    1436             :     unsigned int highest_byte;
    1437             :     unsigned int shift_amp;
    1438             :     uint32_t tmp_32;
    1439             :     int use_acf;
    1440             :     int nchars;
    1441             :     int i;
    1442             :     int c;
    1443             :     long k;
    1444             :     long nbits_aligned;
    1445             :     unsigned long acc;
    1446             :     unsigned long j;
    1447             :     uint32_t sign;
    1448             :     uint32_t e;
    1449             :     uint32_t mantissa;
    1450             : 
    1451           0 :     skip_bits_long(gb, 32); //num_bytes_diff_float
    1452           0 :     use_acf = get_bits1(gb);
    1453             : 
    1454           0 :     if (ra_frame) {
    1455           0 :         memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
    1456           0 :         memset(last_shift_value,  0, avctx->channels * sizeof(*last_shift_value) );
    1457           0 :         ff_mlz_flush_dict(ctx->mlz);
    1458             :     }
    1459             : 
    1460           0 :     for (c = 0; c < avctx->channels; ++c) {
    1461           0 :         if (use_acf) {
    1462             :             //acf_flag
    1463           0 :             if (get_bits1(gb)) {
    1464           0 :                 tmp_32 = get_bits(gb, 23);
    1465           0 :                 last_acf_mantissa[c] = tmp_32;
    1466             :             } else {
    1467           0 :                 tmp_32 = last_acf_mantissa[c];
    1468             :             }
    1469           0 :             acf[c] = av_bits2sf_ieee754(tmp_32);
    1470             :         } else {
    1471           0 :             acf[c] = FLOAT_1;
    1472             :         }
    1473             : 
    1474           0 :         highest_byte = get_bits(gb, 2);
    1475           0 :         partA_flag   = get_bits1(gb);
    1476           0 :         shift_amp    = get_bits1(gb);
    1477             : 
    1478           0 :         if (shift_amp) {
    1479           0 :             shift_value[c] = get_bits(gb, 8);
    1480           0 :             last_shift_value[c] = shift_value[c];
    1481             :         } else {
    1482           0 :             shift_value[c] = last_shift_value[c];
    1483             :         }
    1484             : 
    1485           0 :         if (partA_flag) {
    1486           0 :             if (!get_bits1(gb)) { //uncompressed
    1487           0 :                 for (i = 0; i < frame_length; ++i) {
    1488           0 :                     if (ctx->raw_samples[c][i] == 0) {
    1489           0 :                         ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
    1490             :                     }
    1491             :                 }
    1492             :             } else { //compressed
    1493           0 :                 nchars = 0;
    1494           0 :                 for (i = 0; i < frame_length; ++i) {
    1495           0 :                     if (ctx->raw_samples[c][i] == 0) {
    1496           0 :                         nchars += 4;
    1497             :                     }
    1498             :                 }
    1499             : 
    1500           0 :                 tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
    1501           0 :                 if(tmp_32 != nchars) {
    1502           0 :                     av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
    1503           0 :                     return AVERROR_INVALIDDATA;
    1504             :                 }
    1505             : 
    1506           0 :                 for (i = 0; i < frame_length; ++i) {
    1507           0 :                     ctx->raw_mantissa[c][i] = AV_RB32(larray);
    1508             :                 }
    1509             :             }
    1510             :         }
    1511             : 
    1512             :         //decode part B
    1513           0 :         if (highest_byte) {
    1514           0 :             for (i = 0; i < frame_length; ++i) {
    1515           0 :                 if (ctx->raw_samples[c][i] != 0) {
    1516             :                     //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
    1517           0 :                     if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
    1518           0 :                         nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
    1519             :                     } else {
    1520           0 :                         nbits[i] = 23;
    1521             :                     }
    1522           0 :                     nbits[i] = FFMIN(nbits[i], highest_byte*8);
    1523             :                 }
    1524             :             }
    1525             : 
    1526           0 :             if (!get_bits1(gb)) { //uncompressed
    1527           0 :                 for (i = 0; i < frame_length; ++i) {
    1528           0 :                     if (ctx->raw_samples[c][i] != 0) {
    1529           0 :                         raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
    1530             :                     }
    1531             :                 }
    1532             :             } else { //compressed
    1533           0 :                 nchars = 0;
    1534           0 :                 for (i = 0; i < frame_length; ++i) {
    1535           0 :                     if (ctx->raw_samples[c][i]) {
    1536           0 :                         nchars += (int) nbits[i] / 8;
    1537           0 :                         if (nbits[i] & 7) {
    1538           0 :                             ++nchars;
    1539             :                         }
    1540             :                     }
    1541             :                 }
    1542             : 
    1543           0 :                 tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
    1544           0 :                 if(tmp_32 != nchars) {
    1545           0 :                     av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
    1546           0 :                     return AVERROR_INVALIDDATA;
    1547             :                 }
    1548             : 
    1549           0 :                 j = 0;
    1550           0 :                 for (i = 0; i < frame_length; ++i) {
    1551           0 :                     if (ctx->raw_samples[c][i]) {
    1552           0 :                         if (nbits[i] & 7) {
    1553           0 :                             nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
    1554             :                         } else {
    1555           0 :                             nbits_aligned = nbits[i];
    1556             :                         }
    1557           0 :                         acc = 0;
    1558           0 :                         for (k = 0; k < nbits_aligned/8; ++k) {
    1559           0 :                             acc = (acc << 8) + larray[j++];
    1560             :                         }
    1561           0 :                         acc >>= (nbits_aligned - nbits[i]);
    1562           0 :                         raw_mantissa[c][i] = acc;
    1563             :                     }
    1564             :                 }
    1565             :             }
    1566             :         }
    1567             : 
    1568           0 :         for (i = 0; i < frame_length; ++i) {
    1569           0 :             SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
    1570           0 :             pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
    1571             : 
    1572           0 :             if (ctx->raw_samples[c][i] != 0) {
    1573           0 :                 if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
    1574           0 :                     pcm_sf = multiply(acf[c], pcm_sf);
    1575             :                 }
    1576             : 
    1577           0 :                 sign = pcm_sf.sign;
    1578           0 :                 e = pcm_sf.exp;
    1579           0 :                 mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
    1580             : 
    1581           0 :                 while(mantissa >= 0x1000000) {
    1582           0 :                     e++;
    1583           0 :                     mantissa >>= 1;
    1584             :                 }
    1585             : 
    1586           0 :                 if (mantissa) e += (shift_value[c] - 127);
    1587           0 :                 mantissa &= 0x007fffffUL;
    1588             : 
    1589           0 :                 tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
    1590           0 :                 ctx->raw_samples[c][i] = tmp_32;
    1591             :             } else {
    1592           0 :                 ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
    1593             :             }
    1594             :         }
    1595           0 :         align_get_bits(gb);
    1596             :     }
    1597           0 :     return 0;
    1598             : }
    1599             : 
    1600             : 
    1601             : /** Read the frame data.
    1602             :  */
    1603        1827 : static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
    1604             : {
    1605        1827 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1606        1827 :     AVCodecContext *avctx    = ctx->avctx;
    1607        1827 :     GetBitContext *gb = &ctx->gb;
    1608             :     unsigned int div_blocks[32];                ///< block sizes.
    1609             :     unsigned int c;
    1610             :     unsigned int js_blocks[2];
    1611        1827 :     uint32_t bs_info = 0;
    1612             :     int ret;
    1613             : 
    1614             :     // skip the size of the ra unit if present in the frame
    1615        1827 :     if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
    1616           0 :         skip_bits_long(gb, 32);
    1617             : 
    1618        1827 :     if (sconf->mc_coding && sconf->joint_stereo) {
    1619           0 :         ctx->js_switch = get_bits1(gb);
    1620           0 :         align_get_bits(gb);
    1621             :     }
    1622             : 
    1623        3306 :     if (!sconf->mc_coding || ctx->js_switch) {
    1624        1479 :         int independent_bs = !sconf->joint_stereo;
    1625             : 
    1626        4024 :         for (c = 0; c < avctx->channels; c++) {
    1627        2545 :             js_blocks[0] = 0;
    1628        2545 :             js_blocks[1] = 0;
    1629             : 
    1630        2545 :             get_block_sizes(ctx, div_blocks, &bs_info);
    1631             : 
    1632             :             // if joint_stereo and block_switching is set, independent decoding
    1633             :             // is signaled via the first bit of bs_info
    1634        2545 :             if (sconf->joint_stereo && sconf->block_switching)
    1635         109 :                 if (bs_info >> 31)
    1636          22 :                     independent_bs = 2;
    1637             : 
    1638             :             // if this is the last channel, it has to be decoded independently
    1639        2545 :             if (c == avctx->channels - 1 || (c & 1))
    1640        1066 :                 independent_bs = 1;
    1641             : 
    1642        2545 :             if (independent_bs) {
    1643        2132 :                 ret = decode_blocks_ind(ctx, ra_frame, c,
    1644             :                                         div_blocks, js_blocks);
    1645        2132 :                 if (ret < 0)
    1646           0 :                     return ret;
    1647        2132 :                 independent_bs--;
    1648             :             } else {
    1649         413 :                 ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
    1650         413 :                 if (ret < 0)
    1651           0 :                     return ret;
    1652             : 
    1653         413 :                 c++;
    1654             :             }
    1655             : 
    1656             :             // store carryover raw samples
    1657        5090 :             memmove(ctx->raw_samples[c] - sconf->max_order,
    1658        2545 :                     ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
    1659        2545 :                     sizeof(*ctx->raw_samples[c]) * sconf->max_order);
    1660             :         }
    1661             :     } else { // multi-channel coding
    1662         348 :         ALSBlockData   bd = { 0 };
    1663             :         int            b, ret;
    1664         348 :         int            *reverted_channels = ctx->reverted_channels;
    1665         348 :         unsigned int   offset             = 0;
    1666             : 
    1667        1044 :         for (c = 0; c < avctx->channels; c++)
    1668         696 :             if (ctx->chan_data[c] < ctx->chan_data_buffer) {
    1669           0 :                 av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
    1670           0 :                 return AVERROR_INVALIDDATA;
    1671             :             }
    1672             : 
    1673         348 :         memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
    1674             : 
    1675         348 :         bd.ra_block         = ra_frame;
    1676         348 :         bd.prev_raw_samples = ctx->prev_raw_samples;
    1677             : 
    1678         348 :         get_block_sizes(ctx, div_blocks, &bs_info);
    1679             : 
    1680         696 :         for (b = 0; b < ctx->num_blocks; b++) {
    1681         348 :             bd.block_length = div_blocks[b];
    1682         348 :             if (bd.block_length <= 0) {
    1683           0 :                 av_log(ctx->avctx, AV_LOG_WARNING,
    1684             :                        "Invalid block length %u in channel data!\n",
    1685             :                        bd.block_length);
    1686           0 :                 continue;
    1687             :             }
    1688             : 
    1689        1044 :             for (c = 0; c < avctx->channels; c++) {
    1690         696 :                 bd.const_block = ctx->const_block + c;
    1691         696 :                 bd.shift_lsbs  = ctx->shift_lsbs + c;
    1692         696 :                 bd.opt_order   = ctx->opt_order + c;
    1693         696 :                 bd.store_prev_samples = ctx->store_prev_samples + c;
    1694         696 :                 bd.use_ltp     = ctx->use_ltp + c;
    1695         696 :                 bd.ltp_lag     = ctx->ltp_lag + c;
    1696         696 :                 bd.ltp_gain    = ctx->ltp_gain[c];
    1697         696 :                 bd.lpc_cof     = ctx->lpc_cof[c];
    1698         696 :                 bd.quant_cof   = ctx->quant_cof[c];
    1699         696 :                 bd.raw_samples = ctx->raw_samples[c] + offset;
    1700         696 :                 bd.raw_other   = NULL;
    1701             : 
    1702         696 :                 if ((ret = read_block(ctx, &bd)) < 0)
    1703           0 :                     return ret;
    1704         696 :                 if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
    1705           0 :                     return ret;
    1706             :             }
    1707             : 
    1708        1044 :             for (c = 0; c < avctx->channels; c++) {
    1709         696 :                 ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
    1710             :                                                  reverted_channels, offset, c);
    1711         696 :                 if (ret < 0)
    1712           0 :                     return ret;
    1713             :             }
    1714        1044 :             for (c = 0; c < avctx->channels; c++) {
    1715         696 :                 bd.const_block = ctx->const_block + c;
    1716         696 :                 bd.shift_lsbs  = ctx->shift_lsbs + c;
    1717         696 :                 bd.opt_order   = ctx->opt_order + c;
    1718         696 :                 bd.store_prev_samples = ctx->store_prev_samples + c;
    1719         696 :                 bd.use_ltp     = ctx->use_ltp + c;
    1720         696 :                 bd.ltp_lag     = ctx->ltp_lag + c;
    1721         696 :                 bd.ltp_gain    = ctx->ltp_gain[c];
    1722         696 :                 bd.lpc_cof     = ctx->lpc_cof[c];
    1723         696 :                 bd.quant_cof   = ctx->quant_cof[c];
    1724         696 :                 bd.raw_samples = ctx->raw_samples[c] + offset;
    1725             : 
    1726         696 :                 if ((ret = decode_block(ctx, &bd)) < 0)
    1727           0 :                     return ret;
    1728             :             }
    1729             : 
    1730         348 :             memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
    1731         348 :             offset      += div_blocks[b];
    1732         348 :             bd.ra_block  = 0;
    1733             :         }
    1734             : 
    1735             :         // store carryover raw samples
    1736        1044 :         for (c = 0; c < avctx->channels; c++)
    1737        1392 :             memmove(ctx->raw_samples[c] - sconf->max_order,
    1738         696 :                     ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
    1739         696 :                     sizeof(*ctx->raw_samples[c]) * sconf->max_order);
    1740             :     }
    1741             : 
    1742        1827 :     if (sconf->floating) {
    1743           0 :         read_diff_float_data(ctx, ra_frame);
    1744             :     }
    1745             : 
    1746        1827 :     if (get_bits_left(gb) < 0) {
    1747           0 :         av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
    1748           0 :         return AVERROR_INVALIDDATA;
    1749             :     }
    1750             : 
    1751        1827 :     return 0;
    1752             : }
    1753             : 
    1754             : 
    1755             : /** Decode an ALS frame.
    1756             :  */
    1757        1827 : static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
    1758             :                         AVPacket *avpkt)
    1759             : {
    1760        1827 :     ALSDecContext *ctx       = avctx->priv_data;
    1761        1827 :     AVFrame *frame           = data;
    1762        1827 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1763        1827 :     const uint8_t *buffer    = avpkt->data;
    1764        1827 :     int buffer_size          = avpkt->size;
    1765             :     int invalid_frame, ret;
    1766             :     unsigned int c, sample, ra_frame, bytes_read, shift;
    1767             : 
    1768        1827 :     if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
    1769           0 :         return ret;
    1770             : 
    1771             :     // In the case that the distance between random access frames is set to zero
    1772             :     // (sconf->ra_distance == 0) no frame is treated as a random access frame.
    1773             :     // For the first frame, if prediction is used, all samples used from the
    1774             :     // previous frame are assumed to be zero.
    1775        1827 :     ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
    1776             : 
    1777             :     // the last frame to decode might have a different length
    1778        1827 :     if (sconf->samples != 0xFFFFFFFF)
    1779        1827 :         ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
    1780             :                                       sconf->frame_length);
    1781             :     else
    1782           0 :         ctx->cur_frame_length = sconf->frame_length;
    1783             : 
    1784             :     // decode the frame data
    1785        1827 :     if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
    1786           0 :         av_log(ctx->avctx, AV_LOG_WARNING,
    1787             :                "Reading frame data failed. Skipping RA unit.\n");
    1788             : 
    1789        1827 :     ctx->frame_id++;
    1790             : 
    1791             :     /* get output buffer */
    1792        1827 :     frame->nb_samples = ctx->cur_frame_length;
    1793        1827 :     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
    1794           0 :         return ret;
    1795             : 
    1796             :     // transform decoded frame into output format
    1797             :     #define INTERLEAVE_OUTPUT(bps)                                                   \
    1798             :     {                                                                                \
    1799             :         int##bps##_t *dest = (int##bps##_t*)frame->data[0];                          \
    1800             :         shift = bps - ctx->avctx->bits_per_raw_sample;                               \
    1801             :         if (!ctx->cs_switch) {                                                       \
    1802             :             for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
    1803             :                 for (c = 0; c < avctx->channels; c++)                                \
    1804             :                     *dest++ = ctx->raw_samples[c][sample] << shift;                  \
    1805             :         } else {                                                                     \
    1806             :             for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
    1807             :                 for (c = 0; c < avctx->channels; c++)                                \
    1808             :                     *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
    1809             :         }                                                                            \
    1810             :     }
    1811             : 
    1812        1827 :     if (ctx->avctx->bits_per_raw_sample <= 16) {
    1813        1827 :         INTERLEAVE_OUTPUT(16)
    1814             :     } else {
    1815           0 :         INTERLEAVE_OUTPUT(32)
    1816             :     }
    1817             : 
    1818             :     // update CRC
    1819        1827 :     if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
    1820           0 :         int swap = HAVE_BIGENDIAN != sconf->msb_first;
    1821             : 
    1822           0 :         if (ctx->avctx->bits_per_raw_sample == 24) {
    1823           0 :             int32_t *src = (int32_t *)frame->data[0];
    1824             : 
    1825           0 :             for (sample = 0;
    1826           0 :                  sample < ctx->cur_frame_length * avctx->channels;
    1827           0 :                  sample++) {
    1828             :                 int32_t v;
    1829             : 
    1830           0 :                 if (swap)
    1831           0 :                     v = av_bswap32(src[sample]);
    1832             :                 else
    1833           0 :                     v = src[sample];
    1834             :                 if (!HAVE_BIGENDIAN)
    1835           0 :                     v >>= 8;
    1836             : 
    1837           0 :                 ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
    1838             :             }
    1839             :         } else {
    1840             :             uint8_t *crc_source;
    1841             : 
    1842           0 :             if (swap) {
    1843           0 :                 if (ctx->avctx->bits_per_raw_sample <= 16) {
    1844           0 :                     int16_t *src  = (int16_t*) frame->data[0];
    1845           0 :                     int16_t *dest = (int16_t*) ctx->crc_buffer;
    1846           0 :                     for (sample = 0;
    1847           0 :                          sample < ctx->cur_frame_length * avctx->channels;
    1848           0 :                          sample++)
    1849           0 :                         *dest++ = av_bswap16(src[sample]);
    1850             :                 } else {
    1851           0 :                     ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
    1852           0 :                                         (uint32_t *) frame->data[0],
    1853           0 :                                         ctx->cur_frame_length * avctx->channels);
    1854             :                 }
    1855           0 :                 crc_source = ctx->crc_buffer;
    1856             :             } else {
    1857           0 :                 crc_source = frame->data[0];
    1858             :             }
    1859             : 
    1860           0 :             ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
    1861           0 :                               ctx->cur_frame_length * avctx->channels *
    1862           0 :                               av_get_bytes_per_sample(avctx->sample_fmt));
    1863             :         }
    1864             : 
    1865             : 
    1866             :         // check CRC sums if this is the last frame
    1867           0 :         if (ctx->cur_frame_length != sconf->frame_length &&
    1868           0 :             ctx->crc_org != ctx->crc) {
    1869           0 :             av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
    1870           0 :             if (avctx->err_recognition & AV_EF_EXPLODE)
    1871           0 :                 return AVERROR_INVALIDDATA;
    1872             :         }
    1873             :     }
    1874             : 
    1875        1827 :     *got_frame_ptr = 1;
    1876             : 
    1877        3654 :     bytes_read = invalid_frame ? buffer_size :
    1878        1827 :                                  (get_bits_count(&ctx->gb) + 7) >> 3;
    1879             : 
    1880        1827 :     return bytes_read;
    1881             : }
    1882             : 
    1883             : 
    1884             : /** Uninitialize the ALS decoder.
    1885             :  */
    1886          12 : static av_cold int decode_end(AVCodecContext *avctx)
    1887             : {
    1888          12 :     ALSDecContext *ctx = avctx->priv_data;
    1889             :     int i;
    1890             : 
    1891          12 :     av_freep(&ctx->sconf.chan_pos);
    1892             : 
    1893          12 :     ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
    1894             : 
    1895          12 :     av_freep(&ctx->const_block);
    1896          12 :     av_freep(&ctx->shift_lsbs);
    1897          12 :     av_freep(&ctx->opt_order);
    1898          12 :     av_freep(&ctx->store_prev_samples);
    1899          12 :     av_freep(&ctx->use_ltp);
    1900          12 :     av_freep(&ctx->ltp_lag);
    1901          12 :     av_freep(&ctx->ltp_gain);
    1902          12 :     av_freep(&ctx->ltp_gain_buffer);
    1903          12 :     av_freep(&ctx->quant_cof);
    1904          12 :     av_freep(&ctx->lpc_cof);
    1905          12 :     av_freep(&ctx->quant_cof_buffer);
    1906          12 :     av_freep(&ctx->lpc_cof_buffer);
    1907          12 :     av_freep(&ctx->lpc_cof_reversed_buffer);
    1908          12 :     av_freep(&ctx->prev_raw_samples);
    1909          12 :     av_freep(&ctx->raw_samples);
    1910          12 :     av_freep(&ctx->raw_buffer);
    1911          12 :     av_freep(&ctx->chan_data);
    1912          12 :     av_freep(&ctx->chan_data_buffer);
    1913          12 :     av_freep(&ctx->reverted_channels);
    1914          12 :     av_freep(&ctx->crc_buffer);
    1915          12 :     if (ctx->mlz) {
    1916           0 :         av_freep(&ctx->mlz->dict);
    1917           0 :         av_freep(&ctx->mlz);
    1918             :     }
    1919          12 :     av_freep(&ctx->acf);
    1920          12 :     av_freep(&ctx->last_acf_mantissa);
    1921          12 :     av_freep(&ctx->shift_value);
    1922          12 :     av_freep(&ctx->last_shift_value);
    1923          12 :     if (ctx->raw_mantissa) {
    1924           0 :         for (i = 0; i < avctx->channels; i++) {
    1925           0 :             av_freep(&ctx->raw_mantissa[i]);
    1926             :         }
    1927           0 :         av_freep(&ctx->raw_mantissa);
    1928             :     }
    1929          12 :     av_freep(&ctx->larray);
    1930          12 :     av_freep(&ctx->nbits);
    1931             : 
    1932          12 :     return 0;
    1933             : }
    1934             : 
    1935             : 
    1936             : /** Initialize the ALS decoder.
    1937             :  */
    1938          12 : static av_cold int decode_init(AVCodecContext *avctx)
    1939             : {
    1940             :     unsigned int c;
    1941             :     unsigned int channel_size;
    1942             :     int num_buffers, ret;
    1943          12 :     ALSDecContext *ctx = avctx->priv_data;
    1944          12 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1945          12 :     ctx->avctx = avctx;
    1946             : 
    1947          12 :     if (!avctx->extradata) {
    1948           0 :         av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
    1949           0 :         return AVERROR_INVALIDDATA;
    1950             :     }
    1951             : 
    1952          12 :     if ((ret = read_specific_config(ctx)) < 0) {
    1953           0 :         av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
    1954           0 :         goto fail;
    1955             :     }
    1956             : 
    1957          12 :     if ((ret = check_specific_config(ctx)) < 0) {
    1958           0 :         goto fail;
    1959             :     }
    1960             : 
    1961          12 :     if (sconf->bgmc) {
    1962           2 :         ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
    1963           2 :         if (ret < 0)
    1964           0 :             goto fail;
    1965             :     }
    1966          12 :     if (sconf->floating) {
    1967           0 :         avctx->sample_fmt          = AV_SAMPLE_FMT_FLT;
    1968           0 :         avctx->bits_per_raw_sample = 32;
    1969             :     } else {
    1970          24 :         avctx->sample_fmt          = sconf->resolution > 1
    1971          12 :                                      ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
    1972          12 :         avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
    1973          12 :         if (avctx->bits_per_raw_sample > 32) {
    1974           0 :             av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
    1975             :                    avctx->bits_per_raw_sample);
    1976           0 :             ret = AVERROR_INVALIDDATA;
    1977           0 :             goto fail;
    1978             :         }
    1979             :     }
    1980             : 
    1981             :     // set maximum Rice parameter for progressive decoding based on resolution
    1982             :     // This is not specified in 14496-3 but actually done by the reference
    1983             :     // codec RM22 revision 2.
    1984          12 :     ctx->s_max = sconf->resolution > 1 ? 31 : 15;
    1985             : 
    1986             :     // set lag value for long-term prediction
    1987          24 :     ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
    1988          12 :                               (avctx->sample_rate >= 192000);
    1989             : 
    1990             :     // allocate quantized parcor coefficient buffer
    1991          12 :     num_buffers = sconf->mc_coding ? avctx->channels : 1;
    1992             : 
    1993          12 :     ctx->quant_cof        = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
    1994          12 :     ctx->lpc_cof          = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
    1995          12 :     ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
    1996             :                                             sizeof(*ctx->quant_cof_buffer));
    1997          12 :     ctx->lpc_cof_buffer   = av_malloc_array(num_buffers * sconf->max_order,
    1998             :                                             sizeof(*ctx->lpc_cof_buffer));
    1999          12 :     ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
    2000             :                                                    sizeof(*ctx->lpc_cof_buffer));
    2001             : 
    2002          24 :     if (!ctx->quant_cof              || !ctx->lpc_cof        ||
    2003          36 :         !ctx->quant_cof_buffer       || !ctx->lpc_cof_buffer ||
    2004          12 :         !ctx->lpc_cof_reversed_buffer) {
    2005           0 :         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2006           0 :         ret = AVERROR(ENOMEM);
    2007           0 :         goto fail;
    2008             :     }
    2009             : 
    2010             :     // assign quantized parcor coefficient buffers
    2011          26 :     for (c = 0; c < num_buffers; c++) {
    2012          14 :         ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
    2013          14 :         ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
    2014             :     }
    2015             : 
    2016             :     // allocate and assign lag and gain data buffer for ltp mode
    2017          12 :     ctx->const_block     = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
    2018          12 :     ctx->shift_lsbs      = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
    2019          12 :     ctx->opt_order       = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
    2020          12 :     ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
    2021          12 :     ctx->use_ltp         = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
    2022          12 :     ctx->ltp_lag         = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
    2023          12 :     ctx->ltp_gain        = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
    2024          12 :     ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
    2025             : 
    2026          24 :     if (!ctx->const_block || !ctx->shift_lsbs ||
    2027          36 :         !ctx->opt_order || !ctx->store_prev_samples ||
    2028          36 :         !ctx->use_ltp  || !ctx->ltp_lag ||
    2029          24 :         !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
    2030           0 :         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2031           0 :         ret = AVERROR(ENOMEM);
    2032           0 :         goto fail;
    2033             :     }
    2034             : 
    2035          26 :     for (c = 0; c < num_buffers; c++)
    2036          14 :         ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
    2037             : 
    2038             :     // allocate and assign channel data buffer for mcc mode
    2039          12 :     if (sconf->mc_coding) {
    2040           2 :         ctx->chan_data_buffer  = av_mallocz_array(num_buffers * num_buffers,
    2041             :                                                  sizeof(*ctx->chan_data_buffer));
    2042           2 :         ctx->chan_data         = av_mallocz_array(num_buffers,
    2043             :                                                  sizeof(*ctx->chan_data));
    2044           2 :         ctx->reverted_channels = av_malloc_array(num_buffers,
    2045             :                                                  sizeof(*ctx->reverted_channels));
    2046             : 
    2047           2 :         if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
    2048           0 :             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2049           0 :             ret = AVERROR(ENOMEM);
    2050           0 :             goto fail;
    2051             :         }
    2052             : 
    2053           6 :         for (c = 0; c < num_buffers; c++)
    2054           4 :             ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
    2055             :     } else {
    2056          10 :         ctx->chan_data         = NULL;
    2057          10 :         ctx->chan_data_buffer  = NULL;
    2058          10 :         ctx->reverted_channels = NULL;
    2059             :     }
    2060             : 
    2061          12 :     channel_size      = sconf->frame_length + sconf->max_order;
    2062             : 
    2063          12 :     ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
    2064          12 :     ctx->raw_buffer       = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
    2065          12 :     ctx->raw_samples      = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
    2066             : 
    2067          12 :     if (sconf->floating) {
    2068           0 :         ctx->acf               = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
    2069           0 :         ctx->shift_value       = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
    2070           0 :         ctx->last_shift_value  = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
    2071           0 :         ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
    2072           0 :         ctx->raw_mantissa      = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
    2073             : 
    2074           0 :         ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
    2075           0 :         ctx->nbits  = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
    2076           0 :         ctx->mlz    = av_mallocz(sizeof(*ctx->mlz));
    2077             : 
    2078           0 :         if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
    2079           0 :             || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
    2080           0 :             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2081           0 :             ret = AVERROR(ENOMEM);
    2082           0 :             goto fail;
    2083             :         }
    2084             : 
    2085           0 :         ff_mlz_init_dict(avctx, ctx->mlz);
    2086           0 :         ff_mlz_flush_dict(ctx->mlz);
    2087             : 
    2088           0 :         for (c = 0; c < avctx->channels; ++c) {
    2089           0 :             ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
    2090             :         }
    2091             :     }
    2092             : 
    2093             :     // allocate previous raw sample buffer
    2094          12 :     if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
    2095           0 :         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2096           0 :         ret = AVERROR(ENOMEM);
    2097           0 :         goto fail;
    2098             :     }
    2099             : 
    2100             :     // assign raw samples buffers
    2101          12 :     ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
    2102          24 :     for (c = 1; c < avctx->channels; c++)
    2103          12 :         ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
    2104             : 
    2105             :     // allocate crc buffer
    2106          12 :     if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
    2107           0 :         (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
    2108           0 :         ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
    2109           0 :                                           avctx->channels *
    2110           0 :                                           av_get_bytes_per_sample(avctx->sample_fmt),
    2111             :                                           sizeof(*ctx->crc_buffer));
    2112           0 :         if (!ctx->crc_buffer) {
    2113           0 :             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2114           0 :             ret = AVERROR(ENOMEM);
    2115           0 :             goto fail;
    2116             :         }
    2117             :     }
    2118             : 
    2119          12 :     ff_bswapdsp_init(&ctx->bdsp);
    2120             : 
    2121          12 :     return 0;
    2122             : 
    2123           0 : fail:
    2124           0 :     decode_end(avctx);
    2125           0 :     return ret;
    2126             : }
    2127             : 
    2128             : 
    2129             : /** Flush (reset) the frame ID after seeking.
    2130             :  */
    2131           0 : static av_cold void flush(AVCodecContext *avctx)
    2132             : {
    2133           0 :     ALSDecContext *ctx = avctx->priv_data;
    2134             : 
    2135           0 :     ctx->frame_id = 0;
    2136           0 : }
    2137             : 
    2138             : 
    2139             : AVCodec ff_als_decoder = {
    2140             :     .name           = "als",
    2141             :     .long_name      = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
    2142             :     .type           = AVMEDIA_TYPE_AUDIO,
    2143             :     .id             = AV_CODEC_ID_MP4ALS,
    2144             :     .priv_data_size = sizeof(ALSDecContext),
    2145             :     .init           = decode_init,
    2146             :     .close          = decode_end,
    2147             :     .decode         = decode_frame,
    2148             :     .flush          = flush,
    2149             :     .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
    2150             : };

Generated by: LCOV version 1.13