LCOV - code coverage report
Current view: top level - src/libavcodec - adpcmenc.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 322 343 93.9 %
Date: 2017-01-28 02:43:52 Functions: 8 8 100.0 %

          Line data    Source code
       1             : /*
       2             :  * Copyright (c) 2001-2003 The FFmpeg project
       3             :  *
       4             :  * first version by Francois Revol (revol@free.fr)
       5             :  * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
       6             :  *   by Mike Melanson (melanson@pcisys.net)
       7             :  *
       8             :  * This file is part of FFmpeg.
       9             :  *
      10             :  * FFmpeg is free software; you can redistribute it and/or
      11             :  * modify it under the terms of the GNU Lesser General Public
      12             :  * License as published by the Free Software Foundation; either
      13             :  * version 2.1 of the License, or (at your option) any later version.
      14             :  *
      15             :  * FFmpeg is distributed in the hope that it will be useful,
      16             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      17             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      18             :  * Lesser General Public License for more details.
      19             :  *
      20             :  * You should have received a copy of the GNU Lesser General Public
      21             :  * License along with FFmpeg; if not, write to the Free Software
      22             :  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
      23             :  */
      24             : 
      25             : #include "avcodec.h"
      26             : #include "put_bits.h"
      27             : #include "bytestream.h"
      28             : #include "adpcm.h"
      29             : #include "adpcm_data.h"
      30             : #include "internal.h"
      31             : 
      32             : /**
      33             :  * @file
      34             :  * ADPCM encoders
      35             :  * See ADPCM decoder reference documents for codec information.
      36             :  */
      37             : 
      38             : typedef struct TrellisPath {
      39             :     int nibble;
      40             :     int prev;
      41             : } TrellisPath;
      42             : 
      43             : typedef struct TrellisNode {
      44             :     uint32_t ssd;
      45             :     int path;
      46             :     int sample1;
      47             :     int sample2;
      48             :     int step;
      49             : } TrellisNode;
      50             : 
      51             : typedef struct ADPCMEncodeContext {
      52             :     ADPCMChannelStatus status[6];
      53             :     TrellisPath *paths;
      54             :     TrellisNode *node_buf;
      55             :     TrellisNode **nodep_buf;
      56             :     uint8_t *trellis_hash;
      57             : } ADPCMEncodeContext;
      58             : 
      59             : #define FREEZE_INTERVAL 128
      60             : 
      61             : static av_cold int adpcm_encode_close(AVCodecContext *avctx);
      62             : 
      63          11 : static av_cold int adpcm_encode_init(AVCodecContext *avctx)
      64             : {
      65          11 :     ADPCMEncodeContext *s = avctx->priv_data;
      66             :     uint8_t *extradata;
      67             :     int i;
      68          11 :     int ret = AVERROR(ENOMEM);
      69             : 
      70          11 :     if (avctx->channels > 2) {
      71           0 :         av_log(avctx, AV_LOG_ERROR, "only stereo or mono is supported\n");
      72           0 :         return AVERROR(EINVAL);
      73             :     }
      74             : 
      75          11 :     if (avctx->trellis && (unsigned)avctx->trellis > 16U) {
      76           0 :         av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
      77           0 :         return AVERROR(EINVAL);
      78             :     }
      79             : 
      80          11 :     if (avctx->trellis) {
      81           5 :         int frontier  = 1 << avctx->trellis;
      82           5 :         int max_paths =  frontier * FREEZE_INTERVAL;
      83           5 :         FF_ALLOC_OR_GOTO(avctx, s->paths,
      84             :                          max_paths * sizeof(*s->paths), error);
      85           5 :         FF_ALLOC_OR_GOTO(avctx, s->node_buf,
      86             :                          2 * frontier * sizeof(*s->node_buf),  error);
      87           5 :         FF_ALLOC_OR_GOTO(avctx, s->nodep_buf,
      88             :                          2 * frontier * sizeof(*s->nodep_buf), error);
      89           5 :         FF_ALLOC_OR_GOTO(avctx, s->trellis_hash,
      90             :                          65536 * sizeof(*s->trellis_hash), error);
      91             :     }
      92             : 
      93          11 :     avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id);
      94             : 
      95          11 :     switch (avctx->codec->id) {
      96             :     case AV_CODEC_ID_ADPCM_IMA_WAV:
      97             :         /* each 16 bits sample gives one nibble
      98             :            and we have 4 bytes per channel overhead */
      99           6 :         avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 /
     100           4 :                             (4 * avctx->channels) + 1;
     101             :         /* seems frame_size isn't taken into account...
     102             :            have to buffer the samples :-( */
     103           2 :         avctx->block_align = BLKSIZE;
     104           2 :         avctx->bits_per_coded_sample = 4;
     105           2 :         break;
     106             :     case AV_CODEC_ID_ADPCM_IMA_QT:
     107           2 :         avctx->frame_size  = 64;
     108           2 :         avctx->block_align = 34 * avctx->channels;
     109           2 :         break;
     110             :     case AV_CODEC_ID_ADPCM_MS:
     111             :         /* each 16 bits sample gives one nibble
     112             :            and we have 7 bytes per channel overhead */
     113           2 :         avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2;
     114           2 :         avctx->bits_per_coded_sample = 4;
     115           2 :         avctx->block_align    = BLKSIZE;
     116           2 :         if (!(avctx->extradata = av_malloc(32 + AV_INPUT_BUFFER_PADDING_SIZE)))
     117           0 :             goto error;
     118           2 :         avctx->extradata_size = 32;
     119           2 :         extradata = avctx->extradata;
     120           2 :         bytestream_put_le16(&extradata, avctx->frame_size);
     121           2 :         bytestream_put_le16(&extradata, 7); /* wNumCoef */
     122          16 :         for (i = 0; i < 7; i++) {
     123          14 :             bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
     124          14 :             bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
     125             :         }
     126           2 :         break;
     127             :     case AV_CODEC_ID_ADPCM_YAMAHA:
     128           3 :         avctx->frame_size  = BLKSIZE * 2 / avctx->channels;
     129           3 :         avctx->block_align = BLKSIZE;
     130           3 :         break;
     131             :     case AV_CODEC_ID_ADPCM_SWF:
     132           4 :         if (avctx->sample_rate != 11025 &&
     133           4 :             avctx->sample_rate != 22050 &&
     134           2 :             avctx->sample_rate != 44100) {
     135           0 :             av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, "
     136             :                    "22050 or 44100\n");
     137           0 :             ret = AVERROR(EINVAL);
     138           0 :             goto error;
     139             :         }
     140           2 :         avctx->frame_size = 512 * (avctx->sample_rate / 11025);
     141           2 :         break;
     142             :     default:
     143           0 :         ret = AVERROR(EINVAL);
     144           0 :         goto error;
     145             :     }
     146             : 
     147          11 :     return 0;
     148             : error:
     149           0 :     adpcm_encode_close(avctx);
     150           0 :     return ret;
     151             : }
     152             : 
     153          11 : static av_cold int adpcm_encode_close(AVCodecContext *avctx)
     154             : {
     155          11 :     ADPCMEncodeContext *s = avctx->priv_data;
     156          11 :     av_freep(&s->paths);
     157          11 :     av_freep(&s->node_buf);
     158          11 :     av_freep(&s->nodep_buf);
     159          11 :     av_freep(&s->trellis_hash);
     160             : 
     161          11 :     return 0;
     162             : }
     163             : 
     164             : 
     165     1062572 : static inline uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c,
     166             :                                                 int16_t sample)
     167             : {
     168     1062572 :     int delta  = sample - c->prev_sample;
     169     2125144 :     int nibble = FFMIN(7, abs(delta) * 4 /
     170     1062572 :                        ff_adpcm_step_table[c->step_index]) + (delta < 0) * 8;
     171     3187716 :     c->prev_sample += ((ff_adpcm_step_table[c->step_index] *
     172     2125144 :                         ff_adpcm_yamaha_difflookup[nibble]) / 8);
     173     1062572 :     c->prev_sample = av_clip_int16(c->prev_sample);
     174     1062572 :     c->step_index  = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
     175     1062572 :     return nibble;
     176             : }
     177             : 
     178      529280 : static inline uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c,
     179             :                                                    int16_t sample)
     180             : {
     181      529280 :     int delta  = sample - c->prev_sample;
     182      529280 :     int diff, step = ff_adpcm_step_table[c->step_index];
     183      529280 :     int nibble = 8*(delta < 0);
     184             : 
     185      529280 :     delta= abs(delta);
     186      529280 :     diff = delta + (step >> 3);
     187             : 
     188      529280 :     if (delta >= step) {
     189      145296 :         nibble |= 4;
     190      145296 :         delta  -= step;
     191             :     }
     192      529280 :     step >>= 1;
     193      529280 :     if (delta >= step) {
     194      253422 :         nibble |= 2;
     195      253422 :         delta  -= step;
     196             :     }
     197      529280 :     step >>= 1;
     198      529280 :     if (delta >= step) {
     199      256721 :         nibble |= 1;
     200      256721 :         delta  -= step;
     201             :     }
     202      529280 :     diff -= delta;
     203             : 
     204      529280 :     if (nibble & 8)
     205      263034 :         c->prev_sample -= diff;
     206             :     else
     207      266246 :         c->prev_sample += diff;
     208             : 
     209      529280 :     c->prev_sample = av_clip_int16(c->prev_sample);
     210      529280 :     c->step_index  = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
     211             : 
     212      529280 :     return nibble;
     213             : }
     214             : 
     215      529240 : static inline uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c,
     216             :                                                int16_t sample)
     217             : {
     218             :     int predictor, nibble, bias;
     219             : 
     220     1058480 :     predictor = (((c->sample1) * (c->coeff1)) +
     221      529240 :                 (( c->sample2) * (c->coeff2))) / 64;
     222             : 
     223      529240 :     nibble = sample - predictor;
     224      529240 :     if (nibble >= 0)
     225      265224 :         bias =  c->idelta / 2;
     226             :     else
     227      264016 :         bias = -c->idelta / 2;
     228             : 
     229      529240 :     nibble = (nibble + bias) / c->idelta;
     230      529240 :     nibble = av_clip_intp2(nibble, 3) & 0x0F;
     231             : 
     232      529240 :     predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) * c->idelta;
     233             : 
     234      529240 :     c->sample2 = c->sample1;
     235      529240 :     c->sample1 = av_clip_int16(predictor);
     236             : 
     237      529240 :     c->idelta = (ff_adpcm_AdaptationTable[nibble] * c->idelta) >> 8;
     238      529240 :     if (c->idelta < 16)
     239       28193 :         c->idelta = 16;
     240             : 
     241      529240 :     return nibble;
     242             : }
     243             : 
     244      575488 : static inline uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c,
     245             :                                                    int16_t sample)
     246             : {
     247             :     int nibble, delta;
     248             : 
     249      575488 :     if (!c->step) {
     250           3 :         c->predictor = 0;
     251           3 :         c->step      = 127;
     252             :     }
     253             : 
     254      575488 :     delta = sample - c->predictor;
     255             : 
     256      575488 :     nibble = FFMIN(7, abs(delta) * 4 / c->step) + (delta < 0) * 8;
     257             : 
     258      575488 :     c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8);
     259      575488 :     c->predictor = av_clip_int16(c->predictor);
     260      575488 :     c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
     261      575488 :     c->step = av_clip(c->step, 127, 24567);
     262             : 
     263      575488 :     return nibble;
     264             : }
     265             : 
     266       10094 : static void adpcm_compress_trellis(AVCodecContext *avctx,
     267             :                                    const int16_t *samples, uint8_t *dst,
     268             :                                    ADPCMChannelStatus *c, int n, int stride)
     269             : {
     270             :     //FIXME 6% faster if frontier is a compile-time constant
     271       10094 :     ADPCMEncodeContext *s = avctx->priv_data;
     272       10094 :     const int frontier = 1 << avctx->trellis;
     273       10094 :     const int version  = avctx->codec->id;
     274       10094 :     TrellisPath *paths       = s->paths, *p;
     275       10094 :     TrellisNode *node_buf    = s->node_buf;
     276       10094 :     TrellisNode **nodep_buf  = s->nodep_buf;
     277       10094 :     TrellisNode **nodes      = nodep_buf; // nodes[] is always sorted by .ssd
     278       10094 :     TrellisNode **nodes_next = nodep_buf + frontier;
     279       10094 :     int pathn = 0, froze = -1, i, j, k, generation = 0;
     280       10094 :     uint8_t *hash = s->trellis_hash;
     281       10094 :     memset(hash, 0xff, 65536 * sizeof(*hash));
     282             : 
     283       10094 :     memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
     284       10094 :     nodes[0]          = node_buf + frontier;
     285       10094 :     nodes[0]->ssd     = 0;
     286       10094 :     nodes[0]->path    = 0;
     287       10094 :     nodes[0]->step    = c->step_index;
     288       10094 :     nodes[0]->sample1 = c->sample1;
     289       10094 :     nodes[0]->sample2 = c->sample2;
     290       10094 :     if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
     291        1302 :         version == AV_CODEC_ID_ADPCM_IMA_QT  ||
     292             :         version == AV_CODEC_ID_ADPCM_SWF)
     293        9052 :         nodes[0]->sample1 = c->prev_sample;
     294       10094 :     if (version == AV_CODEC_ID_ADPCM_MS)
     295         524 :         nodes[0]->step = c->idelta;
     296       10094 :     if (version == AV_CODEC_ID_ADPCM_YAMAHA) {
     297         518 :         if (c->step == 0) {
     298           2 :             nodes[0]->step    = 127;
     299           2 :             nodes[0]->sample1 = 0;
     300             :         } else {
     301         516 :             nodes[0]->step    = c->step;
     302         516 :             nodes[0]->sample1 = c->predictor;
     303             :         }
     304             :     }
     305             : 
     306     2661618 :     for (i = 0; i < n; i++) {
     307     2651524 :         TrellisNode *t = node_buf + frontier*(i&1);
     308             :         TrellisNode **u;
     309     2651524 :         int sample   = samples[i * stride];
     310     2651524 :         int heap_pos = 0;
     311     2651524 :         memset(nodes_next, 0, frontier * sizeof(TrellisNode*));
     312    83554955 :         for (j = 0; j < frontier && nodes[j]; j++) {
     313             :             // higher j have higher ssd already, so they're likely
     314             :             // to yield a suboptimal next sample too
     315    80903431 :             const int range = (j < frontier / 2) ? 1 : 0;
     316    80903431 :             const int step  = nodes[j]->step;
     317             :             int nidx;
     318    80903431 :             if (version == AV_CODEC_ID_ADPCM_MS) {
     319    31994240 :                 const int predictor = ((nodes[j]->sample1 * c->coeff1) +
     320    15997120 :                                        (nodes[j]->sample2 * c->coeff2)) / 64;
     321    15997120 :                 const int div  = (sample - predictor) / step;
     322    15997120 :                 const int nmin = av_clip(div-range, -8, 6);
     323    15997120 :                 const int nmax = av_clip(div+range, -7, 7);
     324    48245314 :                 for (nidx = nmin; nidx <= nmax; nidx++) {
     325    32248194 :                     const int nibble = nidx & 0xf;
     326    32248194 :                     int dec_sample   = predictor + nidx * step;
     327             : #define STORE_NODE(NAME, STEP_INDEX)\
     328             :                     int d;\
     329             :                     uint32_t ssd;\
     330             :                     int pos;\
     331             :                     TrellisNode *u;\
     332             :                     uint8_t *h;\
     333             :                     dec_sample = av_clip_int16(dec_sample);\
     334             :                     d = sample - dec_sample;\
     335             :                     ssd = nodes[j]->ssd + d*(unsigned)d;\
     336             :                     /* Check for wraparound, skip such samples completely. \
     337             :                      * Note, changing ssd to a 64 bit variable would be \
     338             :                      * simpler, avoiding this check, but it's slower on \
     339             :                      * x86 32 bit at the moment. */\
     340             :                     if (ssd < nodes[j]->ssd)\
     341             :                         goto next_##NAME;\
     342             :                     /* Collapse any two states with the same previous sample value. \
     343             :                      * One could also distinguish states by step and by 2nd to last
     344             :                      * sample, but the effects of that are negligible.
     345             :                      * Since nodes in the previous generation are iterated
     346             :                      * through a heap, they're roughly ordered from better to
     347             :                      * worse, but not strictly ordered. Therefore, an earlier
     348             :                      * node with the same sample value is better in most cases
     349             :                      * (and thus the current is skipped), but not strictly
     350             :                      * in all cases. Only skipping samples where ssd >=
     351             :                      * ssd of the earlier node with the same sample gives
     352             :                      * slightly worse quality, though, for some reason. */ \
     353             :                     h = &hash[(uint16_t) dec_sample];\
     354             :                     if (*h == generation)\
     355             :                         goto next_##NAME;\
     356             :                     if (heap_pos < frontier) {\
     357             :                         pos = heap_pos++;\
     358             :                     } else {\
     359             :                         /* Try to replace one of the leaf nodes with the new \
     360             :                          * one, but try a different slot each time. */\
     361             :                         pos = (frontier >> 1) +\
     362             :                               (heap_pos & ((frontier >> 1) - 1));\
     363             :                         if (ssd > nodes_next[pos]->ssd)\
     364             :                             goto next_##NAME;\
     365             :                         heap_pos++;\
     366             :                     }\
     367             :                     *h = generation;\
     368             :                     u  = nodes_next[pos];\
     369             :                     if (!u) {\
     370             :                         av_assert1(pathn < FREEZE_INTERVAL << avctx->trellis);\
     371             :                         u = t++;\
     372             :                         nodes_next[pos] = u;\
     373             :                         u->path = pathn++;\
     374             :                     }\
     375             :                     u->ssd  = ssd;\
     376             :                     u->step = STEP_INDEX;\
     377             :                     u->sample2 = nodes[j]->sample1;\
     378             :                     u->sample1 = dec_sample;\
     379             :                     paths[u->path].nibble = nibble;\
     380             :                     paths[u->path].prev   = nodes[j]->path;\
     381             :                     /* Sift the newly inserted node up in the heap to \
     382             :                      * restore the heap property. */\
     383             :                     while (pos > 0) {\
     384             :                         int parent = (pos - 1) >> 1;\
     385             :                         if (nodes_next[parent]->ssd <= ssd)\
     386             :                             break;\
     387             :                         FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
     388             :                         pos = parent;\
     389             :                     }\
     390             :                     next_##NAME:;
     391    32248194 :                     STORE_NODE(ms, FFMAX(16,
     392             :                                (ff_adpcm_AdaptationTable[nibble] * step) >> 8));
     393             :                 }
     394    64906311 :             } else if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
     395    32824283 :                        version == AV_CODEC_ID_ADPCM_IMA_QT  ||
     396    48302932 :                        version == AV_CODEC_ID_ADPCM_SWF) {
     397             : #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
     398             :                 const int predictor = nodes[j]->sample1;\
     399             :                 const int div = (sample - predictor) * 4 / STEP_TABLE;\
     400             :                 int nmin = av_clip(div - range, -7, 6);\
     401             :                 int nmax = av_clip(div + range, -6, 7);\
     402             :                 if (nmin <= 0)\
     403             :                     nmin--; /* distinguish -0 from +0 */\
     404             :                 if (nmax < 0)\
     405             :                     nmax--;\
     406             :                 for (nidx = nmin; nidx <= nmax; nidx++) {\
     407             :                     const int nibble = nidx < 0 ? 7 - nidx : nidx;\
     408             :                     int dec_sample = predictor +\
     409             :                                     (STEP_TABLE *\
     410             :                                      ff_adpcm_yamaha_difflookup[nibble]) / 8;\
     411             :                     STORE_NODE(NAME, STEP_INDEX);\
     412             :                 }
     413    48302932 :                 LOOP_NODES(ima, ff_adpcm_step_table[step],
     414             :                            av_clip(step + ff_adpcm_index_table[nibble], 0, 88));
     415             :             } else { //AV_CODEC_ID_ADPCM_YAMAHA
     416    16603379 :                 LOOP_NODES(yamaha, step,
     417             :                            av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8,
     418             :                                    127, 24567));
     419             : #undef LOOP_NODES
     420             : #undef STORE_NODE
     421             :             }
     422             :         }
     423             : 
     424     2651524 :         u = nodes;
     425     2651524 :         nodes = nodes_next;
     426     2651524 :         nodes_next = u;
     427             : 
     428     2651524 :         generation++;
     429     2651524 :         if (generation == 255) {
     430        7290 :             memset(hash, 0xff, 65536 * sizeof(*hash));
     431        7290 :             generation = 0;
     432             :         }
     433             : 
     434             :         // prevent overflow
     435     2651524 :         if (nodes[0]->ssd > (1 << 28)) {
     436      151616 :             for (j = 1; j < frontier && nodes[j]; j++)
     437      146781 :                 nodes[j]->ssd -= nodes[0]->ssd;
     438        4835 :             nodes[0]->ssd = 0;
     439             :         }
     440             : 
     441             :         // merge old paths to save memory
     442     2651524 :         if (i == froze + FREEZE_INTERVAL) {
     443       15366 :             p = &paths[nodes[0]->path];
     444     1982214 :             for (k = i; k > froze; k--) {
     445     1966848 :                 dst[k] = p->nibble;
     446     1966848 :                 p = &paths[p->prev];
     447             :             }
     448       15366 :             froze = i;
     449       15366 :             pathn = 0;
     450             :             // other nodes might use paths that don't coincide with the frozen one.
     451             :             // checking which nodes do so is too slow, so just kill them all.
     452             :             // this also slightly improves quality, but I don't know why.
     453       15366 :             memset(nodes + 1, 0, (frontier - 1) * sizeof(TrellisNode*));
     454             :         }
     455             :     }
     456             : 
     457       10094 :     p = &paths[nodes[0]->path];
     458      694770 :     for (i = n - 1; i > froze; i--) {
     459      684676 :         dst[i] = p->nibble;
     460      684676 :         p = &paths[p->prev];
     461             :     }
     462             : 
     463       10094 :     c->predictor  = nodes[0]->sample1;
     464       10094 :     c->sample1    = nodes[0]->sample1;
     465       10094 :     c->sample2    = nodes[0]->sample2;
     466       10094 :     c->step_index = nodes[0]->step;
     467       10094 :     c->step       = nodes[0]->step;
     468       10094 :     c->idelta     = nodes[0]->step;
     469       10094 : }
     470             : 
     471       10116 : static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
     472             :                               const AVFrame *frame, int *got_packet_ptr)
     473             : {
     474             :     int n, i, ch, st, pkt_size, ret;
     475             :     const int16_t *samples;
     476             :     int16_t **samples_p;
     477             :     uint8_t *dst;
     478       10116 :     ADPCMEncodeContext *c = avctx->priv_data;
     479             :     uint8_t *buf;
     480             : 
     481       10116 :     samples = (const int16_t *)frame->data[0];
     482       10116 :     samples_p = (int16_t **)frame->extended_data;
     483       10116 :     st = avctx->channels == 2;
     484             : 
     485       10116 :     if (avctx->codec_id == AV_CODEC_ID_ADPCM_SWF)
     486         260 :         pkt_size = (2 + avctx->channels * (22 + 4 * (frame->nb_samples - 1)) + 7) / 8;
     487             :     else
     488        9856 :         pkt_size = avctx->block_align;
     489       10116 :     if ((ret = ff_alloc_packet2(avctx, avpkt, pkt_size, 0)) < 0)
     490           0 :         return ret;
     491       10116 :     dst = avpkt->data;
     492             : 
     493       10116 :     switch(avctx->codec->id) {
     494             :     case AV_CODEC_ID_ADPCM_IMA_WAV:
     495             :     {
     496             :         int blocks, j;
     497             : 
     498         522 :         blocks = (frame->nb_samples - 1) / 8;
     499             : 
     500        1566 :         for (ch = 0; ch < avctx->channels; ch++) {
     501        1044 :             ADPCMChannelStatus *status = &c->status[ch];
     502        1044 :             status->prev_sample = samples_p[ch][0];
     503             :             /* status->step_index = 0;
     504             :                XXX: not sure how to init the state machine */
     505        1044 :             bytestream_put_le16(&dst, status->prev_sample);
     506        1044 :             *dst++ = status->step_index;
     507        1044 :             *dst++ = 0; /* unknown */
     508             :         }
     509             : 
     510             :         /* stereo: 4 bytes (8 samples) for left, 4 bytes for right */
     511         522 :         if (avctx->trellis > 0) {
     512         261 :             FF_ALLOC_ARRAY_OR_GOTO(avctx, buf, avctx->channels, blocks * 8, error);
     513         783 :             for (ch = 0; ch < avctx->channels; ch++) {
     514        1044 :                 adpcm_compress_trellis(avctx, &samples_p[ch][1],
     515         522 :                                        buf + ch * blocks * 8, &c->status[ch],
     516             :                                        blocks * 8, 1);
     517             :             }
     518       33408 :             for (i = 0; i < blocks; i++) {
     519       99441 :                 for (ch = 0; ch < avctx->channels; ch++) {
     520       66294 :                     uint8_t *buf1 = buf + ch * blocks * 8 + i * 8;
     521      331470 :                     for (j = 0; j < 8; j += 2)
     522      265176 :                         *dst++ = buf1[j] | (buf1[j + 1] << 4);
     523             :                 }
     524             :             }
     525         261 :             av_free(buf);
     526             :         } else {
     527       33408 :             for (i = 0; i < blocks; i++) {
     528       99441 :                 for (ch = 0; ch < avctx->channels; ch++) {
     529       66294 :                     ADPCMChannelStatus *status = &c->status[ch];
     530       66294 :                     const int16_t *smp = &samples_p[ch][1 + i * 8];
     531      331470 :                     for (j = 0; j < 8; j += 2) {
     532      265176 :                         uint8_t v = adpcm_ima_compress_sample(status, smp[j    ]);
     533      265176 :                         v        |= adpcm_ima_compress_sample(status, smp[j + 1]) << 4;
     534      265176 :                         *dst++ = v;
     535             :                     }
     536             :                 }
     537             :             }
     538             :         }
     539         522 :         break;
     540             :     }
     541             :     case AV_CODEC_ID_ADPCM_IMA_QT:
     542             :     {
     543             :         PutBitContext pb;
     544        8270 :         init_put_bits(&pb, dst, pkt_size);
     545             : 
     546       24810 :         for (ch = 0; ch < avctx->channels; ch++) {
     547       16540 :             ADPCMChannelStatus *status = &c->status[ch];
     548       16540 :             put_bits(&pb, 9, (status->prev_sample & 0xFFFF) >> 7);
     549       16540 :             put_bits(&pb, 7,  status->step_index);
     550       16540 :             if (avctx->trellis > 0) {
     551             :                 uint8_t buf[64];
     552        8270 :                 adpcm_compress_trellis(avctx, &samples_p[ch][0], buf, status,
     553             :                                        64, 1);
     554      537550 :                 for (i = 0; i < 64; i++)
     555      529280 :                     put_bits(&pb, 4, buf[i ^ 1]);
     556        8270 :                 status->prev_sample = status->predictor;
     557             :             } else {
     558      272910 :                 for (i = 0; i < 64; i += 2) {
     559             :                     int t1, t2;
     560      264640 :                     t1 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i    ]);
     561      264640 :                     t2 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i + 1]);
     562      264640 :                     put_bits(&pb, 4, t2);
     563      264640 :                     put_bits(&pb, 4, t1);
     564             :                 }
     565             :             }
     566             :         }
     567             : 
     568        8270 :         flush_put_bits(&pb);
     569        8270 :         break;
     570             :     }
     571             :     case AV_CODEC_ID_ADPCM_SWF:
     572             :     {
     573             :         PutBitContext pb;
     574         260 :         init_put_bits(&pb, dst, pkt_size);
     575             : 
     576         260 :         n = frame->nb_samples - 1;
     577             : 
     578             :         // store AdpcmCodeSize
     579         260 :         put_bits(&pb, 2, 2);    // set 4-bit flash adpcm format
     580             : 
     581             :         // init the encoder state
     582         780 :         for (i = 0; i < avctx->channels; i++) {
     583             :             // clip step so it fits 6 bits
     584         520 :             c->status[i].step_index = av_clip_uintp2(c->status[i].step_index, 6);
     585         520 :             put_sbits(&pb, 16, samples[i]);
     586         520 :             put_bits(&pb, 6, c->status[i].step_index);
     587         520 :             c->status[i].prev_sample = samples[i];
     588             :         }
     589             : 
     590         260 :         if (avctx->trellis > 0) {
     591         130 :             FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
     592         130 :             adpcm_compress_trellis(avctx, samples + avctx->channels, buf,
     593             :                                    &c->status[0], n, avctx->channels);
     594         130 :             if (avctx->channels == 2)
     595         130 :                 adpcm_compress_trellis(avctx, samples + avctx->channels + 1,
     596             :                                        buf + n, &c->status[1], n,
     597             :                                        avctx->channels);
     598      266240 :             for (i = 0; i < n; i++) {
     599      266110 :                 put_bits(&pb, 4, buf[i]);
     600      266110 :                 if (avctx->channels == 2)
     601      266110 :                     put_bits(&pb, 4, buf[n + i]);
     602             :             }
     603         130 :             av_free(buf);
     604             :         } else {
     605      266240 :             for (i = 1; i < frame->nb_samples; i++) {
     606      266110 :                 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0],
     607      266110 :                          samples[avctx->channels * i]));
     608      266110 :                 if (avctx->channels == 2)
     609      266110 :                     put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1],
     610      266110 :                              samples[2 * i + 1]));
     611             :             }
     612             :         }
     613         260 :         flush_put_bits(&pb);
     614         260 :         break;
     615             :     }
     616             :     case AV_CODEC_ID_ADPCM_MS:
     617        1572 :         for (i = 0; i < avctx->channels; i++) {
     618        1048 :             int predictor = 0;
     619        1048 :             *dst++ = predictor;
     620        1048 :             c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor];
     621        1048 :             c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor];
     622             :         }
     623        1572 :         for (i = 0; i < avctx->channels; i++) {
     624        1048 :             if (c->status[i].idelta < 16)
     625           4 :                 c->status[i].idelta = 16;
     626        1048 :             bytestream_put_le16(&dst, c->status[i].idelta);
     627             :         }
     628        1572 :         for (i = 0; i < avctx->channels; i++)
     629        1048 :             c->status[i].sample2= *samples++;
     630        1572 :         for (i = 0; i < avctx->channels; i++) {
     631        1048 :             c->status[i].sample1 = *samples++;
     632        1048 :             bytestream_put_le16(&dst, c->status[i].sample1);
     633             :         }
     634        1572 :         for (i = 0; i < avctx->channels; i++)
     635        1048 :             bytestream_put_le16(&dst, c->status[i].sample2);
     636             : 
     637         524 :         if (avctx->trellis > 0) {
     638         262 :             n = avctx->block_align - 7 * avctx->channels;
     639         262 :             FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
     640         262 :             if (avctx->channels == 1) {
     641           0 :                 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
     642             :                                        avctx->channels);
     643           0 :                 for (i = 0; i < n; i += 2)
     644           0 :                     *dst++ = (buf[i] << 4) | buf[i + 1];
     645             :             } else {
     646         262 :                 adpcm_compress_trellis(avctx, samples,     buf,
     647             :                                        &c->status[0], n, avctx->channels);
     648         262 :                 adpcm_compress_trellis(avctx, samples + 1, buf + n,
     649             :                                        &c->status[1], n, avctx->channels);
     650      264882 :                 for (i = 0; i < n; i++)
     651      264620 :                     *dst++ = (buf[i] << 4) | buf[n + i];
     652             :             }
     653         262 :             av_free(buf);
     654             :         } else {
     655      264882 :             for (i = 7 * avctx->channels; i < avctx->block_align; i++) {
     656             :                 int nibble;
     657      264620 :                 nibble  = adpcm_ms_compress_sample(&c->status[ 0], *samples++) << 4;
     658      264620 :                 nibble |= adpcm_ms_compress_sample(&c->status[st], *samples++);
     659      264620 :                 *dst++  = nibble;
     660             :             }
     661             :         }
     662         524 :         break;
     663             :     case AV_CODEC_ID_ADPCM_YAMAHA:
     664         540 :         n = frame->nb_samples / 2;
     665         540 :         if (avctx->trellis > 0) {
     666         259 :             FF_ALLOC_OR_GOTO(avctx, buf, 2 * n * 2, error);
     667         259 :             n *= 2;
     668         259 :             if (avctx->channels == 1) {
     669           0 :                 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
     670             :                                        avctx->channels);
     671           0 :                 for (i = 0; i < n; i += 2)
     672           0 :                     *dst++ = buf[i] | (buf[i + 1] << 4);
     673             :             } else {
     674         259 :                 adpcm_compress_trellis(avctx, samples,     buf,
     675             :                                        &c->status[0], n, avctx->channels);
     676         259 :                 adpcm_compress_trellis(avctx, samples + 1, buf + n,
     677             :                                        &c->status[1], n, avctx->channels);
     678      265475 :                 for (i = 0; i < n; i++)
     679      265216 :                     *dst++ = buf[i] | (buf[n + i] << 4);
     680             :             }
     681         259 :             av_free(buf);
     682             :         } else
     683      288025 :             for (n *= avctx->channels; n > 0; n--) {
     684             :                 int nibble;
     685      287744 :                 nibble  = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
     686      287744 :                 nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
     687      287744 :                 *dst++  = nibble;
     688             :             }
     689         540 :         break;
     690             :     default:
     691           0 :         return AVERROR(EINVAL);
     692             :     }
     693             : 
     694       10116 :     avpkt->size = pkt_size;
     695       10116 :     *got_packet_ptr = 1;
     696       10116 :     return 0;
     697             : error:
     698           0 :     return AVERROR(ENOMEM);
     699             : }
     700             : 
     701             : static const enum AVSampleFormat sample_fmts[] = {
     702             :     AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
     703             : };
     704             : 
     705             : static const enum AVSampleFormat sample_fmts_p[] = {
     706             :     AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE
     707             : };
     708             : 
     709             : #define ADPCM_ENCODER(id_, name_, sample_fmts_, long_name_) \
     710             : AVCodec ff_ ## name_ ## _encoder = {                        \
     711             :     .name           = #name_,                               \
     712             :     .long_name      = NULL_IF_CONFIG_SMALL(long_name_),     \
     713             :     .type           = AVMEDIA_TYPE_AUDIO,                   \
     714             :     .id             = id_,                                  \
     715             :     .priv_data_size = sizeof(ADPCMEncodeContext),           \
     716             :     .init           = adpcm_encode_init,                    \
     717             :     .encode2        = adpcm_encode_frame,                   \
     718             :     .close          = adpcm_encode_close,                   \
     719             :     .sample_fmts    = sample_fmts_,                         \
     720             : }
     721             : 
     722             : ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_QT,  adpcm_ima_qt,  sample_fmts_p, "ADPCM IMA QuickTime");
     723             : ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, sample_fmts_p, "ADPCM IMA WAV");
     724             : ADPCM_ENCODER(AV_CODEC_ID_ADPCM_MS,      adpcm_ms,      sample_fmts,   "ADPCM Microsoft");
     725             : ADPCM_ENCODER(AV_CODEC_ID_ADPCM_SWF,     adpcm_swf,     sample_fmts,   "ADPCM Shockwave Flash");
     726             : ADPCM_ENCODER(AV_CODEC_ID_ADPCM_YAMAHA,  adpcm_yamaha,  sample_fmts,   "ADPCM Yamaha");

Generated by: LCOV version 1.12