LCOV - code coverage report
Current view: top level - libswresample - resample.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 259 314 82.5 %
Date: 2017-10-24 00:14:43 Functions: 11 12 91.7 %

          Line data    Source code
       1             : /*
       2             :  * audio resampling
       3             :  * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
       4             :  * bessel function: Copyright (c) 2006 Xiaogang Zhang
       5             :  *
       6             :  * This file is part of FFmpeg.
       7             :  *
       8             :  * FFmpeg is free software; you can redistribute it and/or
       9             :  * modify it under the terms of the GNU Lesser General Public
      10             :  * License as published by the Free Software Foundation; either
      11             :  * version 2.1 of the License, or (at your option) any later version.
      12             :  *
      13             :  * FFmpeg is distributed in the hope that it will be useful,
      14             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      15             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      16             :  * Lesser General Public License for more details.
      17             :  *
      18             :  * You should have received a copy of the GNU Lesser General Public
      19             :  * License along with FFmpeg; if not, write to the Free Software
      20             :  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
      21             :  */
      22             : 
      23             : /**
      24             :  * @file
      25             :  * audio resampling
      26             :  * @author Michael Niedermayer <michaelni@gmx.at>
      27             :  */
      28             : 
      29             : #include "libavutil/avassert.h"
      30             : #include "resample.h"
      31             : 
      32    84317858 : static inline double eval_poly(const double *coeff, int size, double x) {
      33    84317858 :     double sum = coeff[size-1];
      34             :     int i;
      35   885337509 :     for (i = size-2; i >= 0; --i) {
      36   801019651 :         sum *= x;
      37   801019651 :         sum += coeff[i];
      38             :     }
      39    84317858 :     return sum;
      40             : }
      41             : 
      42             : /**
      43             :  * 0th order modified bessel function of the first kind.
      44             :  * Algorithm taken from the Boost project, source:
      45             :  * https://searchcode.com/codesearch/view/14918379/
      46             :  * Use, modification and distribution are subject to the
      47             :  * Boost Software License, Version 1.0 (see notice below).
      48             :  * Boost Software License - Version 1.0 - August 17th, 2003
      49             : Permission is hereby granted, free of charge, to any person or organization
      50             : obtaining a copy of the software and accompanying documentation covered by
      51             : this license (the "Software") to use, reproduce, display, distribute,
      52             : execute, and transmit the Software, and to prepare derivative works of the
      53             : Software, and to permit third-parties to whom the Software is furnished to
      54             : do so, all subject to the following:
      55             : 
      56             : The copyright notices in the Software and this entire statement, including
      57             : the above license grant, this restriction and the following disclaimer,
      58             : must be included in all copies of the Software, in whole or in part, and
      59             : all derivative works of the Software, unless such copies or derivative
      60             : works are solely in the form of machine-executable object code generated by
      61             : a source language processor.
      62             : 
      63             : THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
      64             : IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
      65             : FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
      66             : SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
      67             : FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
      68             : ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
      69             : DEALINGS IN THE SOFTWARE.
      70             :  */
      71             : 
      72    42159532 : static double bessel(double x) {
      73             : // Modified Bessel function of the first kind of order zero
      74             : // minimax rational approximations on intervals, see
      75             : // Blair and Edwards, Chalk River Report AECL-4928, 1974
      76             :     static const double p1[] = {
      77             :         -2.2335582639474375249e+15,
      78             :         -5.5050369673018427753e+14,
      79             :         -3.2940087627407749166e+13,
      80             :         -8.4925101247114157499e+11,
      81             :         -1.1912746104985237192e+10,
      82             :         -1.0313066708737980747e+08,
      83             :         -5.9545626019847898221e+05,
      84             :         -2.4125195876041896775e+03,
      85             :         -7.0935347449210549190e+00,
      86             :         -1.5453977791786851041e-02,
      87             :         -2.5172644670688975051e-05,
      88             :         -3.0517226450451067446e-08,
      89             :         -2.6843448573468483278e-11,
      90             :         -1.5982226675653184646e-14,
      91             :         -5.2487866627945699800e-18,
      92             :     };
      93             :     static const double q1[] = {
      94             :         -2.2335582639474375245e+15,
      95             :          7.8858692566751002988e+12,
      96             :         -1.2207067397808979846e+10,
      97             :          1.0377081058062166144e+07,
      98             :         -4.8527560179962773045e+03,
      99             :          1.0,
     100             :     };
     101             :     static const double p2[] = {
     102             :         -2.2210262233306573296e-04,
     103             :          1.3067392038106924055e-02,
     104             :         -4.4700805721174453923e-01,
     105             :          5.5674518371240761397e+00,
     106             :         -2.3517945679239481621e+01,
     107             :          3.1611322818701131207e+01,
     108             :         -9.6090021968656180000e+00,
     109             :     };
     110             :     static const double q2[] = {
     111             :         -5.5194330231005480228e-04,
     112             :          3.2547697594819615062e-02,
     113             :         -1.1151759188741312645e+00,
     114             :          1.3982595353892851542e+01,
     115             :         -6.0228002066743340583e+01,
     116             :          8.5539563258012929600e+01,
     117             :         -3.1446690275135491500e+01,
     118             :         1.0,
     119             :     };
     120             :     double y, r, factor;
     121    42159532 :     if (x == 0)
     122         603 :         return 1.0;
     123    42158929 :     x = fabs(x);
     124    42158929 :     if (x <= 15) {
     125    42158929 :         y = x * x;
     126    42158929 :         return eval_poly(p1, FF_ARRAY_ELEMS(p1), y) / eval_poly(q1, FF_ARRAY_ELEMS(q1), y);
     127             :     }
     128             :     else {
     129           0 :         y = 1 / x - 1.0 / 15;
     130           0 :         r = eval_poly(p2, FF_ARRAY_ELEMS(p2), y) / eval_poly(q2, FF_ARRAY_ELEMS(q2), y);
     131           0 :         factor = exp(x) / sqrt(x);
     132           0 :         return factor * r;
     133             :     }
     134             : }
     135             : 
     136             : /**
     137             :  * builds a polyphase filterbank.
     138             :  * @param factor resampling factor
     139             :  * @param scale wanted sum of coefficients for each filter
     140             :  * @param filter_type  filter type
     141             :  * @param kaiser_beta  kaiser window beta
     142             :  * @return 0 on success, negative on error
     143             :  */
     144         708 : static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
     145             :                         int filter_type, double kaiser_beta){
     146             :     int ph, i;
     147         708 :     int ph_nb = phase_count % 2 ? phase_count : phase_count / 2 + 1;
     148             :     double x, y, w, t, s;
     149         708 :     double *tab = av_malloc_array(tap_count+1,  sizeof(*tab));
     150         708 :     double *sin_lut = av_malloc_array(ph_nb, sizeof(*sin_lut));
     151         708 :     const int center= (tap_count-1)/2;
     152         708 :     double norm = 0;
     153         708 :     int ret = AVERROR(ENOMEM);
     154             : 
     155        1416 :     if (!tab || !sin_lut)
     156             :         goto fail;
     157             : 
     158         708 :     av_assert0(tap_count == 1 || tap_count % 2 == 0);
     159             : 
     160             :     /* if upsampling, only need to interpolate, no filter */
     161         708 :     if (factor > 1.0)
     162           0 :         factor = 1.0;
     163             : 
     164         708 :     if (factor == 1.0) {
     165      118272 :         for (ph = 0; ph < ph_nb; ph++)
     166      117910 :             sin_lut[ph] = sin(M_PI * ph / phase_count) * (center & 1 ? 1 : -1);
     167             :     }
     168      224878 :     for(ph = 0; ph < ph_nb; ph++) {
     169      224170 :         s = sin_lut[ph];
     170    42383702 :         for(i=0;i<tap_count;i++) {
     171    42159532 :             x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
     172    42159532 :             if (x == 0) y = 1.0;
     173    42158824 :             else if (factor == 1.0)
     174     3771896 :                 y = s / x;
     175             :             else
     176    38386928 :                 y = sin(x) / x;
     177    42159532 :             switch(filter_type){
     178           0 :             case SWR_FILTER_TYPE_CUBIC:{
     179           0 :                 const float d= -0.5; //first order derivative = -0.5
     180           0 :                 x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
     181           0 :                 if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
     182           0 :                 else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
     183           0 :                 break;}
     184           0 :             case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
     185           0 :                 w = 2.0*x / (factor*tap_count);
     186           0 :                 t = -cos(w);
     187           0 :                 y *= 0.3635819 - 0.4891775 * t + 0.1365995 * (2*t*t-1) - 0.0106411 * (4*t*t*t - 3*t);
     188           0 :                 break;
     189    42159532 :             case SWR_FILTER_TYPE_KAISER:
     190    42159532 :                 w = 2.0*x / (factor*tap_count*M_PI);
     191    42159532 :                 y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
     192    42159532 :                 break;
     193           0 :             default:
     194           0 :                 av_assert0(0);
     195             :             }
     196             : 
     197    42159532 :             tab[i] = y;
     198    42159532 :             s = -s;
     199    42159532 :             if (!ph)
     200      107444 :                 norm += y;
     201             :         }
     202             : 
     203             :         /* normalize so that an uniform color remains the same */
     204      224170 :         switch(c->format){
     205       59706 :         case AV_SAMPLE_FMT_S16P:
     206    10914913 :             for(i=0;i<tap_count;i++)
     207    10855207 :                 ((int16_t*)filter)[ph * alloc + i] = av_clip_int16(lrintf(tab[i] * scale / norm));
     208       59706 :             if (phase_count % 2) break;
     209    10703090 :             for (i = 0; i < tap_count; i++)
     210    10648842 :                 ((int16_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int16_t*)filter)[ph * alloc + i];
     211       54248 :             break;
     212       49672 :         case AV_SAMPLE_FMT_S32P:
     213    10024056 :             for(i=0;i<tap_count;i++)
     214     9974384 :                 ((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
     215       49672 :             if (phase_count % 2) break;
     216     9817748 :             for (i = 0; i < tap_count; i++)
     217     9773384 :                 ((int32_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int32_t*)filter)[ph * alloc + i];
     218       44364 :             break;
     219       58964 :         case AV_SAMPLE_FMT_FLTP:
     220    10889209 :             for(i=0;i<tap_count;i++)
     221    10830245 :                 ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
     222       58964 :             if (phase_count % 2) break;
     223    10682184 :             for (i = 0; i < tap_count; i++)
     224    10628554 :                 ((float*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((float*)filter)[ph * alloc + i];
     225       53630 :             break;
     226       55828 :         case AV_SAMPLE_FMT_DBLP:
     227    10555524 :             for(i=0;i<tap_count;i++)
     228    10499696 :                 ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
     229       55828 :             if (phase_count % 2) break;
     230    10349216 :             for (i = 0; i < tap_count; i++)
     231    10298696 :                 ((double*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((double*)filter)[ph * alloc + i];
     232       50520 :             break;
     233             :         }
     234             :     }
     235             : #if 0
     236             :     {
     237             : #define LEN 1024
     238             :         int j,k;
     239             :         double sine[LEN + tap_count];
     240             :         double filtered[LEN];
     241             :         double maxff=-2, minff=2, maxsf=-2, minsf=2;
     242             :         for(i=0; i<LEN; i++){
     243             :             double ss=0, sf=0, ff=0;
     244             :             for(j=0; j<LEN+tap_count; j++)
     245             :                 sine[j]= cos(i*j*M_PI/LEN);
     246             :             for(j=0; j<LEN; j++){
     247             :                 double sum=0;
     248             :                 ph=0;
     249             :                 for(k=0; k<tap_count; k++)
     250             :                     sum += filter[ph * tap_count + k] * sine[k+j];
     251             :                 filtered[j]= sum / (1<<FILTER_SHIFT);
     252             :                 ss+= sine[j + center] * sine[j + center];
     253             :                 ff+= filtered[j] * filtered[j];
     254             :                 sf+= sine[j + center] * filtered[j];
     255             :             }
     256             :             ss= sqrt(2*ss/LEN);
     257             :             ff= sqrt(2*ff/LEN);
     258             :             sf= 2*sf/LEN;
     259             :             maxff= FFMAX(maxff, ff);
     260             :             minff= FFMIN(minff, ff);
     261             :             maxsf= FFMAX(maxsf, sf);
     262             :             minsf= FFMIN(minsf, sf);
     263             :             if(i%11==0){
     264             :                 av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
     265             :                 minff=minsf= 2;
     266             :                 maxff=maxsf= -2;
     267             :             }
     268             :         }
     269             :     }
     270             : #endif
     271             : 
     272         708 :     ret = 0;
     273         708 : fail:
     274         708 :     av_free(tab);
     275         708 :     av_free(sin_lut);
     276         708 :     return ret;
     277             : }
     278             : 
     279        2362 : static void resample_free(ResampleContext **cc){
     280        2362 :     ResampleContext *c = *cc;
     281        2362 :     if(!c)
     282        1702 :         return;
     283         660 :     av_freep(&c->filter_bank);
     284         660 :     av_freep(cc);
     285             : }
     286             : 
     287         667 : static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
     288             :                                     double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, double kaiser_beta,
     289             :                                     double precision, int cheby, int exact_rational)
     290             : {
     291         667 :     double cutoff = cutoff0? cutoff0 : 0.97;
     292         667 :     double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
     293         667 :     int phase_count= 1<<phase_shift;
     294         667 :     int phase_count_compensation = phase_count;
     295         667 :     int filter_length = FFMAX((int)ceil(filter_size/factor), 1);
     296             : 
     297         667 :     if (filter_length > 1)
     298         665 :         filter_length = FFALIGN(filter_length, 2);
     299             : 
     300         667 :     if (exact_rational) {
     301             :         int phase_count_exact, phase_count_exact_den;
     302             : 
     303         459 :         av_reduce(&phase_count_exact, &phase_count_exact_den, out_rate, in_rate, INT_MAX);
     304         459 :         if (phase_count_exact <= phase_count) {
     305         327 :             phase_count_compensation = phase_count_exact * (phase_count / phase_count_exact);
     306         327 :             phase_count = phase_count_exact;
     307             :         }
     308             :     }
     309             : 
     310         667 :     if (!c || c->phase_count != phase_count || c->linear!=linear || c->factor != factor
     311           7 :            || c->filter_length != filter_length || c->format != format
     312           7 :            || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
     313         660 :         resample_free(&c);
     314         660 :         c = av_mallocz(sizeof(*c));
     315         660 :         if (!c)
     316           0 :             return NULL;
     317             : 
     318         660 :         c->format= format;
     319             : 
     320         660 :         c->felem_size= av_get_bytes_per_sample(c->format);
     321             : 
     322         660 :         switch(c->format){
     323         175 :         case AV_SAMPLE_FMT_S16P:
     324         175 :             c->filter_shift = 15;
     325         175 :             break;
     326         144 :         case AV_SAMPLE_FMT_S32P:
     327         144 :             c->filter_shift = 30;
     328         144 :             break;
     329         341 :         case AV_SAMPLE_FMT_FLTP:
     330             :         case AV_SAMPLE_FMT_DBLP:
     331         341 :             c->filter_shift = 0;
     332         341 :             break;
     333           0 :         default:
     334           0 :             av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
     335           0 :             av_assert0(0);
     336             :         }
     337             : 
     338         660 :         if (filter_size/factor > INT32_MAX/256) {
     339           0 :             av_log(NULL, AV_LOG_ERROR, "Filter length too large\n");
     340           0 :             goto error;
     341             :         }
     342             : 
     343         660 :         c->phase_count   = phase_count;
     344         660 :         c->linear        = linear;
     345         660 :         c->factor        = factor;
     346         660 :         c->filter_length = filter_length;
     347         660 :         c->filter_alloc  = FFALIGN(c->filter_length, 8);
     348         660 :         c->filter_bank   = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
     349         660 :         c->filter_type   = filter_type;
     350         660 :         c->kaiser_beta   = kaiser_beta;
     351         660 :         c->phase_count_compensation = phase_count_compensation;
     352         660 :         if (!c->filter_bank)
     353           0 :             goto error;
     354         660 :         if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
     355           0 :             goto error;
     356         660 :         memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
     357         660 :         memcpy(c->filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
     358             :     }
     359             : 
     360         667 :     c->compensation_distance= 0;
     361         667 :     if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
     362           0 :         goto error;
     363        8064 :     while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
     364        6730 :         c->dst_incr *= 2;
     365        6730 :         c->src_incr *= 2;
     366             :     }
     367         667 :     c->ideal_dst_incr = c->dst_incr;
     368         667 :     c->dst_incr_div   = c->dst_incr / c->src_incr;
     369         667 :     c->dst_incr_mod   = c->dst_incr % c->src_incr;
     370             : 
     371         667 :     c->index= -phase_count*((c->filter_length-1)/2);
     372         667 :     c->frac= 0;
     373             : 
     374         667 :     swri_resample_dsp_init(c);
     375             : 
     376         667 :     return c;
     377           0 : error:
     378           0 :     av_freep(&c->filter_bank);
     379           0 :     av_free(c);
     380           0 :     return NULL;
     381             : }
     382             : 
     383         122 : static int rebuild_filter_bank_with_compensation(ResampleContext *c)
     384             : {
     385             :     uint8_t *new_filter_bank;
     386             :     int new_src_incr, new_dst_incr;
     387         122 :     int phase_count = c->phase_count_compensation;
     388             :     int ret;
     389             : 
     390         122 :     if (phase_count == c->phase_count)
     391          74 :         return 0;
     392             : 
     393          48 :     av_assert0(!c->frac && !c->dst_incr_mod);
     394             : 
     395          48 :     new_filter_bank = av_calloc(c->filter_alloc, (phase_count + 1) * c->felem_size);
     396          48 :     if (!new_filter_bank)
     397           0 :         return AVERROR(ENOMEM);
     398             : 
     399         144 :     ret = build_filter(c, new_filter_bank, c->factor, c->filter_length, c->filter_alloc,
     400          96 :                        phase_count, 1 << c->filter_shift, c->filter_type, c->kaiser_beta);
     401          48 :     if (ret < 0) {
     402           0 :         av_freep(&new_filter_bank);
     403           0 :         return ret;
     404             :     }
     405          48 :     memcpy(new_filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, new_filter_bank, (c->filter_alloc-1)*c->felem_size);
     406          48 :     memcpy(new_filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, new_filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
     407             : 
     408          48 :     if (!av_reduce(&new_src_incr, &new_dst_incr, c->src_incr,
     409          48 :                    c->dst_incr * (int64_t)(phase_count/c->phase_count), INT32_MAX/2))
     410             :     {
     411           0 :         av_freep(&new_filter_bank);
     412           0 :         return AVERROR(EINVAL);
     413             :     }
     414             : 
     415          48 :     c->src_incr = new_src_incr;
     416          48 :     c->dst_incr = new_dst_incr;
     417         608 :     while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
     418         512 :         c->dst_incr *= 2;
     419         512 :         c->src_incr *= 2;
     420             :     }
     421          48 :     c->ideal_dst_incr = c->dst_incr;
     422          48 :     c->dst_incr_div   = c->dst_incr / c->src_incr;
     423          48 :     c->dst_incr_mod   = c->dst_incr % c->src_incr;
     424          48 :     c->index         *= phase_count / c->phase_count;
     425          48 :     c->phase_count    = phase_count;
     426          48 :     av_freep(&c->filter_bank);
     427          48 :     c->filter_bank = new_filter_bank;
     428          48 :     return 0;
     429             : }
     430             : 
     431         122 : static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
     432             :     int ret;
     433             : 
     434         122 :     if (compensation_distance && sample_delta) {
     435         122 :         ret = rebuild_filter_bank_with_compensation(c);
     436         122 :         if (ret < 0)
     437           0 :             return ret;
     438             :     }
     439             : 
     440         122 :     c->compensation_distance= compensation_distance;
     441         122 :     if (compensation_distance)
     442         122 :         c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
     443             :     else
     444           0 :         c->dst_incr = c->ideal_dst_incr;
     445             : 
     446         122 :     c->dst_incr_div   = c->dst_incr / c->src_incr;
     447         122 :     c->dst_incr_mod   = c->dst_incr % c->src_incr;
     448             : 
     449         122 :     return 0;
     450             : }
     451             : 
     452       53371 : static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
     453             :     int i;
     454       53371 :     int av_unused mm_flags = av_get_cpu_flags();
     455       53371 :     int need_emms = c->format == AV_SAMPLE_FMT_S16P && ARCH_X86_32 &&
     456             :                     (mm_flags & (AV_CPU_FLAG_MMX2 | AV_CPU_FLAG_SSE2)) == AV_CPU_FLAG_MMX2;
     457       53371 :     int64_t max_src_size = (INT64_MAX/2 / c->phase_count) / c->src_incr;
     458             : 
     459       53371 :     if (c->compensation_distance)
     460         580 :         dst_size = FFMIN(dst_size, c->compensation_distance);
     461       53371 :     src_size = FFMIN(src_size, max_src_size);
     462             : 
     463       53371 :     *consumed = 0;
     464             : 
     465       53393 :     if (c->filter_length == 1 && c->phase_count == 1) {
     466          22 :         int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*c->index;
     467          22 :         int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
     468          22 :         int new_size = (src_size * (int64_t)c->src_incr - c->frac + c->dst_incr - 1) / c->dst_incr;
     469             : 
     470          22 :         dst_size = FFMAX(FFMIN(dst_size, new_size), 0);
     471          22 :         if (dst_size > 0) {
     472          40 :             for (i = 0; i < dst->ch_count; i++) {
     473          20 :                 c->dsp.resample_one(dst->ch[i], src->ch[i], dst_size, index2, incr);
     474          20 :                 if (i+1 == dst->ch_count) {
     475          20 :                     c->index += dst_size * c->dst_incr_div;
     476          20 :                     c->index += (c->frac + dst_size * (int64_t)c->dst_incr_mod) / c->src_incr;
     477             :                     av_assert2(c->index >= 0);
     478          20 :                     *consumed = c->index;
     479          20 :                     c->frac   = (c->frac + dst_size * (int64_t)c->dst_incr_mod) % c->src_incr;
     480          20 :                     c->index = 0;
     481             :                 }
     482             :             }
     483             :         }
     484             :     } else {
     485       53349 :         int64_t end_index = (1LL + src_size - c->filter_length) * c->phase_count;
     486       53349 :         int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac;
     487       53349 :         int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr;
     488             :         int (*resample_func)(struct ResampleContext *c, void *dst,
     489             :                              const void *src, int n, int update_ctx);
     490             : 
     491       53349 :         dst_size = FFMAX(FFMIN(dst_size, delta_n), 0);
     492       53349 :         if (dst_size > 0) {
     493             :             /* resample_linear and resample_common should have same behavior
     494             :              * when frac and dst_incr_mod are zero */
     495      142532 :             resample_func = (c->linear && (c->frac || c->dst_incr_mod)) ?
     496       51257 :                             c->dsp.resample_linear : c->dsp.resample_common;
     497      137914 :             for (i = 0; i < dst->ch_count; i++)
     498       88364 :                 *consumed = resample_func(c, dst->ch[i], src->ch[i], dst_size, i+1 == dst->ch_count);
     499             :         }
     500             :     }
     501             : 
     502       53371 :     if(need_emms)
     503           0 :         emms_c();
     504             : 
     505       53371 :     if (c->compensation_distance) {
     506         580 :         c->compensation_distance -= dst_size;
     507         580 :         if (!c->compensation_distance) {
     508           0 :             c->dst_incr     = c->ideal_dst_incr;
     509           0 :             c->dst_incr_div = c->dst_incr / c->src_incr;
     510           0 :             c->dst_incr_mod = c->dst_incr % c->src_incr;
     511             :         }
     512             :     }
     513             : 
     514       53371 :     return dst_size;
     515             : }
     516             : 
     517        9824 : static int64_t get_delay(struct SwrContext *s, int64_t base){
     518        9824 :     ResampleContext *c = s->resample;
     519        9824 :     int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
     520        9824 :     num *= c->phase_count;
     521        9824 :     num -= c->index;
     522        9824 :     num *= c->src_incr;
     523        9824 :     num -= c->frac;
     524        9824 :     return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr * c->phase_count);
     525             : }
     526             : 
     527           0 : static int64_t get_out_samples(struct SwrContext *s, int in_samples) {
     528           0 :     ResampleContext *c = s->resample;
     529             :     // The + 2 are added to allow implementations to be slightly inaccurate, they should not be needed currently.
     530             :     // They also make it easier to proof that changes and optimizations do not
     531             :     // break the upper bound.
     532           0 :     int64_t num = s->in_buffer_count + 2LL + in_samples;
     533           0 :     num *= c->phase_count;
     534           0 :     num -= c->index;
     535           0 :     num = av_rescale_rnd(num, s->out_sample_rate, ((int64_t)s->in_sample_rate) * c->phase_count, AV_ROUND_UP) + 2;
     536             : 
     537           0 :     if (c->compensation_distance) {
     538           0 :         if (num > INT_MAX)
     539           0 :             return AVERROR(EINVAL);
     540             : 
     541           0 :         num = FFMAX(num, (num * c->ideal_dst_incr - 1) / c->dst_incr + 1);
     542             :     }
     543           0 :     return num;
     544             : }
     545             : 
     546         662 : static int resample_flush(struct SwrContext *s) {
     547         662 :     ResampleContext *c = s->resample;
     548         662 :     AudioData *a= &s->in_buffer;
     549             :     int i, j, ret;
     550         662 :     int reflection = (FFMIN(s->in_buffer_count, c->filter_length) + 1) / 2;
     551             : 
     552         662 :     if((ret = swri_realloc_audio(a, s->in_buffer_index + s->in_buffer_count + reflection)) < 0)
     553           0 :         return ret;
     554         662 :     av_assert0(a->planar);
     555        1353 :     for(i=0; i<a->ch_count; i++){
     556       52082 :         for(j=0; j<reflection; j++){
     557      102782 :             memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j  )*a->bps,
     558      102782 :                 a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
     559             :         }
     560             :     }
     561         662 :     s->in_buffer_count += reflection;
     562         662 :     return 0;
     563             : }
     564             : 
     565             : // in fact the whole handle multiple ridiculously small buffers might need more thinking...
     566       15795 : static int invert_initial_buffer(ResampleContext *c, AudioData *dst, const AudioData *src,
     567             :                                  int in_count, int *out_idx, int *out_sz)
     568             : {
     569       15795 :     int n, ch, num = FFMIN(in_count + *out_sz, c->filter_length + 1), res;
     570             : 
     571       15795 :     if (c->index >= 0)
     572       15056 :         return 0;
     573             : 
     574         739 :     if ((res = swri_realloc_audio(dst, c->filter_length * 2 + 1)) < 0)
     575           0 :         return res;
     576             : 
     577             :     // copy
     578      104862 :     for (n = *out_sz; n < num; n++) {
     579      209258 :         for (ch = 0; ch < src->ch_count; ch++) {
     580      210270 :             memcpy(dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
     581      210270 :                    src->ch[ch] + ((n - *out_sz) * c->felem_size), c->felem_size);
     582             :         }
     583             :     }
     584             : 
     585             :     // if not enough data is in, return and wait for more
     586         739 :     if (num < c->filter_length + 1) {
     587          74 :         *out_sz = num;
     588          74 :         *out_idx = c->filter_length;
     589          74 :         return INT_MAX;
     590             :     }
     591             : 
     592             :     // else invert
     593      104123 :     for (n = 1; n <= c->filter_length; n++) {
     594      207894 :         for (ch = 0; ch < src->ch_count; ch++) {
     595      208872 :             memcpy(dst->ch[ch] + ((c->filter_length - n) * c->felem_size),
     596      104436 :                    dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
     597      104436 :                    c->felem_size);
     598             :         }
     599             :     }
     600             : 
     601         665 :     res = num - *out_sz;
     602         665 :     *out_idx = c->filter_length;
     603       52394 :     while (c->index < 0) {
     604       51064 :         --*out_idx;
     605       51064 :         c->index += c->phase_count;
     606             :     }
     607        1330 :     *out_sz = FFMAX(*out_sz + c->filter_length,
     608         665 :                     1 + c->filter_length * 2) - *out_idx;
     609             : 
     610         665 :     return FFMAX(res, 0);
     611             : }
     612             : 
     613             : struct Resampler const swri_resampler={
     614             :   resample_init,
     615             :   resample_free,
     616             :   multiple_resample,
     617             :   resample_flush,
     618             :   set_compensation,
     619             :   get_delay,
     620             :   invert_initial_buffer,
     621             :   get_out_samples,
     622             : };

Generated by: LCOV version 1.13