LCOV - code coverage report
Current view: top level - libavcodec - sipr.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 203 213 95.3 %
Date: 2017-12-15 18:13:28 Functions: 12 12 100.0 %

          Line data    Source code
       1             : /*
       2             :  * SIPR / ACELP.NET decoder
       3             :  *
       4             :  * Copyright (c) 2008 Vladimir Voroshilov
       5             :  * Copyright (c) 2009 Vitor Sessak
       6             :  *
       7             :  * This file is part of FFmpeg.
       8             :  *
       9             :  * FFmpeg is free software; you can redistribute it and/or
      10             :  * modify it under the terms of the GNU Lesser General Public
      11             :  * License as published by the Free Software Foundation; either
      12             :  * version 2.1 of the License, or (at your option) any later version.
      13             :  *
      14             :  * FFmpeg is distributed in the hope that it will be useful,
      15             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      17             :  * Lesser General Public License for more details.
      18             :  *
      19             :  * You should have received a copy of the GNU Lesser General Public
      20             :  * License along with FFmpeg; if not, write to the Free Software
      21             :  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
      22             :  */
      23             : 
      24             : #include <math.h>
      25             : #include <stdint.h>
      26             : #include <string.h>
      27             : 
      28             : #include "libavutil/channel_layout.h"
      29             : #include "libavutil/float_dsp.h"
      30             : #include "libavutil/mathematics.h"
      31             : 
      32             : #define BITSTREAM_READER_LE
      33             : #include "avcodec.h"
      34             : #include "get_bits.h"
      35             : #include "internal.h"
      36             : #include "lsp.h"
      37             : #include "acelp_vectors.h"
      38             : #include "acelp_pitch_delay.h"
      39             : #include "acelp_filters.h"
      40             : #include "celp_filters.h"
      41             : 
      42             : #define MAX_SUBFRAME_COUNT   5
      43             : 
      44             : #include "sipr.h"
      45             : #include "siprdata.h"
      46             : 
      47             : typedef struct SiprModeParam {
      48             :     const char *mode_name;
      49             :     uint16_t bits_per_frame;
      50             :     uint8_t subframe_count;
      51             :     uint8_t frames_per_packet;
      52             :     float pitch_sharp_factor;
      53             : 
      54             :     /* bitstream parameters */
      55             :     uint8_t number_of_fc_indexes;
      56             :     uint8_t ma_predictor_bits;  ///< size in bits of the switched MA predictor
      57             : 
      58             :     /** size in bits of the i-th stage vector of quantizer */
      59             :     uint8_t vq_indexes_bits[5];
      60             : 
      61             :     /** size in bits of the adaptive-codebook index for every subframe */
      62             :     uint8_t pitch_delay_bits[5];
      63             : 
      64             :     uint8_t gp_index_bits;
      65             :     uint8_t fc_index_bits[10]; ///< size in bits of the fixed codebook indexes
      66             :     uint8_t gc_index_bits;     ///< size in bits of the gain  codebook indexes
      67             : } SiprModeParam;
      68             : 
      69             : static const SiprModeParam modes[MODE_COUNT] = {
      70             :     [MODE_16k] = {
      71             :         .mode_name          = "16k",
      72             :         .bits_per_frame     = 160,
      73             :         .subframe_count     = SUBFRAME_COUNT_16k,
      74             :         .frames_per_packet  = 1,
      75             :         .pitch_sharp_factor = 0.00,
      76             : 
      77             :         .number_of_fc_indexes = 10,
      78             :         .ma_predictor_bits    = 1,
      79             :         .vq_indexes_bits      = {7, 8, 7, 7, 7},
      80             :         .pitch_delay_bits     = {9, 6},
      81             :         .gp_index_bits        = 4,
      82             :         .fc_index_bits        = {4, 5, 4, 5, 4, 5, 4, 5, 4, 5},
      83             :         .gc_index_bits        = 5
      84             :     },
      85             : 
      86             :     [MODE_8k5] = {
      87             :         .mode_name          = "8k5",
      88             :         .bits_per_frame     = 152,
      89             :         .subframe_count     = 3,
      90             :         .frames_per_packet  = 1,
      91             :         .pitch_sharp_factor = 0.8,
      92             : 
      93             :         .number_of_fc_indexes = 3,
      94             :         .ma_predictor_bits    = 0,
      95             :         .vq_indexes_bits      = {6, 7, 7, 7, 5},
      96             :         .pitch_delay_bits     = {8, 5, 5},
      97             :         .gp_index_bits        = 0,
      98             :         .fc_index_bits        = {9, 9, 9},
      99             :         .gc_index_bits        = 7
     100             :     },
     101             : 
     102             :     [MODE_6k5] = {
     103             :         .mode_name          = "6k5",
     104             :         .bits_per_frame     = 232,
     105             :         .subframe_count     = 3,
     106             :         .frames_per_packet  = 2,
     107             :         .pitch_sharp_factor = 0.8,
     108             : 
     109             :         .number_of_fc_indexes = 3,
     110             :         .ma_predictor_bits    = 0,
     111             :         .vq_indexes_bits      = {6, 7, 7, 7, 5},
     112             :         .pitch_delay_bits     = {8, 5, 5},
     113             :         .gp_index_bits        = 0,
     114             :         .fc_index_bits        = {5, 5, 5},
     115             :         .gc_index_bits        = 7
     116             :     },
     117             : 
     118             :     [MODE_5k0] = {
     119             :         .mode_name          = "5k0",
     120             :         .bits_per_frame     = 296,
     121             :         .subframe_count     = 5,
     122             :         .frames_per_packet  = 2,
     123             :         .pitch_sharp_factor = 0.85,
     124             : 
     125             :         .number_of_fc_indexes = 1,
     126             :         .ma_predictor_bits    = 0,
     127             :         .vq_indexes_bits      = {6, 7, 7, 7, 5},
     128             :         .pitch_delay_bits     = {8, 5, 8, 5, 5},
     129             :         .gp_index_bits        = 0,
     130             :         .fc_index_bits        = {10},
     131             :         .gc_index_bits        = 7
     132             :     }
     133             : };
     134             : 
     135             : const float ff_pow_0_5[] = {
     136             :     1.0/(1 <<  1), 1.0/(1 <<  2), 1.0/(1 <<  3), 1.0/(1 <<  4),
     137             :     1.0/(1 <<  5), 1.0/(1 <<  6), 1.0/(1 <<  7), 1.0/(1 <<  8),
     138             :     1.0/(1 <<  9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12),
     139             :     1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16)
     140             : };
     141             : 
     142        5184 : static void dequant(float *out, const int *idx, const float * const cbs[])
     143             : {
     144             :     int i;
     145        5184 :     int stride  = 2;
     146        5184 :     int num_vec = 5;
     147             : 
     148       31104 :     for (i = 0; i < num_vec; i++)
     149       25920 :         memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float));
     150             : 
     151        5184 : }
     152             : 
     153        5184 : static void lsf_decode_fp(float *lsfnew, float *lsf_history,
     154             :                           const SiprParameters *parm)
     155             : {
     156             :     int i;
     157             :     float lsf_tmp[LP_FILTER_ORDER];
     158             : 
     159        5184 :     dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks);
     160             : 
     161       57024 :     for (i = 0; i < LP_FILTER_ORDER; i++)
     162       51840 :         lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i];
     163             : 
     164        5184 :     ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1);
     165             : 
     166             :     /* Note that a minimum distance is not enforced between the last value and
     167             :        the previous one, contrary to what is done in ff_acelp_reorder_lsf() */
     168        5184 :     ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1);
     169        5184 :     lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI);
     170             : 
     171        5184 :     memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history));
     172             : 
     173       51840 :     for (i = 0; i < LP_FILTER_ORDER - 1; i++)
     174       46656 :         lsfnew[i] = cos(lsfnew[i]);
     175        5184 :     lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI;
     176        5184 : }
     177             : 
     178             : /** Apply pitch lag to the fixed vector (AMR section 6.1.2). */
     179       16896 : static void pitch_sharpening(int pitch_lag_int, float beta,
     180             :                              float *fixed_vector)
     181             : {
     182             :     int i;
     183             : 
     184       87840 :     for (i = pitch_lag_int; i < SUBFR_SIZE; i++)
     185       70944 :         fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int];
     186       16896 : }
     187             : 
     188             : /**
     189             :  * Extract decoding parameters from the input bitstream.
     190             :  * @param parms          parameters structure
     191             :  * @param pgb            pointer to initialized GetBitContext structure
     192             :  */
     193        8434 : static void decode_parameters(SiprParameters* parms, GetBitContext *pgb,
     194             :                               const SiprModeParam *p)
     195             : {
     196             :     int i, j;
     197             : 
     198        8434 :     if (p->ma_predictor_bits)
     199        3250 :         parms->ma_pred_switch       = get_bits(pgb, p->ma_predictor_bits);
     200             : 
     201       50604 :     for (i = 0; i < 5; i++)
     202       42170 :         parms->vq_indexes[i]        = get_bits(pgb, p->vq_indexes_bits[i]);
     203             : 
     204       31830 :     for (i = 0; i < p->subframe_count; i++) {
     205       23396 :         parms->pitch_delay[i]       = get_bits(pgb, p->pitch_delay_bits[i]);
     206       23396 :         if (p->gp_index_bits)
     207        6500 :             parms->gp_index[i]      = get_bits(pgb, p->gp_index_bits);
     208             : 
     209      132364 :         for (j = 0; j < p->number_of_fc_indexes; j++)
     210      108968 :             parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]);
     211             : 
     212       23396 :         parms->gc_index[i]          = get_bits(pgb, p->gc_index_bits);
     213             :     }
     214        8434 : }
     215             : 
     216        5184 : static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az,
     217             :                            int num_subfr)
     218             : {
     219             :     double lsfint[LP_FILTER_ORDER];
     220             :     int i,j;
     221        5184 :     float t, t0 = 1.0 / num_subfr;
     222             : 
     223        5184 :     t = t0 * 0.5;
     224       22080 :     for (i = 0; i < num_subfr; i++) {
     225      185856 :         for (j = 0; j < LP_FILTER_ORDER; j++)
     226      168960 :             lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j];
     227             : 
     228       16896 :         ff_amrwb_lsp2lpc(lsfint, Az, LP_FILTER_ORDER);
     229       16896 :         Az += LP_FILTER_ORDER;
     230       16896 :         t += t0;
     231             :     }
     232        5184 : }
     233             : 
     234             : /**
     235             :  * Evaluate the adaptive impulse response.
     236             :  */
     237       16896 : static void eval_ir(const float *Az, int pitch_lag, float *freq,
     238             :                     float pitch_sharp_factor)
     239             : {
     240             :     float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1];
     241             :     int i;
     242             : 
     243       16896 :     tmp1[0] = 1.0;
     244      185856 :     for (i = 0; i < LP_FILTER_ORDER; i++) {
     245      168960 :         tmp1[i+1] = Az[i] * ff_pow_0_55[i];
     246      168960 :         tmp2[i  ] = Az[i] * ff_pow_0_7 [i];
     247             :     }
     248       16896 :     memset(tmp1 + 11, 0, 37 * sizeof(float));
     249             : 
     250       16896 :     ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE,
     251             :                                  LP_FILTER_ORDER);
     252             : 
     253       16896 :     pitch_sharpening(pitch_lag, pitch_sharp_factor, freq);
     254       16896 : }
     255             : 
     256             : /**
     257             :  * Evaluate the convolution of a vector with a sparse vector.
     258             :  */
     259       16896 : static void convolute_with_sparse(float *out, const AMRFixed *pulses,
     260             :                                   const float *shape, int length)
     261             : {
     262             :     int i, j;
     263             : 
     264       16896 :     memset(out, 0, length*sizeof(float));
     265       76540 :     for (i = 0; i < pulses->n; i++)
     266     1636784 :         for (j = pulses->x[i]; j < length; j++)
     267     1577140 :             out[j] += pulses->y[i] * shape[j - pulses->x[i]];
     268       16896 : }
     269             : 
     270             : /**
     271             :  * Apply postfilter, very similar to AMR one.
     272             :  */
     273        3360 : static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples)
     274             : {
     275             :     float buf[SUBFR_SIZE + LP_FILTER_ORDER];
     276        3360 :     float *pole_out = buf + LP_FILTER_ORDER;
     277             :     float lpc_n[LP_FILTER_ORDER];
     278             :     float lpc_d[LP_FILTER_ORDER];
     279             :     int i;
     280             : 
     281       36960 :     for (i = 0; i < LP_FILTER_ORDER; i++) {
     282       33600 :         lpc_d[i] = lpc[i] * ff_pow_0_75[i];
     283       33600 :         lpc_n[i] = lpc[i] * ff_pow_0_5 [i];
     284             :     };
     285             : 
     286        3360 :     memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem,
     287             :            LP_FILTER_ORDER*sizeof(float));
     288             : 
     289        3360 :     ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE,
     290             :                                  LP_FILTER_ORDER);
     291             : 
     292        3360 :     memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
     293             :            LP_FILTER_ORDER*sizeof(float));
     294             : 
     295        3360 :     ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE);
     296             : 
     297        3360 :     memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0,
     298             :            LP_FILTER_ORDER*sizeof(*pole_out));
     299             : 
     300        3360 :     memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
     301             :            LP_FILTER_ORDER*sizeof(*pole_out));
     302             : 
     303        3360 :     ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE,
     304             :                                       LP_FILTER_ORDER);
     305             : 
     306        3360 : }
     307             : 
     308       16896 : static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses,
     309             :                                 SiprMode mode, int low_gain)
     310             : {
     311             :     int i;
     312             : 
     313       16896 :     switch (mode) {
     314       10080 :     case MODE_6k5:
     315       40320 :         for (i = 0; i < 3; i++) {
     316       30240 :             fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i;
     317       30240 :             fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1;
     318             :         }
     319       10080 :         fixed_sparse->n = 3;
     320       10080 :         break;
     321        3456 :     case MODE_8k5:
     322       13824 :         for (i = 0; i < 3; i++) {
     323       10368 :             fixed_sparse->x[2*i    ] = 3 * ((pulses[i] >> 4) & 0xf) + i;
     324       10368 :             fixed_sparse->x[2*i + 1] = 3 * ( pulses[i]       & 0xf) + i;
     325             : 
     326       10368 :             fixed_sparse->y[2*i    ] = (pulses[i] & 0x100) ? -1.0: 1.0;
     327             : 
     328       10368 :             fixed_sparse->y[2*i + 1] =
     329       10368 :                 (fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ?
     330       10368 :                 -fixed_sparse->y[2*i    ] : fixed_sparse->y[2*i];
     331             :         }
     332             : 
     333        3456 :         fixed_sparse->n = 6;
     334        3456 :         break;
     335        3360 :     case MODE_5k0:
     336             :     default:
     337        3360 :         if (low_gain) {
     338        1948 :             int offset = (pulses[0] & 0x200) ? 2 : 0;
     339        1948 :             int val = pulses[0];
     340             : 
     341        7792 :             for (i = 0; i < 3; i++) {
     342        5844 :                 int index = (val & 0x7) * 6 + 4 - i*2;
     343             : 
     344        5844 :                 fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1;
     345        5844 :                 fixed_sparse->x[i] = index;
     346             : 
     347        5844 :                 val >>= 3;
     348             :             }
     349        1948 :             fixed_sparse->n = 3;
     350             :         } else {
     351        1412 :             int pulse_subset = (pulses[0] >> 8) & 1;
     352             : 
     353        1412 :             fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset;
     354        1412 :             fixed_sparse->x[1] = ( pulses[0]       & 15) * 3 + pulse_subset + 1;
     355             : 
     356        1412 :             fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1;
     357        1412 :             fixed_sparse->y[1] = -fixed_sparse->y[0];
     358        1412 :             fixed_sparse->n = 2;
     359             :         }
     360        3360 :         break;
     361             :     }
     362       16896 : }
     363             : 
     364        5184 : static void decode_frame(SiprContext *ctx, SiprParameters *params,
     365             :                          float *out_data)
     366             : {
     367             :     int i, j;
     368        5184 :     int subframe_count = modes[ctx->mode].subframe_count;
     369        5184 :     int frame_size = subframe_count * SUBFR_SIZE;
     370             :     float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT];
     371             :     float *excitation;
     372             :     float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER];
     373             :     float lsf_new[LP_FILTER_ORDER];
     374        5184 :     float *impulse_response = ir_buf + LP_FILTER_ORDER;
     375        5184 :     float *synth = ctx->synth_buf + 16; // 16 instead of LP_FILTER_ORDER for
     376             :                                         // memory alignment
     377        5184 :     int t0_first = 0;
     378             :     AMRFixed fixed_cb;
     379             : 
     380        5184 :     memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float));
     381        5184 :     lsf_decode_fp(lsf_new, ctx->lsf_history, params);
     382             : 
     383        5184 :     sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count);
     384             : 
     385        5184 :     memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float));
     386             : 
     387        5184 :     excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL;
     388             : 
     389       22080 :     for (i = 0; i < subframe_count; i++) {
     390       16896 :         float *pAz = Az + i*LP_FILTER_ORDER;
     391             :         float fixed_vector[SUBFR_SIZE];
     392             :         int T0,T0_frac;
     393             :         float pitch_gain, gain_code, avg_energy;
     394             : 
     395       16896 :         ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i,
     396       16896 :                             ctx->mode == MODE_5k0, 6);
     397             : 
     398       16896 :         if (i == 0 || (i == 2 && ctx->mode == MODE_5k0))
     399        5856 :             t0_first = T0;
     400             : 
     401       16896 :         ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0),
     402             :                               ff_b60_sinc, 6,
     403       16896 :                               2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER,
     404             :                               SUBFR_SIZE);
     405             : 
     406       16896 :         decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode,
     407       16896 :                             ctx->past_pitch_gain < 0.8);
     408             : 
     409       16896 :         eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor);
     410             : 
     411       16896 :         convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response,
     412             :                               SUBFR_SIZE);
     413             : 
     414       33792 :         avg_energy = (0.01 + avpriv_scalarproduct_float_c(fixed_vector,
     415             :                                                           fixed_vector,
     416       16896 :                                                           SUBFR_SIZE)) /
     417             :                      SUBFR_SIZE;
     418             : 
     419       16896 :         ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0];
     420             : 
     421       16896 :         gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1],
     422       16896 :                                           avg_energy, ctx->energy_history,
     423             :                                           34 - 15.0/(0.05*M_LN10/M_LN2),
     424             :                                           pred);
     425             : 
     426       16896 :         ff_weighted_vector_sumf(excitation, excitation, fixed_vector,
     427             :                                 pitch_gain, gain_code, SUBFR_SIZE);
     428             : 
     429       16896 :         pitch_gain *= 0.5 * pitch_gain;
     430       16896 :         pitch_gain = FFMIN(pitch_gain, 0.4);
     431             : 
     432       16896 :         ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain;
     433       16896 :         ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain);
     434       16896 :         gain_code *= ctx->gain_mem;
     435             : 
     436      827904 :         for (j = 0; j < SUBFR_SIZE; j++)
     437      811008 :             fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j];
     438             : 
     439       16896 :         if (ctx->mode == MODE_5k0) {
     440        3360 :             postfilter_5k0(ctx, pAz, fixed_vector);
     441             : 
     442        3360 :             ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
     443             :                                          pAz, excitation, SUBFR_SIZE,
     444             :                                          LP_FILTER_ORDER);
     445             :         }
     446             : 
     447       16896 :         ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector,
     448             :                                      SUBFR_SIZE, LP_FILTER_ORDER);
     449             : 
     450       16896 :         excitation += SUBFR_SIZE;
     451             :     }
     452             : 
     453        5184 :     memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER,
     454             :            LP_FILTER_ORDER * sizeof(float));
     455             : 
     456        5184 :     if (ctx->mode == MODE_5k0) {
     457        4032 :         for (i = 0; i < subframe_count; i++) {
     458        3360 :             float energy = avpriv_scalarproduct_float_c(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
     459        3360 :                                                         ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
     460             :                                                         SUBFR_SIZE);
     461        6720 :             ff_adaptive_gain_control(&synth[i * SUBFR_SIZE],
     462        3360 :                                      &synth[i * SUBFR_SIZE], energy,
     463             :                                      SUBFR_SIZE, 0.9, &ctx->postfilter_agc);
     464             :         }
     465             : 
     466         672 :         memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size,
     467             :                LP_FILTER_ORDER*sizeof(float));
     468             :     }
     469        5184 :     memmove(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL,
     470             :            (PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float));
     471             : 
     472        5184 :     ff_acelp_apply_order_2_transfer_function(out_data, synth,
     473        5184 :                                              (const float[2]) {-1.99997   , 1.000000000},
     474        5184 :                                              (const float[2]) {-1.93307352, 0.935891986},
     475             :                                              0.939805806,
     476        5184 :                                              ctx->highpass_filt_mem,
     477             :                                              frame_size);
     478        5184 : }
     479             : 
     480           8 : static av_cold int sipr_decoder_init(AVCodecContext * avctx)
     481             : {
     482           8 :     SiprContext *ctx = avctx->priv_data;
     483             :     int i;
     484             : 
     485           8 :     switch (avctx->block_align) {
     486           2 :     case 20: ctx->mode = MODE_16k; break;
     487           2 :     case 19: ctx->mode = MODE_8k5; break;
     488           2 :     case 29: ctx->mode = MODE_6k5; break;
     489           2 :     case 37: ctx->mode = MODE_5k0; break;
     490           0 :     default:
     491           0 :         if      (avctx->bit_rate > 12200) ctx->mode = MODE_16k;
     492           0 :         else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5;
     493           0 :         else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5;
     494           0 :         else                              ctx->mode = MODE_5k0;
     495           0 :         av_log(avctx, AV_LOG_WARNING,
     496             :                "Invalid block_align: %d. Mode %s guessed based on bitrate: %"PRId64"\n",
     497           0 :                avctx->block_align, modes[ctx->mode].mode_name, avctx->bit_rate);
     498             :     }
     499             : 
     500           8 :     av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name);
     501             : 
     502           8 :     if (ctx->mode == MODE_16k) {
     503           2 :         ff_sipr_init_16k(ctx);
     504           2 :         ctx->decode_frame = ff_sipr_decode_frame_16k;
     505             :     } else {
     506           6 :         ctx->decode_frame = decode_frame;
     507             :     }
     508             : 
     509          88 :     for (i = 0; i < LP_FILTER_ORDER; i++)
     510          80 :         ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1));
     511             : 
     512          40 :     for (i = 0; i < 4; i++)
     513          32 :         ctx->energy_history[i] = -14;
     514             : 
     515           8 :     avctx->channels       = 1;
     516           8 :     avctx->channel_layout = AV_CH_LAYOUT_MONO;
     517           8 :     avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
     518             : 
     519           8 :     return 0;
     520             : }
     521             : 
     522        6418 : static int sipr_decode_frame(AVCodecContext *avctx, void *data,
     523             :                              int *got_frame_ptr, AVPacket *avpkt)
     524             : {
     525        6418 :     SiprContext *ctx = avctx->priv_data;
     526        6418 :     AVFrame *frame   = data;
     527        6418 :     const uint8_t *buf=avpkt->data;
     528             :     SiprParameters parm;
     529        6418 :     const SiprModeParam *mode_par = &modes[ctx->mode];
     530             :     GetBitContext gb;
     531             :     float *samples;
     532        6418 :     int subframe_size = ctx->mode == MODE_16k ? L_SUBFR_16k : SUBFR_SIZE;
     533             :     int i, ret;
     534             : 
     535        6418 :     ctx->avctx = avctx;
     536        6418 :     if (avpkt->size < (mode_par->bits_per_frame >> 3)) {
     537           0 :         av_log(avctx, AV_LOG_ERROR,
     538             :                "Error processing packet: packet size (%d) too small\n",
     539             :                avpkt->size);
     540           0 :         return AVERROR_INVALIDDATA;
     541             :     }
     542             : 
     543             :     /* get output buffer */
     544       12836 :     frame->nb_samples = mode_par->frames_per_packet * subframe_size *
     545        6418 :                         mode_par->subframe_count;
     546        6418 :     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
     547           0 :         return ret;
     548        6418 :     samples = (float *)frame->data[0];
     549             : 
     550        6418 :     init_get_bits(&gb, buf, mode_par->bits_per_frame);
     551             : 
     552       14852 :     for (i = 0; i < mode_par->frames_per_packet; i++) {
     553        8434 :         decode_parameters(&parm, &gb, mode_par);
     554             : 
     555        8434 :         ctx->decode_frame(ctx, &parm, samples);
     556             : 
     557        8434 :         samples += subframe_size * mode_par->subframe_count;
     558             :     }
     559             : 
     560        6418 :     *got_frame_ptr = 1;
     561             : 
     562        6418 :     return mode_par->bits_per_frame >> 3;
     563             : }
     564             : 
     565             : AVCodec ff_sipr_decoder = {
     566             :     .name           = "sipr",
     567             :     .long_name      = NULL_IF_CONFIG_SMALL("RealAudio SIPR / ACELP.NET"),
     568             :     .type           = AVMEDIA_TYPE_AUDIO,
     569             :     .id             = AV_CODEC_ID_SIPR,
     570             :     .priv_data_size = sizeof(SiprContext),
     571             :     .init           = sipr_decoder_init,
     572             :     .decode         = sipr_decode_frame,
     573             :     .capabilities   = AV_CODEC_CAP_DR1,
     574             : };

Generated by: LCOV version 1.13