LCOV - code coverage report
Current view: top level - libavcodec - sbcdsp.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 0 192 0.0 %
Date: 2018-05-20 11:54:08 Functions: 0 12 0.0 %

          Line data    Source code
       1             : /*
       2             :  * Bluetooth low-complexity, subband codec (SBC)
       3             :  *
       4             :  * Copyright (C) 2017  Aurelien Jacobs <aurel@gnuage.org>
       5             :  * Copyright (C) 2012-2013  Intel Corporation
       6             :  * Copyright (C) 2008-2010  Nokia Corporation
       7             :  * Copyright (C) 2004-2010  Marcel Holtmann <marcel@holtmann.org>
       8             :  * Copyright (C) 2004-2005  Henryk Ploetz <henryk@ploetzli.ch>
       9             :  * Copyright (C) 2005-2006  Brad Midgley <bmidgley@xmission.com>
      10             :  *
      11             :  * This file is part of FFmpeg.
      12             :  *
      13             :  * FFmpeg is free software; you can redistribute it and/or
      14             :  * modify it under the terms of the GNU Lesser General Public
      15             :  * License as published by the Free Software Foundation; either
      16             :  * version 2.1 of the License, or (at your option) any later version.
      17             :  *
      18             :  * FFmpeg is distributed in the hope that it will be useful,
      19             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      20             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      21             :  * Lesser General Public License for more details.
      22             :  *
      23             :  * You should have received a copy of the GNU Lesser General Public
      24             :  * License along with FFmpeg; if not, write to the Free Software
      25             :  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
      26             :  */
      27             : 
      28             : /**
      29             :  * @file
      30             :  * SBC basic "building bricks"
      31             :  */
      32             : 
      33             : #include <stdint.h>
      34             : #include <limits.h>
      35             : #include <string.h>
      36             : #include "libavutil/common.h"
      37             : #include "libavutil/intmath.h"
      38             : #include "libavutil/intreadwrite.h"
      39             : #include "sbc.h"
      40             : #include "sbcdsp.h"
      41             : #include "sbcdsp_data.h"
      42             : 
      43             : /*
      44             :  * A reference C code of analysis filter with SIMD-friendly tables
      45             :  * reordering and code layout. This code can be used to develop platform
      46             :  * specific SIMD optimizations. Also it may be used as some kind of test
      47             :  * for compiler autovectorization capabilities (who knows, if the compiler
      48             :  * is very good at this stuff, hand optimized assembly may be not strictly
      49             :  * needed for some platform).
      50             :  *
      51             :  * Note: It is also possible to make a simple variant of analysis filter,
      52             :  * which needs only a single constants table without taking care about
      53             :  * even/odd cases. This simple variant of filter can be implemented without
      54             :  * input data permutation. The only thing that would be lost is the
      55             :  * possibility to use pairwise SIMD multiplications. But for some simple
      56             :  * CPU cores without SIMD extensions it can be useful. If anybody is
      57             :  * interested in implementing such variant of a filter, sourcecode from
      58             :  * bluez versions 4.26/4.27 can be used as a reference and the history of
      59             :  * the changes in git repository done around that time may be worth checking.
      60             :  */
      61             : 
      62           0 : static av_always_inline void sbc_analyze_simd(const int16_t *in, int32_t *out,
      63             :                                               const int16_t *consts,
      64             :                                               unsigned subbands)
      65             : {
      66             :     int32_t t1[8];
      67             :     int16_t t2[8];
      68           0 :     int i, j, hop = 0;
      69             : 
      70             :     /* rounding coefficient */
      71           0 :     for (i = 0; i < subbands; i++)
      72           0 :         t1[i] = 1 << (SBC_PROTO_FIXED_SCALE - 1);
      73             : 
      74             :     /* low pass polyphase filter */
      75           0 :     for (hop = 0; hop < 10*subbands; hop += 2*subbands)
      76           0 :         for (i = 0; i < 2*subbands; i++)
      77           0 :             t1[i >> 1] += in[hop + i] * consts[hop + i];
      78             : 
      79             :     /* scaling */
      80           0 :     for (i = 0; i < subbands; i++)
      81           0 :         t2[i] = t1[i] >> SBC_PROTO_FIXED_SCALE;
      82             : 
      83           0 :     memset(t1, 0, sizeof(t1));
      84             : 
      85             :     /* do the cos transform */
      86           0 :     for (i = 0; i < subbands/2; i++)
      87           0 :         for (j = 0; j < 2*subbands; j++)
      88           0 :             t1[j>>1] += t2[i * 2 + (j&1)] * consts[10*subbands + i*2*subbands + j];
      89             : 
      90           0 :     for (i = 0; i < subbands; i++)
      91           0 :         out[i] = t1[i] >> (SBC_COS_TABLE_FIXED_SCALE - SCALE_OUT_BITS);
      92           0 : }
      93             : 
      94           0 : static void sbc_analyze_4_simd(const int16_t *in, int32_t *out,
      95             :                                const int16_t *consts)
      96             : {
      97           0 :     sbc_analyze_simd(in, out, consts, 4);
      98           0 : }
      99             : 
     100           0 : static void sbc_analyze_8_simd(const int16_t *in, int32_t *out,
     101             :                                const int16_t *consts)
     102             : {
     103           0 :     sbc_analyze_simd(in, out, consts, 8);
     104           0 : }
     105             : 
     106           0 : static inline void sbc_analyze_4b_4s_simd(SBCDSPContext *s,
     107             :                                           int16_t *x, int32_t *out, int out_stride)
     108             : {
     109             :     /* Analyze blocks */
     110           0 :     s->sbc_analyze_4(x + 12, out, ff_sbcdsp_analysis_consts_fixed4_simd_odd);
     111           0 :     out += out_stride;
     112           0 :     s->sbc_analyze_4(x + 8, out, ff_sbcdsp_analysis_consts_fixed4_simd_even);
     113           0 :     out += out_stride;
     114           0 :     s->sbc_analyze_4(x + 4, out, ff_sbcdsp_analysis_consts_fixed4_simd_odd);
     115           0 :     out += out_stride;
     116           0 :     s->sbc_analyze_4(x + 0, out, ff_sbcdsp_analysis_consts_fixed4_simd_even);
     117           0 : }
     118             : 
     119           0 : static inline void sbc_analyze_4b_8s_simd(SBCDSPContext *s,
     120             :                                           int16_t *x, int32_t *out, int out_stride)
     121             : {
     122             :     /* Analyze blocks */
     123           0 :     s->sbc_analyze_8(x + 24, out, ff_sbcdsp_analysis_consts_fixed8_simd_odd);
     124           0 :     out += out_stride;
     125           0 :     s->sbc_analyze_8(x + 16, out, ff_sbcdsp_analysis_consts_fixed8_simd_even);
     126           0 :     out += out_stride;
     127           0 :     s->sbc_analyze_8(x + 8, out, ff_sbcdsp_analysis_consts_fixed8_simd_odd);
     128           0 :     out += out_stride;
     129           0 :     s->sbc_analyze_8(x + 0, out, ff_sbcdsp_analysis_consts_fixed8_simd_even);
     130           0 : }
     131             : 
     132             : static inline void sbc_analyze_1b_8s_simd_even(SBCDSPContext *s,
     133             :                                                int16_t *x, int32_t *out,
     134             :                                                int out_stride);
     135             : 
     136           0 : static inline void sbc_analyze_1b_8s_simd_odd(SBCDSPContext *s,
     137             :                                               int16_t *x, int32_t *out,
     138             :                                               int out_stride)
     139             : {
     140           0 :     s->sbc_analyze_8(x, out, ff_sbcdsp_analysis_consts_fixed8_simd_odd);
     141           0 :     s->sbc_analyze_8s = sbc_analyze_1b_8s_simd_even;
     142           0 : }
     143             : 
     144           0 : static inline void sbc_analyze_1b_8s_simd_even(SBCDSPContext *s,
     145             :                                                int16_t *x, int32_t *out,
     146             :                                                int out_stride)
     147             : {
     148           0 :     s->sbc_analyze_8(x, out, ff_sbcdsp_analysis_consts_fixed8_simd_even);
     149           0 :     s->sbc_analyze_8s = sbc_analyze_1b_8s_simd_odd;
     150           0 : }
     151             : 
     152             : /*
     153             :  * Input data processing functions. The data is endian converted if needed,
     154             :  * channels are deintrleaved and audio samples are reordered for use in
     155             :  * SIMD-friendly analysis filter function. The results are put into "X"
     156             :  * array, getting appended to the previous data (or it is better to say
     157             :  * prepended, as the buffer is filled from top to bottom). Old data is
     158             :  * discarded when neededed, but availability of (10 * nrof_subbands)
     159             :  * contiguous samples is always guaranteed for the input to the analysis
     160             :  * filter. This is achieved by copying a sufficient part of old data
     161             :  * to the top of the buffer on buffer wraparound.
     162             :  */
     163             : 
     164           0 : static int sbc_enc_process_input_4s(int position, const uint8_t *pcm,
     165             :                                     int16_t X[2][SBC_X_BUFFER_SIZE],
     166             :                                     int nsamples, int nchannels)
     167             : {
     168             :     int c;
     169             : 
     170             :     /* handle X buffer wraparound */
     171           0 :     if (position < nsamples) {
     172           0 :         for (c = 0; c < nchannels; c++)
     173           0 :             memcpy(&X[c][SBC_X_BUFFER_SIZE - 40], &X[c][position],
     174             :                             36 * sizeof(int16_t));
     175           0 :         position = SBC_X_BUFFER_SIZE - 40;
     176             :     }
     177             : 
     178             :     /* copy/permutate audio samples */
     179           0 :     for (; nsamples >= 8; nsamples -= 8, pcm += 16 * nchannels) {
     180           0 :         position -= 8;
     181           0 :         for (c = 0; c < nchannels; c++) {
     182           0 :             int16_t *x = &X[c][position];
     183           0 :             x[0] = AV_RN16(pcm + 14*nchannels + 2*c);
     184           0 :             x[1] = AV_RN16(pcm +  6*nchannels + 2*c);
     185           0 :             x[2] = AV_RN16(pcm + 12*nchannels + 2*c);
     186           0 :             x[3] = AV_RN16(pcm +  8*nchannels + 2*c);
     187           0 :             x[4] = AV_RN16(pcm +  0*nchannels + 2*c);
     188           0 :             x[5] = AV_RN16(pcm +  4*nchannels + 2*c);
     189           0 :             x[6] = AV_RN16(pcm +  2*nchannels + 2*c);
     190           0 :             x[7] = AV_RN16(pcm + 10*nchannels + 2*c);
     191             :         }
     192             :     }
     193             : 
     194           0 :     return position;
     195             : }
     196             : 
     197           0 : static int sbc_enc_process_input_8s(int position, const uint8_t *pcm,
     198             :                                     int16_t X[2][SBC_X_BUFFER_SIZE],
     199             :                                     int nsamples, int nchannels)
     200             : {
     201             :     int c;
     202             : 
     203             :     /* handle X buffer wraparound */
     204           0 :     if (position < nsamples) {
     205           0 :         for (c = 0; c < nchannels; c++)
     206           0 :             memcpy(&X[c][SBC_X_BUFFER_SIZE - 72], &X[c][position],
     207             :                             72 * sizeof(int16_t));
     208           0 :         position = SBC_X_BUFFER_SIZE - 72;
     209             :     }
     210             : 
     211           0 :     if (position % 16 == 8) {
     212           0 :         position -= 8;
     213           0 :         nsamples -= 8;
     214           0 :         for (c = 0; c < nchannels; c++) {
     215           0 :             int16_t *x = &X[c][position];
     216           0 :             x[0] = AV_RN16(pcm + 14*nchannels + 2*c);
     217           0 :             x[2] = AV_RN16(pcm + 12*nchannels + 2*c);
     218           0 :             x[3] = AV_RN16(pcm +  0*nchannels + 2*c);
     219           0 :             x[4] = AV_RN16(pcm + 10*nchannels + 2*c);
     220           0 :             x[5] = AV_RN16(pcm +  2*nchannels + 2*c);
     221           0 :             x[6] = AV_RN16(pcm +  8*nchannels + 2*c);
     222           0 :             x[7] = AV_RN16(pcm +  4*nchannels + 2*c);
     223           0 :             x[8] = AV_RN16(pcm +  6*nchannels + 2*c);
     224             :         }
     225           0 :         pcm += 16 * nchannels;
     226             :     }
     227             : 
     228             :     /* copy/permutate audio samples */
     229           0 :     for (; nsamples >= 16; nsamples -= 16, pcm += 32 * nchannels) {
     230           0 :         position -= 16;
     231           0 :         for (c = 0; c < nchannels; c++) {
     232           0 :             int16_t *x = &X[c][position];
     233           0 :             x[0]  = AV_RN16(pcm + 30*nchannels + 2*c);
     234           0 :             x[1]  = AV_RN16(pcm + 14*nchannels + 2*c);
     235           0 :             x[2]  = AV_RN16(pcm + 28*nchannels + 2*c);
     236           0 :             x[3]  = AV_RN16(pcm + 16*nchannels + 2*c);
     237           0 :             x[4]  = AV_RN16(pcm + 26*nchannels + 2*c);
     238           0 :             x[5]  = AV_RN16(pcm + 18*nchannels + 2*c);
     239           0 :             x[6]  = AV_RN16(pcm + 24*nchannels + 2*c);
     240           0 :             x[7]  = AV_RN16(pcm + 20*nchannels + 2*c);
     241           0 :             x[8]  = AV_RN16(pcm + 22*nchannels + 2*c);
     242           0 :             x[9]  = AV_RN16(pcm +  6*nchannels + 2*c);
     243           0 :             x[10] = AV_RN16(pcm + 12*nchannels + 2*c);
     244           0 :             x[11] = AV_RN16(pcm +  0*nchannels + 2*c);
     245           0 :             x[12] = AV_RN16(pcm + 10*nchannels + 2*c);
     246           0 :             x[13] = AV_RN16(pcm +  2*nchannels + 2*c);
     247           0 :             x[14] = AV_RN16(pcm +  8*nchannels + 2*c);
     248           0 :             x[15] = AV_RN16(pcm +  4*nchannels + 2*c);
     249             :         }
     250             :     }
     251             : 
     252           0 :     if (nsamples == 8) {
     253           0 :         position -= 8;
     254           0 :         for (c = 0; c < nchannels; c++) {
     255           0 :             int16_t *x = &X[c][position];
     256           0 :             x[-7] = AV_RN16(pcm + 14*nchannels + 2*c);
     257           0 :             x[1]  = AV_RN16(pcm +  6*nchannels + 2*c);
     258           0 :             x[2]  = AV_RN16(pcm + 12*nchannels + 2*c);
     259           0 :             x[3]  = AV_RN16(pcm +  0*nchannels + 2*c);
     260           0 :             x[4]  = AV_RN16(pcm + 10*nchannels + 2*c);
     261           0 :             x[5]  = AV_RN16(pcm +  2*nchannels + 2*c);
     262           0 :             x[6]  = AV_RN16(pcm +  8*nchannels + 2*c);
     263           0 :             x[7]  = AV_RN16(pcm +  4*nchannels + 2*c);
     264             :         }
     265             :     }
     266             : 
     267           0 :     return position;
     268             : }
     269             : 
     270           0 : static void sbc_calc_scalefactors(int32_t sb_sample_f[16][2][8],
     271             :                                   uint32_t scale_factor[2][8],
     272             :                                   int blocks, int channels, int subbands)
     273             : {
     274             :     int ch, sb, blk;
     275           0 :     for (ch = 0; ch < channels; ch++) {
     276           0 :         for (sb = 0; sb < subbands; sb++) {
     277           0 :             uint32_t x = 1 << SCALE_OUT_BITS;
     278           0 :             for (blk = 0; blk < blocks; blk++) {
     279           0 :                 int32_t tmp = FFABS(sb_sample_f[blk][ch][sb]);
     280           0 :                 if (tmp != 0)
     281           0 :                     x |= tmp - 1;
     282             :             }
     283           0 :             scale_factor[ch][sb] = (31 - SCALE_OUT_BITS) - ff_clz(x);
     284             :         }
     285             :     }
     286           0 : }
     287             : 
     288           0 : static int sbc_calc_scalefactors_j(int32_t sb_sample_f[16][2][8],
     289             :                                    uint32_t scale_factor[2][8],
     290             :                                    int blocks, int subbands)
     291             : {
     292           0 :     int blk, joint = 0;
     293             :     int32_t tmp0, tmp1;
     294             :     uint32_t x, y;
     295             : 
     296             :     /* last subband does not use joint stereo */
     297           0 :     int sb = subbands - 1;
     298           0 :     x = 1 << SCALE_OUT_BITS;
     299           0 :     y = 1 << SCALE_OUT_BITS;
     300           0 :     for (blk = 0; blk < blocks; blk++) {
     301           0 :         tmp0 = FFABS(sb_sample_f[blk][0][sb]);
     302           0 :         tmp1 = FFABS(sb_sample_f[blk][1][sb]);
     303           0 :         if (tmp0 != 0)
     304           0 :             x |= tmp0 - 1;
     305           0 :         if (tmp1 != 0)
     306           0 :             y |= tmp1 - 1;
     307             :     }
     308           0 :     scale_factor[0][sb] = (31 - SCALE_OUT_BITS) - ff_clz(x);
     309           0 :     scale_factor[1][sb] = (31 - SCALE_OUT_BITS) - ff_clz(y);
     310             : 
     311             :     /* the rest of subbands can use joint stereo */
     312           0 :     while (--sb >= 0) {
     313             :         int32_t sb_sample_j[16][2];
     314           0 :         x = 1 << SCALE_OUT_BITS;
     315           0 :         y = 1 << SCALE_OUT_BITS;
     316           0 :         for (blk = 0; blk < blocks; blk++) {
     317           0 :             tmp0 = sb_sample_f[blk][0][sb];
     318           0 :             tmp1 = sb_sample_f[blk][1][sb];
     319           0 :             sb_sample_j[blk][0] = (tmp0 >> 1) + (tmp1 >> 1);
     320           0 :             sb_sample_j[blk][1] = (tmp0 >> 1) - (tmp1 >> 1);
     321           0 :             tmp0 = FFABS(tmp0);
     322           0 :             tmp1 = FFABS(tmp1);
     323           0 :             if (tmp0 != 0)
     324           0 :                 x |= tmp0 - 1;
     325           0 :             if (tmp1 != 0)
     326           0 :                 y |= tmp1 - 1;
     327             :         }
     328           0 :         scale_factor[0][sb] = (31 - SCALE_OUT_BITS) -
     329           0 :             ff_clz(x);
     330           0 :         scale_factor[1][sb] = (31 - SCALE_OUT_BITS) -
     331           0 :             ff_clz(y);
     332           0 :         x = 1 << SCALE_OUT_BITS;
     333           0 :         y = 1 << SCALE_OUT_BITS;
     334           0 :         for (blk = 0; blk < blocks; blk++) {
     335           0 :             tmp0 = FFABS(sb_sample_j[blk][0]);
     336           0 :             tmp1 = FFABS(sb_sample_j[blk][1]);
     337           0 :             if (tmp0 != 0)
     338           0 :                 x |= tmp0 - 1;
     339           0 :             if (tmp1 != 0)
     340           0 :                 y |= tmp1 - 1;
     341             :         }
     342           0 :         x = (31 - SCALE_OUT_BITS) - ff_clz(x);
     343           0 :         y = (31 - SCALE_OUT_BITS) - ff_clz(y);
     344             : 
     345             :         /* decide whether to use joint stereo for this subband */
     346           0 :         if ((scale_factor[0][sb] + scale_factor[1][sb]) > x + y) {
     347           0 :             joint |= 1 << (subbands - 1 - sb);
     348           0 :             scale_factor[0][sb] = x;
     349           0 :             scale_factor[1][sb] = y;
     350           0 :             for (blk = 0; blk < blocks; blk++) {
     351           0 :                 sb_sample_f[blk][0][sb] = sb_sample_j[blk][0];
     352           0 :                 sb_sample_f[blk][1][sb] = sb_sample_j[blk][1];
     353             :             }
     354             :         }
     355             :     }
     356             : 
     357             :     /* bitmask with the information about subbands using joint stereo */
     358           0 :     return joint;
     359             : }
     360             : 
     361             : /*
     362             :  * Detect CPU features and setup function pointers
     363             :  */
     364           0 : av_cold void ff_sbcdsp_init(SBCDSPContext *s)
     365             : {
     366             :     /* Default implementation for analyze functions */
     367           0 :     s->sbc_analyze_4 = sbc_analyze_4_simd;
     368           0 :     s->sbc_analyze_8 = sbc_analyze_8_simd;
     369           0 :     s->sbc_analyze_4s = sbc_analyze_4b_4s_simd;
     370           0 :     if (s->increment == 1)
     371           0 :         s->sbc_analyze_8s = sbc_analyze_1b_8s_simd_odd;
     372             :     else
     373           0 :         s->sbc_analyze_8s = sbc_analyze_4b_8s_simd;
     374             : 
     375             :     /* Default implementation for input reordering / deinterleaving */
     376           0 :     s->sbc_enc_process_input_4s = sbc_enc_process_input_4s;
     377           0 :     s->sbc_enc_process_input_8s = sbc_enc_process_input_8s;
     378             : 
     379             :     /* Default implementation for scale factors calculation */
     380           0 :     s->sbc_calc_scalefactors = sbc_calc_scalefactors;
     381           0 :     s->sbc_calc_scalefactors_j = sbc_calc_scalefactors_j;
     382             : 
     383             :     if (ARCH_ARM)
     384             :         ff_sbcdsp_init_arm(s);
     385             :     if (ARCH_X86)
     386           0 :         ff_sbcdsp_init_x86(s);
     387           0 : }

Generated by: LCOV version 1.13