LCOV - code coverage report
Current view: top level - libavcodec - proresdec_lgpl.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 0 389 0.0 %
Date: 2017-12-16 21:16:39 Functions: 0 13 0.0 %

          Line data    Source code
       1             : /*
       2             :  * Apple ProRes compatible decoder
       3             :  *
       4             :  * Copyright (c) 2010-2011 Maxim Poliakovski
       5             :  *
       6             :  * This file is part of FFmpeg.
       7             :  *
       8             :  * FFmpeg is free software; you can redistribute it and/or
       9             :  * modify it under the terms of the GNU Lesser General Public
      10             :  * License as published by the Free Software Foundation; either
      11             :  * version 2.1 of the License, or (at your option) any later version.
      12             :  *
      13             :  * FFmpeg is distributed in the hope that it will be useful,
      14             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      15             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      16             :  * Lesser General Public License for more details.
      17             :  *
      18             :  * You should have received a copy of the GNU Lesser General Public
      19             :  * License along with FFmpeg; if not, write to the Free Software
      20             :  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
      21             :  */
      22             : 
      23             : /**
      24             :  * @file
      25             :  * This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444.
      26             :  * It is used for storing and editing high definition video data in Apple's Final Cut Pro.
      27             :  *
      28             :  * @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes
      29             :  */
      30             : 
      31             : #define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
      32             : 
      33             : #include <stdint.h>
      34             : 
      35             : #include "libavutil/intmath.h"
      36             : #include "avcodec.h"
      37             : #include "idctdsp.h"
      38             : #include "internal.h"
      39             : #include "proresdata.h"
      40             : #include "proresdsp.h"
      41             : #include "get_bits.h"
      42             : 
      43             : typedef struct ProresThreadData {
      44             :     const uint8_t *index;            ///< pointers to the data of this slice
      45             :     int slice_num;
      46             :     int x_pos, y_pos;
      47             :     int slice_width;
      48             :     int prev_slice_sf;               ///< scalefactor of the previous decoded slice
      49             :     DECLARE_ALIGNED(16, int16_t, blocks)[8 * 4 * 64];
      50             :     DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled)[64];
      51             :     DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled)[64];
      52             : } ProresThreadData;
      53             : 
      54             : typedef struct ProresContext {
      55             :     ProresDSPContext dsp;
      56             :     AVFrame    *frame;
      57             :     ScanTable  scantable;
      58             :     int        scantable_type;           ///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced
      59             : 
      60             :     int        frame_type;               ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first
      61             :     int        pic_format;               ///< 2 = 422, 3 = 444
      62             :     uint8_t    qmat_luma[64];            ///< dequantization matrix for luma
      63             :     uint8_t    qmat_chroma[64];          ///< dequantization matrix for chroma
      64             :     int        qmat_changed;             ///< 1 - global quantization matrices changed
      65             :     int        total_slices;            ///< total number of slices in a picture
      66             :     ProresThreadData *slice_data;
      67             :     int        pic_num;
      68             :     int        chroma_factor;
      69             :     int        mb_chroma_factor;
      70             :     int        num_chroma_blocks;       ///< number of chrominance blocks in a macroblock
      71             :     int        num_x_slices;
      72             :     int        num_y_slices;
      73             :     int        slice_width_factor;
      74             :     int        slice_height_factor;
      75             :     int        num_x_mbs;
      76             :     int        num_y_mbs;
      77             :     int        alpha_info;
      78             : } ProresContext;
      79             : 
      80             : 
      81           0 : static av_cold int decode_init(AVCodecContext *avctx)
      82             : {
      83           0 :     ProresContext *ctx = avctx->priv_data;
      84             : 
      85           0 :     ctx->total_slices     = 0;
      86           0 :     ctx->slice_data       = NULL;
      87             : 
      88           0 :     avctx->bits_per_raw_sample = PRORES_BITS_PER_SAMPLE;
      89           0 :     ff_proresdsp_init(&ctx->dsp, avctx);
      90             : 
      91           0 :     ctx->scantable_type = -1;   // set scantable type to uninitialized
      92           0 :     memset(ctx->qmat_luma, 4, 64);
      93           0 :     memset(ctx->qmat_chroma, 4, 64);
      94             : 
      95           0 :     return 0;
      96             : }
      97             : 
      98             : 
      99           0 : static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
     100             :                                const int data_size, AVCodecContext *avctx)
     101             : {
     102             :     int hdr_size, version, width, height, flags;
     103             :     const uint8_t *ptr;
     104             : 
     105           0 :     hdr_size = AV_RB16(buf);
     106           0 :     if (hdr_size > data_size) {
     107           0 :         av_log(avctx, AV_LOG_ERROR, "frame data too small\n");
     108           0 :         return AVERROR_INVALIDDATA;
     109             :     }
     110             : 
     111           0 :     version = AV_RB16(buf + 2);
     112           0 :     if (version >= 2) {
     113           0 :         av_log(avctx, AV_LOG_ERROR,
     114             :                "unsupported header version: %d\n", version);
     115           0 :         return AVERROR_INVALIDDATA;
     116             :     }
     117             : 
     118           0 :     width  = AV_RB16(buf + 8);
     119           0 :     height = AV_RB16(buf + 10);
     120           0 :     if (width != avctx->width || height != avctx->height) {
     121           0 :         av_log(avctx, AV_LOG_ERROR,
     122             :                "picture dimension changed: old: %d x %d, new: %d x %d\n",
     123             :                avctx->width, avctx->height, width, height);
     124           0 :         return AVERROR_INVALIDDATA;
     125             :     }
     126             : 
     127           0 :     ctx->frame_type = (buf[12] >> 2) & 3;
     128           0 :     if (ctx->frame_type > 2) {
     129           0 :         av_log(avctx, AV_LOG_ERROR,
     130             :                "unsupported frame type: %d\n", ctx->frame_type);
     131           0 :         return AVERROR_INVALIDDATA;
     132             :     }
     133             : 
     134           0 :     ctx->chroma_factor     = (buf[12] >> 6) & 3;
     135           0 :     ctx->mb_chroma_factor  = ctx->chroma_factor + 2;
     136           0 :     ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1;
     137           0 :     ctx->alpha_info        = buf[17] & 0xf;
     138             : 
     139           0 :     if (ctx->alpha_info > 2) {
     140           0 :         av_log(avctx, AV_LOG_ERROR, "Invalid alpha mode %d\n", ctx->alpha_info);
     141           0 :         return AVERROR_INVALIDDATA;
     142             :     }
     143           0 :     if (avctx->skip_alpha) ctx->alpha_info = 0;
     144             : 
     145           0 :     switch (ctx->chroma_factor) {
     146           0 :     case 2:
     147           0 :         avctx->pix_fmt = ctx->alpha_info ? AV_PIX_FMT_YUVA422P10
     148           0 :                                          : AV_PIX_FMT_YUV422P10;
     149           0 :         break;
     150           0 :     case 3:
     151           0 :         avctx->pix_fmt = ctx->alpha_info ? AV_PIX_FMT_YUVA444P10
     152           0 :                                          : AV_PIX_FMT_YUV444P10;
     153           0 :         break;
     154           0 :     default:
     155           0 :         av_log(avctx, AV_LOG_ERROR,
     156             :                "unsupported picture format: %d\n", ctx->pic_format);
     157           0 :         return AVERROR_INVALIDDATA;
     158             :     }
     159             : 
     160           0 :     if (ctx->scantable_type != ctx->frame_type) {
     161           0 :         if (!ctx->frame_type)
     162           0 :             ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
     163             :                               ff_prores_progressive_scan);
     164             :         else
     165           0 :             ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
     166             :                               ff_prores_interlaced_scan);
     167           0 :         ctx->scantable_type = ctx->frame_type;
     168             :     }
     169             : 
     170           0 :     if (ctx->frame_type) {      /* if interlaced */
     171           0 :         ctx->frame->interlaced_frame = 1;
     172           0 :         ctx->frame->top_field_first  = ctx->frame_type & 1;
     173             :     } else {
     174           0 :         ctx->frame->interlaced_frame = 0;
     175             :     }
     176             : 
     177           0 :     avctx->color_primaries = buf[14];
     178           0 :     avctx->color_trc       = buf[15];
     179           0 :     avctx->colorspace      = buf[16];
     180           0 :     avctx->color_range     = AVCOL_RANGE_MPEG;
     181             : 
     182           0 :     ctx->qmat_changed = 0;
     183           0 :     ptr   = buf + 20;
     184           0 :     flags = buf[19];
     185           0 :     if (flags & 2) {
     186           0 :         if (ptr - buf > hdr_size - 64) {
     187           0 :             av_log(avctx, AV_LOG_ERROR, "header data too small\n");
     188           0 :             return AVERROR_INVALIDDATA;
     189             :         }
     190           0 :         if (memcmp(ctx->qmat_luma, ptr, 64)) {
     191           0 :             memcpy(ctx->qmat_luma, ptr, 64);
     192           0 :             ctx->qmat_changed = 1;
     193             :         }
     194           0 :         ptr += 64;
     195             :     } else {
     196           0 :         memset(ctx->qmat_luma, 4, 64);
     197           0 :         ctx->qmat_changed = 1;
     198             :     }
     199             : 
     200           0 :     if (flags & 1) {
     201           0 :         if (ptr - buf > hdr_size - 64) {
     202           0 :             av_log(avctx, AV_LOG_ERROR, "header data too small\n");
     203           0 :             return -1;
     204             :         }
     205           0 :         if (memcmp(ctx->qmat_chroma, ptr, 64)) {
     206           0 :             memcpy(ctx->qmat_chroma, ptr, 64);
     207           0 :             ctx->qmat_changed = 1;
     208             :         }
     209             :     } else {
     210           0 :         memset(ctx->qmat_chroma, 4, 64);
     211           0 :         ctx->qmat_changed = 1;
     212             :     }
     213             : 
     214           0 :     return hdr_size;
     215             : }
     216             : 
     217             : 
     218           0 : static int decode_picture_header(ProresContext *ctx, const uint8_t *buf,
     219             :                                  const int data_size, AVCodecContext *avctx)
     220             : {
     221             :     int   i, hdr_size, pic_data_size, num_slices;
     222             :     int   slice_width_factor, slice_height_factor;
     223             :     int   remainder, num_x_slices;
     224             :     const uint8_t *data_ptr, *index_ptr;
     225             : 
     226           0 :     hdr_size = data_size > 0 ? buf[0] >> 3 : 0;
     227           0 :     if (hdr_size < 8 || hdr_size > data_size) {
     228           0 :         av_log(avctx, AV_LOG_ERROR, "picture header too small\n");
     229           0 :         return AVERROR_INVALIDDATA;
     230             :     }
     231             : 
     232           0 :     pic_data_size = AV_RB32(buf + 1);
     233           0 :     if (pic_data_size > data_size) {
     234           0 :         av_log(avctx, AV_LOG_ERROR, "picture data too small\n");
     235           0 :         return AVERROR_INVALIDDATA;
     236             :     }
     237             : 
     238           0 :     slice_width_factor  = buf[7] >> 4;
     239           0 :     slice_height_factor = buf[7] & 0xF;
     240           0 :     if (slice_width_factor > 3 || slice_height_factor) {
     241           0 :         av_log(avctx, AV_LOG_ERROR,
     242             :                "unsupported slice dimension: %d x %d\n",
     243             :                1 << slice_width_factor, 1 << slice_height_factor);
     244           0 :         return AVERROR_INVALIDDATA;
     245             :     }
     246             : 
     247           0 :     ctx->slice_width_factor  = slice_width_factor;
     248           0 :     ctx->slice_height_factor = slice_height_factor;
     249             : 
     250           0 :     ctx->num_x_mbs = (avctx->width + 15) >> 4;
     251           0 :     ctx->num_y_mbs = (avctx->height +
     252           0 :                       (1 << (4 + ctx->frame->interlaced_frame)) - 1) >>
     253           0 :                      (4 + ctx->frame->interlaced_frame);
     254             : 
     255           0 :     remainder    = av_mod_uintp2(ctx->num_x_mbs, slice_width_factor);
     256           0 :     num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) +
     257           0 :                    ((remainder >> 1) & 1) + ((remainder >> 2) & 1);
     258             : 
     259           0 :     num_slices = num_x_slices * ctx->num_y_mbs;
     260           0 :     if (num_slices != AV_RB16(buf + 5)) {
     261           0 :         av_log(avctx, AV_LOG_ERROR, "invalid number of slices\n");
     262           0 :         return AVERROR_INVALIDDATA;
     263             :     }
     264             : 
     265           0 :     if (ctx->total_slices != num_slices) {
     266           0 :         av_freep(&ctx->slice_data);
     267           0 :         ctx->slice_data = av_malloc_array(num_slices + 1, sizeof(ctx->slice_data[0]));
     268           0 :         if (!ctx->slice_data)
     269           0 :             return AVERROR(ENOMEM);
     270           0 :         ctx->total_slices = num_slices;
     271             :     }
     272             : 
     273           0 :     if (hdr_size + num_slices * 2 > data_size) {
     274           0 :         av_log(avctx, AV_LOG_ERROR, "slice table too small\n");
     275           0 :         return AVERROR_INVALIDDATA;
     276             :     }
     277             : 
     278             :     /* parse slice table allowing quick access to the slice data */
     279           0 :     index_ptr = buf + hdr_size;
     280           0 :     data_ptr = index_ptr + num_slices * 2;
     281             : 
     282           0 :     for (i = 0; i < num_slices; i++) {
     283           0 :         ctx->slice_data[i].index = data_ptr;
     284           0 :         ctx->slice_data[i].prev_slice_sf = 0;
     285           0 :         data_ptr += AV_RB16(index_ptr + i * 2);
     286             :     }
     287           0 :     ctx->slice_data[i].index = data_ptr;
     288           0 :     ctx->slice_data[i].prev_slice_sf = 0;
     289             : 
     290           0 :     if (data_ptr > buf + data_size) {
     291           0 :         av_log(avctx, AV_LOG_ERROR, "out of slice data\n");
     292           0 :         return -1;
     293             :     }
     294             : 
     295           0 :     return pic_data_size;
     296             : }
     297             : 
     298             : 
     299             : /**
     300             :  * Read an unsigned rice/exp golomb codeword.
     301             :  */
     302           0 : static inline int decode_vlc_codeword(GetBitContext *gb, unsigned codebook)
     303             : {
     304             :     unsigned int rice_order, exp_order, switch_bits;
     305             :     unsigned int buf, code;
     306             :     int log, prefix_len, len;
     307             : 
     308           0 :     OPEN_READER(re, gb);
     309           0 :     UPDATE_CACHE(re, gb);
     310           0 :     buf = GET_CACHE(re, gb);
     311             : 
     312             :     /* number of prefix bits to switch between Rice and expGolomb */
     313           0 :     switch_bits = (codebook & 3) + 1;
     314           0 :     rice_order  = codebook >> 5;        /* rice code order */
     315           0 :     exp_order   = (codebook >> 2) & 7;  /* exp golomb code order */
     316             : 
     317           0 :     log = 31 - av_log2(buf); /* count prefix bits (zeroes) */
     318             : 
     319           0 :     if (log < switch_bits) { /* ok, we got a rice code */
     320           0 :         if (!rice_order) {
     321             :             /* shortcut for faster decoding of rice codes without remainder */
     322           0 :             code = log;
     323           0 :             LAST_SKIP_BITS(re, gb, log + 1);
     324             :         } else {
     325           0 :             prefix_len = log + 1;
     326           0 :             code = (log << rice_order) + NEG_USR32(buf << prefix_len, rice_order);
     327           0 :             LAST_SKIP_BITS(re, gb, prefix_len + rice_order);
     328             :         }
     329             :     } else { /* otherwise we got a exp golomb code */
     330           0 :         len  = (log << 1) - switch_bits + exp_order + 1;
     331           0 :         code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order);
     332           0 :         LAST_SKIP_BITS(re, gb, len);
     333             :     }
     334             : 
     335           0 :     CLOSE_READER(re, gb);
     336             : 
     337           0 :     return code;
     338             : }
     339             : 
     340             : #define LSB2SIGN(x) (-((x) & 1))
     341             : #define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x))
     342             : 
     343             : /**
     344             :  * Decode DC coefficients for all blocks in a slice.
     345             :  */
     346           0 : static inline void decode_dc_coeffs(GetBitContext *gb, int16_t *out,
     347             :                                     int nblocks)
     348             : {
     349             :     int16_t prev_dc;
     350             :     int     i, sign;
     351             :     int16_t delta;
     352             :     unsigned int code;
     353             : 
     354           0 :     code   = decode_vlc_codeword(gb, FIRST_DC_CB);
     355           0 :     out[0] = prev_dc = TOSIGNED(code);
     356             : 
     357           0 :     out   += 64; /* move to the DC coeff of the next block */
     358           0 :     delta  = 3;
     359             : 
     360           0 :     for (i = 1; i < nblocks; i++, out += 64) {
     361           0 :         code = decode_vlc_codeword(gb, ff_prores_dc_codebook[FFMIN(FFABS(delta), 3)]);
     362             : 
     363           0 :         sign     = -(((delta >> 15) & 1) ^ (code & 1));
     364           0 :         delta    = (((code + 1) >> 1) ^ sign) - sign;
     365           0 :         prev_dc += delta;
     366           0 :         out[0]   = prev_dc;
     367             :     }
     368           0 : }
     369             : 
     370             : #define MAX_PADDING 16
     371             : 
     372             : /**
     373             :  * Decode AC coefficients for all blocks in a slice.
     374             :  */
     375           0 : static inline int decode_ac_coeffs(GetBitContext *gb, int16_t *out,
     376             :                                    int blocks_per_slice,
     377             :                                    int plane_size_factor,
     378             :                                    const uint8_t *scan)
     379             : {
     380             :     int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index;
     381             :     int max_coeffs, bits_left;
     382             : 
     383             :     /* set initial prediction values */
     384           0 :     run   = 4;
     385           0 :     level = 2;
     386             : 
     387           0 :     max_coeffs = blocks_per_slice << 6;
     388           0 :     block_mask = blocks_per_slice - 1;
     389             : 
     390           0 :     for (pos = blocks_per_slice - 1; pos < max_coeffs;) {
     391           0 :         run_cb_index = ff_prores_run_to_cb_index[FFMIN(run, 15)];
     392           0 :         lev_cb_index = ff_prores_lev_to_cb_index[FFMIN(level, 9)];
     393             : 
     394           0 :         bits_left = get_bits_left(gb);
     395           0 :         if (bits_left <= 0 || (bits_left <= MAX_PADDING && !show_bits(gb, bits_left)))
     396           0 :             return 0;
     397             : 
     398           0 :         run = decode_vlc_codeword(gb, ff_prores_ac_codebook[run_cb_index]);
     399           0 :         if (run < 0)
     400           0 :             return AVERROR_INVALIDDATA;
     401             : 
     402           0 :         bits_left = get_bits_left(gb);
     403           0 :         if (bits_left <= 0 || (bits_left <= MAX_PADDING && !show_bits(gb, bits_left)))
     404           0 :             return AVERROR_INVALIDDATA;
     405             : 
     406           0 :         level = decode_vlc_codeword(gb, ff_prores_ac_codebook[lev_cb_index]) + 1;
     407           0 :         if (level < 0)
     408           0 :             return AVERROR_INVALIDDATA;
     409             : 
     410           0 :         pos += run + 1;
     411           0 :         if (pos >= max_coeffs)
     412           0 :             break;
     413             : 
     414           0 :         sign = get_sbits(gb, 1);
     415           0 :         out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] =
     416           0 :             (level ^ sign) - sign;
     417             :     }
     418             : 
     419           0 :     return 0;
     420             : }
     421             : 
     422             : 
     423             : /**
     424             :  * Decode a slice plane (luma or chroma).
     425             :  */
     426           0 : static int decode_slice_plane(ProresContext *ctx, ProresThreadData *td,
     427             :                               const uint8_t *buf,
     428             :                               int data_size, uint16_t *out_ptr,
     429             :                               int linesize, int mbs_per_slice,
     430             :                               int blocks_per_mb, int plane_size_factor,
     431             :                               const int16_t *qmat, int is_chroma)
     432             : {
     433             :     GetBitContext gb;
     434             :     int16_t *block_ptr;
     435             :     int mb_num, blocks_per_slice, ret;
     436             : 
     437           0 :     blocks_per_slice = mbs_per_slice * blocks_per_mb;
     438             : 
     439           0 :     memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
     440             : 
     441           0 :     init_get_bits(&gb, buf, data_size << 3);
     442             : 
     443           0 :     decode_dc_coeffs(&gb, td->blocks, blocks_per_slice);
     444             : 
     445           0 :     ret = decode_ac_coeffs(&gb, td->blocks, blocks_per_slice,
     446           0 :                            plane_size_factor, ctx->scantable.permutated);
     447           0 :     if (ret < 0)
     448           0 :         return ret;
     449             : 
     450             :     /* inverse quantization, inverse transform and output */
     451           0 :     block_ptr = td->blocks;
     452             : 
     453           0 :     if (!is_chroma) {
     454           0 :         for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
     455           0 :             ctx->dsp.idct_put(out_ptr,                    linesize, block_ptr, qmat);
     456           0 :             block_ptr += 64;
     457           0 :             if (blocks_per_mb > 2) {
     458           0 :                 ctx->dsp.idct_put(out_ptr + 8,            linesize, block_ptr, qmat);
     459           0 :                 block_ptr += 64;
     460             :             }
     461           0 :             ctx->dsp.idct_put(out_ptr + linesize * 4,     linesize, block_ptr, qmat);
     462           0 :             block_ptr += 64;
     463           0 :             if (blocks_per_mb > 2) {
     464           0 :                 ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
     465           0 :                 block_ptr += 64;
     466             :             }
     467             :         }
     468             :     } else {
     469           0 :         for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
     470           0 :             ctx->dsp.idct_put(out_ptr,                    linesize, block_ptr, qmat);
     471           0 :             block_ptr += 64;
     472           0 :             ctx->dsp.idct_put(out_ptr + linesize * 4,     linesize, block_ptr, qmat);
     473           0 :             block_ptr += 64;
     474           0 :             if (blocks_per_mb > 2) {
     475           0 :                 ctx->dsp.idct_put(out_ptr + 8,            linesize, block_ptr, qmat);
     476           0 :                 block_ptr += 64;
     477           0 :                 ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
     478           0 :                 block_ptr += 64;
     479             :             }
     480             :         }
     481             :     }
     482           0 :     return 0;
     483             : }
     484             : 
     485             : 
     486           0 : static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs,
     487             :                          const int num_bits)
     488             : {
     489           0 :     const int mask = (1 << num_bits) - 1;
     490             :     int i, idx, val, alpha_val;
     491             : 
     492           0 :     idx       = 0;
     493           0 :     alpha_val = mask;
     494             :     do {
     495             :         do {
     496           0 :             if (get_bits1(gb))
     497           0 :                 val = get_bits(gb, num_bits);
     498             :             else {
     499             :                 int sign;
     500           0 :                 val  = get_bits(gb, num_bits == 16 ? 7 : 4);
     501           0 :                 sign = val & 1;
     502           0 :                 val  = (val + 2) >> 1;
     503           0 :                 if (sign)
     504           0 :                     val = -val;
     505             :             }
     506           0 :             alpha_val = (alpha_val + val) & mask;
     507           0 :             if (num_bits == 16)
     508           0 :                 dst[idx++] = alpha_val >> 6;
     509             :             else
     510           0 :                 dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
     511           0 :             if (idx >= num_coeffs) {
     512           0 :                 break;
     513             :             }
     514           0 :         } while (get_bits1(gb));
     515           0 :         val = get_bits(gb, 4);
     516           0 :         if (!val)
     517           0 :             val = get_bits(gb, 11);
     518           0 :         if (idx + val > num_coeffs)
     519           0 :             val = num_coeffs - idx;
     520           0 :         if (num_bits == 16)
     521           0 :             for (i = 0; i < val; i++)
     522           0 :                 dst[idx++] = alpha_val >> 6;
     523             :         else
     524           0 :             for (i = 0; i < val; i++)
     525           0 :                 dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
     526           0 :     } while (idx < num_coeffs);
     527           0 : }
     528             : 
     529             : /**
     530             :  * Decode alpha slice plane.
     531             :  */
     532           0 : static void decode_alpha_plane(ProresContext *ctx, ProresThreadData *td,
     533             :                                const uint8_t *buf, int data_size,
     534             :                                uint16_t *out_ptr, int linesize,
     535             :                                int mbs_per_slice)
     536             : {
     537             :     GetBitContext gb;
     538             :     int i;
     539             :     uint16_t *block_ptr;
     540             : 
     541           0 :     memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
     542             : 
     543           0 :     init_get_bits(&gb, buf, data_size << 3);
     544             : 
     545           0 :     if (ctx->alpha_info == 2)
     546           0 :         unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 16);
     547             :     else
     548           0 :         unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 8);
     549             : 
     550           0 :     block_ptr = td->blocks;
     551             : 
     552           0 :     for (i = 0; i < 16; i++) {
     553           0 :         memcpy(out_ptr, block_ptr, 16 * mbs_per_slice * sizeof(*out_ptr));
     554           0 :         out_ptr   += linesize >> 1;
     555           0 :         block_ptr += 16 * mbs_per_slice;
     556             :     }
     557           0 : }
     558             : 
     559           0 : static int decode_slice(AVCodecContext *avctx, void *tdata)
     560             : {
     561           0 :     ProresThreadData *td = tdata;
     562           0 :     ProresContext *ctx = avctx->priv_data;
     563           0 :     int mb_x_pos  = td->x_pos;
     564           0 :     int mb_y_pos  = td->y_pos;
     565           0 :     int pic_num   = ctx->pic_num;
     566           0 :     int slice_num = td->slice_num;
     567           0 :     int mbs_per_slice = td->slice_width;
     568             :     const uint8_t *buf;
     569             :     uint8_t *y_data, *u_data, *v_data, *a_data;
     570           0 :     AVFrame *pic = ctx->frame;
     571             :     int i, sf, slice_width_factor;
     572             :     int slice_data_size, hdr_size;
     573             :     int y_data_size, u_data_size, v_data_size, a_data_size;
     574             :     int y_linesize, u_linesize, v_linesize, a_linesize;
     575             :     int coff[4];
     576             :     int ret;
     577             : 
     578           0 :     buf             = ctx->slice_data[slice_num].index;
     579           0 :     slice_data_size = ctx->slice_data[slice_num + 1].index - buf;
     580             : 
     581           0 :     slice_width_factor = av_log2(mbs_per_slice);
     582             : 
     583           0 :     y_data     = pic->data[0];
     584           0 :     u_data     = pic->data[1];
     585           0 :     v_data     = pic->data[2];
     586           0 :     a_data     = pic->data[3];
     587           0 :     y_linesize = pic->linesize[0];
     588           0 :     u_linesize = pic->linesize[1];
     589           0 :     v_linesize = pic->linesize[2];
     590           0 :     a_linesize = pic->linesize[3];
     591             : 
     592           0 :     if (pic->interlaced_frame) {
     593           0 :         if (!(pic_num ^ pic->top_field_first)) {
     594           0 :             y_data += y_linesize;
     595           0 :             u_data += u_linesize;
     596           0 :             v_data += v_linesize;
     597           0 :             if (a_data)
     598           0 :                 a_data += a_linesize;
     599             :         }
     600           0 :         y_linesize <<= 1;
     601           0 :         u_linesize <<= 1;
     602           0 :         v_linesize <<= 1;
     603           0 :         a_linesize <<= 1;
     604             :     }
     605           0 :     y_data += (mb_y_pos << 4) * y_linesize + (mb_x_pos << 5);
     606           0 :     u_data += (mb_y_pos << 4) * u_linesize + (mb_x_pos << ctx->mb_chroma_factor);
     607           0 :     v_data += (mb_y_pos << 4) * v_linesize + (mb_x_pos << ctx->mb_chroma_factor);
     608           0 :     if (a_data)
     609           0 :         a_data += (mb_y_pos << 4) * a_linesize + (mb_x_pos << 5);
     610             : 
     611           0 :     if (slice_data_size < 6) {
     612           0 :         av_log(avctx, AV_LOG_ERROR, "slice data too small\n");
     613           0 :         return AVERROR_INVALIDDATA;
     614             :     }
     615             : 
     616             :     /* parse slice header */
     617           0 :     hdr_size    = buf[0] >> 3;
     618           0 :     coff[0]     = hdr_size;
     619           0 :     y_data_size = AV_RB16(buf + 2);
     620           0 :     coff[1]     = coff[0] + y_data_size;
     621           0 :     u_data_size = AV_RB16(buf + 4);
     622           0 :     coff[2]     = coff[1] + u_data_size;
     623           0 :     v_data_size = hdr_size > 7 ? AV_RB16(buf + 6) : slice_data_size - coff[2];
     624           0 :     coff[3]     = coff[2] + v_data_size;
     625           0 :     a_data_size = ctx->alpha_info ? slice_data_size - coff[3] : 0;
     626             : 
     627             :     /* if V or alpha component size is negative that means that previous
     628             :        component sizes are too large */
     629           0 :     if (v_data_size < 0 || a_data_size < 0 || hdr_size < 6 || coff[3] > slice_data_size) {
     630           0 :         av_log(avctx, AV_LOG_ERROR, "invalid data size\n");
     631           0 :         return AVERROR_INVALIDDATA;
     632             :     }
     633             : 
     634           0 :     sf = av_clip(buf[1], 1, 224);
     635           0 :     sf = sf > 128 ? (sf - 96) << 2 : sf;
     636             : 
     637             :     /* scale quantization matrixes according with slice's scale factor */
     638             :     /* TODO: this can be SIMD-optimized a lot */
     639           0 :     if (ctx->qmat_changed || sf != td->prev_slice_sf) {
     640           0 :         td->prev_slice_sf = sf;
     641           0 :         for (i = 0; i < 64; i++) {
     642           0 :             td->qmat_luma_scaled[ctx->dsp.idct_permutation[i]]   = ctx->qmat_luma[i]   * sf;
     643           0 :             td->qmat_chroma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_chroma[i] * sf;
     644             :         }
     645             :     }
     646             : 
     647             :     /* decode luma plane */
     648           0 :     ret = decode_slice_plane(ctx, td, buf + coff[0], y_data_size,
     649             :                              (uint16_t*) y_data, y_linesize,
     650             :                              mbs_per_slice, 4, slice_width_factor + 2,
     651           0 :                              td->qmat_luma_scaled, 0);
     652             : 
     653           0 :     if (ret < 0)
     654           0 :         return ret;
     655             : 
     656             :     /* decode U chroma plane */
     657           0 :     ret = decode_slice_plane(ctx, td, buf + coff[1], u_data_size,
     658             :                              (uint16_t*) u_data, u_linesize,
     659             :                              mbs_per_slice, ctx->num_chroma_blocks,
     660           0 :                              slice_width_factor + ctx->chroma_factor - 1,
     661           0 :                              td->qmat_chroma_scaled, 1);
     662           0 :     if (ret < 0)
     663           0 :         return ret;
     664             : 
     665             :     /* decode V chroma plane */
     666           0 :     ret = decode_slice_plane(ctx, td, buf + coff[2], v_data_size,
     667             :                              (uint16_t*) v_data, v_linesize,
     668             :                              mbs_per_slice, ctx->num_chroma_blocks,
     669           0 :                              slice_width_factor + ctx->chroma_factor - 1,
     670           0 :                              td->qmat_chroma_scaled, 1);
     671           0 :     if (ret < 0)
     672           0 :         return ret;
     673             : 
     674             :     /* decode alpha plane if available */
     675           0 :     if (a_data && a_data_size)
     676           0 :         decode_alpha_plane(ctx, td, buf + coff[3], a_data_size,
     677             :                            (uint16_t*) a_data, a_linesize,
     678             :                            mbs_per_slice);
     679             : 
     680           0 :     return 0;
     681             : }
     682             : 
     683             : 
     684           0 : static int decode_picture(ProresContext *ctx, int pic_num,
     685             :                           AVCodecContext *avctx)
     686             : {
     687             :     int slice_num, slice_width, x_pos, y_pos;
     688             : 
     689           0 :     slice_num = 0;
     690             : 
     691           0 :     ctx->pic_num = pic_num;
     692           0 :     for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) {
     693           0 :         slice_width = 1 << ctx->slice_width_factor;
     694             : 
     695           0 :         for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width;
     696           0 :              x_pos += slice_width) {
     697           0 :             while (ctx->num_x_mbs - x_pos < slice_width)
     698           0 :                 slice_width >>= 1;
     699             : 
     700           0 :             ctx->slice_data[slice_num].slice_num   = slice_num;
     701           0 :             ctx->slice_data[slice_num].x_pos       = x_pos;
     702           0 :             ctx->slice_data[slice_num].y_pos       = y_pos;
     703           0 :             ctx->slice_data[slice_num].slice_width = slice_width;
     704             : 
     705           0 :             slice_num++;
     706             :         }
     707             :     }
     708             : 
     709           0 :     return avctx->execute(avctx, decode_slice,
     710           0 :                           ctx->slice_data, NULL, slice_num,
     711             :                           sizeof(ctx->slice_data[0]));
     712             : }
     713             : 
     714             : 
     715             : #define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes)
     716             : 
     717           0 : static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
     718             :                         AVPacket *avpkt)
     719             : {
     720           0 :     ProresContext *ctx = avctx->priv_data;
     721           0 :     const uint8_t *buf = avpkt->data;
     722           0 :     int buf_size       = avpkt->size;
     723             :     int frame_hdr_size, pic_num, pic_data_size;
     724             : 
     725           0 :     ctx->frame            = data;
     726           0 :     ctx->frame->pict_type = AV_PICTURE_TYPE_I;
     727           0 :     ctx->frame->key_frame = 1;
     728             : 
     729             :     /* check frame atom container */
     730           0 :     if (buf_size < 28 || buf_size < AV_RB32(buf) ||
     731           0 :         AV_RB32(buf + 4) != FRAME_ID) {
     732           0 :         av_log(avctx, AV_LOG_ERROR, "invalid frame\n");
     733           0 :         return AVERROR_INVALIDDATA;
     734             :     }
     735             : 
     736           0 :     MOVE_DATA_PTR(8);
     737             : 
     738           0 :     frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
     739           0 :     if (frame_hdr_size < 0)
     740           0 :         return AVERROR_INVALIDDATA;
     741             : 
     742           0 :     MOVE_DATA_PTR(frame_hdr_size);
     743             : 
     744           0 :     if (ff_get_buffer(avctx, ctx->frame, 0) < 0)
     745           0 :         return -1;
     746             : 
     747           0 :     for (pic_num = 0; ctx->frame->interlaced_frame - pic_num + 1; pic_num++) {
     748           0 :         pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx);
     749           0 :         if (pic_data_size < 0)
     750           0 :             return AVERROR_INVALIDDATA;
     751             : 
     752           0 :         if (decode_picture(ctx, pic_num, avctx))
     753           0 :             return -1;
     754             : 
     755           0 :         MOVE_DATA_PTR(pic_data_size);
     756             :     }
     757             : 
     758           0 :     ctx->frame = NULL;
     759           0 :     *got_frame = 1;
     760             : 
     761           0 :     return avpkt->size;
     762             : }
     763             : 
     764             : 
     765           0 : static av_cold int decode_close(AVCodecContext *avctx)
     766             : {
     767           0 :     ProresContext *ctx = avctx->priv_data;
     768             : 
     769           0 :     av_freep(&ctx->slice_data);
     770             : 
     771           0 :     return 0;
     772             : }
     773             : 
     774             : 
     775             : AVCodec ff_prores_lgpl_decoder = {
     776             :     .name           = "prores_lgpl",
     777             :     .long_name      = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"),
     778             :     .type           = AVMEDIA_TYPE_VIDEO,
     779             :     .id             = AV_CODEC_ID_PRORES,
     780             :     .priv_data_size = sizeof(ProresContext),
     781             :     .init           = decode_init,
     782             :     .close          = decode_close,
     783             :     .decode         = decode_frame,
     784             :     .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SLICE_THREADS,
     785             : };

Generated by: LCOV version 1.13