LCOV - code coverage report
Current view: top level - libavcodec - mpegaudiodsp_template.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 155 155 100.0 %
Date: 2017-12-16 01:21:47 Functions: 12 12 100.0 %

          Line data    Source code
       1             : /*
       2             :  * Copyright (c) 2001, 2002 Fabrice Bellard
       3             :  *
       4             :  * This file is part of FFmpeg.
       5             :  *
       6             :  * FFmpeg is free software; you can redistribute it and/or
       7             :  * modify it under the terms of the GNU Lesser General Public
       8             :  * License as published by the Free Software Foundation; either
       9             :  * version 2.1 of the License, or (at your option) any later version.
      10             :  *
      11             :  * FFmpeg is distributed in the hope that it will be useful,
      12             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      13             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      14             :  * Lesser General Public License for more details.
      15             :  *
      16             :  * You should have received a copy of the GNU Lesser General Public
      17             :  * License along with FFmpeg; if not, write to the Free Software
      18             :  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
      19             :  */
      20             : 
      21             : #include <stdint.h>
      22             : 
      23             : #include "libavutil/attributes.h"
      24             : #include "libavutil/mem.h"
      25             : #include "dct32.h"
      26             : #include "mathops.h"
      27             : #include "mpegaudiodsp.h"
      28             : #include "mpegaudio.h"
      29             : 
      30             : #if USE_FLOATS
      31             : #define RENAME(n) n##_float
      32             : 
      33     2928768 : static inline float round_sample(float *sum)
      34             : {
      35     2928768 :     float sum1=*sum;
      36     2928768 :     *sum = 0;
      37     2928768 :     return sum1;
      38             : }
      39             : 
      40             : #define MACS(rt, ra, rb) rt+=(ra)*(rb)
      41             : #define MULS(ra, rb) ((ra)*(rb))
      42             : #define MULH3(x, y, s) ((s)*(y)*(x))
      43             : #define MLSS(rt, ra, rb) rt-=(ra)*(rb)
      44             : #define MULLx(x, y, s) ((y)*(x))
      45             : #define FIXHR(x)        ((float)(x))
      46             : #define FIXR(x)        ((float)(x))
      47             : #define SHR(a,b)       ((a)*(1.0f/(1<<(b))))
      48             : 
      49             : #else
      50             : 
      51             : #define RENAME(n) n##_fixed
      52             : #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
      53             : 
      54     8583552 : static inline int round_sample(int64_t *sum)
      55             : {
      56             :     int sum1;
      57     8583552 :     sum1 = (int)((*sum) >> OUT_SHIFT);
      58     8583552 :     *sum &= (1<<OUT_SHIFT)-1;
      59     8583552 :     return av_clip_int16(sum1);
      60             : }
      61             : 
      62             : #   define MULS(ra, rb) MUL64(ra, rb)
      63             : #   define MACS(rt, ra, rb) MAC64(rt, ra, rb)
      64             : #   define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
      65             : #   define MULH3(x, y, s) MULH((s)*(x), y)
      66             : #   define MULLx(x, y, s) MULL((int)(x),(y),s)
      67             : #   define SHR(a,b)       (((int)(a))>>(b))
      68             : #   define FIXR(a)        ((int)((a) * FRAC_ONE + 0.5))
      69             : #   define FIXHR(a)       ((int)((a) * (1LL<<32) + 0.5))
      70             : #endif
      71             : 
      72             : /** Window for MDCT. Actually only the elements in [0,17] and
      73             :     [MDCT_BUF_SIZE/2, MDCT_BUF_SIZE/2 + 17] are actually used. The rest
      74             :     is just to preserve alignment for SIMD implementations.
      75             : */
      76             : DECLARE_ALIGNED(16, INTFLOAT, RENAME(ff_mdct_win))[8][MDCT_BUF_SIZE];
      77             : 
      78             : DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
      79             : 
      80             : #define SUM8(op, sum, w, p)               \
      81             : {                                         \
      82             :     op(sum, (w)[0 * 64], (p)[0 * 64]);    \
      83             :     op(sum, (w)[1 * 64], (p)[1 * 64]);    \
      84             :     op(sum, (w)[2 * 64], (p)[2 * 64]);    \
      85             :     op(sum, (w)[3 * 64], (p)[3 * 64]);    \
      86             :     op(sum, (w)[4 * 64], (p)[4 * 64]);    \
      87             :     op(sum, (w)[5 * 64], (p)[5 * 64]);    \
      88             :     op(sum, (w)[6 * 64], (p)[6 * 64]);    \
      89             :     op(sum, (w)[7 * 64], (p)[7 * 64]);    \
      90             : }
      91             : 
      92             : #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
      93             : {                                               \
      94             :     INTFLOAT tmp;\
      95             :     tmp = p[0 * 64];\
      96             :     op1(sum1, (w1)[0 * 64], tmp);\
      97             :     op2(sum2, (w2)[0 * 64], tmp);\
      98             :     tmp = p[1 * 64];\
      99             :     op1(sum1, (w1)[1 * 64], tmp);\
     100             :     op2(sum2, (w2)[1 * 64], tmp);\
     101             :     tmp = p[2 * 64];\
     102             :     op1(sum1, (w1)[2 * 64], tmp);\
     103             :     op2(sum2, (w2)[2 * 64], tmp);\
     104             :     tmp = p[3 * 64];\
     105             :     op1(sum1, (w1)[3 * 64], tmp);\
     106             :     op2(sum2, (w2)[3 * 64], tmp);\
     107             :     tmp = p[4 * 64];\
     108             :     op1(sum1, (w1)[4 * 64], tmp);\
     109             :     op2(sum2, (w2)[4 * 64], tmp);\
     110             :     tmp = p[5 * 64];\
     111             :     op1(sum1, (w1)[5 * 64], tmp);\
     112             :     op2(sum2, (w2)[5 * 64], tmp);\
     113             :     tmp = p[6 * 64];\
     114             :     op1(sum1, (w1)[6 * 64], tmp);\
     115             :     op2(sum2, (w2)[6 * 64], tmp);\
     116             :     tmp = p[7 * 64];\
     117             :     op1(sum1, (w1)[7 * 64], tmp);\
     118             :     op2(sum2, (w2)[7 * 64], tmp);\
     119             : }
     120             : 
     121      359760 : void RENAME(ff_mpadsp_apply_window)(MPA_INT *synth_buf, MPA_INT *window,
     122             :                                   int *dither_state, OUT_INT *samples,
     123             :                                   ptrdiff_t incr)
     124             : {
     125             :     register const MPA_INT *w, *w2, *p;
     126             :     int j;
     127             :     OUT_INT *samples2;
     128             : #if USE_FLOATS
     129             :     float sum, sum2;
     130             : #else
     131             :     int64_t sum, sum2;
     132             : #endif
     133             : 
     134             :     /* copy to avoid wrap */
     135      359760 :     memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
     136             : 
     137      359760 :     samples2 = samples + 31 * incr;
     138      359760 :     w = window;
     139      359760 :     w2 = window + 31;
     140             : 
     141      359760 :     sum = *dither_state;
     142      359760 :     p = synth_buf + 16;
     143      359760 :     SUM8(MACS, sum, w, p);
     144      359760 :     p = synth_buf + 48;
     145      359760 :     SUM8(MLSS, sum, w + 32, p);
     146      359760 :     *samples = round_sample(&sum);
     147      359760 :     samples += incr;
     148      359760 :     w++;
     149             : 
     150             :     /* we calculate two samples at the same time to avoid one memory
     151             :        access per two sample */
     152     5756160 :     for(j=1;j<16;j++) {
     153     5396400 :         sum2 = 0;
     154     5396400 :         p = synth_buf + 16 + j;
     155     5396400 :         SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
     156     5396400 :         p = synth_buf + 48 - j;
     157     5396400 :         SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
     158             : 
     159     5396400 :         *samples = round_sample(&sum);
     160     5396400 :         samples += incr;
     161     5396400 :         sum += sum2;
     162     5396400 :         *samples2 = round_sample(&sum);
     163     5396400 :         samples2 -= incr;
     164     5396400 :         w++;
     165     5396400 :         w2--;
     166             :     }
     167             : 
     168      359760 :     p = synth_buf + 32;
     169      359760 :     SUM8(MLSS, sum, w + 32, p);
     170      359760 :     *samples = round_sample(&sum);
     171      359760 :     *dither_state= sum;
     172      359760 : }
     173             : 
     174             : /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
     175             :    32 samples. */
     176      359760 : void RENAME(ff_mpa_synth_filter)(MPADSPContext *s, MPA_INT *synth_buf_ptr,
     177             :                                  int *synth_buf_offset,
     178             :                                  MPA_INT *window, int *dither_state,
     179             :                                  OUT_INT *samples, ptrdiff_t incr,
     180             :                                  MPA_INT *sb_samples)
     181             : {
     182             :     MPA_INT *synth_buf;
     183             :     int offset;
     184             : 
     185      359760 :     offset = *synth_buf_offset;
     186      359760 :     synth_buf = synth_buf_ptr + offset;
     187             : 
     188      359760 :     s->RENAME(dct32)(synth_buf, sb_samples);
     189      359760 :     s->RENAME(apply_window)(synth_buf, window, dither_state, samples, incr);
     190             : 
     191      359760 :     offset = (offset - 32) & 511;
     192      359760 :     *synth_buf_offset = offset;
     193      359760 : }
     194             : 
     195          70 : av_cold void RENAME(ff_mpa_synth_init)(MPA_INT *window)
     196             : {
     197             :     int i, j;
     198             : 
     199             :     /* max = 18760, max sum over all 16 coefs : 44736 */
     200       18060 :     for(i=0;i<257;i++) {
     201             :         INTFLOAT v;
     202       17990 :         v = ff_mpa_enwindow[i];
     203             : #if USE_FLOATS
     204        2313 :         v *= 1.0 / (1LL<<(16 + FRAC_BITS));
     205             : #endif
     206       17990 :         window[i] = v;
     207       17990 :         if ((i & 63) != 0)
     208       17640 :             v = -v;
     209       17990 :         if (i != 0)
     210       17920 :             window[512 - i] = v;
     211             :     }
     212             : 
     213             : 
     214             :     // Needed for avoiding shuffles in ASM implementations
     215         630 :     for(i=0; i < 8; i++)
     216        9520 :         for(j=0; j < 16; j++)
     217        8960 :             window[512+16*i+j] = window[64*i+32-j];
     218             : 
     219         630 :     for(i=0; i < 8; i++)
     220        9520 :         for(j=0; j < 16; j++)
     221        8960 :             window[512+128+16*i+j] = window[64*i+48-j];
     222          70 : }
     223             : 
     224         138 : av_cold void RENAME(ff_init_mpadsp_tabs)(void)
     225             : {
     226             :     int i, j;
     227             :     /* compute mdct windows */
     228        5106 :     for (i = 0; i < 36; i++) {
     229       24840 :         for (j = 0; j < 4; j++) {
     230             :             double d;
     231             : 
     232       19872 :             if (j == 2 && i % 3 != 1)
     233        3312 :                 continue;
     234             : 
     235       16560 :             d = sin(M_PI * (i + 0.5) / 36.0);
     236       16560 :             if (j == 1) {
     237        4968 :                 if      (i >= 30) d = 0;
     238        4140 :                 else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0);
     239        3312 :                 else if (i >= 18) d = 1;
     240       11592 :             } else if (j == 3) {
     241        4968 :                 if      (i <   6) d = 0;
     242        4140 :                 else if (i <  12) d = sin(M_PI * (i -  6 + 0.5) / 12.0);
     243        3312 :                 else if (i <  18) d = 1;
     244             :             }
     245             :             //merge last stage of imdct into the window coefficients
     246       16560 :             d *= 0.5 * IMDCT_SCALAR / cos(M_PI * (2 * i + 19) / 72);
     247             : 
     248       16560 :             if (j == 2)
     249        1656 :                 RENAME(ff_mdct_win)[j][i/3] = FIXHR((d / (1<<5)));
     250             :             else {
     251       14904 :                 int idx = i < 18 ? i : i + (MDCT_BUF_SIZE/2 - 18);
     252       14904 :                 RENAME(ff_mdct_win)[j][idx] = FIXHR((d / (1<<5)));
     253             :             }
     254             :         }
     255             :     }
     256             : 
     257             :     /* NOTE: we do frequency inversion adter the MDCT by changing
     258             :         the sign of the right window coefs */
     259         690 :     for (j = 0; j < 4; j++) {
     260       11592 :         for (i = 0; i < MDCT_BUF_SIZE; i += 2) {
     261       11040 :             RENAME(ff_mdct_win)[j + 4][i    ] =  RENAME(ff_mdct_win)[j][i    ];
     262       11040 :             RENAME(ff_mdct_win)[j + 4][i + 1] = -RENAME(ff_mdct_win)[j][i + 1];
     263             :         }
     264             :     }
     265         138 : }
     266             : /* cos(pi*i/18) */
     267             : #define C1 FIXHR(0.98480775301220805936/2)
     268             : #define C2 FIXHR(0.93969262078590838405/2)
     269             : #define C3 FIXHR(0.86602540378443864676/2)
     270             : #define C4 FIXHR(0.76604444311897803520/2)
     271             : #define C5 FIXHR(0.64278760968653932632/2)
     272             : #define C6 FIXHR(0.5/2)
     273             : #define C7 FIXHR(0.34202014332566873304/2)
     274             : #define C8 FIXHR(0.17364817766693034885/2)
     275             : 
     276             : /* 0.5 / cos(pi*(2*i+1)/36) */
     277             : static const INTFLOAT icos36[9] = {
     278             :     FIXR(0.50190991877167369479),
     279             :     FIXR(0.51763809020504152469), //0
     280             :     FIXR(0.55168895948124587824),
     281             :     FIXR(0.61038729438072803416),
     282             :     FIXR(0.70710678118654752439), //1
     283             :     FIXR(0.87172339781054900991),
     284             :     FIXR(1.18310079157624925896),
     285             :     FIXR(1.93185165257813657349), //2
     286             :     FIXR(5.73685662283492756461),
     287             : };
     288             : 
     289             : /* 0.5 / cos(pi*(2*i+1)/36) */
     290             : static const INTFLOAT icos36h[9] = {
     291             :     FIXHR(0.50190991877167369479/2),
     292             :     FIXHR(0.51763809020504152469/2), //0
     293             :     FIXHR(0.55168895948124587824/2),
     294             :     FIXHR(0.61038729438072803416/2),
     295             :     FIXHR(0.70710678118654752439/2), //1
     296             :     FIXHR(0.87172339781054900991/2),
     297             :     FIXHR(1.18310079157624925896/4),
     298             :     FIXHR(1.93185165257813657349/4), //2
     299             : //    FIXHR(5.73685662283492756461),
     300             : };
     301             : 
     302             : /* using Lee like decomposition followed by hand coded 9 points DCT */
     303      155673 : static void imdct36(INTFLOAT *out, INTFLOAT *buf, SUINTFLOAT *in, INTFLOAT *win)
     304             : {
     305             :     int i, j;
     306             :     SUINTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
     307             :     SUINTFLOAT tmp[18], *tmp1, *in1;
     308             : 
     309     2802114 :     for (i = 17; i >= 1; i--)
     310     2646441 :         in[i] += in[i-1];
     311     1401057 :     for (i = 17; i >= 3; i -= 2)
     312     1245384 :         in[i] += in[i-2];
     313             : 
     314      467019 :     for (j = 0; j < 2; j++) {
     315      311346 :         tmp1 = tmp + j;
     316      311346 :         in1 = in + j;
     317             : 
     318      311346 :         t2 = in1[2*4] + in1[2*8] - in1[2*2];
     319             : 
     320      311346 :         t3 = in1[2*0] + SHR(in1[2*6],1);
     321      311346 :         t1 = in1[2*0] - in1[2*6];
     322      311346 :         tmp1[ 6] = t1 - SHR(t2,1);
     323      311346 :         tmp1[16] = t1 + t2;
     324             : 
     325      311346 :         t0 = MULH3(in1[2*2] + in1[2*4] ,    C2, 2);
     326      311346 :         t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
     327      311346 :         t2 = MULH3(in1[2*2] + in1[2*8] ,   -C4, 2);
     328             : 
     329      311346 :         tmp1[10] = t3 - t0 - t2;
     330      311346 :         tmp1[ 2] = t3 + t0 + t1;
     331      311346 :         tmp1[14] = t3 + t2 - t1;
     332             : 
     333      311346 :         tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
     334      311346 :         t2 = MULH3(in1[2*1] + in1[2*5],    C1, 2);
     335      311346 :         t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
     336      311346 :         t0 = MULH3(in1[2*3], C3, 2);
     337             : 
     338      311346 :         t1 = MULH3(in1[2*1] + in1[2*7],   -C5, 2);
     339             : 
     340      311346 :         tmp1[ 0] = t2 + t3 + t0;
     341      311346 :         tmp1[12] = t2 + t1 - t0;
     342      311346 :         tmp1[ 8] = t3 - t1 - t0;
     343             :     }
     344             : 
     345      155673 :     i = 0;
     346      778365 :     for (j = 0; j < 4; j++) {
     347      622692 :         t0 = tmp[i];
     348      622692 :         t1 = tmp[i + 2];
     349      622692 :         s0 = t1 + t0;
     350      622692 :         s2 = t1 - t0;
     351             : 
     352      622692 :         t2 = tmp[i + 1];
     353      622692 :         t3 = tmp[i + 3];
     354      622692 :         s1 = MULH3(t3 + t2, icos36h[    j], 2);
     355      622692 :         s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS);
     356             : 
     357      622692 :         t0 = s0 + s1;
     358      622692 :         t1 = s0 - s1;
     359      622692 :         out[(9 + j) * SBLIMIT] = MULH3(t1, win[     9 + j], 1) + buf[4*(9 + j)];
     360      622692 :         out[(8 - j) * SBLIMIT] = MULH3(t1, win[     8 - j], 1) + buf[4*(8 - j)];
     361      622692 :         buf[4 * ( 9 + j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + j], 1);
     362      622692 :         buf[4 * ( 8 - j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - j], 1);
     363             : 
     364      622692 :         t0 = s2 + s3;
     365      622692 :         t1 = s2 - s3;
     366      622692 :         out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[     9 + 8 - j], 1) + buf[4*(9 + 8 - j)];
     367      622692 :         out[         j  * SBLIMIT] = MULH3(t1, win[             j], 1) + buf[4*(        j)];
     368      622692 :         buf[4 * ( 9 + 8 - j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 8 - j], 1);
     369      622692 :         buf[4 * (         j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2         + j], 1);
     370      622692 :         i += 4;
     371             :     }
     372             : 
     373      155673 :     s0 = tmp[16];
     374      155673 :     s1 = MULH3(tmp[17], icos36h[4], 2);
     375      155673 :     t0 = s0 + s1;
     376      155673 :     t1 = s0 - s1;
     377      155673 :     out[(9 + 4) * SBLIMIT] = MULH3(t1, win[     9 + 4], 1) + buf[4*(9 + 4)];
     378      155673 :     out[(8 - 4) * SBLIMIT] = MULH3(t1, win[     8 - 4], 1) + buf[4*(8 - 4)];
     379      155673 :     buf[4 * ( 9 + 4     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 4], 1);
     380      155673 :     buf[4 * ( 8 - 4     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - 4], 1);
     381      155673 : }
     382             : 
     383        8114 : void RENAME(ff_imdct36_blocks)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in,
     384             :                                int count, int switch_point, int block_type)
     385             : {
     386             :     int j;
     387      163787 :     for (j=0 ; j < count; j++) {
     388             :         /* apply window & overlap with previous buffer */
     389             : 
     390             :         /* select window */
     391      155673 :         int win_idx = (switch_point && j < 2) ? 0 : block_type;
     392      155673 :         INTFLOAT *win = RENAME(ff_mdct_win)[win_idx + (4 & -(j & 1))];
     393             : 
     394      155673 :         imdct36(out, buf, in, win);
     395             : 
     396      155673 :         in  += 18;
     397      155673 :         buf += ((j&3) != 3 ? 1 : (72-3));
     398      155673 :         out++;
     399             :     }
     400        8114 : }
     401             : 

Generated by: LCOV version 1.13