Line data Source code
1 : /**
2 : * MLP encoder
3 : * Copyright (c) 2008 Ramiro Polla
4 : *
5 : * This file is part of FFmpeg.
6 : *
7 : * FFmpeg is free software; you can redistribute it and/or
8 : * modify it under the terms of the GNU Lesser General Public
9 : * License as published by the Free Software Foundation; either
10 : * version 2.1 of the License, or (at your option) any later version.
11 : *
12 : * FFmpeg is distributed in the hope that it will be useful,
13 : * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 : * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 : * Lesser General Public License for more details.
16 : *
17 : * You should have received a copy of the GNU Lesser General Public
18 : * License along with FFmpeg; if not, write to the Free Software
19 : * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 : */
21 :
22 : #include "avcodec.h"
23 : #include "internal.h"
24 : #include "put_bits.h"
25 : #include "audio_frame_queue.h"
26 : #include "libavutil/crc.h"
27 : #include "libavutil/avstring.h"
28 : #include "libavutil/samplefmt.h"
29 : #include "mlp.h"
30 : #include "lpc.h"
31 :
32 : #define MAJOR_HEADER_INTERVAL 16
33 :
34 : #define MLP_MIN_LPC_ORDER 1
35 : #define MLP_MAX_LPC_ORDER 8
36 : #define MLP_MIN_LPC_SHIFT 8
37 : #define MLP_MAX_LPC_SHIFT 15
38 :
39 : typedef struct {
40 : uint8_t min_channel; ///< The index of the first channel coded in this substream.
41 : uint8_t max_channel; ///< The index of the last channel coded in this substream.
42 : uint8_t max_matrix_channel; ///< The number of channels input into the rematrix stage.
43 :
44 : uint8_t noise_shift; ///< The left shift applied to random noise in 0x31ea substreams.
45 : uint32_t noisegen_seed; ///< The current seed value for the pseudorandom noise generator(s).
46 :
47 : int data_check_present; ///< Set if the substream contains extra info to check the size of VLC blocks.
48 :
49 : int32_t lossless_check_data; ///< XOR of all output samples
50 :
51 : uint8_t max_huff_lsbs; ///< largest huff_lsbs
52 : uint8_t max_output_bits; ///< largest output bit-depth
53 : } RestartHeader;
54 :
55 : typedef struct {
56 : uint8_t count; ///< number of matrices to apply
57 :
58 : uint8_t outch[MAX_MATRICES]; ///< output channel for each matrix
59 : int32_t forco[MAX_MATRICES][MAX_CHANNELS+2]; ///< forward coefficients
60 : int32_t coeff[MAX_MATRICES][MAX_CHANNELS+2]; ///< decoding coefficients
61 : uint8_t fbits[MAX_CHANNELS]; ///< fraction bits
62 :
63 : int8_t shift[MAX_CHANNELS]; ///< Left shift to apply to decoded PCM values to get final 24-bit output.
64 : } MatrixParams;
65 :
66 : enum ParamFlags {
67 : PARAMS_DEFAULT = 0xff,
68 : PARAM_PRESENCE_FLAGS = 1 << 8,
69 : PARAM_BLOCKSIZE = 1 << 7,
70 : PARAM_MATRIX = 1 << 6,
71 : PARAM_OUTSHIFT = 1 << 5,
72 : PARAM_QUANTSTEP = 1 << 4,
73 : PARAM_FIR = 1 << 3,
74 : PARAM_IIR = 1 << 2,
75 : PARAM_HUFFOFFSET = 1 << 1,
76 : PARAM_PRESENT = 1 << 0,
77 : };
78 :
79 : typedef struct {
80 : uint16_t blocksize; ///< number of PCM samples in current audio block
81 : uint8_t quant_step_size[MAX_CHANNELS]; ///< left shift to apply to Huffman-decoded residuals
82 :
83 : MatrixParams matrix_params;
84 :
85 : uint8_t param_presence_flags; ///< Bitmask of which parameter sets are conveyed in a decoding parameter block.
86 : } DecodingParams;
87 :
88 : typedef struct BestOffset {
89 : int16_t offset;
90 : int bitcount;
91 : int lsb_bits;
92 : int16_t min;
93 : int16_t max;
94 : } BestOffset;
95 :
96 : #define HUFF_OFFSET_MIN -16384
97 : #define HUFF_OFFSET_MAX 16383
98 :
99 : /** Number of possible codebooks (counting "no codebooks") */
100 : #define NUM_CODEBOOKS 4
101 :
102 : typedef struct {
103 : AVCodecContext *avctx;
104 :
105 : int num_substreams; ///< Number of substreams contained within this stream.
106 :
107 : int num_channels; /**< Number of channels in major_scratch_buffer.
108 : * Normal channels + noise channels. */
109 :
110 : int coded_sample_fmt [2]; ///< sample format encoded for MLP
111 : int coded_sample_rate[2]; ///< sample rate encoded for MLP
112 : int coded_peak_bitrate; ///< peak bitrate for this major sync header
113 :
114 : int flags; ///< major sync info flags
115 :
116 : /* channel_meaning */
117 : int substream_info;
118 : int fs;
119 : int wordlength;
120 : int channel_occupancy;
121 : int summary_info;
122 :
123 : int32_t *inout_buffer; ///< Pointer to data currently being read from lavc or written to bitstream.
124 : int32_t *major_inout_buffer; ///< Buffer with all in/out data for one entire major frame interval.
125 : int32_t *write_buffer; ///< Pointer to data currently being written to bitstream.
126 : int32_t *sample_buffer; ///< Pointer to current access unit samples.
127 : int32_t *major_scratch_buffer; ///< Scratch buffer big enough to fit all data for one entire major frame interval.
128 : int32_t *last_frame; ///< Pointer to last frame with data to encode.
129 :
130 : int32_t *lpc_sample_buffer;
131 :
132 : unsigned int major_number_of_frames;
133 : unsigned int next_major_number_of_frames;
134 :
135 : unsigned int major_frame_size; ///< Number of samples in current major frame being encoded.
136 : unsigned int next_major_frame_size; ///< Counter of number of samples for next major frame.
137 :
138 : int32_t *lossless_check_data; ///< Array with lossless_check_data for each access unit.
139 :
140 : unsigned int *max_output_bits; ///< largest output bit-depth
141 : unsigned int *frame_size; ///< Array with number of samples/channel in each access unit.
142 : unsigned int frame_index; ///< Index of current frame being encoded.
143 :
144 : unsigned int one_sample_buffer_size; ///< Number of samples*channel for one access unit.
145 :
146 : unsigned int max_restart_interval; ///< Max interval of access units in between two major frames.
147 : unsigned int min_restart_interval; ///< Min interval of access units in between two major frames.
148 : unsigned int restart_intervals; ///< Number of possible major frame sizes.
149 :
150 : uint16_t timestamp; ///< Timestamp of current access unit.
151 : uint16_t dts; ///< Decoding timestamp of current access unit.
152 :
153 : uint8_t channel_arrangement; ///< channel arrangement for MLP streams
154 :
155 : uint8_t ch_modifier_thd0; ///< channel modifier for TrueHD stream 0
156 : uint8_t ch_modifier_thd1; ///< channel modifier for TrueHD stream 1
157 : uint8_t ch_modifier_thd2; ///< channel modifier for TrueHD stream 2
158 :
159 : unsigned int seq_size [MAJOR_HEADER_INTERVAL];
160 : unsigned int seq_offset[MAJOR_HEADER_INTERVAL];
161 : unsigned int sequence_size;
162 :
163 : ChannelParams *channel_params;
164 :
165 : BestOffset best_offset[MAJOR_HEADER_INTERVAL+1][MAX_CHANNELS][NUM_CODEBOOKS];
166 :
167 : DecodingParams *decoding_params;
168 : RestartHeader restart_header [MAX_SUBSTREAMS];
169 :
170 : ChannelParams major_channel_params[MAJOR_HEADER_INTERVAL+1][MAX_CHANNELS]; ///< ChannelParams to be written to bitstream.
171 : DecodingParams major_decoding_params[MAJOR_HEADER_INTERVAL+1][MAX_SUBSTREAMS]; ///< DecodingParams to be written to bitstream.
172 : int major_params_changed[MAJOR_HEADER_INTERVAL+1][MAX_SUBSTREAMS]; ///< params_changed to be written to bitstream.
173 :
174 : unsigned int major_cur_subblock_index;
175 : unsigned int major_filter_state_subblock;
176 : unsigned int major_number_of_subblocks;
177 :
178 : BestOffset (*cur_best_offset)[NUM_CODEBOOKS];
179 : ChannelParams *cur_channel_params;
180 : DecodingParams *cur_decoding_params;
181 : RestartHeader *cur_restart_header;
182 :
183 : AudioFrameQueue afq;
184 :
185 : /* Analysis stage. */
186 : unsigned int starting_frame_index;
187 : unsigned int number_of_frames;
188 : unsigned int number_of_samples;
189 : unsigned int number_of_subblocks;
190 : unsigned int seq_index; ///< Sequence index for high compression levels.
191 :
192 : ChannelParams *prev_channel_params;
193 : DecodingParams *prev_decoding_params;
194 :
195 : ChannelParams *seq_channel_params;
196 : DecodingParams *seq_decoding_params;
197 :
198 : unsigned int max_codebook_search;
199 :
200 : LPCContext lpc_ctx;
201 : } MLPEncodeContext;
202 :
203 : static ChannelParams restart_channel_params[MAX_CHANNELS];
204 : static DecodingParams restart_decoding_params[MAX_SUBSTREAMS];
205 : static BestOffset restart_best_offset[NUM_CODEBOOKS] = {{0}};
206 :
207 : #define SYNC_MAJOR 0xf8726f
208 : #define MAJOR_SYNC_INFO_SIGNATURE 0xB752
209 :
210 : #define SYNC_MLP 0xbb
211 : #define SYNC_TRUEHD 0xba
212 :
213 : /* must be set for DVD-A */
214 : #define FLAGS_DVDA 0x4000
215 : /* FIFO delay must be constant */
216 : #define FLAGS_CONST 0x8000
217 :
218 : #define SUBSTREAM_INFO_MAX_2_CHAN 0x01
219 : #define SUBSTREAM_INFO_HIGH_RATE 0x02
220 : #define SUBSTREAM_INFO_ALWAYS_SET 0x04
221 : #define SUBSTREAM_INFO_2_SUBSTREAMS 0x08
222 :
223 : /****************************************************************************
224 : ************ Functions that copy, clear, or compare parameters *************
225 : ****************************************************************************/
226 :
227 : /** Compares two FilterParams structures and returns 1 if anything has
228 : * changed. Returns 0 if they are both equal.
229 : */
230 0 : static int compare_filter_params(const ChannelParams *prev_cp, const ChannelParams *cp, int filter)
231 : {
232 0 : const FilterParams *prev = &prev_cp->filter_params[filter];
233 0 : const FilterParams *fp = &cp->filter_params[filter];
234 : int i;
235 :
236 0 : if (prev->order != fp->order)
237 0 : return 1;
238 :
239 0 : if (!prev->order)
240 0 : return 0;
241 :
242 0 : if (prev->shift != fp->shift)
243 0 : return 1;
244 :
245 0 : for (i = 0; i < fp->order; i++)
246 0 : if (prev_cp->coeff[filter][i] != cp->coeff[filter][i])
247 0 : return 1;
248 :
249 0 : return 0;
250 : }
251 :
252 : /** Compare two primitive matrices and returns 1 if anything has changed.
253 : * Returns 0 if they are both equal.
254 : */
255 0 : static int compare_matrix_params(MLPEncodeContext *ctx, const MatrixParams *prev, const MatrixParams *mp)
256 : {
257 0 : RestartHeader *rh = ctx->cur_restart_header;
258 : unsigned int channel, mat;
259 :
260 0 : if (prev->count != mp->count)
261 0 : return 1;
262 :
263 0 : if (!prev->count)
264 0 : return 0;
265 :
266 0 : for (channel = rh->min_channel; channel <= rh->max_channel; channel++)
267 0 : if (prev->fbits[channel] != mp->fbits[channel])
268 0 : return 1;
269 :
270 0 : for (mat = 0; mat < mp->count; mat++) {
271 0 : if (prev->outch[mat] != mp->outch[mat])
272 0 : return 1;
273 :
274 0 : for (channel = 0; channel < ctx->num_channels; channel++)
275 0 : if (prev->coeff[mat][channel] != mp->coeff[mat][channel])
276 0 : return 1;
277 : }
278 :
279 0 : return 0;
280 : }
281 :
282 : /** Compares two DecodingParams and ChannelParams structures to decide if a
283 : * new decoding params header has to be written.
284 : */
285 0 : static int compare_decoding_params(MLPEncodeContext *ctx)
286 : {
287 0 : DecodingParams *prev = ctx->prev_decoding_params;
288 0 : DecodingParams *dp = ctx->cur_decoding_params;
289 0 : MatrixParams *prev_mp = &prev->matrix_params;
290 0 : MatrixParams *mp = &dp->matrix_params;
291 0 : RestartHeader *rh = ctx->cur_restart_header;
292 : unsigned int ch;
293 0 : int retval = 0;
294 :
295 0 : if (prev->param_presence_flags != dp->param_presence_flags)
296 0 : retval |= PARAM_PRESENCE_FLAGS;
297 :
298 0 : if (prev->blocksize != dp->blocksize)
299 0 : retval |= PARAM_BLOCKSIZE;
300 :
301 0 : if (compare_matrix_params(ctx, prev_mp, mp))
302 0 : retval |= PARAM_MATRIX;
303 :
304 0 : for (ch = 0; ch <= rh->max_matrix_channel; ch++)
305 0 : if (prev_mp->shift[ch] != mp->shift[ch]) {
306 0 : retval |= PARAM_OUTSHIFT;
307 0 : break;
308 : }
309 :
310 0 : for (ch = 0; ch <= rh->max_channel; ch++)
311 0 : if (prev->quant_step_size[ch] != dp->quant_step_size[ch]) {
312 0 : retval |= PARAM_QUANTSTEP;
313 0 : break;
314 : }
315 :
316 0 : for (ch = rh->min_channel; ch <= rh->max_channel; ch++) {
317 0 : ChannelParams *prev_cp = &ctx->prev_channel_params[ch];
318 0 : ChannelParams *cp = &ctx->cur_channel_params[ch];
319 :
320 0 : if (!(retval & PARAM_FIR) &&
321 0 : compare_filter_params(prev_cp, cp, FIR))
322 0 : retval |= PARAM_FIR;
323 :
324 0 : if (!(retval & PARAM_IIR) &&
325 0 : compare_filter_params(prev_cp, cp, IIR))
326 0 : retval |= PARAM_IIR;
327 :
328 0 : if (prev_cp->huff_offset != cp->huff_offset)
329 0 : retval |= PARAM_HUFFOFFSET;
330 :
331 0 : if (prev_cp->codebook != cp->codebook ||
332 0 : prev_cp->huff_lsbs != cp->huff_lsbs )
333 0 : retval |= 0x1;
334 : }
335 :
336 0 : return retval;
337 : }
338 :
339 0 : static void copy_filter_params(ChannelParams *dst_cp, ChannelParams *src_cp, int filter)
340 : {
341 0 : FilterParams *dst = &dst_cp->filter_params[filter];
342 0 : FilterParams *src = &src_cp->filter_params[filter];
343 : unsigned int order;
344 :
345 0 : dst->order = src->order;
346 :
347 0 : if (dst->order) {
348 0 : dst->shift = src->shift;
349 :
350 0 : dst->coeff_shift = src->coeff_shift;
351 0 : dst->coeff_bits = src->coeff_bits;
352 : }
353 :
354 0 : for (order = 0; order < dst->order; order++)
355 0 : dst_cp->coeff[filter][order] = src_cp->coeff[filter][order];
356 0 : }
357 :
358 0 : static void copy_matrix_params(MatrixParams *dst, MatrixParams *src)
359 : {
360 0 : dst->count = src->count;
361 :
362 0 : if (dst->count) {
363 : unsigned int channel, count;
364 :
365 0 : for (channel = 0; channel < MAX_CHANNELS; channel++) {
366 :
367 0 : dst->fbits[channel] = src->fbits[channel];
368 0 : dst->shift[channel] = src->shift[channel];
369 :
370 0 : for (count = 0; count < MAX_MATRICES; count++)
371 0 : dst->coeff[count][channel] = src->coeff[count][channel];
372 : }
373 :
374 0 : for (count = 0; count < MAX_MATRICES; count++)
375 0 : dst->outch[count] = src->outch[count];
376 : }
377 0 : }
378 :
379 0 : static void copy_restart_frame_params(MLPEncodeContext *ctx,
380 : unsigned int substr)
381 : {
382 : unsigned int index;
383 :
384 0 : for (index = 0; index < ctx->number_of_subblocks; index++) {
385 0 : DecodingParams *dp = ctx->seq_decoding_params + index*(ctx->num_substreams) + substr;
386 : unsigned int channel;
387 :
388 0 : copy_matrix_params(&dp->matrix_params, &ctx->cur_decoding_params->matrix_params);
389 :
390 0 : for (channel = 0; channel < ctx->avctx->channels; channel++) {
391 0 : ChannelParams *cp = ctx->seq_channel_params + index*(ctx->avctx->channels) + channel;
392 : unsigned int filter;
393 :
394 0 : dp->quant_step_size[channel] = ctx->cur_decoding_params->quant_step_size[channel];
395 0 : dp->matrix_params.shift[channel] = ctx->cur_decoding_params->matrix_params.shift[channel];
396 :
397 0 : if (index)
398 0 : for (filter = 0; filter < NUM_FILTERS; filter++)
399 0 : copy_filter_params(cp, &ctx->cur_channel_params[channel], filter);
400 : }
401 : }
402 0 : }
403 :
404 : /** Clears a DecodingParams struct the way it should be after a restart header. */
405 0 : static void clear_decoding_params(MLPEncodeContext *ctx, DecodingParams decoding_params[MAX_SUBSTREAMS])
406 : {
407 : unsigned int substr;
408 :
409 0 : for (substr = 0; substr < ctx->num_substreams; substr++) {
410 0 : DecodingParams *dp = &decoding_params[substr];
411 :
412 0 : dp->param_presence_flags = 0xff;
413 0 : dp->blocksize = 8;
414 :
415 0 : memset(&dp->matrix_params , 0, sizeof(MatrixParams ));
416 0 : memset(dp->quant_step_size, 0, sizeof(dp->quant_step_size));
417 : }
418 0 : }
419 :
420 : /** Clears a ChannelParams struct the way it should be after a restart header. */
421 0 : static void clear_channel_params(MLPEncodeContext *ctx, ChannelParams channel_params[MAX_CHANNELS])
422 : {
423 : unsigned int channel;
424 :
425 0 : for (channel = 0; channel < ctx->avctx->channels; channel++) {
426 0 : ChannelParams *cp = &channel_params[channel];
427 :
428 0 : memset(&cp->filter_params, 0, sizeof(cp->filter_params));
429 :
430 : /* Default audio coding is 24-bit raw PCM. */
431 0 : cp->huff_offset = 0;
432 0 : cp->codebook = 0;
433 0 : cp->huff_lsbs = 24;
434 : }
435 0 : }
436 :
437 : /** Sets default vales in our encoder for a DecodingParams struct. */
438 0 : static void default_decoding_params(MLPEncodeContext *ctx,
439 : DecodingParams decoding_params[MAX_SUBSTREAMS])
440 : {
441 : unsigned int substr;
442 :
443 0 : clear_decoding_params(ctx, decoding_params);
444 :
445 0 : for (substr = 0; substr < ctx->num_substreams; substr++) {
446 0 : DecodingParams *dp = &decoding_params[substr];
447 0 : uint8_t param_presence_flags = 0;
448 :
449 0 : param_presence_flags |= PARAM_BLOCKSIZE;
450 0 : param_presence_flags |= PARAM_MATRIX;
451 0 : param_presence_flags |= PARAM_OUTSHIFT;
452 0 : param_presence_flags |= PARAM_QUANTSTEP;
453 0 : param_presence_flags |= PARAM_FIR;
454 : /* param_presence_flags |= PARAM_IIR; */
455 0 : param_presence_flags |= PARAM_HUFFOFFSET;
456 0 : param_presence_flags |= PARAM_PRESENT;
457 :
458 0 : dp->param_presence_flags = param_presence_flags;
459 : }
460 0 : }
461 :
462 : /****************************************************************************/
463 :
464 : /** Calculates the smallest number of bits it takes to encode a given signed
465 : * value in two's complement.
466 : */
467 0 : static int inline number_sbits(int number)
468 : {
469 0 : if (number < 0)
470 0 : number++;
471 :
472 0 : return av_log2(FFABS(number)) + 1 + !!number;
473 : }
474 :
475 : enum InputBitDepth {
476 : BITS_16,
477 : BITS_20,
478 : BITS_24,
479 : };
480 :
481 0 : static int mlp_peak_bitrate(int peak_bitrate, int sample_rate)
482 : {
483 0 : return ((peak_bitrate << 4) - 8) / sample_rate;
484 : }
485 :
486 0 : static av_cold int mlp_encode_init(AVCodecContext *avctx)
487 : {
488 0 : MLPEncodeContext *ctx = avctx->priv_data;
489 : unsigned int substr, index;
490 0 : unsigned int sum = 0;
491 : unsigned int size;
492 : int ret;
493 :
494 0 : ctx->avctx = avctx;
495 :
496 0 : switch (avctx->sample_rate) {
497 0 : case 44100 << 0:
498 0 : avctx->frame_size = 40 << 0;
499 0 : ctx->coded_sample_rate[0] = 0x08 + 0;
500 0 : ctx->fs = 0x08 + 1;
501 0 : break;
502 0 : case 44100 << 1:
503 0 : avctx->frame_size = 40 << 1;
504 0 : ctx->coded_sample_rate[0] = 0x08 + 1;
505 0 : ctx->fs = 0x0C + 1;
506 0 : break;
507 0 : case 44100 << 2:
508 0 : ctx->substream_info |= SUBSTREAM_INFO_HIGH_RATE;
509 0 : avctx->frame_size = 40 << 2;
510 0 : ctx->coded_sample_rate[0] = 0x08 + 2;
511 0 : ctx->fs = 0x10 + 1;
512 0 : break;
513 0 : case 48000 << 0:
514 0 : avctx->frame_size = 40 << 0;
515 0 : ctx->coded_sample_rate[0] = 0x00 + 0;
516 0 : ctx->fs = 0x08 + 2;
517 0 : break;
518 0 : case 48000 << 1:
519 0 : avctx->frame_size = 40 << 1;
520 0 : ctx->coded_sample_rate[0] = 0x00 + 1;
521 0 : ctx->fs = 0x0C + 2;
522 0 : break;
523 0 : case 48000 << 2:
524 0 : ctx->substream_info |= SUBSTREAM_INFO_HIGH_RATE;
525 0 : avctx->frame_size = 40 << 2;
526 0 : ctx->coded_sample_rate[0] = 0x00 + 2;
527 0 : ctx->fs = 0x10 + 2;
528 0 : break;
529 0 : default:
530 0 : av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate %d. Supported "
531 : "sample rates are 44100, 88200, 176400, 48000, "
532 : "96000, and 192000.\n", avctx->sample_rate);
533 0 : return -1;
534 : }
535 0 : ctx->coded_sample_rate[1] = -1 & 0xf;
536 :
537 : /* TODO Keep count of bitrate and calculate real value. */
538 0 : ctx->coded_peak_bitrate = mlp_peak_bitrate(9600000, avctx->sample_rate);
539 :
540 : /* TODO support more channels. */
541 0 : if (avctx->channels > 2) {
542 0 : av_log(avctx, AV_LOG_WARNING,
543 : "Only mono and stereo are supported at the moment.\n");
544 : }
545 :
546 0 : ctx->substream_info |= SUBSTREAM_INFO_ALWAYS_SET;
547 0 : if (avctx->channels <= 2) {
548 0 : ctx->substream_info |= SUBSTREAM_INFO_MAX_2_CHAN;
549 : }
550 :
551 0 : switch (avctx->sample_fmt) {
552 0 : case AV_SAMPLE_FMT_S16:
553 0 : ctx->coded_sample_fmt[0] = BITS_16;
554 0 : ctx->wordlength = 16;
555 0 : avctx->bits_per_raw_sample = 16;
556 0 : break;
557 : /* TODO 20 bits: */
558 0 : case AV_SAMPLE_FMT_S32:
559 0 : ctx->coded_sample_fmt[0] = BITS_24;
560 0 : ctx->wordlength = 24;
561 0 : avctx->bits_per_raw_sample = 24;
562 0 : break;
563 0 : default:
564 0 : av_log(avctx, AV_LOG_ERROR, "Sample format not supported. "
565 : "Only 16- and 24-bit samples are supported.\n");
566 0 : return -1;
567 : }
568 0 : ctx->coded_sample_fmt[1] = -1 & 0xf;
569 :
570 0 : ctx->dts = -avctx->frame_size;
571 :
572 0 : ctx->num_channels = avctx->channels + 2; /* +2 noise channels */
573 0 : ctx->one_sample_buffer_size = avctx->frame_size
574 0 : * ctx->num_channels;
575 : /* TODO Let user pass major header interval as parameter. */
576 0 : ctx->max_restart_interval = MAJOR_HEADER_INTERVAL;
577 :
578 0 : ctx->max_codebook_search = 3;
579 0 : ctx->min_restart_interval = MAJOR_HEADER_INTERVAL;
580 0 : ctx->restart_intervals = ctx->max_restart_interval / ctx->min_restart_interval;
581 :
582 : /* TODO Let user pass parameters for LPC filter. */
583 :
584 0 : size = avctx->frame_size * ctx->max_restart_interval;
585 :
586 0 : ctx->lpc_sample_buffer = av_malloc_array(size, sizeof(int32_t));
587 0 : if (!ctx->lpc_sample_buffer) {
588 0 : av_log(avctx, AV_LOG_ERROR,
589 : "Not enough memory for buffering samples.\n");
590 0 : return AVERROR(ENOMEM);
591 : }
592 :
593 0 : size = ctx->one_sample_buffer_size * ctx->max_restart_interval;
594 :
595 0 : ctx->major_scratch_buffer = av_malloc_array(size, sizeof(int32_t));
596 0 : if (!ctx->major_scratch_buffer) {
597 0 : av_log(avctx, AV_LOG_ERROR,
598 : "Not enough memory for buffering samples.\n");
599 0 : return AVERROR(ENOMEM);
600 : }
601 :
602 0 : ctx->major_inout_buffer = av_malloc_array(size, sizeof(int32_t));
603 0 : if (!ctx->major_inout_buffer) {
604 0 : av_log(avctx, AV_LOG_ERROR,
605 : "Not enough memory for buffering samples.\n");
606 0 : return AVERROR(ENOMEM);
607 : }
608 :
609 0 : ff_mlp_init_crc();
610 :
611 0 : ctx->num_substreams = 1; // TODO: change this after adding multi-channel support for TrueHD
612 :
613 0 : if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
614 : /* MLP */
615 0 : switch(avctx->channel_layout) {
616 0 : case AV_CH_LAYOUT_MONO:
617 0 : ctx->channel_arrangement = 0; break;
618 0 : case AV_CH_LAYOUT_STEREO:
619 0 : ctx->channel_arrangement = 1; break;
620 0 : case AV_CH_LAYOUT_2_1:
621 0 : ctx->channel_arrangement = 2; break;
622 0 : case AV_CH_LAYOUT_QUAD:
623 0 : ctx->channel_arrangement = 3; break;
624 0 : case AV_CH_LAYOUT_2POINT1:
625 0 : ctx->channel_arrangement = 4; break;
626 0 : case AV_CH_LAYOUT_SURROUND:
627 0 : ctx->channel_arrangement = 7; break;
628 0 : case AV_CH_LAYOUT_4POINT0:
629 0 : ctx->channel_arrangement = 8; break;
630 0 : case AV_CH_LAYOUT_5POINT0_BACK:
631 0 : ctx->channel_arrangement = 9; break;
632 0 : case AV_CH_LAYOUT_3POINT1:
633 0 : ctx->channel_arrangement = 10; break;
634 0 : case AV_CH_LAYOUT_4POINT1:
635 0 : ctx->channel_arrangement = 11; break;
636 0 : case AV_CH_LAYOUT_5POINT1_BACK:
637 0 : ctx->channel_arrangement = 12; break;
638 0 : default:
639 0 : av_log(avctx, AV_LOG_ERROR, "Unsupported channel arrangement\n");
640 0 : return -1;
641 : }
642 0 : ctx->flags = FLAGS_DVDA;
643 0 : ctx->channel_occupancy = ff_mlp_ch_info[ctx->channel_arrangement].channel_occupancy;
644 0 : ctx->summary_info = ff_mlp_ch_info[ctx->channel_arrangement].summary_info ;
645 : } else {
646 : /* TrueHD */
647 0 : switch(avctx->channel_layout) {
648 0 : case AV_CH_LAYOUT_STEREO:
649 0 : ctx->ch_modifier_thd0 = 0;
650 0 : ctx->ch_modifier_thd1 = 0;
651 0 : ctx->ch_modifier_thd2 = 0;
652 0 : ctx->channel_arrangement = 1;
653 0 : break;
654 0 : case AV_CH_LAYOUT_5POINT0_BACK:
655 0 : ctx->ch_modifier_thd0 = 1;
656 0 : ctx->ch_modifier_thd1 = 1;
657 0 : ctx->ch_modifier_thd2 = 1;
658 0 : ctx->channel_arrangement = 11;
659 0 : break;
660 0 : case AV_CH_LAYOUT_5POINT1_BACK:
661 0 : ctx->ch_modifier_thd0 = 2;
662 0 : ctx->ch_modifier_thd1 = 1;
663 0 : ctx->ch_modifier_thd2 = 2;
664 0 : ctx->channel_arrangement = 15;
665 0 : break;
666 0 : default:
667 0 : av_log(avctx, AV_LOG_ERROR, "Unsupported channel arrangement\n");
668 0 : return -1;
669 : }
670 0 : ctx->flags = 0;
671 0 : ctx->channel_occupancy = 0;
672 0 : ctx->summary_info = 0;
673 : }
674 :
675 0 : size = sizeof(unsigned int) * ctx->max_restart_interval;
676 :
677 0 : ctx->frame_size = av_malloc(size);
678 0 : if (!ctx->frame_size)
679 0 : return AVERROR(ENOMEM);
680 :
681 0 : ctx->max_output_bits = av_malloc(size);
682 0 : if (!ctx->max_output_bits)
683 0 : return AVERROR(ENOMEM);
684 :
685 0 : size = sizeof(int32_t)
686 0 : * ctx->num_substreams * ctx->max_restart_interval;
687 :
688 0 : ctx->lossless_check_data = av_malloc(size);
689 0 : if (!ctx->lossless_check_data)
690 0 : return AVERROR(ENOMEM);
691 :
692 0 : for (index = 0; index < ctx->restart_intervals; index++) {
693 0 : ctx->seq_offset[index] = sum;
694 0 : ctx->seq_size [index] = ((index + 1) * ctx->min_restart_interval) + 1;
695 0 : sum += ctx->seq_size[index];
696 : }
697 0 : ctx->sequence_size = sum;
698 0 : size = sizeof(ChannelParams)
699 0 : * ctx->restart_intervals * ctx->sequence_size * ctx->avctx->channels;
700 0 : ctx->channel_params = av_malloc(size);
701 0 : if (!ctx->channel_params) {
702 0 : av_log(avctx, AV_LOG_ERROR,
703 : "Not enough memory for analysis context.\n");
704 0 : return AVERROR(ENOMEM);
705 : }
706 :
707 0 : size = sizeof(DecodingParams)
708 0 : * ctx->restart_intervals * ctx->sequence_size * ctx->num_substreams;
709 0 : ctx->decoding_params = av_malloc(size);
710 0 : if (!ctx->decoding_params) {
711 0 : av_log(avctx, AV_LOG_ERROR,
712 : "Not enough memory for analysis context.\n");
713 0 : return AVERROR(ENOMEM);
714 : }
715 :
716 0 : for (substr = 0; substr < ctx->num_substreams; substr++) {
717 0 : RestartHeader *rh = &ctx->restart_header [substr];
718 :
719 : /* TODO see if noisegen_seed is really worth it. */
720 0 : rh->noisegen_seed = 0;
721 :
722 0 : rh->min_channel = 0;
723 0 : rh->max_channel = avctx->channels - 1;
724 : /* FIXME: this works for 1 and 2 channels, but check for more */
725 0 : rh->max_matrix_channel = rh->max_channel;
726 : }
727 :
728 0 : clear_channel_params(ctx, restart_channel_params);
729 0 : clear_decoding_params(ctx, restart_decoding_params);
730 :
731 0 : if ((ret = ff_lpc_init(&ctx->lpc_ctx, ctx->number_of_samples,
732 : MLP_MAX_LPC_ORDER, FF_LPC_TYPE_LEVINSON)) < 0) {
733 0 : av_log(avctx, AV_LOG_ERROR,
734 : "Not enough memory for LPC context.\n");
735 0 : return ret;
736 : }
737 :
738 0 : ff_af_queue_init(avctx, &ctx->afq);
739 :
740 0 : return 0;
741 : }
742 :
743 : /****************************************************************************
744 : ****************** Functions that write to the bitstream *******************
745 : ****************************************************************************/
746 :
747 : /** Writes a major sync header to the bitstream. */
748 0 : static void write_major_sync(MLPEncodeContext *ctx, uint8_t *buf, int buf_size)
749 : {
750 : PutBitContext pb;
751 :
752 0 : init_put_bits(&pb, buf, buf_size);
753 :
754 0 : put_bits(&pb, 24, SYNC_MAJOR );
755 :
756 0 : if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
757 0 : put_bits(&pb, 8, SYNC_MLP );
758 0 : put_bits(&pb, 4, ctx->coded_sample_fmt [0]);
759 0 : put_bits(&pb, 4, ctx->coded_sample_fmt [1]);
760 0 : put_bits(&pb, 4, ctx->coded_sample_rate[0]);
761 0 : put_bits(&pb, 4, ctx->coded_sample_rate[1]);
762 0 : put_bits(&pb, 4, 0 ); /* ignored */
763 0 : put_bits(&pb, 4, 0 ); /* multi_channel_type */
764 0 : put_bits(&pb, 3, 0 ); /* ignored */
765 0 : put_bits(&pb, 5, ctx->channel_arrangement );
766 0 : } else if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
767 0 : put_bits(&pb, 8, SYNC_TRUEHD );
768 0 : put_bits(&pb, 4, ctx->coded_sample_rate[0]);
769 0 : put_bits(&pb, 4, 0 ); /* ignored */
770 0 : put_bits(&pb, 2, ctx->ch_modifier_thd0 );
771 0 : put_bits(&pb, 2, ctx->ch_modifier_thd1 );
772 0 : put_bits(&pb, 5, ctx->channel_arrangement );
773 0 : put_bits(&pb, 2, ctx->ch_modifier_thd2 );
774 0 : put_bits(&pb, 13, ctx->channel_arrangement );
775 : }
776 :
777 0 : put_bits(&pb, 16, MAJOR_SYNC_INFO_SIGNATURE);
778 0 : put_bits(&pb, 16, ctx->flags );
779 0 : put_bits(&pb, 16, 0 ); /* ignored */
780 0 : put_bits(&pb, 1, 1 ); /* is_vbr */
781 0 : put_bits(&pb, 15, ctx->coded_peak_bitrate );
782 0 : put_bits(&pb, 4, 1 ); /* num_substreams */
783 0 : put_bits(&pb, 4, 0x1 ); /* ignored */
784 :
785 : /* channel_meaning */
786 0 : put_bits(&pb, 8, ctx->substream_info );
787 0 : put_bits(&pb, 5, ctx->fs );
788 0 : put_bits(&pb, 5, ctx->wordlength );
789 0 : put_bits(&pb, 6, ctx->channel_occupancy );
790 0 : put_bits(&pb, 3, 0 ); /* ignored */
791 0 : put_bits(&pb, 10, 0 ); /* speaker_layout */
792 0 : put_bits(&pb, 3, 0 ); /* copy_protection */
793 0 : put_bits(&pb, 16, 0x8080 ); /* ignored */
794 0 : put_bits(&pb, 7, 0 ); /* ignored */
795 0 : put_bits(&pb, 4, 0 ); /* source_format */
796 0 : put_bits(&pb, 5, ctx->summary_info );
797 :
798 0 : flush_put_bits(&pb);
799 :
800 0 : AV_WL16(buf+26, ff_mlp_checksum16(buf, 26));
801 0 : }
802 :
803 : /** Writes a restart header to the bitstream. Damaged streams can start being
804 : * decoded losslessly again after such a header and the subsequent decoding
805 : * params header.
806 : */
807 0 : static void write_restart_header(MLPEncodeContext *ctx, PutBitContext *pb)
808 : {
809 0 : RestartHeader *rh = ctx->cur_restart_header;
810 0 : int32_t lossless_check = xor_32_to_8(rh->lossless_check_data);
811 0 : unsigned int start_count = put_bits_count(pb);
812 : PutBitContext tmpb;
813 : uint8_t checksum;
814 : unsigned int ch;
815 :
816 0 : put_bits(pb, 14, 0x31ea ); /* TODO 0x31eb */
817 0 : put_bits(pb, 16, ctx->timestamp );
818 0 : put_bits(pb, 4, rh->min_channel );
819 0 : put_bits(pb, 4, rh->max_channel );
820 0 : put_bits(pb, 4, rh->max_matrix_channel);
821 0 : put_bits(pb, 4, rh->noise_shift );
822 0 : put_bits(pb, 23, rh->noisegen_seed );
823 0 : put_bits(pb, 4, 0 ); /* TODO max_shift */
824 0 : put_bits(pb, 5, rh->max_huff_lsbs );
825 0 : put_bits(pb, 5, rh->max_output_bits );
826 0 : put_bits(pb, 5, rh->max_output_bits );
827 0 : put_bits(pb, 1, rh->data_check_present);
828 0 : put_bits(pb, 8, lossless_check );
829 0 : put_bits(pb, 16, 0 ); /* ignored */
830 :
831 0 : for (ch = 0; ch <= rh->max_matrix_channel; ch++)
832 0 : put_bits(pb, 6, ch);
833 :
834 : /* Data must be flushed for the checksum to be correct. */
835 0 : tmpb = *pb;
836 0 : flush_put_bits(&tmpb);
837 :
838 0 : checksum = ff_mlp_restart_checksum(pb->buf, put_bits_count(pb) - start_count);
839 :
840 0 : put_bits(pb, 8, checksum);
841 0 : }
842 :
843 : /** Writes matrix params for all primitive matrices to the bitstream. */
844 0 : static void write_matrix_params(MLPEncodeContext *ctx, PutBitContext *pb)
845 : {
846 0 : DecodingParams *dp = ctx->cur_decoding_params;
847 0 : MatrixParams *mp = &dp->matrix_params;
848 : unsigned int mat;
849 :
850 0 : put_bits(pb, 4, mp->count);
851 :
852 0 : for (mat = 0; mat < mp->count; mat++) {
853 : unsigned int channel;
854 :
855 0 : put_bits(pb, 4, mp->outch[mat]); /* matrix_out_ch */
856 0 : put_bits(pb, 4, mp->fbits[mat]);
857 0 : put_bits(pb, 1, 0 ); /* lsb_bypass */
858 :
859 0 : for (channel = 0; channel < ctx->num_channels; channel++) {
860 0 : int32_t coeff = mp->coeff[mat][channel];
861 :
862 0 : if (coeff) {
863 0 : put_bits(pb, 1, 1);
864 :
865 0 : coeff >>= 14 - mp->fbits[mat];
866 :
867 0 : put_sbits(pb, mp->fbits[mat] + 2, coeff);
868 : } else {
869 0 : put_bits(pb, 1, 0);
870 : }
871 : }
872 : }
873 0 : }
874 :
875 : /** Writes filter parameters for one filter to the bitstream. */
876 0 : static void write_filter_params(MLPEncodeContext *ctx, PutBitContext *pb,
877 : unsigned int channel, unsigned int filter)
878 : {
879 0 : FilterParams *fp = &ctx->cur_channel_params[channel].filter_params[filter];
880 :
881 0 : put_bits(pb, 4, fp->order);
882 :
883 0 : if (fp->order > 0) {
884 : int i;
885 0 : int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter];
886 :
887 0 : put_bits(pb, 4, fp->shift );
888 0 : put_bits(pb, 5, fp->coeff_bits );
889 0 : put_bits(pb, 3, fp->coeff_shift);
890 :
891 0 : for (i = 0; i < fp->order; i++) {
892 0 : put_sbits(pb, fp->coeff_bits, fcoeff[i] >> fp->coeff_shift);
893 : }
894 :
895 : /* TODO state data for IIR filter. */
896 0 : put_bits(pb, 1, 0);
897 : }
898 0 : }
899 :
900 : /** Writes decoding parameters to the bitstream. These change very often,
901 : * usually at almost every frame.
902 : */
903 0 : static void write_decoding_params(MLPEncodeContext *ctx, PutBitContext *pb,
904 : int params_changed)
905 : {
906 0 : DecodingParams *dp = ctx->cur_decoding_params;
907 0 : RestartHeader *rh = ctx->cur_restart_header;
908 0 : MatrixParams *mp = &dp->matrix_params;
909 : unsigned int ch;
910 :
911 0 : if (dp->param_presence_flags != PARAMS_DEFAULT &&
912 0 : params_changed & PARAM_PRESENCE_FLAGS) {
913 0 : put_bits(pb, 1, 1);
914 0 : put_bits(pb, 8, dp->param_presence_flags);
915 : } else {
916 0 : put_bits(pb, 1, 0);
917 : }
918 :
919 0 : if (dp->param_presence_flags & PARAM_BLOCKSIZE) {
920 0 : if (params_changed & PARAM_BLOCKSIZE) {
921 0 : put_bits(pb, 1, 1);
922 0 : put_bits(pb, 9, dp->blocksize);
923 : } else {
924 0 : put_bits(pb, 1, 0);
925 : }
926 : }
927 :
928 0 : if (dp->param_presence_flags & PARAM_MATRIX) {
929 0 : if (params_changed & PARAM_MATRIX) {
930 0 : put_bits(pb, 1, 1);
931 0 : write_matrix_params(ctx, pb);
932 : } else {
933 0 : put_bits(pb, 1, 0);
934 : }
935 : }
936 :
937 0 : if (dp->param_presence_flags & PARAM_OUTSHIFT) {
938 0 : if (params_changed & PARAM_OUTSHIFT) {
939 0 : put_bits(pb, 1, 1);
940 0 : for (ch = 0; ch <= rh->max_matrix_channel; ch++)
941 0 : put_sbits(pb, 4, mp->shift[ch]);
942 : } else {
943 0 : put_bits(pb, 1, 0);
944 : }
945 : }
946 :
947 0 : if (dp->param_presence_flags & PARAM_QUANTSTEP) {
948 0 : if (params_changed & PARAM_QUANTSTEP) {
949 0 : put_bits(pb, 1, 1);
950 0 : for (ch = 0; ch <= rh->max_channel; ch++)
951 0 : put_bits(pb, 4, dp->quant_step_size[ch]);
952 : } else {
953 0 : put_bits(pb, 1, 0);
954 : }
955 : }
956 :
957 0 : for (ch = rh->min_channel; ch <= rh->max_channel; ch++) {
958 0 : ChannelParams *cp = &ctx->cur_channel_params[ch];
959 :
960 0 : if (dp->param_presence_flags & 0xF) {
961 0 : put_bits(pb, 1, 1);
962 :
963 0 : if (dp->param_presence_flags & PARAM_FIR) {
964 0 : if (params_changed & PARAM_FIR) {
965 0 : put_bits(pb, 1, 1);
966 0 : write_filter_params(ctx, pb, ch, FIR);
967 : } else {
968 0 : put_bits(pb, 1, 0);
969 : }
970 : }
971 :
972 0 : if (dp->param_presence_flags & PARAM_IIR) {
973 0 : if (params_changed & PARAM_IIR) {
974 0 : put_bits(pb, 1, 1);
975 0 : write_filter_params(ctx, pb, ch, IIR);
976 : } else {
977 0 : put_bits(pb, 1, 0);
978 : }
979 : }
980 :
981 0 : if (dp->param_presence_flags & PARAM_HUFFOFFSET) {
982 0 : if (params_changed & PARAM_HUFFOFFSET) {
983 0 : put_bits (pb, 1, 1);
984 0 : put_sbits(pb, 15, cp->huff_offset);
985 : } else {
986 0 : put_bits(pb, 1, 0);
987 : }
988 : }
989 :
990 0 : put_bits(pb, 2, cp->codebook );
991 0 : put_bits(pb, 5, cp->huff_lsbs);
992 : } else {
993 0 : put_bits(pb, 1, 0);
994 : }
995 : }
996 0 : }
997 :
998 : /** Writes the residuals to the bitstream. That is, the VLC codes from the
999 : * codebooks (if any is used), and then the residual.
1000 : */
1001 0 : static void write_block_data(MLPEncodeContext *ctx, PutBitContext *pb)
1002 : {
1003 0 : DecodingParams *dp = ctx->cur_decoding_params;
1004 0 : RestartHeader *rh = ctx->cur_restart_header;
1005 0 : int32_t *sample_buffer = ctx->write_buffer;
1006 : int32_t sign_huff_offset[MAX_CHANNELS];
1007 : int codebook_index [MAX_CHANNELS];
1008 : int lsb_bits [MAX_CHANNELS];
1009 : unsigned int i, ch;
1010 :
1011 0 : for (ch = rh->min_channel; ch <= rh->max_channel; ch++) {
1012 0 : ChannelParams *cp = &ctx->cur_channel_params[ch];
1013 : int sign_shift;
1014 :
1015 0 : lsb_bits [ch] = cp->huff_lsbs - dp->quant_step_size[ch];
1016 0 : codebook_index [ch] = cp->codebook - 1;
1017 0 : sign_huff_offset[ch] = cp->huff_offset;
1018 :
1019 0 : sign_shift = lsb_bits[ch] - 1;
1020 :
1021 0 : if (cp->codebook > 0) {
1022 0 : sign_huff_offset[ch] -= 7 << lsb_bits[ch];
1023 0 : sign_shift += 3 - cp->codebook;
1024 : }
1025 :
1026 : /* Unsign if needed. */
1027 0 : if (sign_shift >= 0)
1028 0 : sign_huff_offset[ch] -= 1 << sign_shift;
1029 : }
1030 :
1031 0 : for (i = 0; i < dp->blocksize; i++) {
1032 0 : for (ch = rh->min_channel; ch <= rh->max_channel; ch++) {
1033 0 : int32_t sample = *sample_buffer++ >> dp->quant_step_size[ch];
1034 :
1035 0 : sample -= sign_huff_offset[ch];
1036 :
1037 0 : if (codebook_index[ch] >= 0) {
1038 0 : int vlc = sample >> lsb_bits[ch];
1039 0 : put_bits(pb, ff_mlp_huffman_tables[codebook_index[ch]][vlc][1],
1040 0 : ff_mlp_huffman_tables[codebook_index[ch]][vlc][0]);
1041 : }
1042 :
1043 0 : put_sbits(pb, lsb_bits[ch], sample);
1044 : }
1045 0 : sample_buffer += 2; /* noise channels */
1046 : }
1047 :
1048 0 : ctx->write_buffer = sample_buffer;
1049 0 : }
1050 :
1051 : /** Writes the substreams data to the bitstream. */
1052 0 : static uint8_t *write_substrs(MLPEncodeContext *ctx, uint8_t *buf, int buf_size,
1053 : int restart_frame,
1054 : uint16_t substream_data_len[MAX_SUBSTREAMS])
1055 : {
1056 0 : int32_t *lossless_check_data = ctx->lossless_check_data;
1057 : unsigned int substr;
1058 0 : int end = 0;
1059 :
1060 0 : lossless_check_data += ctx->frame_index * ctx->num_substreams;
1061 :
1062 0 : for (substr = 0; substr < ctx->num_substreams; substr++) {
1063 0 : unsigned int cur_subblock_index = ctx->major_cur_subblock_index;
1064 0 : unsigned int num_subblocks = ctx->major_filter_state_subblock;
1065 : unsigned int subblock;
1066 0 : RestartHeader *rh = &ctx->restart_header [substr];
1067 0 : int substr_restart_frame = restart_frame;
1068 : uint8_t parity, checksum;
1069 : PutBitContext pb, tmpb;
1070 : int params_changed;
1071 :
1072 0 : ctx->cur_restart_header = rh;
1073 :
1074 0 : init_put_bits(&pb, buf, buf_size);
1075 :
1076 0 : for (subblock = 0; subblock <= num_subblocks; subblock++) {
1077 : unsigned int subblock_index;
1078 :
1079 0 : subblock_index = cur_subblock_index++;
1080 :
1081 0 : ctx->cur_decoding_params = &ctx->major_decoding_params[subblock_index][substr];
1082 0 : ctx->cur_channel_params = ctx->major_channel_params[subblock_index];
1083 :
1084 0 : params_changed = ctx->major_params_changed[subblock_index][substr];
1085 :
1086 0 : if (substr_restart_frame || params_changed) {
1087 0 : put_bits(&pb, 1, 1);
1088 :
1089 0 : if (substr_restart_frame) {
1090 0 : put_bits(&pb, 1, 1);
1091 :
1092 0 : write_restart_header(ctx, &pb);
1093 0 : rh->lossless_check_data = 0;
1094 : } else {
1095 0 : put_bits(&pb, 1, 0);
1096 : }
1097 :
1098 0 : write_decoding_params(ctx, &pb, params_changed);
1099 : } else {
1100 0 : put_bits(&pb, 1, 0);
1101 : }
1102 :
1103 0 : write_block_data(ctx, &pb);
1104 :
1105 0 : put_bits(&pb, 1, !substr_restart_frame);
1106 :
1107 0 : substr_restart_frame = 0;
1108 : }
1109 :
1110 0 : put_bits(&pb, (-put_bits_count(&pb)) & 15, 0);
1111 :
1112 0 : rh->lossless_check_data ^= *lossless_check_data++;
1113 :
1114 0 : if (ctx->last_frame == ctx->inout_buffer) {
1115 : /* TODO find a sample and implement shorten_by. */
1116 0 : put_bits(&pb, 32, END_OF_STREAM);
1117 : }
1118 :
1119 : /* Data must be flushed for the checksum and parity to be correct. */
1120 0 : tmpb = pb;
1121 0 : flush_put_bits(&tmpb);
1122 :
1123 0 : parity = ff_mlp_calculate_parity(buf, put_bits_count(&pb) >> 3) ^ 0xa9;
1124 0 : checksum = ff_mlp_checksum8 (buf, put_bits_count(&pb) >> 3);
1125 :
1126 0 : put_bits(&pb, 8, parity );
1127 0 : put_bits(&pb, 8, checksum);
1128 :
1129 0 : flush_put_bits(&pb);
1130 :
1131 0 : end += put_bits_count(&pb) >> 3;
1132 0 : substream_data_len[substr] = end;
1133 :
1134 0 : buf += put_bits_count(&pb) >> 3;
1135 : }
1136 :
1137 0 : ctx->major_cur_subblock_index += ctx->major_filter_state_subblock + 1;
1138 0 : ctx->major_filter_state_subblock = 0;
1139 :
1140 0 : return buf;
1141 : }
1142 :
1143 : /** Writes the access unit and substream headers to the bitstream. */
1144 0 : static void write_frame_headers(MLPEncodeContext *ctx, uint8_t *frame_header,
1145 : uint8_t *substream_headers, unsigned int length,
1146 : int restart_frame,
1147 : uint16_t substream_data_len[MAX_SUBSTREAMS])
1148 : {
1149 0 : uint16_t access_unit_header = 0;
1150 0 : uint16_t parity_nibble = 0;
1151 : unsigned int substr;
1152 :
1153 0 : parity_nibble = ctx->dts;
1154 0 : parity_nibble ^= length;
1155 :
1156 0 : for (substr = 0; substr < ctx->num_substreams; substr++) {
1157 0 : uint16_t substr_hdr = 0;
1158 :
1159 0 : substr_hdr |= (0 << 15); /* extraword */
1160 0 : substr_hdr |= (!restart_frame << 14); /* !restart_frame */
1161 0 : substr_hdr |= (1 << 13); /* checkdata */
1162 0 : substr_hdr |= (0 << 12); /* ??? */
1163 0 : substr_hdr |= (substream_data_len[substr] / 2) & 0x0FFF;
1164 :
1165 0 : AV_WB16(substream_headers, substr_hdr);
1166 :
1167 0 : parity_nibble ^= *substream_headers++;
1168 0 : parity_nibble ^= *substream_headers++;
1169 : }
1170 :
1171 0 : parity_nibble ^= parity_nibble >> 8;
1172 0 : parity_nibble ^= parity_nibble >> 4;
1173 0 : parity_nibble &= 0xF;
1174 :
1175 0 : access_unit_header |= (parity_nibble ^ 0xF) << 12;
1176 0 : access_unit_header |= length & 0xFFF;
1177 :
1178 0 : AV_WB16(frame_header , access_unit_header);
1179 0 : AV_WB16(frame_header+2, ctx->dts );
1180 0 : }
1181 :
1182 : /** Writes an entire access unit to the bitstream. */
1183 0 : static unsigned int write_access_unit(MLPEncodeContext *ctx, uint8_t *buf,
1184 : int buf_size, int restart_frame)
1185 : {
1186 : uint16_t substream_data_len[MAX_SUBSTREAMS];
1187 0 : uint8_t *buf1, *buf0 = buf;
1188 : unsigned int substr;
1189 : int total_length;
1190 :
1191 0 : if (buf_size < 4)
1192 0 : return -1;
1193 :
1194 : /* Frame header will be written at the end. */
1195 0 : buf += 4;
1196 0 : buf_size -= 4;
1197 :
1198 0 : if (restart_frame) {
1199 0 : if (buf_size < 28)
1200 0 : return -1;
1201 0 : write_major_sync(ctx, buf, buf_size);
1202 0 : buf += 28;
1203 0 : buf_size -= 28;
1204 : }
1205 :
1206 0 : buf1 = buf;
1207 :
1208 : /* Substream headers will be written at the end. */
1209 0 : for (substr = 0; substr < ctx->num_substreams; substr++) {
1210 0 : buf += 2;
1211 0 : buf_size -= 2;
1212 : }
1213 :
1214 0 : buf = write_substrs(ctx, buf, buf_size, restart_frame, substream_data_len);
1215 :
1216 0 : total_length = buf - buf0;
1217 :
1218 0 : write_frame_headers(ctx, buf0, buf1, total_length / 2, restart_frame, substream_data_len);
1219 :
1220 0 : return total_length;
1221 : }
1222 :
1223 : /****************************************************************************
1224 : ****************** Functions that input data to context ********************
1225 : ****************************************************************************/
1226 :
1227 : /** Inputs data from the samples passed by lavc into the context, shifts them
1228 : * appropriately depending on the bit-depth, and calculates the
1229 : * lossless_check_data that will be written to the restart header.
1230 : */
1231 0 : static void input_data_internal(MLPEncodeContext *ctx, const uint8_t *samples,
1232 : int is24)
1233 : {
1234 0 : int32_t *lossless_check_data = ctx->lossless_check_data;
1235 0 : const int32_t *samples_32 = (const int32_t *) samples;
1236 0 : const int16_t *samples_16 = (const int16_t *) samples;
1237 : unsigned int substr;
1238 :
1239 0 : lossless_check_data += ctx->frame_index * ctx->num_substreams;
1240 :
1241 0 : for (substr = 0; substr < ctx->num_substreams; substr++) {
1242 0 : RestartHeader *rh = &ctx->restart_header [substr];
1243 0 : int32_t *sample_buffer = ctx->inout_buffer;
1244 0 : int32_t temp_lossless_check_data = 0;
1245 0 : uint32_t greatest = 0;
1246 : unsigned int channel;
1247 : int i;
1248 :
1249 0 : for (i = 0; i < ctx->frame_size[ctx->frame_index]; i++) {
1250 0 : for (channel = 0; channel <= rh->max_channel; channel++) {
1251 : uint32_t abs_sample;
1252 : int32_t sample;
1253 :
1254 0 : sample = is24 ? *samples_32++ >> 8 : *samples_16++ << 8;
1255 :
1256 : /* TODO Find out if number_sbits can be used for negative values. */
1257 0 : abs_sample = FFABS(sample);
1258 0 : if (greatest < abs_sample)
1259 0 : greatest = abs_sample;
1260 :
1261 0 : temp_lossless_check_data ^= (sample & 0x00ffffff) << channel;
1262 0 : *sample_buffer++ = sample;
1263 : }
1264 :
1265 0 : sample_buffer += 2; /* noise channels */
1266 : }
1267 :
1268 0 : ctx->max_output_bits[ctx->frame_index] = number_sbits(greatest);
1269 :
1270 0 : *lossless_check_data++ = temp_lossless_check_data;
1271 : }
1272 0 : }
1273 :
1274 : /** Wrapper function for inputting data in two different bit-depths. */
1275 0 : static void input_data(MLPEncodeContext *ctx, void *samples)
1276 : {
1277 0 : if (ctx->avctx->sample_fmt == AV_SAMPLE_FMT_S32)
1278 0 : input_data_internal(ctx, samples, 1);
1279 : else
1280 0 : input_data_internal(ctx, samples, 0);
1281 0 : }
1282 :
1283 0 : static void input_to_sample_buffer(MLPEncodeContext *ctx)
1284 : {
1285 0 : int32_t *sample_buffer = ctx->sample_buffer;
1286 : unsigned int index;
1287 :
1288 0 : for (index = 0; index < ctx->number_of_frames; index++) {
1289 0 : unsigned int cur_index = (ctx->starting_frame_index + index) % ctx->max_restart_interval;
1290 0 : int32_t *input_buffer = ctx->inout_buffer + cur_index * ctx->one_sample_buffer_size;
1291 : unsigned int i, channel;
1292 :
1293 0 : for (i = 0; i < ctx->frame_size[cur_index]; i++) {
1294 0 : for (channel = 0; channel < ctx->avctx->channels; channel++)
1295 0 : *sample_buffer++ = *input_buffer++;
1296 0 : sample_buffer += 2; /* noise_channels */
1297 0 : input_buffer += 2; /* noise_channels */
1298 : }
1299 : }
1300 0 : }
1301 :
1302 : /****************************************************************************
1303 : ********* Functions that analyze the data and set the parameters ***********
1304 : ****************************************************************************/
1305 :
1306 : /** Counts the number of trailing zeroes in a value */
1307 0 : static int number_trailing_zeroes(int32_t sample)
1308 : {
1309 : int bits;
1310 :
1311 0 : for (bits = 0; bits < 24 && !(sample & (1<<bits)); bits++);
1312 :
1313 : /* All samples are 0. TODO Return previous quant_step_size to avoid
1314 : * writing a new header. */
1315 0 : if (bits == 24)
1316 0 : return 0;
1317 :
1318 0 : return bits;
1319 : }
1320 :
1321 : /** Determines how many bits are zero at the end of all samples so they can be
1322 : * shifted out.
1323 : */
1324 0 : static void determine_quant_step_size(MLPEncodeContext *ctx)
1325 : {
1326 0 : DecodingParams *dp = ctx->cur_decoding_params;
1327 0 : RestartHeader *rh = ctx->cur_restart_header;
1328 0 : MatrixParams *mp = &dp->matrix_params;
1329 0 : int32_t *sample_buffer = ctx->sample_buffer;
1330 : int32_t sample_mask[MAX_CHANNELS];
1331 : unsigned int channel;
1332 : int i;
1333 :
1334 0 : memset(sample_mask, 0x00, sizeof(sample_mask));
1335 :
1336 0 : for (i = 0; i < ctx->number_of_samples; i++) {
1337 0 : for (channel = 0; channel <= rh->max_channel; channel++)
1338 0 : sample_mask[channel] |= *sample_buffer++;
1339 :
1340 0 : sample_buffer += 2; /* noise channels */
1341 : }
1342 :
1343 0 : for (channel = 0; channel <= rh->max_channel; channel++)
1344 0 : dp->quant_step_size[channel] = number_trailing_zeroes(sample_mask[channel]) - mp->shift[channel];
1345 0 : }
1346 :
1347 : /** Determines the smallest number of bits needed to encode the filter
1348 : * coefficients, and if it's possible to right-shift their values without
1349 : * losing any precision.
1350 : */
1351 0 : static void code_filter_coeffs(MLPEncodeContext *ctx, FilterParams *fp, int32_t *fcoeff)
1352 : {
1353 0 : int min = INT_MAX, max = INT_MIN;
1354 : int bits, shift;
1355 0 : int coeff_mask = 0;
1356 : int order;
1357 :
1358 0 : for (order = 0; order < fp->order; order++) {
1359 0 : int coeff = fcoeff[order];
1360 :
1361 0 : if (coeff < min)
1362 0 : min = coeff;
1363 0 : if (coeff > max)
1364 0 : max = coeff;
1365 :
1366 0 : coeff_mask |= coeff;
1367 : }
1368 :
1369 0 : bits = FFMAX(number_sbits(min), number_sbits(max));
1370 :
1371 0 : for (shift = 0; shift < 7 && bits + shift < 16 && !(coeff_mask & (1<<shift)); shift++);
1372 :
1373 0 : fp->coeff_bits = bits;
1374 0 : fp->coeff_shift = shift;
1375 0 : }
1376 :
1377 : /** Determines the best filter parameters for the given data and writes the
1378 : * necessary information to the context.
1379 : * TODO Add IIR filter predictor!
1380 : */
1381 0 : static void set_filter_params(MLPEncodeContext *ctx,
1382 : unsigned int channel, unsigned int filter,
1383 : int clear_filter)
1384 : {
1385 0 : ChannelParams *cp = &ctx->cur_channel_params[channel];
1386 0 : FilterParams *fp = &cp->filter_params[filter];
1387 :
1388 0 : if ((filter == IIR && ctx->substream_info & SUBSTREAM_INFO_HIGH_RATE) ||
1389 : clear_filter) {
1390 0 : fp->order = 0;
1391 0 : } else if (filter == IIR) {
1392 0 : fp->order = 0;
1393 0 : } else if (filter == FIR) {
1394 0 : const int max_order = (ctx->substream_info & SUBSTREAM_INFO_HIGH_RATE)
1395 0 : ? 4 : MLP_MAX_LPC_ORDER;
1396 0 : int32_t *sample_buffer = ctx->sample_buffer + channel;
1397 : int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
1398 0 : int32_t *lpc_samples = ctx->lpc_sample_buffer;
1399 0 : int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter];
1400 : int shift[MLP_MAX_LPC_ORDER];
1401 : unsigned int i;
1402 : int order;
1403 :
1404 0 : for (i = 0; i < ctx->number_of_samples; i++) {
1405 0 : *lpc_samples++ = *sample_buffer;
1406 0 : sample_buffer += ctx->num_channels;
1407 : }
1408 :
1409 0 : order = ff_lpc_calc_coefs(&ctx->lpc_ctx, ctx->lpc_sample_buffer,
1410 0 : ctx->number_of_samples, MLP_MIN_LPC_ORDER,
1411 : max_order, 11, coefs, shift, FF_LPC_TYPE_LEVINSON, 0,
1412 : ORDER_METHOD_EST, MLP_MIN_LPC_SHIFT,
1413 : MLP_MAX_LPC_SHIFT, MLP_MIN_LPC_SHIFT);
1414 :
1415 0 : fp->order = order;
1416 0 : fp->shift = shift[order-1];
1417 :
1418 0 : for (i = 0; i < order; i++)
1419 0 : fcoeff[i] = coefs[order-1][i];
1420 :
1421 0 : code_filter_coeffs(ctx, fp, fcoeff);
1422 : }
1423 0 : }
1424 :
1425 : /** Tries to determine a good prediction filter, and applies it to the samples
1426 : * buffer if the filter is good enough. Sets the filter data to be cleared if
1427 : * no good filter was found.
1428 : */
1429 0 : static void determine_filters(MLPEncodeContext *ctx)
1430 : {
1431 0 : RestartHeader *rh = ctx->cur_restart_header;
1432 : int channel, filter;
1433 :
1434 0 : for (channel = rh->min_channel; channel <= rh->max_channel; channel++) {
1435 0 : for (filter = 0; filter < NUM_FILTERS; filter++)
1436 0 : set_filter_params(ctx, channel, filter, 0);
1437 : }
1438 0 : }
1439 :
1440 : enum MLPChMode {
1441 : MLP_CHMODE_LEFT_RIGHT,
1442 : MLP_CHMODE_LEFT_SIDE,
1443 : MLP_CHMODE_RIGHT_SIDE,
1444 : MLP_CHMODE_MID_SIDE,
1445 : };
1446 :
1447 0 : static enum MLPChMode estimate_stereo_mode(MLPEncodeContext *ctx)
1448 : {
1449 0 : uint64_t score[4], sum[4] = { 0, 0, 0, 0, };
1450 0 : int32_t *right_ch = ctx->sample_buffer + 1;
1451 0 : int32_t *left_ch = ctx->sample_buffer;
1452 : int i;
1453 0 : enum MLPChMode best = 0;
1454 :
1455 0 : for(i = 2; i < ctx->number_of_samples; i++) {
1456 0 : int32_t left = left_ch [i * ctx->num_channels] - 2 * left_ch [(i - 1) * ctx->num_channels] + left_ch [(i - 2) * ctx->num_channels];
1457 0 : int32_t right = right_ch[i * ctx->num_channels] - 2 * right_ch[(i - 1) * ctx->num_channels] + right_ch[(i - 2) * ctx->num_channels];
1458 :
1459 0 : sum[0] += FFABS( left );
1460 0 : sum[1] += FFABS( right);
1461 0 : sum[2] += FFABS((left + right) >> 1);
1462 0 : sum[3] += FFABS( left - right);
1463 : }
1464 :
1465 0 : score[MLP_CHMODE_LEFT_RIGHT] = sum[0] + sum[1];
1466 0 : score[MLP_CHMODE_LEFT_SIDE] = sum[0] + sum[3];
1467 0 : score[MLP_CHMODE_RIGHT_SIDE] = sum[1] + sum[3];
1468 0 : score[MLP_CHMODE_MID_SIDE] = sum[2] + sum[3];
1469 :
1470 0 : for(i = 1; i < 3; i++)
1471 0 : if(score[i] < score[best])
1472 0 : best = i;
1473 :
1474 0 : return best;
1475 : }
1476 :
1477 : /** Determines how many fractional bits are needed to encode matrix
1478 : * coefficients. Also shifts the coefficients to fit within 2.14 bits.
1479 : */
1480 0 : static void code_matrix_coeffs(MLPEncodeContext *ctx, unsigned int mat)
1481 : {
1482 0 : DecodingParams *dp = ctx->cur_decoding_params;
1483 0 : MatrixParams *mp = &dp->matrix_params;
1484 0 : int32_t coeff_mask = 0;
1485 : unsigned int channel;
1486 : unsigned int bits;
1487 :
1488 0 : for (channel = 0; channel < ctx->num_channels; channel++) {
1489 0 : int32_t coeff = mp->coeff[mat][channel];
1490 0 : coeff_mask |= coeff;
1491 : }
1492 :
1493 0 : for (bits = 0; bits < 14 && !(coeff_mask & (1<<bits)); bits++);
1494 :
1495 0 : mp->fbits [mat] = 14 - bits;
1496 0 : }
1497 :
1498 : /** Determines best coefficients to use for the lossless matrix. */
1499 0 : static void lossless_matrix_coeffs(MLPEncodeContext *ctx)
1500 : {
1501 0 : DecodingParams *dp = ctx->cur_decoding_params;
1502 0 : MatrixParams *mp = &dp->matrix_params;
1503 0 : unsigned int shift = 0;
1504 : unsigned int channel;
1505 : int mat;
1506 : enum MLPChMode mode;
1507 :
1508 : /* No decorrelation for non-stereo. */
1509 0 : if (ctx->num_channels - 2 != 2) {
1510 0 : mp->count = 0;
1511 0 : return;
1512 : }
1513 :
1514 0 : mode = estimate_stereo_mode(ctx);
1515 :
1516 0 : switch(mode) {
1517 : /* TODO: add matrix for MID_SIDE */
1518 0 : case MLP_CHMODE_MID_SIDE:
1519 : case MLP_CHMODE_LEFT_RIGHT:
1520 0 : mp->count = 0;
1521 0 : break;
1522 0 : case MLP_CHMODE_LEFT_SIDE:
1523 0 : mp->count = 1;
1524 0 : mp->outch[0] = 1;
1525 0 : mp->coeff[0][0] = 1 << 14; mp->coeff[0][1] = -(1 << 14);
1526 0 : mp->coeff[0][2] = 0 << 14; mp->coeff[0][2] = 0 << 14;
1527 0 : mp->forco[0][0] = 1 << 14; mp->forco[0][1] = -(1 << 14);
1528 0 : mp->forco[0][2] = 0 << 14; mp->forco[0][2] = 0 << 14;
1529 0 : break;
1530 0 : case MLP_CHMODE_RIGHT_SIDE:
1531 0 : mp->count = 1;
1532 0 : mp->outch[0] = 0;
1533 0 : mp->coeff[0][0] = 1 << 14; mp->coeff[0][1] = 1 << 14;
1534 0 : mp->coeff[0][2] = 0 << 14; mp->coeff[0][2] = 0 << 14;
1535 0 : mp->forco[0][0] = 1 << 14; mp->forco[0][1] = -(1 << 14);
1536 0 : mp->forco[0][2] = 0 << 14; mp->forco[0][2] = 0 << 14;
1537 0 : break;
1538 : }
1539 :
1540 0 : for (mat = 0; mat < mp->count; mat++)
1541 0 : code_matrix_coeffs(ctx, mat);
1542 :
1543 0 : for (channel = 0; channel < ctx->num_channels; channel++)
1544 0 : mp->shift[channel] = shift;
1545 : }
1546 :
1547 : /** Min and max values that can be encoded with each codebook. The values for
1548 : * the third codebook take into account the fact that the sign shift for this
1549 : * codebook is outside the coded value, so it has one more bit of precision.
1550 : * It should actually be -7 -> 7, shifted down by 0.5.
1551 : */
1552 : static const int codebook_extremes[3][2] = {
1553 : {-9, 8}, {-8, 7}, {-15, 14},
1554 : };
1555 :
1556 : /** Determines the amount of bits needed to encode the samples using no
1557 : * codebooks and a specified offset.
1558 : */
1559 0 : static void no_codebook_bits_offset(MLPEncodeContext *ctx,
1560 : unsigned int channel, int16_t offset,
1561 : int32_t min, int32_t max,
1562 : BestOffset *bo)
1563 : {
1564 0 : DecodingParams *dp = ctx->cur_decoding_params;
1565 : int32_t unsign;
1566 : int lsb_bits;
1567 :
1568 0 : min -= offset;
1569 0 : max -= offset;
1570 :
1571 0 : lsb_bits = FFMAX(number_sbits(min), number_sbits(max)) - 1;
1572 :
1573 0 : lsb_bits += !!lsb_bits;
1574 :
1575 0 : unsign = 1 << (lsb_bits - 1);
1576 :
1577 0 : bo->offset = offset;
1578 0 : bo->lsb_bits = lsb_bits;
1579 0 : bo->bitcount = lsb_bits * dp->blocksize;
1580 0 : bo->min = offset - unsign + 1;
1581 0 : bo->max = offset + unsign;
1582 0 : }
1583 :
1584 : /** Determines the least amount of bits needed to encode the samples using no
1585 : * codebooks.
1586 : */
1587 0 : static void no_codebook_bits(MLPEncodeContext *ctx,
1588 : unsigned int channel,
1589 : int32_t min, int32_t max,
1590 : BestOffset *bo)
1591 : {
1592 0 : DecodingParams *dp = ctx->cur_decoding_params;
1593 : int16_t offset;
1594 : int32_t unsign;
1595 : uint32_t diff;
1596 : int lsb_bits;
1597 :
1598 : /* Set offset inside huffoffset's boundaries by adjusting extremes
1599 : * so that more bits are used, thus shifting the offset. */
1600 0 : if (min < HUFF_OFFSET_MIN)
1601 0 : max = FFMAX(max, 2 * HUFF_OFFSET_MIN - min + 1);
1602 0 : if (max > HUFF_OFFSET_MAX)
1603 0 : min = FFMIN(min, 2 * HUFF_OFFSET_MAX - max - 1);
1604 :
1605 : /* Determine offset and minimum number of bits. */
1606 0 : diff = max - min;
1607 :
1608 0 : lsb_bits = number_sbits(diff) - 1;
1609 :
1610 0 : unsign = 1 << (lsb_bits - 1);
1611 :
1612 : /* If all samples are the same (lsb_bits == 0), offset must be
1613 : * adjusted because of sign_shift. */
1614 0 : offset = min + diff / 2 + !!lsb_bits;
1615 :
1616 0 : bo->offset = offset;
1617 0 : bo->lsb_bits = lsb_bits;
1618 0 : bo->bitcount = lsb_bits * dp->blocksize;
1619 0 : bo->min = max - unsign + 1;
1620 0 : bo->max = min + unsign;
1621 0 : }
1622 :
1623 : /** Determines the least amount of bits needed to encode the samples using a
1624 : * given codebook and a given offset.
1625 : */
1626 0 : static inline void codebook_bits_offset(MLPEncodeContext *ctx,
1627 : unsigned int channel, int codebook,
1628 : int32_t sample_min, int32_t sample_max,
1629 : int16_t offset, BestOffset *bo)
1630 : {
1631 0 : int32_t codebook_min = codebook_extremes[codebook][0];
1632 0 : int32_t codebook_max = codebook_extremes[codebook][1];
1633 0 : int32_t *sample_buffer = ctx->sample_buffer + channel;
1634 0 : DecodingParams *dp = ctx->cur_decoding_params;
1635 0 : int codebook_offset = 7 + (2 - codebook);
1636 0 : int32_t unsign_offset = offset;
1637 0 : int lsb_bits = 0, bitcount = 0;
1638 0 : int offset_min = INT_MAX, offset_max = INT_MAX;
1639 : int unsign, mask;
1640 : int i;
1641 :
1642 0 : sample_min -= offset;
1643 0 : sample_max -= offset;
1644 :
1645 0 : while (sample_min < codebook_min || sample_max > codebook_max) {
1646 0 : lsb_bits++;
1647 0 : sample_min >>= 1;
1648 0 : sample_max >>= 1;
1649 : }
1650 :
1651 0 : unsign = 1 << lsb_bits;
1652 0 : mask = unsign - 1;
1653 :
1654 0 : if (codebook == 2) {
1655 0 : unsign_offset -= unsign;
1656 0 : lsb_bits++;
1657 : }
1658 :
1659 0 : for (i = 0; i < dp->blocksize; i++) {
1660 0 : int32_t sample = *sample_buffer >> dp->quant_step_size[channel];
1661 : int temp_min, temp_max;
1662 :
1663 0 : sample -= unsign_offset;
1664 :
1665 0 : temp_min = sample & mask;
1666 0 : if (temp_min < offset_min)
1667 0 : offset_min = temp_min;
1668 :
1669 0 : temp_max = unsign - temp_min - 1;
1670 0 : if (temp_max < offset_max)
1671 0 : offset_max = temp_max;
1672 :
1673 0 : sample >>= lsb_bits;
1674 :
1675 0 : bitcount += ff_mlp_huffman_tables[codebook][sample + codebook_offset][1];
1676 :
1677 0 : sample_buffer += ctx->num_channels;
1678 : }
1679 :
1680 0 : bo->offset = offset;
1681 0 : bo->lsb_bits = lsb_bits;
1682 0 : bo->bitcount = lsb_bits * dp->blocksize + bitcount;
1683 0 : bo->min = FFMAX(offset - offset_min, HUFF_OFFSET_MIN);
1684 0 : bo->max = FFMIN(offset + offset_max, HUFF_OFFSET_MAX);
1685 0 : }
1686 :
1687 : /** Determines the least amount of bits needed to encode the samples using a
1688 : * given codebook. Searches for the best offset to minimize the bits.
1689 : */
1690 0 : static inline void codebook_bits(MLPEncodeContext *ctx,
1691 : unsigned int channel, int codebook,
1692 : int offset, int32_t min, int32_t max,
1693 : BestOffset *bo, int direction)
1694 : {
1695 0 : int previous_count = INT_MAX;
1696 : int offset_min, offset_max;
1697 0 : int is_greater = 0;
1698 :
1699 0 : offset_min = FFMAX(min, HUFF_OFFSET_MIN);
1700 0 : offset_max = FFMIN(max, HUFF_OFFSET_MAX);
1701 :
1702 0 : for (;;) {
1703 : BestOffset temp_bo;
1704 :
1705 0 : codebook_bits_offset(ctx, channel, codebook,
1706 : min, max, offset,
1707 : &temp_bo);
1708 :
1709 0 : if (temp_bo.bitcount < previous_count) {
1710 0 : if (temp_bo.bitcount < bo->bitcount)
1711 0 : *bo = temp_bo;
1712 :
1713 0 : is_greater = 0;
1714 0 : } else if (++is_greater >= ctx->max_codebook_search)
1715 0 : break;
1716 :
1717 0 : previous_count = temp_bo.bitcount;
1718 :
1719 0 : if (direction) {
1720 0 : offset = temp_bo.max + 1;
1721 0 : if (offset > offset_max)
1722 0 : break;
1723 : } else {
1724 0 : offset = temp_bo.min - 1;
1725 0 : if (offset < offset_min)
1726 0 : break;
1727 : }
1728 : }
1729 0 : }
1730 :
1731 : /** Determines the least amount of bits needed to encode the samples using
1732 : * any or no codebook.
1733 : */
1734 0 : static void determine_bits(MLPEncodeContext *ctx)
1735 : {
1736 0 : DecodingParams *dp = ctx->cur_decoding_params;
1737 0 : RestartHeader *rh = ctx->cur_restart_header;
1738 : unsigned int channel;
1739 :
1740 0 : for (channel = 0; channel <= rh->max_channel; channel++) {
1741 0 : ChannelParams *cp = &ctx->cur_channel_params[channel];
1742 0 : int32_t *sample_buffer = ctx->sample_buffer + channel;
1743 0 : int32_t min = INT32_MAX, max = INT32_MIN;
1744 0 : int no_filters_used = !cp->filter_params[FIR].order;
1745 0 : int average = 0;
1746 0 : int offset = 0;
1747 : int i;
1748 :
1749 : /* Determine extremes and average. */
1750 0 : for (i = 0; i < dp->blocksize; i++) {
1751 0 : int32_t sample = *sample_buffer >> dp->quant_step_size[channel];
1752 0 : if (sample < min)
1753 0 : min = sample;
1754 0 : if (sample > max)
1755 0 : max = sample;
1756 0 : average += sample;
1757 0 : sample_buffer += ctx->num_channels;
1758 : }
1759 0 : average /= dp->blocksize;
1760 :
1761 : /* If filtering is used, we always set the offset to zero, otherwise
1762 : * we search for the offset that minimizes the bitcount. */
1763 0 : if (no_filters_used) {
1764 0 : no_codebook_bits(ctx, channel, min, max, &ctx->cur_best_offset[channel][0]);
1765 0 : offset = av_clip(average, HUFF_OFFSET_MIN, HUFF_OFFSET_MAX);
1766 : } else {
1767 0 : no_codebook_bits_offset(ctx, channel, offset, min, max, &ctx->cur_best_offset[channel][0]);
1768 : }
1769 :
1770 0 : for (i = 1; i < NUM_CODEBOOKS; i++) {
1771 0 : BestOffset temp_bo = { 0, INT_MAX, 0, 0, 0, };
1772 : int16_t offset_max;
1773 :
1774 0 : codebook_bits_offset(ctx, channel, i - 1,
1775 : min, max, offset,
1776 : &temp_bo);
1777 :
1778 0 : if (no_filters_used) {
1779 0 : offset_max = temp_bo.max;
1780 :
1781 0 : codebook_bits(ctx, channel, i - 1, temp_bo.min - 1,
1782 : min, max, &temp_bo, 0);
1783 0 : codebook_bits(ctx, channel, i - 1, offset_max + 1,
1784 : min, max, &temp_bo, 1);
1785 : }
1786 :
1787 0 : ctx->cur_best_offset[channel][i] = temp_bo;
1788 : }
1789 : }
1790 0 : }
1791 :
1792 : /****************************************************************************
1793 : *************** Functions that process the data in some way ****************
1794 : ****************************************************************************/
1795 :
1796 : #define SAMPLE_MAX(bitdepth) ((1 << (bitdepth - 1)) - 1)
1797 : #define SAMPLE_MIN(bitdepth) (~SAMPLE_MAX(bitdepth))
1798 :
1799 : #define MSB_MASK(bits) (-1u << bits)
1800 :
1801 : /** Applies the filter to the current samples, and saves the residual back
1802 : * into the samples buffer. If the filter is too bad and overflows the
1803 : * maximum amount of bits allowed (16 or 24), the samples buffer is left as is and
1804 : * the function returns -1.
1805 : */
1806 0 : static int apply_filter(MLPEncodeContext *ctx, unsigned int channel)
1807 : {
1808 0 : FilterParams *fp[NUM_FILTERS] = { &ctx->cur_channel_params[channel].filter_params[FIR],
1809 0 : &ctx->cur_channel_params[channel].filter_params[IIR], };
1810 : int32_t *filter_state_buffer[NUM_FILTERS];
1811 0 : int32_t mask = MSB_MASK(ctx->cur_decoding_params->quant_step_size[channel]);
1812 0 : int32_t *sample_buffer = ctx->sample_buffer + channel;
1813 0 : unsigned int number_of_samples = ctx->number_of_samples;
1814 0 : unsigned int filter_shift = fp[FIR]->shift;
1815 : int filter;
1816 : int i;
1817 :
1818 0 : for (i = 0; i < NUM_FILTERS; i++) {
1819 0 : unsigned int size = ctx->number_of_samples;
1820 0 : filter_state_buffer[i] = av_malloc(size*sizeof(int32_t));
1821 0 : if (!filter_state_buffer[i]) {
1822 0 : av_log(ctx->avctx, AV_LOG_ERROR,
1823 : "Not enough memory for applying filters.\n");
1824 0 : return -1;
1825 : }
1826 : }
1827 :
1828 0 : for (i = 0; i < 8; i++) {
1829 0 : filter_state_buffer[FIR][i] = *sample_buffer;
1830 0 : filter_state_buffer[IIR][i] = *sample_buffer;
1831 :
1832 0 : sample_buffer += ctx->num_channels;
1833 : }
1834 :
1835 0 : for (i = 8; i < number_of_samples; i++) {
1836 0 : int32_t sample = *sample_buffer;
1837 : unsigned int order;
1838 0 : int64_t accum = 0;
1839 : int32_t residual;
1840 :
1841 0 : for (filter = 0; filter < NUM_FILTERS; filter++) {
1842 0 : int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter];
1843 0 : for (order = 0; order < fp[filter]->order; order++)
1844 0 : accum += (int64_t)filter_state_buffer[filter][i - 1 - order] *
1845 0 : fcoeff[order];
1846 : }
1847 :
1848 0 : accum >>= filter_shift;
1849 0 : residual = sample - (accum & mask);
1850 :
1851 0 : if (residual < SAMPLE_MIN(ctx->wordlength) || residual > SAMPLE_MAX(ctx->wordlength))
1852 0 : return -1;
1853 :
1854 0 : filter_state_buffer[FIR][i] = sample;
1855 0 : filter_state_buffer[IIR][i] = residual;
1856 :
1857 0 : sample_buffer += ctx->num_channels;
1858 : }
1859 :
1860 0 : sample_buffer = ctx->sample_buffer + channel;
1861 0 : for (i = 0; i < number_of_samples; i++) {
1862 0 : *sample_buffer = filter_state_buffer[IIR][i];
1863 :
1864 0 : sample_buffer += ctx->num_channels;
1865 : }
1866 :
1867 0 : for (i = 0; i < NUM_FILTERS; i++) {
1868 0 : av_freep(&filter_state_buffer[i]);
1869 : }
1870 :
1871 0 : return 0;
1872 : }
1873 :
1874 0 : static void apply_filters(MLPEncodeContext *ctx)
1875 : {
1876 0 : RestartHeader *rh = ctx->cur_restart_header;
1877 : int channel;
1878 :
1879 0 : for (channel = rh->min_channel; channel <= rh->max_channel; channel++) {
1880 0 : if (apply_filter(ctx, channel) < 0) {
1881 : /* Filter is horribly wrong.
1882 : * Clear filter params and update state. */
1883 0 : set_filter_params(ctx, channel, FIR, 1);
1884 0 : set_filter_params(ctx, channel, IIR, 1);
1885 0 : apply_filter(ctx, channel);
1886 : }
1887 : }
1888 0 : }
1889 :
1890 : /** Generates two noise channels worth of data. */
1891 0 : static void generate_2_noise_channels(MLPEncodeContext *ctx)
1892 : {
1893 0 : int32_t *sample_buffer = ctx->sample_buffer + ctx->num_channels - 2;
1894 0 : RestartHeader *rh = ctx->cur_restart_header;
1895 : unsigned int i;
1896 0 : uint32_t seed = rh->noisegen_seed;
1897 :
1898 0 : for (i = 0; i < ctx->number_of_samples; i++) {
1899 0 : uint16_t seed_shr7 = seed >> 7;
1900 0 : *sample_buffer++ = ((int8_t)(seed >> 15)) << rh->noise_shift;
1901 0 : *sample_buffer++ = ((int8_t) seed_shr7) << rh->noise_shift;
1902 :
1903 0 : seed = (seed << 16) ^ seed_shr7 ^ (seed_shr7 << 5);
1904 :
1905 0 : sample_buffer += ctx->num_channels - 2;
1906 : }
1907 :
1908 0 : rh->noisegen_seed = seed & ((1 << 24)-1);
1909 0 : }
1910 :
1911 : /** Rematrixes all channels using chosen coefficients. */
1912 0 : static void rematrix_channels(MLPEncodeContext *ctx)
1913 : {
1914 0 : DecodingParams *dp = ctx->cur_decoding_params;
1915 0 : MatrixParams *mp = &dp->matrix_params;
1916 0 : int32_t *sample_buffer = ctx->sample_buffer;
1917 : unsigned int mat, i, maxchan;
1918 :
1919 0 : maxchan = ctx->num_channels;
1920 :
1921 0 : for (mat = 0; mat < mp->count; mat++) {
1922 0 : unsigned int msb_mask_bits = (ctx->avctx->sample_fmt == AV_SAMPLE_FMT_S16 ? 8 : 0) - mp->shift[mat];
1923 0 : int32_t mask = MSB_MASK(msb_mask_bits);
1924 0 : unsigned int outch = mp->outch[mat];
1925 :
1926 0 : sample_buffer = ctx->sample_buffer;
1927 0 : for (i = 0; i < ctx->number_of_samples; i++) {
1928 : unsigned int src_ch;
1929 0 : int64_t accum = 0;
1930 :
1931 0 : for (src_ch = 0; src_ch < maxchan; src_ch++) {
1932 0 : int32_t sample = *(sample_buffer + src_ch);
1933 0 : accum += (int64_t) sample * mp->forco[mat][src_ch];
1934 : }
1935 0 : sample_buffer[outch] = (accum >> 14) & mask;
1936 :
1937 0 : sample_buffer += ctx->num_channels;
1938 : }
1939 : }
1940 0 : }
1941 :
1942 : /****************************************************************************
1943 : **** Functions that deal with determining the best parameters and output ***
1944 : ****************************************************************************/
1945 :
1946 : typedef struct {
1947 : char path[MAJOR_HEADER_INTERVAL + 3];
1948 : int bitcount;
1949 : } PathCounter;
1950 :
1951 : static const char *path_counter_codebook[] = { "0", "1", "2", "3", };
1952 :
1953 : #define ZERO_PATH '0'
1954 : #define CODEBOOK_CHANGE_BITS 21
1955 :
1956 0 : static void clear_path_counter(PathCounter *path_counter)
1957 : {
1958 : unsigned int i;
1959 :
1960 0 : for (i = 0; i < NUM_CODEBOOKS + 1; i++) {
1961 0 : path_counter[i].path[0] = ZERO_PATH;
1962 0 : path_counter[i].path[1] = 0x00;
1963 0 : path_counter[i].bitcount = 0;
1964 : }
1965 0 : }
1966 :
1967 0 : static int compare_best_offset(BestOffset *prev, BestOffset *cur)
1968 : {
1969 0 : if (prev->lsb_bits != cur->lsb_bits)
1970 0 : return 1;
1971 :
1972 0 : return 0;
1973 : }
1974 :
1975 0 : static int best_codebook_path_cost(MLPEncodeContext *ctx, unsigned int channel,
1976 : PathCounter *src, int cur_codebook)
1977 : {
1978 0 : BestOffset *cur_bo, *prev_bo = restart_best_offset;
1979 0 : int bitcount = src->bitcount;
1980 0 : char *path = src->path + 1;
1981 : int prev_codebook;
1982 : int i;
1983 :
1984 0 : for (i = 0; path[i]; i++)
1985 0 : prev_bo = ctx->best_offset[i][channel];
1986 :
1987 0 : prev_codebook = path[i - 1] - ZERO_PATH;
1988 :
1989 0 : cur_bo = ctx->best_offset[i][channel];
1990 :
1991 0 : bitcount += cur_bo[cur_codebook].bitcount;
1992 :
1993 0 : if (prev_codebook != cur_codebook ||
1994 0 : compare_best_offset(&prev_bo[prev_codebook], &cur_bo[cur_codebook]))
1995 0 : bitcount += CODEBOOK_CHANGE_BITS;
1996 :
1997 0 : return bitcount;
1998 : }
1999 :
2000 0 : static void set_best_codebook(MLPEncodeContext *ctx)
2001 : {
2002 0 : DecodingParams *dp = ctx->cur_decoding_params;
2003 0 : RestartHeader *rh = ctx->cur_restart_header;
2004 : unsigned int channel;
2005 :
2006 0 : for (channel = rh->min_channel; channel <= rh->max_channel; channel++) {
2007 0 : BestOffset *cur_bo, *prev_bo = restart_best_offset;
2008 : PathCounter path_counter[NUM_CODEBOOKS + 1];
2009 : unsigned int best_codebook;
2010 : unsigned int index;
2011 : char *best_path;
2012 :
2013 0 : clear_path_counter(path_counter);
2014 :
2015 0 : for (index = 0; index < ctx->number_of_subblocks; index++) {
2016 0 : unsigned int best_bitcount = INT_MAX;
2017 : unsigned int codebook;
2018 :
2019 0 : cur_bo = ctx->best_offset[index][channel];
2020 :
2021 0 : for (codebook = 0; codebook < NUM_CODEBOOKS; codebook++) {
2022 0 : int prev_best_bitcount = INT_MAX;
2023 : int last_best;
2024 :
2025 0 : for (last_best = 0; last_best < 2; last_best++) {
2026 0 : PathCounter *dst_path = &path_counter[codebook];
2027 : PathCounter *src_path;
2028 : int temp_bitcount;
2029 :
2030 : /* First test last path with same headers,
2031 : * then with last best. */
2032 0 : if (last_best) {
2033 0 : src_path = &path_counter[NUM_CODEBOOKS];
2034 : } else {
2035 0 : if (compare_best_offset(&prev_bo[codebook], &cur_bo[codebook]))
2036 0 : continue;
2037 : else
2038 0 : src_path = &path_counter[codebook];
2039 : }
2040 :
2041 0 : temp_bitcount = best_codebook_path_cost(ctx, channel, src_path, codebook);
2042 :
2043 0 : if (temp_bitcount < best_bitcount) {
2044 0 : best_bitcount = temp_bitcount;
2045 0 : best_codebook = codebook;
2046 : }
2047 :
2048 0 : if (temp_bitcount < prev_best_bitcount) {
2049 0 : prev_best_bitcount = temp_bitcount;
2050 0 : if (src_path != dst_path)
2051 0 : memcpy(dst_path, src_path, sizeof(PathCounter));
2052 0 : av_strlcat(dst_path->path, path_counter_codebook[codebook], sizeof(dst_path->path));
2053 0 : dst_path->bitcount = temp_bitcount;
2054 : }
2055 : }
2056 : }
2057 :
2058 0 : prev_bo = cur_bo;
2059 :
2060 0 : memcpy(&path_counter[NUM_CODEBOOKS], &path_counter[best_codebook], sizeof(PathCounter));
2061 : }
2062 :
2063 0 : best_path = path_counter[NUM_CODEBOOKS].path + 1;
2064 :
2065 : /* Update context. */
2066 0 : for (index = 0; index < ctx->number_of_subblocks; index++) {
2067 0 : ChannelParams *cp = ctx->seq_channel_params + index*(ctx->avctx->channels) + channel;
2068 :
2069 0 : best_codebook = *best_path++ - ZERO_PATH;
2070 0 : cur_bo = &ctx->best_offset[index][channel][best_codebook];
2071 :
2072 0 : cp->huff_offset = cur_bo->offset;
2073 0 : cp->huff_lsbs = cur_bo->lsb_bits + dp->quant_step_size[channel];
2074 0 : cp->codebook = best_codebook;
2075 : }
2076 : }
2077 0 : }
2078 :
2079 : /** Analyzes all collected bitcounts and selects the best parameters for each
2080 : * individual access unit.
2081 : * TODO This is just a stub!
2082 : */
2083 0 : static void set_major_params(MLPEncodeContext *ctx)
2084 : {
2085 0 : RestartHeader *rh = ctx->cur_restart_header;
2086 : unsigned int index;
2087 : unsigned int substr;
2088 0 : uint8_t max_huff_lsbs = 0;
2089 0 : uint8_t max_output_bits = 0;
2090 :
2091 0 : for (substr = 0; substr < ctx->num_substreams; substr++) {
2092 0 : DecodingParams *seq_dp = (DecodingParams *) ctx->decoding_params+
2093 0 : (ctx->restart_intervals - 1)*(ctx->sequence_size)*(ctx->avctx->channels) +
2094 0 : (ctx->seq_offset[ctx->restart_intervals - 1])*(ctx->avctx->channels);
2095 :
2096 0 : ChannelParams *seq_cp = (ChannelParams *) ctx->channel_params +
2097 0 : (ctx->restart_intervals - 1)*(ctx->sequence_size)*(ctx->avctx->channels) +
2098 0 : (ctx->seq_offset[ctx->restart_intervals - 1])*(ctx->avctx->channels);
2099 : unsigned int channel;
2100 0 : for (index = 0; index < ctx->seq_size[ctx->restart_intervals-1]; index++) {
2101 0 : memcpy(&ctx->major_decoding_params[index][substr], seq_dp + index*(ctx->num_substreams) + substr, sizeof(DecodingParams));
2102 0 : for (channel = 0; channel < ctx->avctx->channels; channel++) {
2103 0 : uint8_t huff_lsbs = (seq_cp + index*(ctx->avctx->channels) + channel)->huff_lsbs;
2104 0 : if (max_huff_lsbs < huff_lsbs)
2105 0 : max_huff_lsbs = huff_lsbs;
2106 0 : memcpy(&ctx->major_channel_params[index][channel],
2107 0 : (seq_cp + index*(ctx->avctx->channels) + channel),
2108 : sizeof(ChannelParams));
2109 : }
2110 : }
2111 : }
2112 :
2113 0 : rh->max_huff_lsbs = max_huff_lsbs;
2114 :
2115 0 : for (index = 0; index < ctx->number_of_frames; index++)
2116 0 : if (max_output_bits < ctx->max_output_bits[index])
2117 0 : max_output_bits = ctx->max_output_bits[index];
2118 0 : rh->max_output_bits = max_output_bits;
2119 :
2120 0 : for (substr = 0; substr < ctx->num_substreams; substr++) {
2121 :
2122 0 : ctx->cur_restart_header = &ctx->restart_header[substr];
2123 :
2124 0 : ctx->prev_decoding_params = &restart_decoding_params[substr];
2125 0 : ctx->prev_channel_params = restart_channel_params;
2126 :
2127 0 : for (index = 0; index < MAJOR_HEADER_INTERVAL + 1; index++) {
2128 0 : ctx->cur_decoding_params = &ctx->major_decoding_params[index][substr];
2129 0 : ctx->cur_channel_params = ctx->major_channel_params[index];
2130 :
2131 0 : ctx->major_params_changed[index][substr] = compare_decoding_params(ctx);
2132 :
2133 0 : ctx->prev_decoding_params = ctx->cur_decoding_params;
2134 0 : ctx->prev_channel_params = ctx->cur_channel_params;
2135 : }
2136 : }
2137 :
2138 0 : ctx->major_number_of_subblocks = ctx->number_of_subblocks;
2139 0 : ctx->major_filter_state_subblock = 1;
2140 0 : ctx->major_cur_subblock_index = 0;
2141 0 : }
2142 :
2143 0 : static void analyze_sample_buffer(MLPEncodeContext *ctx)
2144 : {
2145 0 : ChannelParams *seq_cp = ctx->seq_channel_params;
2146 0 : DecodingParams *seq_dp = ctx->seq_decoding_params;
2147 : unsigned int index;
2148 : unsigned int substr;
2149 :
2150 0 : for (substr = 0; substr < ctx->num_substreams; substr++) {
2151 :
2152 0 : ctx->cur_restart_header = &ctx->restart_header[substr];
2153 0 : ctx->cur_decoding_params = seq_dp + 1*(ctx->num_substreams) + substr;
2154 0 : ctx->cur_channel_params = seq_cp + 1*(ctx->avctx->channels);
2155 :
2156 0 : determine_quant_step_size(ctx);
2157 0 : generate_2_noise_channels(ctx);
2158 0 : lossless_matrix_coeffs (ctx);
2159 0 : rematrix_channels (ctx);
2160 0 : determine_filters (ctx);
2161 0 : apply_filters (ctx);
2162 :
2163 0 : copy_restart_frame_params(ctx, substr);
2164 :
2165 : /* Copy frame_size from frames 0...max to decoding_params 1...max + 1
2166 : * decoding_params[0] is for the filter state subblock.
2167 : */
2168 0 : for (index = 0; index < ctx->number_of_frames; index++) {
2169 0 : DecodingParams *dp = seq_dp + (index + 1)*(ctx->num_substreams) + substr;
2170 0 : dp->blocksize = ctx->frame_size[index];
2171 : }
2172 : /* The official encoder seems to always encode a filter state subblock
2173 : * even if there are no filters. TODO check if it is possible to skip
2174 : * the filter state subblock for no filters.
2175 : */
2176 0 : (seq_dp + substr)->blocksize = 8;
2177 0 : (seq_dp + 1*(ctx->num_substreams) + substr)->blocksize -= 8;
2178 :
2179 0 : for (index = 0; index < ctx->number_of_subblocks; index++) {
2180 0 : ctx->cur_decoding_params = seq_dp + index*(ctx->num_substreams) + substr;
2181 0 : ctx->cur_channel_params = seq_cp + index*(ctx->avctx->channels);
2182 0 : ctx->cur_best_offset = ctx->best_offset[index];
2183 0 : determine_bits(ctx);
2184 0 : ctx->sample_buffer += ctx->cur_decoding_params->blocksize * ctx->num_channels;
2185 : }
2186 :
2187 0 : set_best_codebook(ctx);
2188 : }
2189 0 : }
2190 :
2191 0 : static void process_major_frame(MLPEncodeContext *ctx)
2192 : {
2193 : unsigned int substr;
2194 :
2195 0 : ctx->sample_buffer = ctx->major_inout_buffer;
2196 :
2197 0 : ctx->starting_frame_index = 0;
2198 0 : ctx->number_of_frames = ctx->major_number_of_frames;
2199 0 : ctx->number_of_samples = ctx->major_frame_size;
2200 :
2201 0 : for (substr = 0; substr < ctx->num_substreams; substr++) {
2202 0 : RestartHeader *rh = ctx->cur_restart_header;
2203 : unsigned int channel;
2204 :
2205 0 : ctx->cur_restart_header = &ctx->restart_header[substr];
2206 :
2207 0 : ctx->cur_decoding_params = &ctx->major_decoding_params[1][substr];
2208 0 : ctx->cur_channel_params = ctx->major_channel_params[1];
2209 :
2210 0 : generate_2_noise_channels(ctx);
2211 0 : rematrix_channels (ctx);
2212 :
2213 0 : for (channel = rh->min_channel; channel <= rh->max_channel; channel++)
2214 0 : apply_filter(ctx, channel);
2215 : }
2216 0 : }
2217 :
2218 : /****************************************************************************/
2219 :
2220 0 : static int mlp_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
2221 : const AVFrame *frame, int *got_packet)
2222 : {
2223 0 : MLPEncodeContext *ctx = avctx->priv_data;
2224 0 : unsigned int bytes_written = 0;
2225 : int restart_frame, ret;
2226 : uint8_t *data;
2227 :
2228 0 : if ((ret = ff_alloc_packet2(avctx, avpkt, 87500 * avctx->channels, 0)) < 0)
2229 0 : return ret;
2230 :
2231 0 : if (!frame)
2232 0 : return 1;
2233 :
2234 : /* add current frame to queue */
2235 0 : if (frame) {
2236 0 : if ((ret = ff_af_queue_add(&ctx->afq, frame)) < 0)
2237 0 : return ret;
2238 : }
2239 :
2240 0 : data = frame->data[0];
2241 :
2242 0 : ctx->frame_index = avctx->frame_number % ctx->max_restart_interval;
2243 :
2244 0 : ctx->inout_buffer = ctx->major_inout_buffer
2245 0 : + ctx->frame_index * ctx->one_sample_buffer_size;
2246 :
2247 0 : if (ctx->last_frame == ctx->inout_buffer) {
2248 0 : return 0;
2249 : }
2250 :
2251 0 : ctx->sample_buffer = ctx->major_scratch_buffer
2252 0 : + ctx->frame_index * ctx->one_sample_buffer_size;
2253 :
2254 0 : ctx->write_buffer = ctx->inout_buffer;
2255 :
2256 0 : if (avctx->frame_number < ctx->max_restart_interval) {
2257 0 : if (data) {
2258 0 : goto input_and_return;
2259 : } else {
2260 : /* There are less frames than the requested major header interval.
2261 : * Update the context to reflect this.
2262 : */
2263 0 : ctx->max_restart_interval = avctx->frame_number;
2264 0 : ctx->frame_index = 0;
2265 :
2266 0 : ctx->sample_buffer = ctx->major_scratch_buffer;
2267 0 : ctx->inout_buffer = ctx->major_inout_buffer;
2268 : }
2269 : }
2270 :
2271 0 : if (ctx->frame_size[ctx->frame_index] > MAX_BLOCKSIZE) {
2272 0 : av_log(avctx, AV_LOG_ERROR, "Invalid frame size (%d > %d)\n",
2273 0 : ctx->frame_size[ctx->frame_index], MAX_BLOCKSIZE);
2274 0 : return -1;
2275 : }
2276 :
2277 0 : restart_frame = !ctx->frame_index;
2278 :
2279 0 : if (restart_frame) {
2280 0 : set_major_params(ctx);
2281 0 : if (ctx->min_restart_interval != ctx->max_restart_interval)
2282 0 : process_major_frame(ctx);
2283 : }
2284 :
2285 0 : if (ctx->min_restart_interval == ctx->max_restart_interval)
2286 0 : ctx->write_buffer = ctx->sample_buffer;
2287 :
2288 0 : bytes_written = write_access_unit(ctx, avpkt->data, avpkt->size, restart_frame);
2289 :
2290 0 : ctx->timestamp += ctx->frame_size[ctx->frame_index];
2291 0 : ctx->dts += ctx->frame_size[ctx->frame_index];
2292 :
2293 0 : input_and_return:
2294 :
2295 0 : if (data) {
2296 0 : ctx->frame_size[ctx->frame_index] = avctx->frame_size;
2297 0 : ctx->next_major_frame_size += avctx->frame_size;
2298 0 : ctx->next_major_number_of_frames++;
2299 0 : input_data(ctx, data);
2300 0 : } else if (!ctx->last_frame) {
2301 0 : ctx->last_frame = ctx->inout_buffer;
2302 : }
2303 :
2304 0 : restart_frame = (ctx->frame_index + 1) % ctx->min_restart_interval;
2305 :
2306 0 : if (!restart_frame) {
2307 : int seq_index;
2308 :
2309 0 : for (seq_index = 0;
2310 0 : seq_index < ctx->restart_intervals && (seq_index * ctx->min_restart_interval) <= ctx->avctx->frame_number;
2311 0 : seq_index++) {
2312 0 : unsigned int number_of_samples = 0;
2313 : unsigned int index;
2314 :
2315 0 : ctx->sample_buffer = ctx->major_scratch_buffer;
2316 0 : ctx->inout_buffer = ctx->major_inout_buffer;
2317 0 : ctx->seq_index = seq_index;
2318 :
2319 0 : ctx->starting_frame_index = (ctx->avctx->frame_number - (ctx->avctx->frame_number % ctx->min_restart_interval)
2320 0 : - (seq_index * ctx->min_restart_interval)) % ctx->max_restart_interval;
2321 0 : ctx->number_of_frames = ctx->next_major_number_of_frames;
2322 0 : ctx->number_of_subblocks = ctx->next_major_number_of_frames + 1;
2323 :
2324 0 : ctx->seq_channel_params = (ChannelParams *) ctx->channel_params +
2325 0 : (ctx->frame_index / ctx->min_restart_interval)*(ctx->sequence_size)*(ctx->avctx->channels) +
2326 0 : (ctx->seq_offset[seq_index])*(ctx->avctx->channels);
2327 :
2328 0 : ctx->seq_decoding_params = (DecodingParams *) ctx->decoding_params +
2329 0 : (ctx->frame_index / ctx->min_restart_interval)*(ctx->sequence_size)*(ctx->num_substreams) +
2330 0 : (ctx->seq_offset[seq_index])*(ctx->num_substreams);
2331 :
2332 0 : for (index = 0; index < ctx->number_of_frames; index++) {
2333 0 : number_of_samples += ctx->frame_size[(ctx->starting_frame_index + index) % ctx->max_restart_interval];
2334 : }
2335 0 : ctx->number_of_samples = number_of_samples;
2336 :
2337 0 : for (index = 0; index < ctx->seq_size[seq_index]; index++) {
2338 0 : clear_channel_params(ctx, ctx->seq_channel_params + index*(ctx->avctx->channels));
2339 0 : default_decoding_params(ctx, ctx->seq_decoding_params + index*(ctx->num_substreams));
2340 : }
2341 :
2342 0 : input_to_sample_buffer(ctx);
2343 :
2344 0 : analyze_sample_buffer(ctx);
2345 : }
2346 :
2347 0 : if (ctx->frame_index == (ctx->max_restart_interval - 1)) {
2348 0 : ctx->major_frame_size = ctx->next_major_frame_size;
2349 0 : ctx->next_major_frame_size = 0;
2350 0 : ctx->major_number_of_frames = ctx->next_major_number_of_frames;
2351 0 : ctx->next_major_number_of_frames = 0;
2352 :
2353 0 : if (!ctx->major_frame_size)
2354 0 : goto no_data_left;
2355 : }
2356 : }
2357 :
2358 0 : no_data_left:
2359 :
2360 0 : ff_af_queue_remove(&ctx->afq, avctx->frame_size, &avpkt->pts,
2361 : &avpkt->duration);
2362 0 : avpkt->size = bytes_written;
2363 0 : *got_packet = 1;
2364 0 : return 0;
2365 : }
2366 :
2367 0 : static av_cold int mlp_encode_close(AVCodecContext *avctx)
2368 : {
2369 0 : MLPEncodeContext *ctx = avctx->priv_data;
2370 :
2371 0 : ff_lpc_end(&ctx->lpc_ctx);
2372 :
2373 0 : av_freep(&ctx->lossless_check_data);
2374 0 : av_freep(&ctx->major_scratch_buffer);
2375 0 : av_freep(&ctx->major_inout_buffer);
2376 0 : av_freep(&ctx->lpc_sample_buffer);
2377 0 : av_freep(&ctx->decoding_params);
2378 0 : av_freep(&ctx->channel_params);
2379 0 : av_freep(&ctx->frame_size);
2380 0 : ff_af_queue_close(&ctx->afq);
2381 :
2382 0 : return 0;
2383 : }
2384 :
2385 : #if CONFIG_MLP_ENCODER
2386 : AVCodec ff_mlp_encoder = {
2387 : .name ="mlp",
2388 : .long_name = NULL_IF_CONFIG_SMALL("MLP (Meridian Lossless Packing)"),
2389 : .type = AVMEDIA_TYPE_AUDIO,
2390 : .id = AV_CODEC_ID_MLP,
2391 : .priv_data_size = sizeof(MLPEncodeContext),
2392 : .init = mlp_encode_init,
2393 : .encode2 = mlp_encode_frame,
2394 : .close = mlp_encode_close,
2395 : .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY | AV_CODEC_CAP_EXPERIMENTAL,
2396 : .sample_fmts = (const enum AVSampleFormat[]) {AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE},
2397 : .supported_samplerates = (const int[]) {44100, 48000, 88200, 96000, 176400, 192000, 0},
2398 : .channel_layouts = ff_mlp_channel_layouts,
2399 : };
2400 : #endif
2401 : #if CONFIG_TRUEHD_ENCODER
2402 : AVCodec ff_truehd_encoder = {
2403 : .name ="truehd",
2404 : .long_name = NULL_IF_CONFIG_SMALL("TrueHD"),
2405 : .type = AVMEDIA_TYPE_AUDIO,
2406 : .id = AV_CODEC_ID_TRUEHD,
2407 : .priv_data_size = sizeof(MLPEncodeContext),
2408 : .init = mlp_encode_init,
2409 : .encode2 = mlp_encode_frame,
2410 : .close = mlp_encode_close,
2411 : .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY | AV_CODEC_CAP_EXPERIMENTAL,
2412 : .sample_fmts = (const enum AVSampleFormat[]) {AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE},
2413 : .supported_samplerates = (const int[]) {44100, 48000, 88200, 96000, 176400, 192000, 0},
2414 : .channel_layouts = (const uint64_t[]) {AV_CH_LAYOUT_STEREO, AV_CH_LAYOUT_5POINT0_BACK, AV_CH_LAYOUT_5POINT1_BACK, 0},
2415 : };
2416 : #endif
|