LCOV - code coverage report
Current view: top level - libavcodec - jfdctint_template.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 83 115 72.2 %
Date: 2017-12-17 11:58:42 Functions: 4 6 66.7 %

          Line data    Source code
       1             : /*
       2             :  * This file is part of the Independent JPEG Group's software.
       3             :  *
       4             :  * The authors make NO WARRANTY or representation, either express or implied,
       5             :  * with respect to this software, its quality, accuracy, merchantability, or
       6             :  * fitness for a particular purpose.  This software is provided "AS IS", and
       7             :  * you, its user, assume the entire risk as to its quality and accuracy.
       8             :  *
       9             :  * This software is copyright (C) 1991-1996, Thomas G. Lane.
      10             :  * All Rights Reserved except as specified below.
      11             :  *
      12             :  * Permission is hereby granted to use, copy, modify, and distribute this
      13             :  * software (or portions thereof) for any purpose, without fee, subject to
      14             :  * these conditions:
      15             :  * (1) If any part of the source code for this software is distributed, then
      16             :  * this README file must be included, with this copyright and no-warranty
      17             :  * notice unaltered; and any additions, deletions, or changes to the original
      18             :  * files must be clearly indicated in accompanying documentation.
      19             :  * (2) If only executable code is distributed, then the accompanying
      20             :  * documentation must state that "this software is based in part on the work
      21             :  * of the Independent JPEG Group".
      22             :  * (3) Permission for use of this software is granted only if the user accepts
      23             :  * full responsibility for any undesirable consequences; the authors accept
      24             :  * NO LIABILITY for damages of any kind.
      25             :  *
      26             :  * These conditions apply to any software derived from or based on the IJG
      27             :  * code, not just to the unmodified library.  If you use our work, you ought
      28             :  * to acknowledge us.
      29             :  *
      30             :  * Permission is NOT granted for the use of any IJG author's name or company
      31             :  * name in advertising or publicity relating to this software or products
      32             :  * derived from it.  This software may be referred to only as "the Independent
      33             :  * JPEG Group's software".
      34             :  *
      35             :  * We specifically permit and encourage the use of this software as the basis
      36             :  * of commercial products, provided that all warranty or liability claims are
      37             :  * assumed by the product vendor.
      38             :  *
      39             :  * This file contains a slow-but-accurate integer implementation of the
      40             :  * forward DCT (Discrete Cosine Transform).
      41             :  *
      42             :  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
      43             :  * on each column.  Direct algorithms are also available, but they are
      44             :  * much more complex and seem not to be any faster when reduced to code.
      45             :  *
      46             :  * This implementation is based on an algorithm described in
      47             :  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
      48             :  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
      49             :  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
      50             :  * The primary algorithm described there uses 11 multiplies and 29 adds.
      51             :  * We use their alternate method with 12 multiplies and 32 adds.
      52             :  * The advantage of this method is that no data path contains more than one
      53             :  * multiplication; this allows a very simple and accurate implementation in
      54             :  * scaled fixed-point arithmetic, with a minimal number of shifts.
      55             :  */
      56             : 
      57             : /**
      58             :  * @file
      59             :  * Independent JPEG Group's slow & accurate dct.
      60             :  */
      61             : 
      62             : #include "libavutil/common.h"
      63             : #include "dct.h"
      64             : 
      65             : #include "bit_depth_template.c"
      66             : 
      67             : #define DCTSIZE 8
      68             : #define BITS_IN_JSAMPLE BIT_DEPTH
      69             : #define GLOBAL(x) x
      70             : #define RIGHT_SHIFT(x, n) ((x) >> (n))
      71             : #define MULTIPLY16C16(var,const) ((var)*(const))
      72             : #define DESCALE(x,n)  RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
      73             : 
      74             : 
      75             : /*
      76             :  * This module is specialized to the case DCTSIZE = 8.
      77             :  */
      78             : 
      79             : #if DCTSIZE != 8
      80             : #error  "Sorry, this code only copes with 8x8 DCTs."
      81             : #endif
      82             : 
      83             : 
      84             : /*
      85             :  * The poop on this scaling stuff is as follows:
      86             :  *
      87             :  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
      88             :  * larger than the true DCT outputs.  The final outputs are therefore
      89             :  * a factor of N larger than desired; since N=8 this can be cured by
      90             :  * a simple right shift at the end of the algorithm.  The advantage of
      91             :  * this arrangement is that we save two multiplications per 1-D DCT,
      92             :  * because the y0 and y4 outputs need not be divided by sqrt(N).
      93             :  * In the IJG code, this factor of 8 is removed by the quantization step
      94             :  * (in jcdctmgr.c), NOT in this module.
      95             :  *
      96             :  * We have to do addition and subtraction of the integer inputs, which
      97             :  * is no problem, and multiplication by fractional constants, which is
      98             :  * a problem to do in integer arithmetic.  We multiply all the constants
      99             :  * by CONST_SCALE and convert them to integer constants (thus retaining
     100             :  * CONST_BITS bits of precision in the constants).  After doing a
     101             :  * multiplication we have to divide the product by CONST_SCALE, with proper
     102             :  * rounding, to produce the correct output.  This division can be done
     103             :  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
     104             :  * as long as possible so that partial sums can be added together with
     105             :  * full fractional precision.
     106             :  *
     107             :  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
     108             :  * they are represented to better-than-integral precision.  These outputs
     109             :  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
     110             :  * with the recommended scaling.  (For 12-bit sample data, the intermediate
     111             :  * array is int32_t anyway.)
     112             :  *
     113             :  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
     114             :  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
     115             :  * shows that the values given below are the most effective.
     116             :  */
     117             : 
     118             : #undef CONST_BITS
     119             : #undef PASS1_BITS
     120             : #undef OUT_SHIFT
     121             : 
     122             : #if BITS_IN_JSAMPLE == 8
     123             : #define CONST_BITS  13
     124             : #define PASS1_BITS  4   /* set this to 2 if 16x16 multiplies are faster */
     125             : #define OUT_SHIFT   PASS1_BITS
     126             : #else
     127             : #define CONST_BITS  13
     128             : #define PASS1_BITS  1   /* lose a little precision to avoid overflow */
     129             : #define OUT_SHIFT   (PASS1_BITS + 1)
     130             : #endif
     131             : 
     132             : /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     133             :  * causing a lot of useless floating-point operations at run time.
     134             :  * To get around this we use the following pre-calculated constants.
     135             :  * If you change CONST_BITS you may want to add appropriate values.
     136             :  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     137             :  */
     138             : 
     139             : #if CONST_BITS == 13
     140             : #define FIX_0_298631336  ((int32_t)  2446)      /* FIX(0.298631336) */
     141             : #define FIX_0_390180644  ((int32_t)  3196)      /* FIX(0.390180644) */
     142             : #define FIX_0_541196100  ((int32_t)  4433)      /* FIX(0.541196100) */
     143             : #define FIX_0_765366865  ((int32_t)  6270)      /* FIX(0.765366865) */
     144             : #define FIX_0_899976223  ((int32_t)  7373)      /* FIX(0.899976223) */
     145             : #define FIX_1_175875602  ((int32_t)  9633)      /* FIX(1.175875602) */
     146             : #define FIX_1_501321110  ((int32_t)  12299)     /* FIX(1.501321110) */
     147             : #define FIX_1_847759065  ((int32_t)  15137)     /* FIX(1.847759065) */
     148             : #define FIX_1_961570560  ((int32_t)  16069)     /* FIX(1.961570560) */
     149             : #define FIX_2_053119869  ((int32_t)  16819)     /* FIX(2.053119869) */
     150             : #define FIX_2_562915447  ((int32_t)  20995)     /* FIX(2.562915447) */
     151             : #define FIX_3_072711026  ((int32_t)  25172)     /* FIX(3.072711026) */
     152             : #else
     153             : #define FIX_0_298631336  FIX(0.298631336)
     154             : #define FIX_0_390180644  FIX(0.390180644)
     155             : #define FIX_0_541196100  FIX(0.541196100)
     156             : #define FIX_0_765366865  FIX(0.765366865)
     157             : #define FIX_0_899976223  FIX(0.899976223)
     158             : #define FIX_1_175875602  FIX(1.175875602)
     159             : #define FIX_1_501321110  FIX(1.501321110)
     160             : #define FIX_1_847759065  FIX(1.847759065)
     161             : #define FIX_1_961570560  FIX(1.961570560)
     162             : #define FIX_2_053119869  FIX(2.053119869)
     163             : #define FIX_2_562915447  FIX(2.562915447)
     164             : #define FIX_3_072711026  FIX(3.072711026)
     165             : #endif
     166             : 
     167             : 
     168             : /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
     169             :  * For 8-bit samples with the recommended scaling, all the variable
     170             :  * and constant values involved are no more than 16 bits wide, so a
     171             :  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
     172             :  * For 12-bit samples, a full 32-bit multiplication will be needed.
     173             :  */
     174             : 
     175             : #if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2
     176             : #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
     177             : #else
     178             : #define MULTIPLY(var,const)  ((var) * (const))
     179             : #endif
     180             : 
     181             : 
     182    10789186 : static av_always_inline void FUNC(row_fdct)(int16_t *data)
     183             : {
     184             :   int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     185             :   int tmp10, tmp11, tmp12, tmp13;
     186             :   int z1, z2, z3, z4, z5;
     187             :   int16_t *dataptr;
     188             :   int ctr;
     189             : 
     190             :   /* Pass 1: process rows. */
     191             :   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
     192             :   /* furthermore, we scale the results by 2**PASS1_BITS. */
     193             : 
     194    10789186 :   dataptr = data;
     195    97102674 :   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
     196    86313488 :     tmp0 = dataptr[0] + dataptr[7];
     197    86313488 :     tmp7 = dataptr[0] - dataptr[7];
     198    86313488 :     tmp1 = dataptr[1] + dataptr[6];
     199    86313488 :     tmp6 = dataptr[1] - dataptr[6];
     200    86313488 :     tmp2 = dataptr[2] + dataptr[5];
     201    86313488 :     tmp5 = dataptr[2] - dataptr[5];
     202    86313488 :     tmp3 = dataptr[3] + dataptr[4];
     203    86313488 :     tmp4 = dataptr[3] - dataptr[4];
     204             : 
     205             :     /* Even part per LL&M figure 1 --- note that published figure is faulty;
     206             :      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
     207             :      */
     208             : 
     209    86313488 :     tmp10 = tmp0 + tmp3;
     210    86313488 :     tmp13 = tmp0 - tmp3;
     211    86313488 :     tmp11 = tmp1 + tmp2;
     212    86313488 :     tmp12 = tmp1 - tmp2;
     213             : 
     214    86313488 :     dataptr[0] = (int16_t) ((tmp10 + tmp11) * (1 << PASS1_BITS));
     215    86313488 :     dataptr[4] = (int16_t) ((tmp10 - tmp11) * (1 << PASS1_BITS));
     216             : 
     217    86313488 :     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
     218    86313488 :     dataptr[2] = (int16_t) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
     219             :                                    CONST_BITS-PASS1_BITS);
     220    86313488 :     dataptr[6] = (int16_t) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
     221             :                                    CONST_BITS-PASS1_BITS);
     222             : 
     223             :     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
     224             :      * cK represents cos(K*pi/16).
     225             :      * i0..i3 in the paper are tmp4..tmp7 here.
     226             :      */
     227             : 
     228    86313488 :     z1 = tmp4 + tmp7;
     229    86313488 :     z2 = tmp5 + tmp6;
     230    86313488 :     z3 = tmp4 + tmp6;
     231    86313488 :     z4 = tmp5 + tmp7;
     232    86313488 :     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
     233             : 
     234    86313488 :     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
     235    86313488 :     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
     236    86313488 :     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
     237    86313488 :     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
     238    86313488 :     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
     239    86313488 :     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
     240    86313488 :     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
     241    86313488 :     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
     242             : 
     243    86313488 :     z3 += z5;
     244    86313488 :     z4 += z5;
     245             : 
     246    86313488 :     dataptr[7] = (int16_t) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
     247    86313488 :     dataptr[5] = (int16_t) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
     248    86313488 :     dataptr[3] = (int16_t) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
     249    86313488 :     dataptr[1] = (int16_t) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
     250             : 
     251    86313488 :     dataptr += DCTSIZE;         /* advance pointer to next row */
     252             :   }
     253    10789186 : }
     254             : 
     255             : /*
     256             :  * Perform the forward DCT on one block of samples.
     257             :  */
     258             : 
     259             : GLOBAL(void)
     260    10789186 : FUNC(ff_jpeg_fdct_islow)(int16_t *data)
     261             : {
     262             :   int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     263             :   int tmp10, tmp11, tmp12, tmp13;
     264             :   int z1, z2, z3, z4, z5;
     265             :   int16_t *dataptr;
     266             :   int ctr;
     267             : 
     268    10789186 :   FUNC(row_fdct)(data);
     269             : 
     270             :   /* Pass 2: process columns.
     271             :    * We remove the PASS1_BITS scaling, but leave the results scaled up
     272             :    * by an overall factor of 8.
     273             :    */
     274             : 
     275    10789186 :   dataptr = data;
     276    97102674 :   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
     277    86313488 :     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
     278    86313488 :     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
     279    86313488 :     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
     280    86313488 :     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
     281    86313488 :     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
     282    86313488 :     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
     283    86313488 :     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
     284    86313488 :     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
     285             : 
     286             :     /* Even part per LL&M figure 1 --- note that published figure is faulty;
     287             :      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
     288             :      */
     289             : 
     290    86313488 :     tmp10 = tmp0 + tmp3;
     291    86313488 :     tmp13 = tmp0 - tmp3;
     292    86313488 :     tmp11 = tmp1 + tmp2;
     293    86313488 :     tmp12 = tmp1 - tmp2;
     294             : 
     295    86313488 :     dataptr[DCTSIZE*0] = DESCALE(tmp10 + tmp11, OUT_SHIFT);
     296    86313488 :     dataptr[DCTSIZE*4] = DESCALE(tmp10 - tmp11, OUT_SHIFT);
     297             : 
     298    86313488 :     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
     299    86313488 :     dataptr[DCTSIZE*2] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
     300             :                                  CONST_BITS + OUT_SHIFT);
     301    86313488 :     dataptr[DCTSIZE*6] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
     302             :                                  CONST_BITS + OUT_SHIFT);
     303             : 
     304             :     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
     305             :      * cK represents cos(K*pi/16).
     306             :      * i0..i3 in the paper are tmp4..tmp7 here.
     307             :      */
     308             : 
     309    86313488 :     z1 = tmp4 + tmp7;
     310    86313488 :     z2 = tmp5 + tmp6;
     311    86313488 :     z3 = tmp4 + tmp6;
     312    86313488 :     z4 = tmp5 + tmp7;
     313    86313488 :     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
     314             : 
     315    86313488 :     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
     316    86313488 :     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
     317    86313488 :     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
     318    86313488 :     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
     319    86313488 :     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
     320    86313488 :     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
     321    86313488 :     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
     322    86313488 :     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
     323             : 
     324    86313488 :     z3 += z5;
     325    86313488 :     z4 += z5;
     326             : 
     327    86313488 :     dataptr[DCTSIZE*7] = DESCALE(tmp4 + z1 + z3, CONST_BITS + OUT_SHIFT);
     328    86313488 :     dataptr[DCTSIZE*5] = DESCALE(tmp5 + z2 + z4, CONST_BITS + OUT_SHIFT);
     329    86313488 :     dataptr[DCTSIZE*3] = DESCALE(tmp6 + z2 + z3, CONST_BITS + OUT_SHIFT);
     330    86313488 :     dataptr[DCTSIZE*1] = DESCALE(tmp7 + z1 + z4, CONST_BITS + OUT_SHIFT);
     331             : 
     332    86313488 :     dataptr++;                  /* advance pointer to next column */
     333             :   }
     334    10789186 : }
     335             : 
     336             : /*
     337             :  * The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT
     338             :  * on the rows and then, instead of doing even and odd, part on the columns
     339             :  * you do even part two times.
     340             :  */
     341             : GLOBAL(void)
     342           0 : FUNC(ff_fdct248_islow)(int16_t *data)
     343             : {
     344             :   int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     345             :   int tmp10, tmp11, tmp12, tmp13;
     346             :   int z1;
     347             :   int16_t *dataptr;
     348             :   int ctr;
     349             : 
     350           0 :   FUNC(row_fdct)(data);
     351             : 
     352             :   /* Pass 2: process columns.
     353             :    * We remove the PASS1_BITS scaling, but leave the results scaled up
     354             :    * by an overall factor of 8.
     355             :    */
     356             : 
     357           0 :   dataptr = data;
     358           0 :   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
     359           0 :      tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
     360           0 :      tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
     361           0 :      tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
     362           0 :      tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
     363           0 :      tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
     364           0 :      tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
     365           0 :      tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
     366           0 :      tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
     367             : 
     368           0 :      tmp10 = tmp0 + tmp3;
     369           0 :      tmp11 = tmp1 + tmp2;
     370           0 :      tmp12 = tmp1 - tmp2;
     371           0 :      tmp13 = tmp0 - tmp3;
     372             : 
     373           0 :      dataptr[DCTSIZE*0] = DESCALE(tmp10 + tmp11, OUT_SHIFT);
     374           0 :      dataptr[DCTSIZE*4] = DESCALE(tmp10 - tmp11, OUT_SHIFT);
     375             : 
     376           0 :      z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
     377           0 :      dataptr[DCTSIZE*2] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
     378             :                                   CONST_BITS+OUT_SHIFT);
     379           0 :      dataptr[DCTSIZE*6] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
     380             :                                   CONST_BITS+OUT_SHIFT);
     381             : 
     382           0 :      tmp10 = tmp4 + tmp7;
     383           0 :      tmp11 = tmp5 + tmp6;
     384           0 :      tmp12 = tmp5 - tmp6;
     385           0 :      tmp13 = tmp4 - tmp7;
     386             : 
     387           0 :      dataptr[DCTSIZE*1] = DESCALE(tmp10 + tmp11, OUT_SHIFT);
     388           0 :      dataptr[DCTSIZE*5] = DESCALE(tmp10 - tmp11, OUT_SHIFT);
     389             : 
     390           0 :      z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
     391           0 :      dataptr[DCTSIZE*3] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
     392             :                                   CONST_BITS + OUT_SHIFT);
     393           0 :      dataptr[DCTSIZE*7] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
     394             :                                   CONST_BITS + OUT_SHIFT);
     395             : 
     396           0 :      dataptr++;                 /* advance pointer to next column */
     397             :   }
     398           0 : }

Generated by: LCOV version 1.13