LCOV - code coverage report
Current view: top level - libavcodec - indeo3.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 382 485 78.8 %
Date: 2017-12-10 21:22:29 Functions: 16 16 100.0 %

          Line data    Source code
       1             : /*
       2             :  * Indeo Video v3 compatible decoder
       3             :  * Copyright (c) 2009 - 2011 Maxim Poliakovski
       4             :  *
       5             :  * This file is part of FFmpeg.
       6             :  *
       7             :  * FFmpeg is free software; you can redistribute it and/or
       8             :  * modify it under the terms of the GNU Lesser General Public
       9             :  * License as published by the Free Software Foundation; either
      10             :  * version 2.1 of the License, or (at your option) any later version.
      11             :  *
      12             :  * FFmpeg is distributed in the hope that it will be useful,
      13             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      14             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      15             :  * Lesser General Public License for more details.
      16             :  *
      17             :  * You should have received a copy of the GNU Lesser General Public
      18             :  * License along with FFmpeg; if not, write to the Free Software
      19             :  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
      20             :  */
      21             : 
      22             : /**
      23             :  * @file
      24             :  * This is a decoder for Intel Indeo Video v3.
      25             :  * It is based on vector quantization, run-length coding and motion compensation.
      26             :  * Known container formats: .avi and .mov
      27             :  * Known FOURCCs: 'IV31', 'IV32'
      28             :  *
      29             :  * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
      30             :  */
      31             : 
      32             : #include "libavutil/imgutils.h"
      33             : #include "libavutil/intreadwrite.h"
      34             : #include "avcodec.h"
      35             : #include "copy_block.h"
      36             : #include "bytestream.h"
      37             : #include "get_bits.h"
      38             : #include "hpeldsp.h"
      39             : #include "internal.h"
      40             : 
      41             : #include "indeo3data.h"
      42             : 
      43             : /* RLE opcodes. */
      44             : enum {
      45             :     RLE_ESC_F9    = 249, ///< same as RLE_ESC_FA + do the same with next block
      46             :     RLE_ESC_FA    = 250, ///< INTRA: skip block, INTER: copy data from reference
      47             :     RLE_ESC_FB    = 251, ///< apply null delta to N blocks / skip N blocks
      48             :     RLE_ESC_FC    = 252, ///< same as RLE_ESC_FD + do the same with next block
      49             :     RLE_ESC_FD    = 253, ///< apply null delta to all remaining lines of this block
      50             :     RLE_ESC_FE    = 254, ///< apply null delta to all lines up to the 3rd line
      51             :     RLE_ESC_FF    = 255  ///< apply null delta to all lines up to the 2nd line
      52             : };
      53             : 
      54             : 
      55             : /* Some constants for parsing frame bitstream flags. */
      56             : #define BS_8BIT_PEL     (1 << 1) ///< 8-bit pixel bitdepth indicator
      57             : #define BS_KEYFRAME     (1 << 2) ///< intra frame indicator
      58             : #define BS_MV_Y_HALF    (1 << 4) ///< vertical mv halfpel resolution indicator
      59             : #define BS_MV_X_HALF    (1 << 5) ///< horizontal mv halfpel resolution indicator
      60             : #define BS_NONREF       (1 << 8) ///< nonref (discardable) frame indicator
      61             : #define BS_BUFFER        9       ///< indicates which of two frame buffers should be used
      62             : 
      63             : 
      64             : typedef struct Plane {
      65             :     uint8_t         *buffers[2];
      66             :     uint8_t         *pixels[2]; ///< pointer to the actual pixel data of the buffers above
      67             :     uint32_t        width;
      68             :     uint32_t        height;
      69             :     ptrdiff_t       pitch;
      70             : } Plane;
      71             : 
      72             : #define CELL_STACK_MAX  20
      73             : 
      74             : typedef struct Cell {
      75             :     int16_t         xpos;       ///< cell coordinates in 4x4 blocks
      76             :     int16_t         ypos;
      77             :     int16_t         width;      ///< cell width  in 4x4 blocks
      78             :     int16_t         height;     ///< cell height in 4x4 blocks
      79             :     uint8_t         tree;       ///< tree id: 0- MC tree, 1 - VQ tree
      80             :     const int8_t    *mv_ptr;    ///< ptr to the motion vector if any
      81             : } Cell;
      82             : 
      83             : typedef struct Indeo3DecodeContext {
      84             :     AVCodecContext *avctx;
      85             :     HpelDSPContext  hdsp;
      86             : 
      87             :     GetBitContext   gb;
      88             :     int             need_resync;
      89             :     int             skip_bits;
      90             :     const uint8_t   *next_cell_data;
      91             :     const uint8_t   *last_byte;
      92             :     const int8_t    *mc_vectors;
      93             :     unsigned        num_vectors;    ///< number of motion vectors in mc_vectors
      94             : 
      95             :     int16_t         width, height;
      96             :     uint32_t        frame_num;      ///< current frame number (zero-based)
      97             :     int             data_size;      ///< size of the frame data in bytes
      98             :     uint16_t        frame_flags;    ///< frame properties
      99             :     uint8_t         cb_offset;      ///< needed for selecting VQ tables
     100             :     uint8_t         buf_sel;        ///< active frame buffer: 0 - primary, 1 -secondary
     101             :     const uint8_t   *y_data_ptr;
     102             :     const uint8_t   *v_data_ptr;
     103             :     const uint8_t   *u_data_ptr;
     104             :     int32_t         y_data_size;
     105             :     int32_t         v_data_size;
     106             :     int32_t         u_data_size;
     107             :     const uint8_t   *alt_quant;     ///< secondary VQ table set for the modes 1 and 4
     108             :     Plane           planes[3];
     109             : } Indeo3DecodeContext;
     110             : 
     111             : 
     112             : static uint8_t requant_tab[8][128];
     113             : 
     114             : /*
     115             :  *  Build the static requantization table.
     116             :  *  This table is used to remap pixel values according to a specific
     117             :  *  quant index and thus avoid overflows while adding deltas.
     118             :  */
     119           4 : static av_cold void build_requant_tab(void)
     120             : {
     121             :     static const int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
     122             :     static const int8_t deltas [8] = { 0, 1, 0,  4,  4, 1, 0, 1 };
     123             : 
     124             :     int i, j, step;
     125             : 
     126          36 :     for (i = 0; i < 8; i++) {
     127          32 :         step = i + 2;
     128        4128 :         for (j = 0; j < 128; j++)
     129        4096 :                 requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
     130             :     }
     131             : 
     132             :     /* some last elements calculated above will have values >= 128 */
     133             :     /* pixel values shall never exceed 127 so set them to non-overflowing values */
     134             :     /* according with the quantization step of the respective section */
     135           4 :     requant_tab[0][127] = 126;
     136           4 :     requant_tab[1][119] = 118;
     137           4 :     requant_tab[1][120] = 118;
     138           4 :     requant_tab[2][126] = 124;
     139           4 :     requant_tab[2][127] = 124;
     140           4 :     requant_tab[6][124] = 120;
     141           4 :     requant_tab[6][125] = 120;
     142           4 :     requant_tab[6][126] = 120;
     143           4 :     requant_tab[6][127] = 120;
     144             : 
     145             :     /* Patch for compatibility with the Intel's binary decoders */
     146           4 :     requant_tab[1][7] = 10;
     147           4 :     requant_tab[4][8] = 10;
     148           4 : }
     149             : 
     150             : 
     151           4 : static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
     152             : {
     153             :     int p;
     154             : 
     155           4 :     ctx->width = ctx->height = 0;
     156             : 
     157          16 :     for (p = 0; p < 3; p++) {
     158          12 :         av_freep(&ctx->planes[p].buffers[0]);
     159          12 :         av_freep(&ctx->planes[p].buffers[1]);
     160          12 :         ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
     161             :     }
     162           4 : }
     163             : 
     164             : 
     165           4 : static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
     166             :                                           AVCodecContext *avctx, int luma_width, int luma_height)
     167             : {
     168             :     int p, chroma_width, chroma_height;
     169             :     int luma_size, chroma_size;
     170             :     ptrdiff_t luma_pitch, chroma_pitch;
     171             : 
     172           4 :     if (luma_width  < 16 || luma_width  > 640 ||
     173           8 :         luma_height < 16 || luma_height > 480 ||
     174           8 :         luma_width  &  3 || luma_height &   3) {
     175           0 :         av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
     176             :                luma_width, luma_height);
     177           0 :         return AVERROR_INVALIDDATA;
     178             :     }
     179             : 
     180           4 :     ctx->width  = luma_width ;
     181           4 :     ctx->height = luma_height;
     182             : 
     183           4 :     chroma_width  = FFALIGN(luma_width  >> 2, 4);
     184           4 :     chroma_height = FFALIGN(luma_height >> 2, 4);
     185             : 
     186           4 :     luma_pitch   = FFALIGN(luma_width,   16);
     187           4 :     chroma_pitch = FFALIGN(chroma_width, 16);
     188             : 
     189             :     /* Calculate size of the luminance plane.  */
     190             :     /* Add one line more for INTRA prediction. */
     191           4 :     luma_size = luma_pitch * (luma_height + 1);
     192             : 
     193             :     /* Calculate size of a chrominance planes. */
     194             :     /* Add one line more for INTRA prediction. */
     195           4 :     chroma_size = chroma_pitch * (chroma_height + 1);
     196             : 
     197             :     /* allocate frame buffers */
     198          16 :     for (p = 0; p < 3; p++) {
     199          12 :         ctx->planes[p].pitch  = !p ? luma_pitch  : chroma_pitch;
     200          12 :         ctx->planes[p].width  = !p ? luma_width  : chroma_width;
     201          12 :         ctx->planes[p].height = !p ? luma_height : chroma_height;
     202             : 
     203          12 :         ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
     204          12 :         ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
     205             : 
     206          12 :         if (!ctx->planes[p].buffers[0] || !ctx->planes[p].buffers[1]) {
     207           0 :             free_frame_buffers(ctx);
     208           0 :             return AVERROR(ENOMEM);
     209             :         }
     210             : 
     211             :         /* fill the INTRA prediction lines with the middle pixel value = 64 */
     212          12 :         memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
     213          12 :         memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
     214             : 
     215             :         /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
     216          12 :         ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
     217          12 :         ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
     218          12 :         memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
     219          12 :         memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
     220             :     }
     221             : 
     222           4 :     return 0;
     223             : }
     224             : 
     225             : /**
     226             :  *  Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
     227             :  *  the cell(x, y) in the current frame.
     228             :  *
     229             :  *  @param ctx      pointer to the decoder context
     230             :  *  @param plane    pointer to the plane descriptor
     231             :  *  @param cell     pointer to the cell  descriptor
     232             :  */
     233        1683 : static int copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
     234             : {
     235             :     int     h, w, mv_x, mv_y, offset, offset_dst;
     236             :     uint8_t *src, *dst;
     237             : 
     238             :     /* setup output and reference pointers */
     239        1683 :     offset_dst  = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
     240        1683 :     dst         = plane->pixels[ctx->buf_sel] + offset_dst;
     241        1683 :     if(cell->mv_ptr){
     242        1683 :     mv_y        = cell->mv_ptr[0];
     243        1683 :     mv_x        = cell->mv_ptr[1];
     244             :     }else
     245           0 :         mv_x= mv_y= 0;
     246             : 
     247             :     /* -1 because there is an extra line on top for prediction */
     248        3366 :     if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
     249        3366 :         ((cell->ypos + cell->height) << 2) + mv_y > plane->height     ||
     250        1683 :         ((cell->xpos + cell->width)  << 2) + mv_x > plane->width) {
     251           0 :         av_log(ctx->avctx, AV_LOG_ERROR,
     252             :                "Motion vectors point out of the frame.\n");
     253           0 :         return AVERROR_INVALIDDATA;
     254             :     }
     255             : 
     256        1683 :     offset      = offset_dst + mv_y * plane->pitch + mv_x;
     257        1683 :     src         = plane->pixels[ctx->buf_sel ^ 1] + offset;
     258             : 
     259        1683 :     h = cell->height << 2;
     260             : 
     261        6307 :     for (w = cell->width; w > 0;) {
     262             :         /* copy using 16xH blocks */
     263        2941 :         if (!((cell->xpos << 2) & 15) && w >= 4) {
     264        1682 :             for (; w >= 4; src += 16, dst += 16, w -= 4)
     265         841 :                 ctx->hdsp.put_pixels_tab[0][0](dst, src, plane->pitch, h);
     266             :         }
     267             : 
     268             :         /* copy using 8xH blocks */
     269        2941 :         if (!((cell->xpos << 2) & 7) && w >= 2) {
     270        2519 :             ctx->hdsp.put_pixels_tab[1][0](dst, src, plane->pitch, h);
     271        2519 :             w -= 2;
     272        2519 :             src += 8;
     273        2519 :             dst += 8;
     274         422 :         } else if (w >= 1) {
     275           0 :             ctx->hdsp.put_pixels_tab[2][0](dst, src, plane->pitch, h);
     276           0 :             w--;
     277           0 :             src += 4;
     278           0 :             dst += 4;
     279             :         }
     280             :     }
     281             : 
     282        1683 :     return 0;
     283             : }
     284             : 
     285             : 
     286             : /* Average 4/8 pixels at once without rounding using SWAR */
     287             : #define AVG_32(dst, src, ref) \
     288             :     AV_WN32A(dst, ((AV_RN32(src) + AV_RN32(ref)) >> 1) & 0x7F7F7F7FUL)
     289             : 
     290             : #define AVG_64(dst, src, ref) \
     291             :     AV_WN64A(dst, ((AV_RN64(src) + AV_RN64(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
     292             : 
     293             : 
     294             : /*
     295             :  *  Replicate each even pixel as follows:
     296             :  *  ABCDEFGH -> AACCEEGG
     297             :  */
     298        3811 : static inline uint64_t replicate64(uint64_t a) {
     299             : #if HAVE_BIGENDIAN
     300             :     a &= 0xFF00FF00FF00FF00ULL;
     301             :     a |= a >> 8;
     302             : #else
     303        3811 :     a &= 0x00FF00FF00FF00FFULL;
     304        3811 :     a |= a << 8;
     305             : #endif
     306        3811 :     return a;
     307             : }
     308             : 
     309       12140 : static inline uint32_t replicate32(uint32_t a) {
     310             : #if HAVE_BIGENDIAN
     311             :     a &= 0xFF00FF00UL;
     312             :     a |= a >> 8;
     313             : #else
     314       12140 :     a &= 0x00FF00FFUL;
     315       12140 :     a |= a << 8;
     316             : #endif
     317       12140 :     return a;
     318             : }
     319             : 
     320             : 
     321             : /* Fill n lines with 64-bit pixel value pix */
     322       17347 : static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
     323             :                            int32_t row_offset)
     324             : {
     325      128722 :     for (; n > 0; dst += row_offset, n--)
     326      111375 :         AV_WN64A(dst, pix);
     327       17347 : }
     328             : 
     329             : 
     330             : /* Error codes for cell decoding. */
     331             : enum {
     332             :     IV3_NOERR       = 0,
     333             :     IV3_BAD_RLE     = 1,
     334             :     IV3_BAD_DATA    = 2,
     335             :     IV3_BAD_COUNTER = 3,
     336             :     IV3_UNSUPPORTED = 4,
     337             :     IV3_OUT_OF_DATA = 5
     338             : };
     339             : 
     340             : 
     341             : #define BUFFER_PRECHECK \
     342             : if (*data_ptr >= last_ptr) \
     343             :     return IV3_OUT_OF_DATA; \
     344             : 
     345             : #define RLE_BLOCK_COPY \
     346             :     if (cell->mv_ptr || !skip_flag) \
     347             :         copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
     348             : 
     349             : #define RLE_BLOCK_COPY_8 \
     350             :     pix64 = AV_RN64(ref);\
     351             :     if (is_first_row) {/* special prediction case: top line of a cell */\
     352             :         pix64 = replicate64(pix64);\
     353             :         fill_64(dst + row_offset, pix64, 7, row_offset);\
     354             :         AVG_64(dst, ref, dst + row_offset);\
     355             :     } else \
     356             :         fill_64(dst, pix64, 8, row_offset)
     357             : 
     358             : #define RLE_LINES_COPY \
     359             :     copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
     360             : 
     361             : #define RLE_LINES_COPY_M10 \
     362             :     pix64 = AV_RN64(ref);\
     363             :     if (is_top_of_cell) {\
     364             :         pix64 = replicate64(pix64);\
     365             :         fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
     366             :         AVG_64(dst, ref, dst + row_offset);\
     367             :     } else \
     368             :         fill_64(dst, pix64, num_lines << 1, row_offset)
     369             : 
     370             : #define APPLY_DELTA_4 \
     371             :     AV_WN16A(dst + line_offset    ,\
     372             :              (AV_RN16(ref    ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
     373             :     AV_WN16A(dst + line_offset + 2,\
     374             :              (AV_RN16(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
     375             :     if (mode >= 3) {\
     376             :         if (is_top_of_cell && !cell->ypos) {\
     377             :             AV_COPY32U(dst, dst + row_offset);\
     378             :         } else {\
     379             :             AVG_32(dst, ref, dst + row_offset);\
     380             :         }\
     381             :     }
     382             : 
     383             : #define APPLY_DELTA_8 \
     384             :     /* apply two 32-bit VQ deltas to next even line */\
     385             :     if (is_top_of_cell) { \
     386             :         AV_WN32A(dst + row_offset    , \
     387             :                  (replicate32(AV_RN32(ref    )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
     388             :         AV_WN32A(dst + row_offset + 4, \
     389             :                  (replicate32(AV_RN32(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
     390             :     } else { \
     391             :         AV_WN32A(dst + row_offset    , \
     392             :                  (AV_RN32(ref    ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
     393             :         AV_WN32A(dst + row_offset + 4, \
     394             :                  (AV_RN32(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
     395             :     } \
     396             :     /* odd lines are not coded but rather interpolated/replicated */\
     397             :     /* first line of the cell on the top of image? - replicate */\
     398             :     /* otherwise - interpolate */\
     399             :     if (is_top_of_cell && !cell->ypos) {\
     400             :         AV_COPY64U(dst, dst + row_offset);\
     401             :     } else \
     402             :         AVG_64(dst, ref, dst + row_offset);
     403             : 
     404             : 
     405             : #define APPLY_DELTA_1011_INTER \
     406             :     if (mode == 10) { \
     407             :         AV_WN32A(dst                 , \
     408             :                  (AV_RN32(dst                 ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
     409             :         AV_WN32A(dst + 4             , \
     410             :                  (AV_RN32(dst + 4             ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
     411             :         AV_WN32A(dst + row_offset    , \
     412             :                  (AV_RN32(dst + row_offset    ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
     413             :         AV_WN32A(dst + row_offset + 4, \
     414             :                  (AV_RN32(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
     415             :     } else { \
     416             :         AV_WN16A(dst                 , \
     417             :                  (AV_RN16(dst                 ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
     418             :         AV_WN16A(dst + 2             , \
     419             :                  (AV_RN16(dst + 2             ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
     420             :         AV_WN16A(dst + row_offset    , \
     421             :                  (AV_RN16(dst + row_offset    ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
     422             :         AV_WN16A(dst + row_offset + 2, \
     423             :                  (AV_RN16(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
     424             :     }
     425             : 
     426             : 
     427       15944 : static int decode_cell_data(Indeo3DecodeContext *ctx, Cell *cell,
     428             :                             uint8_t *block, uint8_t *ref_block,
     429             :                             ptrdiff_t row_offset, int h_zoom, int v_zoom, int mode,
     430             :                             const vqEntry *delta[2], int swap_quads[2],
     431             :                             const uint8_t **data_ptr, const uint8_t *last_ptr)
     432             : {
     433             :     int           x, y, line, num_lines;
     434       15944 :     int           rle_blocks = 0;
     435             :     uint8_t       code, *dst, *ref;
     436             :     const vqEntry *delta_tab;
     437             :     unsigned int  dyad1, dyad2;
     438             :     uint64_t      pix64;
     439       15944 :     int           skip_flag = 0, is_top_of_cell, is_first_row = 1;
     440             :     int           blk_row_offset, line_offset;
     441             : 
     442       15944 :     blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
     443       15944 :     line_offset    = v_zoom ? row_offset : 0;
     444             : 
     445       15944 :     if (cell->height & v_zoom || cell->width & h_zoom)
     446           0 :         return IV3_BAD_DATA;
     447             : 
     448       93487 :     for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
     449      427098 :         for (x = 0; x < cell->width; x += 1 + h_zoom) {
     450      349555 :             ref = ref_block;
     451      349555 :             dst = block;
     452             : 
     453      349555 :             if (rle_blocks > 0) {
     454       76314 :                 if (mode <= 4) {
     455       60984 :                     RLE_BLOCK_COPY;
     456       15330 :                 } else if (mode == 10 && !cell->mv_ptr) {
     457        8469 :                     RLE_BLOCK_COPY_8;
     458             :                 }
     459       76314 :                 rle_blocks--;
     460             :             } else {
     461     1460926 :                 for (line = 0; line < 4;) {
     462      914444 :                     num_lines = 1;
     463      914444 :                     is_top_of_cell = is_first_row && !line;
     464             : 
     465             :                     /* select primary VQ table for odd, secondary for even lines */
     466      914444 :                     if (mode <= 4)
     467      842209 :                         delta_tab = delta[line & 1];
     468             :                     else
     469       72235 :                         delta_tab = delta[1];
     470      914444 :                     BUFFER_PRECHECK;
     471      914444 :                     code = bytestream_get_byte(data_ptr);
     472      914444 :                     if (code < 248) {
     473      809297 :                         if (code < delta_tab->num_dyads) {
     474      342912 :                             BUFFER_PRECHECK;
     475      342912 :                             dyad1 = bytestream_get_byte(data_ptr);
     476      342912 :                             dyad2 = code;
     477      342912 :                             if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
     478           0 :                                 return IV3_BAD_DATA;
     479             :                         } else {
     480             :                             /* process QUADS */
     481      466385 :                             code -= delta_tab->num_dyads;
     482      466385 :                             dyad1 = code / delta_tab->quad_exp;
     483      466385 :                             dyad2 = code % delta_tab->quad_exp;
     484      466385 :                             if (swap_quads[line & 1])
     485           0 :                                 FFSWAP(unsigned int, dyad1, dyad2);
     486             :                         }
     487      809297 :                         if (mode <= 4) {
     488      748407 :                             APPLY_DELTA_4;
     489       60890 :                         } else if (mode == 10 && !cell->mv_ptr) {
     490       59579 :                             APPLY_DELTA_8;
     491             :                         } else {
     492        1311 :                             APPLY_DELTA_1011_INTER;
     493             :                         }
     494             :                     } else {
     495             :                         /* process RLE codes */
     496      105147 :                         switch (code) {
     497       11658 :                         case RLE_ESC_FC:
     498       11658 :                             skip_flag  = 0;
     499       11658 :                             rle_blocks = 1;
     500       11658 :                             code       = 253;
     501             :                             /* FALLTHROUGH */
     502       88796 :                         case RLE_ESC_FF:
     503             :                         case RLE_ESC_FE:
     504             :                         case RLE_ESC_FD:
     505       88796 :                             num_lines = 257 - code - line;
     506       88796 :                             if (num_lines <= 0)
     507           0 :                                 return IV3_BAD_RLE;
     508       88796 :                             if (mode <= 4) {
     509       80567 :                                 RLE_LINES_COPY;
     510        8229 :                             } else if (mode == 10 && !cell->mv_ptr) {
     511        7274 :                                 RLE_LINES_COPY_M10;
     512             :                             }
     513       88796 :                             break;
     514       14291 :                         case RLE_ESC_FB:
     515       14291 :                             BUFFER_PRECHECK;
     516       14291 :                             code = bytestream_get_byte(data_ptr);
     517       14291 :                             rle_blocks = (code & 0x1F) - 1; /* set block counter */
     518       14291 :                             if (code >= 64 || rle_blocks < 0)
     519           0 :                                 return IV3_BAD_COUNTER;
     520       14291 :                             skip_flag = code & 0x20;
     521       14291 :                             num_lines = 4 - line; /* enforce next block processing */
     522       14291 :                             if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
     523       14291 :                                 if (mode <= 4) {
     524       11441 :                                     RLE_LINES_COPY;
     525        2850 :                                 } else if (mode == 10 && !cell->mv_ptr) {
     526        1604 :                                     RLE_LINES_COPY_M10;
     527             :                                 }
     528             :                             }
     529       14291 :                             break;
     530         570 :                         case RLE_ESC_F9:
     531         570 :                             skip_flag  = 1;
     532         570 :                             rle_blocks = 1;
     533             :                             /* FALLTHROUGH */
     534        2060 :                         case RLE_ESC_FA:
     535        2060 :                             if (line)
     536           0 :                                 return IV3_BAD_RLE;
     537        2060 :                             num_lines = 4; /* enforce next block processing */
     538        2060 :                             if (cell->mv_ptr) {
     539        2060 :                                 if (mode <= 4) {
     540        1794 :                                     RLE_LINES_COPY;
     541         266 :                                 } else if (mode == 10 && !cell->mv_ptr) {
     542           0 :                                     RLE_LINES_COPY_M10;
     543             :                                 }
     544             :                             }
     545        2060 :                             break;
     546           0 :                         default:
     547           0 :                             return IV3_UNSUPPORTED;
     548             :                         }
     549             :                     }
     550             : 
     551      914444 :                     line += num_lines;
     552      914444 :                     ref  += row_offset * (num_lines << v_zoom);
     553      914444 :                     dst  += row_offset * (num_lines << v_zoom);
     554             :                 }
     555             :             }
     556             : 
     557             :             /* move to next horizontal block */
     558      349555 :             block     += 4 << h_zoom;
     559      349555 :             ref_block += 4 << h_zoom;
     560             :         }
     561             : 
     562             :         /* move to next line of blocks */
     563       77543 :         ref_block += blk_row_offset;
     564       77543 :         block     += blk_row_offset;
     565             :     }
     566       15944 :     return IV3_NOERR;
     567             : }
     568             : 
     569             : 
     570             : /**
     571             :  *  Decode a vector-quantized cell.
     572             :  *  It consists of several routines, each of which handles one or more "modes"
     573             :  *  with which a cell can be encoded.
     574             :  *
     575             :  *  @param ctx      pointer to the decoder context
     576             :  *  @param avctx    ptr to the AVCodecContext
     577             :  *  @param plane    pointer to the plane descriptor
     578             :  *  @param cell     pointer to the cell  descriptor
     579             :  *  @param data_ptr pointer to the compressed data
     580             :  *  @param last_ptr pointer to the last byte to catch reads past end of buffer
     581             :  *  @return         number of consumed bytes or negative number in case of error
     582             :  */
     583       15944 : static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
     584             :                        Plane *plane, Cell *cell, const uint8_t *data_ptr,
     585             :                        const uint8_t *last_ptr)
     586             : {
     587             :     int           x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
     588             :     int           zoom_fac;
     589       15944 :     int           offset, error = 0, swap_quads[2];
     590       15944 :     uint8_t       code, *block, *ref_block = 0;
     591             :     const vqEntry *delta[2];
     592       15944 :     const uint8_t *data_start = data_ptr;
     593             : 
     594             :     /* get coding mode and VQ table index from the VQ descriptor byte */
     595       15944 :     code     = *data_ptr++;
     596       15944 :     mode     = code >> 4;
     597       15944 :     vq_index = code & 0xF;
     598             : 
     599             :     /* setup output and reference pointers */
     600       15944 :     offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
     601       15944 :     block  =  plane->pixels[ctx->buf_sel] + offset;
     602             : 
     603       15944 :     if (!cell->mv_ptr) {
     604             :         /* use previous line as reference for INTRA cells */
     605       12410 :         ref_block = block - plane->pitch;
     606        3534 :     } else if (mode >= 10) {
     607             :         /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
     608             :         /* so we don't need to do data copying for each RLE code later */
     609        1227 :         int ret = copy_cell(ctx, plane, cell);
     610        1227 :         if (ret < 0)
     611           0 :             return ret;
     612             :     } else {
     613             :         /* set the pointer to the reference pixels for modes 0-4 INTER */
     614        2307 :         mv_y      = cell->mv_ptr[0];
     615        2307 :         mv_x      = cell->mv_ptr[1];
     616             : 
     617             :         /* -1 because there is an extra line on top for prediction */
     618        4614 :         if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
     619        4614 :             ((cell->ypos + cell->height) << 2) + mv_y > plane->height     ||
     620        2307 :             ((cell->xpos + cell->width)  << 2) + mv_x > plane->width) {
     621           0 :             av_log(ctx->avctx, AV_LOG_ERROR,
     622             :                    "Motion vectors point out of the frame.\n");
     623           0 :             return AVERROR_INVALIDDATA;
     624             :         }
     625             : 
     626        2307 :         offset   += mv_y * plane->pitch + mv_x;
     627        2307 :         ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
     628             :     }
     629             : 
     630             :     /* select VQ tables as follows: */
     631             :     /* modes 0 and 3 use only the primary table for all lines in a block */
     632             :     /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
     633       15944 :     if (mode == 1 || mode == 4) {
     634           0 :         code        = ctx->alt_quant[vq_index];
     635           0 :         prim_indx   = (code >> 4)  + ctx->cb_offset;
     636           0 :         second_indx = (code & 0xF) + ctx->cb_offset;
     637             :     } else {
     638       15944 :         vq_index += ctx->cb_offset;
     639       15944 :         prim_indx = second_indx = vq_index;
     640             :     }
     641             : 
     642       15944 :     if (prim_indx >= 24 || second_indx >= 24) {
     643           0 :         av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
     644             :                prim_indx, second_indx);
     645           0 :         return AVERROR_INVALIDDATA;
     646             :     }
     647             : 
     648       15944 :     delta[0] = &vq_tab[second_indx];
     649       15944 :     delta[1] = &vq_tab[prim_indx];
     650       15944 :     swap_quads[0] = second_indx >= 16;
     651       15944 :     swap_quads[1] = prim_indx   >= 16;
     652             : 
     653             :     /* requantize the prediction if VQ index of this cell differs from VQ index */
     654             :     /* of the predicted cell in order to avoid overflows. */
     655       15944 :     if (vq_index >= 8 && ref_block) {
     656      263506 :         for (x = 0; x < cell->width << 2; x++)
     657      251096 :             ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
     658             :     }
     659             : 
     660       15944 :     error = IV3_NOERR;
     661             : 
     662       15944 :     switch (mode) {
     663       10783 :     case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
     664             :     case 1:
     665             :     case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
     666             :     case 4:
     667       10783 :         if (mode >= 3 && cell->mv_ptr) {
     668           0 :             av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
     669           0 :             return AVERROR_INVALIDDATA;
     670             :         }
     671             : 
     672       10783 :         zoom_fac = mode >= 3;
     673       10783 :         error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
     674             :                                  0, zoom_fac, mode, delta, swap_quads,
     675             :                                  &data_ptr, last_ptr);
     676       10783 :         break;
     677        5161 :     case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
     678             :     case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
     679        5161 :         if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
     680        3934 :             error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
     681             :                                      1, 1, mode, delta, swap_quads,
     682             :                                      &data_ptr, last_ptr);
     683             :         } else { /* mode 10 and 11 INTER processing */
     684        1227 :             if (mode == 11 && !cell->mv_ptr) {
     685           0 :                av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
     686           0 :                return AVERROR_INVALIDDATA;
     687             :             }
     688             : 
     689        1227 :             zoom_fac = mode == 10;
     690        1227 :             error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
     691             :                                      zoom_fac, 1, mode, delta, swap_quads,
     692             :                                      &data_ptr, last_ptr);
     693             :         }
     694        5161 :         break;
     695           0 :     default:
     696           0 :         av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
     697           0 :         return AVERROR_INVALIDDATA;
     698             :     }//switch mode
     699             : 
     700       15944 :     switch (error) {
     701           0 :     case IV3_BAD_RLE:
     702           0 :         av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
     703           0 :                mode, data_ptr[-1]);
     704           0 :         return AVERROR_INVALIDDATA;
     705           0 :     case IV3_BAD_DATA:
     706           0 :         av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
     707           0 :         return AVERROR_INVALIDDATA;
     708           0 :     case IV3_BAD_COUNTER:
     709           0 :         av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
     710           0 :         return AVERROR_INVALIDDATA;
     711           0 :     case IV3_UNSUPPORTED:
     712           0 :         av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
     713           0 :         return AVERROR_INVALIDDATA;
     714           0 :     case IV3_OUT_OF_DATA:
     715           0 :         av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
     716           0 :         return AVERROR_INVALIDDATA;
     717             :     }
     718             : 
     719       15944 :     return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
     720             : }
     721             : 
     722             : 
     723             : /* Binary tree codes. */
     724             : enum {
     725             :     H_SPLIT    = 0,
     726             :     V_SPLIT    = 1,
     727             :     INTRA_NULL = 2,
     728             :     INTER_DATA = 3
     729             : };
     730             : 
     731             : 
     732             : #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
     733             : 
     734             : #define UPDATE_BITPOS(n) \
     735             :     ctx->skip_bits  += (n); \
     736             :     ctx->need_resync = 1
     737             : 
     738             : #define RESYNC_BITSTREAM \
     739             :     if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
     740             :         skip_bits_long(&ctx->gb, ctx->skip_bits);              \
     741             :         ctx->skip_bits   = 0;                                  \
     742             :         ctx->need_resync = 0;                                  \
     743             :     }
     744             : 
     745             : #define CHECK_CELL \
     746             :     if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) ||               \
     747             :         curr_cell.ypos + curr_cell.height > (plane->height >> 2)) {             \
     748             :         av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n",   \
     749             :                curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
     750             :         return AVERROR_INVALIDDATA;                                                              \
     751             :     }
     752             : 
     753             : 
     754       16400 : static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
     755             :                          Plane *plane, int code, Cell *ref_cell,
     756             :                          const int depth, const int strip_width)
     757             : {
     758             :     Cell    curr_cell;
     759             :     int     bytes_used, ret;
     760             : 
     761       16400 :     if (depth <= 0) {
     762           0 :         av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
     763           0 :         return AVERROR_INVALIDDATA; // unwind recursion
     764             :     }
     765             : 
     766       16400 :     curr_cell = *ref_cell; // clone parent cell
     767       16400 :     if (code == H_SPLIT) {
     768        5560 :         SPLIT_CELL(ref_cell->height, curr_cell.height);
     769        5560 :         ref_cell->ypos   += curr_cell.height;
     770        5560 :         ref_cell->height -= curr_cell.height;
     771        5560 :         if (ref_cell->height <= 0 || curr_cell.height <= 0)
     772           0 :             return AVERROR_INVALIDDATA;
     773       10840 :     } else if (code == V_SPLIT) {
     774       10420 :         if (curr_cell.width > strip_width) {
     775             :             /* split strip */
     776         300 :             curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
     777             :         } else
     778       10120 :             SPLIT_CELL(ref_cell->width, curr_cell.width);
     779       10420 :         ref_cell->xpos  += curr_cell.width;
     780       10420 :         ref_cell->width -= curr_cell.width;
     781       10420 :         if (ref_cell->width <= 0 || curr_cell.width <= 0)
     782           0 :             return AVERROR_INVALIDDATA;
     783             :     }
     784             : 
     785       54389 :     while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
     786       37989 :         RESYNC_BITSTREAM;
     787       37989 :         switch (code = get_bits(&ctx->gb, 2)) {
     788       15980 :         case H_SPLIT:
     789             :         case V_SPLIT:
     790       15980 :             if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
     791           0 :                 return AVERROR_INVALIDDATA;
     792       15980 :             break;
     793        2829 :         case INTRA_NULL:
     794        2829 :             if (!curr_cell.tree) { /* MC tree INTRA code */
     795        2373 :                 curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
     796        2373 :                 curr_cell.tree   = 1; /* enter the VQ tree */
     797             :             } else { /* VQ tree NULL code */
     798         456 :                 RESYNC_BITSTREAM;
     799         456 :                 code = get_bits(&ctx->gb, 2);
     800         456 :                 if (code >= 2) {
     801           0 :                     av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
     802           0 :                     return AVERROR_INVALIDDATA;
     803             :                 }
     804         456 :                 if (code == 1)
     805           0 :                     av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
     806             : 
     807         456 :                 CHECK_CELL
     808         456 :                 if (!curr_cell.mv_ptr)
     809           0 :                     return AVERROR_INVALIDDATA;
     810             : 
     811         456 :                 ret = copy_cell(ctx, plane, &curr_cell);
     812         456 :                 return ret;
     813             :             }
     814        2373 :             break;
     815       19180 :         case INTER_DATA:
     816       19180 :             if (!curr_cell.tree) { /* MC tree INTER code */
     817             :                 unsigned mv_idx;
     818             :                 /* get motion vector index and setup the pointer to the mv set */
     819        3236 :                 if (!ctx->need_resync)
     820        1544 :                     ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
     821        3236 :                 if (ctx->next_cell_data >= ctx->last_byte) {
     822           0 :                     av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
     823           0 :                     return AVERROR_INVALIDDATA;
     824             :                 }
     825        3236 :                 mv_idx = *(ctx->next_cell_data++);
     826        3236 :                 if (mv_idx >= ctx->num_vectors) {
     827           0 :                     av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
     828           0 :                     return AVERROR_INVALIDDATA;
     829             :                 }
     830        3236 :                 curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
     831        3236 :                 curr_cell.tree   = 1; /* enter the VQ tree */
     832        3236 :                 UPDATE_BITPOS(8);
     833             :             } else { /* VQ tree DATA code */
     834       15944 :                 if (!ctx->need_resync)
     835        7503 :                     ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
     836             : 
     837       15944 :                 CHECK_CELL
     838       15944 :                 bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
     839             :                                          ctx->next_cell_data, ctx->last_byte);
     840       15944 :                 if (bytes_used < 0)
     841           0 :                     return AVERROR_INVALIDDATA;
     842             : 
     843       15944 :                 UPDATE_BITPOS(bytes_used << 3);
     844       15944 :                 ctx->next_cell_data += bytes_used;
     845       15944 :                 return 0;
     846             :             }
     847        3236 :             break;
     848             :         }
     849             :     }//while
     850             : 
     851           0 :     return AVERROR_INVALIDDATA;
     852             : }
     853             : 
     854             : 
     855         420 : static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
     856             :                         Plane *plane, const uint8_t *data, int32_t data_size,
     857             :                         int32_t strip_width)
     858             : {
     859             :     Cell            curr_cell;
     860             :     unsigned        num_vectors;
     861             : 
     862             :     /* each plane data starts with mc_vector_count field, */
     863             :     /* an optional array of motion vectors followed by the vq data */
     864         420 :     num_vectors = bytestream_get_le32(&data); data_size -= 4;
     865         420 :     if (num_vectors > 256) {
     866           0 :         av_log(ctx->avctx, AV_LOG_ERROR,
     867             :                "Read invalid number of motion vectors %d\n", num_vectors);
     868           0 :         return AVERROR_INVALIDDATA;
     869             :     }
     870         420 :     if (num_vectors * 2 > data_size)
     871           0 :         return AVERROR_INVALIDDATA;
     872             : 
     873         420 :     ctx->num_vectors = num_vectors;
     874         420 :     ctx->mc_vectors  = num_vectors ? data : 0;
     875             : 
     876             :     /* init the bitreader */
     877         420 :     init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
     878         420 :     ctx->skip_bits   = 0;
     879         420 :     ctx->need_resync = 0;
     880             : 
     881         420 :     ctx->last_byte = data + data_size;
     882             : 
     883             :     /* initialize the 1st cell and set its dimensions to whole plane */
     884         420 :     curr_cell.xpos   = curr_cell.ypos = 0;
     885         420 :     curr_cell.width  = plane->width  >> 2;
     886         420 :     curr_cell.height = plane->height >> 2;
     887         420 :     curr_cell.tree   = 0; // we are in the MC tree now
     888         420 :     curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
     889             : 
     890         420 :     return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
     891             : }
     892             : 
     893             : 
     894             : #define OS_HDR_ID   MKBETAG('F', 'R', 'M', 'H')
     895             : 
     896         140 : static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
     897             :                                 const uint8_t *buf, int buf_size)
     898             : {
     899             :     GetByteContext gb;
     900             :     const uint8_t   *bs_hdr;
     901             :     uint32_t        frame_num, word2, check_sum, data_size;
     902             :     int             y_offset, u_offset, v_offset;
     903             :     uint32_t        starts[3], ends[3];
     904             :     uint16_t        height, width;
     905             :     int             i, j;
     906             : 
     907         140 :     bytestream2_init(&gb, buf, buf_size);
     908             : 
     909             :     /* parse and check the OS header */
     910         140 :     frame_num = bytestream2_get_le32(&gb);
     911         140 :     word2     = bytestream2_get_le32(&gb);
     912         140 :     check_sum = bytestream2_get_le32(&gb);
     913         140 :     data_size = bytestream2_get_le32(&gb);
     914             : 
     915         140 :     if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
     916           0 :         av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
     917           0 :         return AVERROR_INVALIDDATA;
     918             :     }
     919             : 
     920             :     /* parse the bitstream header */
     921         140 :     bs_hdr = gb.buffer;
     922             : 
     923         140 :     if (bytestream2_get_le16(&gb) != 32) {
     924           0 :         av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
     925           0 :         return AVERROR_INVALIDDATA;
     926             :     }
     927             : 
     928         140 :     ctx->frame_num   =  frame_num;
     929         140 :     ctx->frame_flags =  bytestream2_get_le16(&gb);
     930         140 :     ctx->data_size   = (bytestream2_get_le32(&gb) + 7) >> 3;
     931         140 :     ctx->cb_offset   =  bytestream2_get_byte(&gb);
     932             : 
     933         140 :     if (ctx->data_size == 16)
     934           0 :         return 4;
     935         140 :     ctx->data_size = FFMIN(ctx->data_size, buf_size - 16);
     936             : 
     937         140 :     bytestream2_skip(&gb, 3); // skip reserved byte and checksum
     938             : 
     939             :     /* check frame dimensions */
     940         140 :     height = bytestream2_get_le16(&gb);
     941         140 :     width  = bytestream2_get_le16(&gb);
     942         140 :     if (av_image_check_size(width, height, 0, avctx))
     943           0 :         return AVERROR_INVALIDDATA;
     944             : 
     945         140 :     if (width != ctx->width || height != ctx->height) {
     946             :         int res;
     947             : 
     948             :         ff_dlog(avctx, "Frame dimensions changed!\n");
     949             : 
     950           0 :         if (width  < 16 || width  > 640 ||
     951           0 :             height < 16 || height > 480 ||
     952           0 :             width  &  3 || height &   3) {
     953           0 :             av_log(avctx, AV_LOG_ERROR,
     954             :                    "Invalid picture dimensions: %d x %d!\n", width, height);
     955           0 :             return AVERROR_INVALIDDATA;
     956             :         }
     957           0 :         free_frame_buffers(ctx);
     958           0 :         if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
     959           0 :              return res;
     960           0 :         if ((res = ff_set_dimensions(avctx, width, height)) < 0)
     961           0 :             return res;
     962             :     }
     963             : 
     964         140 :     y_offset = bytestream2_get_le32(&gb);
     965         140 :     v_offset = bytestream2_get_le32(&gb);
     966         140 :     u_offset = bytestream2_get_le32(&gb);
     967         140 :     bytestream2_skip(&gb, 4);
     968             : 
     969             :     /* unfortunately there is no common order of planes in the buffer */
     970             :     /* so we use that sorting algo for determining planes data sizes  */
     971         140 :     starts[0] = y_offset;
     972         140 :     starts[1] = v_offset;
     973         140 :     starts[2] = u_offset;
     974             : 
     975         560 :     for (j = 0; j < 3; j++) {
     976         420 :         ends[j] = ctx->data_size;
     977        1680 :         for (i = 2; i >= 0; i--)
     978        1260 :             if (starts[i] < ends[j] && starts[i] > starts[j])
     979         280 :                 ends[j] = starts[i];
     980             :     }
     981             : 
     982         140 :     ctx->y_data_size = ends[0] - starts[0];
     983         140 :     ctx->v_data_size = ends[1] - starts[1];
     984         140 :     ctx->u_data_size = ends[2] - starts[2];
     985         280 :     if (FFMIN3(y_offset, v_offset, u_offset) < 0 ||
     986         280 :         FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
     987         280 :         FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 ||
     988         140 :         FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
     989           0 :         av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
     990           0 :         return AVERROR_INVALIDDATA;
     991             :     }
     992             : 
     993         140 :     ctx->y_data_ptr = bs_hdr + y_offset;
     994         140 :     ctx->v_data_ptr = bs_hdr + v_offset;
     995         140 :     ctx->u_data_ptr = bs_hdr + u_offset;
     996         140 :     ctx->alt_quant  = gb.buffer;
     997             : 
     998         140 :     if (ctx->data_size == 16) {
     999           0 :         av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
    1000           0 :         return 16;
    1001             :     }
    1002             : 
    1003         140 :     if (ctx->frame_flags & BS_8BIT_PEL) {
    1004           0 :         avpriv_request_sample(avctx, "8-bit pixel format");
    1005           0 :         return AVERROR_PATCHWELCOME;
    1006             :     }
    1007             : 
    1008         140 :     if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
    1009           0 :         avpriv_request_sample(avctx, "Halfpel motion vectors");
    1010           0 :         return AVERROR_PATCHWELCOME;
    1011             :     }
    1012             : 
    1013         140 :     return 0;
    1014             : }
    1015             : 
    1016             : 
    1017             : /**
    1018             :  *  Convert and output the current plane.
    1019             :  *  All pixel values will be upsampled by shifting right by one bit.
    1020             :  *
    1021             :  *  @param[in]  plane        pointer to the descriptor of the plane being processed
    1022             :  *  @param[in]  buf_sel      indicates which frame buffer the input data stored in
    1023             :  *  @param[out] dst          pointer to the buffer receiving converted pixels
    1024             :  *  @param[in]  dst_pitch    pitch for moving to the next y line
    1025             :  *  @param[in]  dst_height   output plane height
    1026             :  */
    1027         420 : static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
    1028             :                          ptrdiff_t dst_pitch, int dst_height)
    1029             : {
    1030             :     int             x,y;
    1031         420 :     const uint8_t   *src  = plane->pixels[buf_sel];
    1032         420 :     ptrdiff_t       pitch = plane->pitch;
    1033             : 
    1034         420 :     dst_height = FFMIN(dst_height, plane->height);
    1035       35820 :     for (y = 0; y < dst_height; y++) {
    1036             :         /* convert four pixels at once using SWAR */
    1037     1943400 :         for (x = 0; x < plane->width >> 2; x++) {
    1038     1908000 :             AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
    1039     1908000 :             src += 4;
    1040     1908000 :             dst += 4;
    1041             :         }
    1042             : 
    1043       35400 :         for (x <<= 2; x < plane->width; x++)
    1044           0 :             *dst++ = *src++ << 1;
    1045             : 
    1046       35400 :         src += pitch     - plane->width;
    1047       35400 :         dst += dst_pitch - plane->width;
    1048             :     }
    1049         420 : }
    1050             : 
    1051             : 
    1052           4 : static av_cold int decode_init(AVCodecContext *avctx)
    1053             : {
    1054           4 :     Indeo3DecodeContext *ctx = avctx->priv_data;
    1055             : 
    1056           4 :     ctx->avctx     = avctx;
    1057           4 :     avctx->pix_fmt = AV_PIX_FMT_YUV410P;
    1058             : 
    1059           4 :     build_requant_tab();
    1060             : 
    1061           4 :     ff_hpeldsp_init(&ctx->hdsp, avctx->flags);
    1062             : 
    1063           4 :     return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
    1064             : }
    1065             : 
    1066             : 
    1067         140 : static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
    1068             :                         AVPacket *avpkt)
    1069             : {
    1070         140 :     Indeo3DecodeContext *ctx = avctx->priv_data;
    1071         140 :     const uint8_t *buf = avpkt->data;
    1072         140 :     int buf_size       = avpkt->size;
    1073         140 :     AVFrame *frame     = data;
    1074             :     int res;
    1075             : 
    1076         140 :     res = decode_frame_headers(ctx, avctx, buf, buf_size);
    1077         140 :     if (res < 0)
    1078           0 :         return res;
    1079             : 
    1080             :     /* skip sync(null) frames */
    1081         140 :     if (res) {
    1082             :         // we have processed 16 bytes but no data was decoded
    1083           0 :         *got_frame = 0;
    1084           0 :         return buf_size;
    1085             :     }
    1086             : 
    1087             :     /* skip droppable INTER frames if requested */
    1088         172 :     if (ctx->frame_flags & BS_NONREF &&
    1089          32 :        (avctx->skip_frame >= AVDISCARD_NONREF))
    1090           0 :         return 0;
    1091             : 
    1092             :     /* skip INTER frames if requested */
    1093         140 :     if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
    1094           0 :         return 0;
    1095             : 
    1096             :     /* use BS_BUFFER flag for buffer switching */
    1097         140 :     ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
    1098             : 
    1099         140 :     if ((res = ff_get_buffer(avctx, frame, 0)) < 0)
    1100           0 :         return res;
    1101             : 
    1102             :     /* decode luma plane */
    1103         140 :     if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
    1104           0 :         return res;
    1105             : 
    1106             :     /* decode chroma planes */
    1107         140 :     if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
    1108           0 :         return res;
    1109             : 
    1110         140 :     if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
    1111           0 :         return res;
    1112             : 
    1113         280 :     output_plane(&ctx->planes[0], ctx->buf_sel,
    1114         140 :                  frame->data[0], frame->linesize[0],
    1115             :                  avctx->height);
    1116         280 :     output_plane(&ctx->planes[1], ctx->buf_sel,
    1117         140 :                  frame->data[1], frame->linesize[1],
    1118         140 :                  (avctx->height + 3) >> 2);
    1119         280 :     output_plane(&ctx->planes[2], ctx->buf_sel,
    1120         140 :                  frame->data[2], frame->linesize[2],
    1121         140 :                  (avctx->height + 3) >> 2);
    1122             : 
    1123         140 :     *got_frame = 1;
    1124             : 
    1125         140 :     return buf_size;
    1126             : }
    1127             : 
    1128             : 
    1129           4 : static av_cold int decode_close(AVCodecContext *avctx)
    1130             : {
    1131           4 :     free_frame_buffers(avctx->priv_data);
    1132             : 
    1133           4 :     return 0;
    1134             : }
    1135             : 
    1136             : AVCodec ff_indeo3_decoder = {
    1137             :     .name           = "indeo3",
    1138             :     .long_name      = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
    1139             :     .type           = AVMEDIA_TYPE_VIDEO,
    1140             :     .id             = AV_CODEC_ID_INDEO3,
    1141             :     .priv_data_size = sizeof(Indeo3DecodeContext),
    1142             :     .init           = decode_init,
    1143             :     .close          = decode_close,
    1144             :     .decode         = decode_frame,
    1145             :     .capabilities   = AV_CODEC_CAP_DR1,
    1146             : };

Generated by: LCOV version 1.13