LCOV - code coverage report
Current view: top level - libavcodec - faandct.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 68 101 67.3 %
Date: 2017-12-16 21:16:39 Functions: 2 3 66.7 %

          Line data    Source code
       1             : /*
       2             :  * Floating point AAN DCT
       3             :  * this implementation is based upon the IJG integer AAN DCT (see jfdctfst.c)
       4             :  *
       5             :  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
       6             :  * Copyright (c) 2003 Roman Shaposhnik
       7             :  *
       8             :  * Permission to use, copy, modify, and/or distribute this software for any
       9             :  * purpose with or without fee is hereby granted, provided that the above
      10             :  * copyright notice and this permission notice appear in all copies.
      11             :  *
      12             :  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
      13             :  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
      14             :  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
      15             :  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
      16             :  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
      17             :  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
      18             :  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
      19             :  */
      20             : 
      21             : /**
      22             :  * @file
      23             :  * @brief
      24             :  *     Floating point AAN DCT
      25             :  * @author Michael Niedermayer <michaelni@gmx.at>
      26             :  */
      27             : 
      28             : #include "faandct.h"
      29             : #include "libavutil/internal.h"
      30             : #include "libavutil/libm.h"
      31             : 
      32             : typedef float FLOAT;
      33             : 
      34             : /* numbers generated by arbitrary precision arithmetic followed by truncation
      35             : to 36 fractional digits (enough for a 128-bit IEEE quad, see /usr/include/math.h
      36             : for this approach). Unfortunately, long double is not always available correctly,
      37             : e.g ppc has issues.
      38             : TODO: add L suffixes when ppc and toolchains sort out their stuff.
      39             : */
      40             : #define B0 1.000000000000000000000000000000000000
      41             : #define B1 0.720959822006947913789091890943021267 // (cos(pi*1/16)sqrt(2))^-1
      42             : #define B2 0.765366864730179543456919968060797734 // (cos(pi*2/16)sqrt(2))^-1
      43             : #define B3 0.850430094767256448766702844371412325 // (cos(pi*3/16)sqrt(2))^-1
      44             : #define B4 1.000000000000000000000000000000000000 // (cos(pi*4/16)sqrt(2))^-1
      45             : #define B5 1.272758580572833938461007018281767032 // (cos(pi*5/16)sqrt(2))^-1
      46             : #define B6 1.847759065022573512256366378793576574 // (cos(pi*6/16)sqrt(2))^-1
      47             : #define B7 3.624509785411551372409941227504289587 // (cos(pi*7/16)sqrt(2))^-1
      48             : 
      49             : #define A1 M_SQRT1_2              // cos(pi*4/16)
      50             : #define A2 0.54119610014619698435 // cos(pi*6/16)sqrt(2)
      51             : #define A5 0.38268343236508977170 // cos(pi*6/16)
      52             : #define A4 1.30656296487637652774 // cos(pi*2/16)sqrt(2)
      53             : 
      54             : static const FLOAT postscale[64]={
      55             : B0*B0, B0*B1, B0*B2, B0*B3, B0*B4, B0*B5, B0*B6, B0*B7,
      56             : B1*B0, B1*B1, B1*B2, B1*B3, B1*B4, B1*B5, B1*B6, B1*B7,
      57             : B2*B0, B2*B1, B2*B2, B2*B3, B2*B4, B2*B5, B2*B6, B2*B7,
      58             : B3*B0, B3*B1, B3*B2, B3*B3, B3*B4, B3*B5, B3*B6, B3*B7,
      59             : B4*B0, B4*B1, B4*B2, B4*B3, B4*B4, B4*B5, B4*B6, B4*B7,
      60             : B5*B0, B5*B1, B5*B2, B5*B3, B5*B4, B5*B5, B5*B6, B5*B7,
      61             : B6*B0, B6*B1, B6*B2, B6*B3, B6*B4, B6*B5, B6*B6, B6*B7,
      62             : B7*B0, B7*B1, B7*B2, B7*B3, B7*B4, B7*B5, B7*B6, B7*B7,
      63             : };
      64             : 
      65       20000 : static av_always_inline void row_fdct(FLOAT temp[64], int16_t *data)
      66             : {
      67             :     FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
      68             :     FLOAT tmp10, tmp11, tmp12, tmp13;
      69             :     FLOAT z2, z4, z11, z13;
      70             :     int i;
      71             : 
      72      180000 :     for (i=0; i<8*8; i+=8) {
      73      160000 :         tmp0= data[0 + i] + data[7 + i];
      74      160000 :         tmp7= data[0 + i] - data[7 + i];
      75      160000 :         tmp1= data[1 + i] + data[6 + i];
      76      160000 :         tmp6= data[1 + i] - data[6 + i];
      77      160000 :         tmp2= data[2 + i] + data[5 + i];
      78      160000 :         tmp5= data[2 + i] - data[5 + i];
      79      160000 :         tmp3= data[3 + i] + data[4 + i];
      80      160000 :         tmp4= data[3 + i] - data[4 + i];
      81             : 
      82      160000 :         tmp10= tmp0 + tmp3;
      83      160000 :         tmp13= tmp0 - tmp3;
      84      160000 :         tmp11= tmp1 + tmp2;
      85      160000 :         tmp12= tmp1 - tmp2;
      86             : 
      87      160000 :         temp[0 + i]= tmp10 + tmp11;
      88      160000 :         temp[4 + i]= tmp10 - tmp11;
      89             : 
      90      160000 :         tmp12 += tmp13;
      91      160000 :         tmp12 *= A1;
      92      160000 :         temp[2 + i]= tmp13 + tmp12;
      93      160000 :         temp[6 + i]= tmp13 - tmp12;
      94             : 
      95      160000 :         tmp4 += tmp5;
      96      160000 :         tmp5 += tmp6;
      97      160000 :         tmp6 += tmp7;
      98             : 
      99      160000 :         z2= tmp4*(A2+A5) - tmp6*A5;
     100      160000 :         z4= tmp6*(A4-A5) + tmp4*A5;
     101             : 
     102      160000 :         tmp5*=A1;
     103             : 
     104      160000 :         z11= tmp7 + tmp5;
     105      160000 :         z13= tmp7 - tmp5;
     106             : 
     107      160000 :         temp[5 + i]= z13 + z2;
     108      160000 :         temp[3 + i]= z13 - z2;
     109      160000 :         temp[1 + i]= z11 + z4;
     110      160000 :         temp[7 + i]= z11 - z4;
     111             :     }
     112       20000 : }
     113             : 
     114       20000 : void ff_faandct(int16_t *data)
     115             : {
     116             :     FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     117             :     FLOAT tmp10, tmp11, tmp12, tmp13;
     118             :     FLOAT z2, z4, z11, z13;
     119             :     FLOAT temp[64];
     120             :     int i;
     121             : 
     122       20000 :     emms_c();
     123             : 
     124       20000 :     row_fdct(temp, data);
     125             : 
     126      180000 :     for (i=0; i<8; i++) {
     127      160000 :         tmp0= temp[8*0 + i] + temp[8*7 + i];
     128      160000 :         tmp7= temp[8*0 + i] - temp[8*7 + i];
     129      160000 :         tmp1= temp[8*1 + i] + temp[8*6 + i];
     130      160000 :         tmp6= temp[8*1 + i] - temp[8*6 + i];
     131      160000 :         tmp2= temp[8*2 + i] + temp[8*5 + i];
     132      160000 :         tmp5= temp[8*2 + i] - temp[8*5 + i];
     133      160000 :         tmp3= temp[8*3 + i] + temp[8*4 + i];
     134      160000 :         tmp4= temp[8*3 + i] - temp[8*4 + i];
     135             : 
     136      160000 :         tmp10= tmp0 + tmp3;
     137      160000 :         tmp13= tmp0 - tmp3;
     138      160000 :         tmp11= tmp1 + tmp2;
     139      160000 :         tmp12= tmp1 - tmp2;
     140             : 
     141      160000 :         data[8*0 + i]= lrintf(postscale[8*0 + i] * (tmp10 + tmp11));
     142      160000 :         data[8*4 + i]= lrintf(postscale[8*4 + i] * (tmp10 - tmp11));
     143             : 
     144      160000 :         tmp12 += tmp13;
     145      160000 :         tmp12 *= A1;
     146      160000 :         data[8*2 + i]= lrintf(postscale[8*2 + i] * (tmp13 + tmp12));
     147      160000 :         data[8*6 + i]= lrintf(postscale[8*6 + i] * (tmp13 - tmp12));
     148             : 
     149      160000 :         tmp4 += tmp5;
     150      160000 :         tmp5 += tmp6;
     151      160000 :         tmp6 += tmp7;
     152             : 
     153      160000 :         z2= tmp4*(A2+A5) - tmp6*A5;
     154      160000 :         z4= tmp6*(A4-A5) + tmp4*A5;
     155             : 
     156      160000 :         tmp5*=A1;
     157             : 
     158      160000 :         z11= tmp7 + tmp5;
     159      160000 :         z13= tmp7 - tmp5;
     160             : 
     161      160000 :         data[8*5 + i]= lrintf(postscale[8*5 + i] * (z13 + z2));
     162      160000 :         data[8*3 + i]= lrintf(postscale[8*3 + i] * (z13 - z2));
     163      160000 :         data[8*1 + i]= lrintf(postscale[8*1 + i] * (z11 + z4));
     164      160000 :         data[8*7 + i]= lrintf(postscale[8*7 + i] * (z11 - z4));
     165             :     }
     166       20000 : }
     167             : 
     168           0 : void ff_faandct248(int16_t *data)
     169             : {
     170             :     FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     171             :     FLOAT tmp10, tmp11, tmp12, tmp13;
     172             :     FLOAT temp[64];
     173             :     int i;
     174             : 
     175           0 :     emms_c();
     176             : 
     177           0 :     row_fdct(temp, data);
     178             : 
     179           0 :     for (i=0; i<8; i++) {
     180           0 :         tmp0 = temp[8*0 + i] + temp[8*1 + i];
     181           0 :         tmp1 = temp[8*2 + i] + temp[8*3 + i];
     182           0 :         tmp2 = temp[8*4 + i] + temp[8*5 + i];
     183           0 :         tmp3 = temp[8*6 + i] + temp[8*7 + i];
     184           0 :         tmp4 = temp[8*0 + i] - temp[8*1 + i];
     185           0 :         tmp5 = temp[8*2 + i] - temp[8*3 + i];
     186           0 :         tmp6 = temp[8*4 + i] - temp[8*5 + i];
     187           0 :         tmp7 = temp[8*6 + i] - temp[8*7 + i];
     188             : 
     189           0 :         tmp10 = tmp0 + tmp3;
     190           0 :         tmp11 = tmp1 + tmp2;
     191           0 :         tmp12 = tmp1 - tmp2;
     192           0 :         tmp13 = tmp0 - tmp3;
     193             : 
     194           0 :         data[8*0 + i] = lrintf(postscale[8*0 + i] * (tmp10 + tmp11));
     195           0 :         data[8*4 + i] = lrintf(postscale[8*4 + i] * (tmp10 - tmp11));
     196             : 
     197           0 :         tmp12 += tmp13;
     198           0 :         tmp12 *= A1;
     199           0 :         data[8*2 + i] = lrintf(postscale[8*2 + i] * (tmp13 + tmp12));
     200           0 :         data[8*6 + i] = lrintf(postscale[8*6 + i] * (tmp13 - tmp12));
     201             : 
     202           0 :         tmp10 = tmp4 + tmp7;
     203           0 :         tmp11 = tmp5 + tmp6;
     204           0 :         tmp12 = tmp5 - tmp6;
     205           0 :         tmp13 = tmp4 - tmp7;
     206             : 
     207           0 :         data[8*1 + i] = lrintf(postscale[8*0 + i] * (tmp10 + tmp11));
     208           0 :         data[8*5 + i] = lrintf(postscale[8*4 + i] * (tmp10 - tmp11));
     209             : 
     210           0 :         tmp12 += tmp13;
     211           0 :         tmp12 *= A1;
     212           0 :         data[8*3 + i] = lrintf(postscale[8*2 + i] * (tmp13 + tmp12));
     213           0 :         data[8*7 + i] = lrintf(postscale[8*6 + i] * (tmp13 - tmp12));
     214             :     }
     215           0 : }

Generated by: LCOV version 1.13