LCOV - code coverage report
Current view: top level - libavcodec - cook.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 426 524 81.3 %
Date: 2017-12-12 11:08:38 Functions: 28 28 100.0 %

          Line data    Source code
       1             : /*
       2             :  * COOK compatible decoder
       3             :  * Copyright (c) 2003 Sascha Sommer
       4             :  * Copyright (c) 2005 Benjamin Larsson
       5             :  *
       6             :  * This file is part of FFmpeg.
       7             :  *
       8             :  * FFmpeg is free software; you can redistribute it and/or
       9             :  * modify it under the terms of the GNU Lesser General Public
      10             :  * License as published by the Free Software Foundation; either
      11             :  * version 2.1 of the License, or (at your option) any later version.
      12             :  *
      13             :  * FFmpeg is distributed in the hope that it will be useful,
      14             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      15             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      16             :  * Lesser General Public License for more details.
      17             :  *
      18             :  * You should have received a copy of the GNU Lesser General Public
      19             :  * License along with FFmpeg; if not, write to the Free Software
      20             :  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
      21             :  */
      22             : 
      23             : /**
      24             :  * @file
      25             :  * Cook compatible decoder. Bastardization of the G.722.1 standard.
      26             :  * This decoder handles RealNetworks, RealAudio G2 data.
      27             :  * Cook is identified by the codec name cook in RM files.
      28             :  *
      29             :  * To use this decoder, a calling application must supply the extradata
      30             :  * bytes provided from the RM container; 8+ bytes for mono streams and
      31             :  * 16+ for stereo streams (maybe more).
      32             :  *
      33             :  * Codec technicalities (all this assume a buffer length of 1024):
      34             :  * Cook works with several different techniques to achieve its compression.
      35             :  * In the timedomain the buffer is divided into 8 pieces and quantized. If
      36             :  * two neighboring pieces have different quantization index a smooth
      37             :  * quantization curve is used to get a smooth overlap between the different
      38             :  * pieces.
      39             :  * To get to the transformdomain Cook uses a modulated lapped transform.
      40             :  * The transform domain has 50 subbands with 20 elements each. This
      41             :  * means only a maximum of 50*20=1000 coefficients are used out of the 1024
      42             :  * available.
      43             :  */
      44             : 
      45             : #include "libavutil/channel_layout.h"
      46             : #include "libavutil/lfg.h"
      47             : 
      48             : #include "audiodsp.h"
      49             : #include "avcodec.h"
      50             : #include "get_bits.h"
      51             : #include "bytestream.h"
      52             : #include "fft.h"
      53             : #include "internal.h"
      54             : #include "sinewin.h"
      55             : #include "unary.h"
      56             : 
      57             : #include "cookdata.h"
      58             : 
      59             : /* the different Cook versions */
      60             : #define MONO            0x1000001
      61             : #define STEREO          0x1000002
      62             : #define JOINT_STEREO    0x1000003
      63             : #define MC_COOK         0x2000000   // multichannel Cook, not supported
      64             : 
      65             : #define SUBBAND_SIZE    20
      66             : #define MAX_SUBPACKETS   5
      67             : 
      68             : typedef struct cook_gains {
      69             :     int *now;
      70             :     int *previous;
      71             : } cook_gains;
      72             : 
      73             : typedef struct COOKSubpacket {
      74             :     int                 ch_idx;
      75             :     int                 size;
      76             :     int                 num_channels;
      77             :     int                 cookversion;
      78             :     int                 subbands;
      79             :     int                 js_subband_start;
      80             :     int                 js_vlc_bits;
      81             :     int                 samples_per_channel;
      82             :     int                 log2_numvector_size;
      83             :     unsigned int        channel_mask;
      84             :     VLC                 channel_coupling;
      85             :     int                 joint_stereo;
      86             :     int                 bits_per_subpacket;
      87             :     int                 bits_per_subpdiv;
      88             :     int                 total_subbands;
      89             :     int                 numvector_size;       // 1 << log2_numvector_size;
      90             : 
      91             :     float               mono_previous_buffer1[1024];
      92             :     float               mono_previous_buffer2[1024];
      93             : 
      94             :     cook_gains          gains1;
      95             :     cook_gains          gains2;
      96             :     int                 gain_1[9];
      97             :     int                 gain_2[9];
      98             :     int                 gain_3[9];
      99             :     int                 gain_4[9];
     100             : } COOKSubpacket;
     101             : 
     102             : typedef struct cook {
     103             :     /*
     104             :      * The following 5 functions provide the lowlevel arithmetic on
     105             :      * the internal audio buffers.
     106             :      */
     107             :     void (*scalar_dequant)(struct cook *q, int index, int quant_index,
     108             :                            int *subband_coef_index, int *subband_coef_sign,
     109             :                            float *mlt_p);
     110             : 
     111             :     void (*decouple)(struct cook *q,
     112             :                      COOKSubpacket *p,
     113             :                      int subband,
     114             :                      float f1, float f2,
     115             :                      float *decode_buffer,
     116             :                      float *mlt_buffer1, float *mlt_buffer2);
     117             : 
     118             :     void (*imlt_window)(struct cook *q, float *buffer1,
     119             :                         cook_gains *gains_ptr, float *previous_buffer);
     120             : 
     121             :     void (*interpolate)(struct cook *q, float *buffer,
     122             :                         int gain_index, int gain_index_next);
     123             : 
     124             :     void (*saturate_output)(struct cook *q, float *out);
     125             : 
     126             :     AVCodecContext*     avctx;
     127             :     AudioDSPContext     adsp;
     128             :     GetBitContext       gb;
     129             :     /* stream data */
     130             :     int                 num_vectors;
     131             :     int                 samples_per_channel;
     132             :     /* states */
     133             :     AVLFG               random_state;
     134             :     int                 discarded_packets;
     135             : 
     136             :     /* transform data */
     137             :     FFTContext          mdct_ctx;
     138             :     float*              mlt_window;
     139             : 
     140             :     /* VLC data */
     141             :     VLC                 envelope_quant_index[13];
     142             :     VLC                 sqvh[7];          // scalar quantization
     143             : 
     144             :     /* generate tables and related variables */
     145             :     int                 gain_size_factor;
     146             :     float               gain_table[23];
     147             : 
     148             :     /* data buffers */
     149             : 
     150             :     uint8_t*            decoded_bytes_buffer;
     151             :     DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
     152             :     float               decode_buffer_1[1024];
     153             :     float               decode_buffer_2[1024];
     154             :     float               decode_buffer_0[1060]; /* static allocation for joint decode */
     155             : 
     156             :     const float         *cplscales[5];
     157             :     int                 num_subpackets;
     158             :     COOKSubpacket       subpacket[MAX_SUBPACKETS];
     159             : } COOKContext;
     160             : 
     161             : static float     pow2tab[127];
     162             : static float rootpow2tab[127];
     163             : 
     164             : /*************** init functions ***************/
     165             : 
     166             : /* table generator */
     167           6 : static av_cold void init_pow2table(void)
     168             : {
     169             :     /* fast way of computing 2^i and 2^(0.5*i) for -63 <= i < 64 */
     170             :     int i;
     171             :     static const float exp2_tab[2] = {1, M_SQRT2};
     172           6 :     float exp2_val = powf(2, -63);
     173           6 :     float root_val = powf(2, -32);
     174         768 :     for (i = -63; i < 64; i++) {
     175         762 :         if (!(i & 1))
     176         378 :             root_val *= 2;
     177         762 :         pow2tab[63 + i] = exp2_val;
     178         762 :         rootpow2tab[63 + i] = root_val * exp2_tab[i & 1];
     179         762 :         exp2_val *= 2;
     180             :     }
     181           6 : }
     182             : 
     183             : /* table generator */
     184           6 : static av_cold void init_gain_table(COOKContext *q)
     185             : {
     186             :     int i;
     187           6 :     q->gain_size_factor = q->samples_per_channel / 8;
     188         144 :     for (i = 0; i < 23; i++)
     189         138 :         q->gain_table[i] = pow(pow2tab[i + 52],
     190         138 :                                (1.0 / (double) q->gain_size_factor));
     191           6 : }
     192             : 
     193             : 
     194           6 : static av_cold int init_cook_vlc_tables(COOKContext *q)
     195             : {
     196             :     int i, result;
     197             : 
     198           6 :     result = 0;
     199          84 :     for (i = 0; i < 13; i++) {
     200          78 :         result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
     201             :                            envelope_quant_index_huffbits[i], 1, 1,
     202             :                            envelope_quant_index_huffcodes[i], 2, 2, 0);
     203             :     }
     204           6 :     av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
     205          48 :     for (i = 0; i < 7; i++) {
     206          42 :         result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
     207             :                            cvh_huffbits[i], 1, 1,
     208             :                            cvh_huffcodes[i], 2, 2, 0);
     209             :     }
     210             : 
     211          12 :     for (i = 0; i < q->num_subpackets; i++) {
     212           6 :         if (q->subpacket[i].joint_stereo == 1) {
     213           4 :             result |= init_vlc(&q->subpacket[i].channel_coupling, 6,
     214             :                                (1 << q->subpacket[i].js_vlc_bits) - 1,
     215             :                                ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
     216             :                                ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
     217           4 :             av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
     218             :         }
     219             :     }
     220             : 
     221           6 :     av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
     222           6 :     return result;
     223             : }
     224             : 
     225           6 : static av_cold int init_cook_mlt(COOKContext *q)
     226             : {
     227             :     int j, ret;
     228           6 :     int mlt_size = q->samples_per_channel;
     229             : 
     230           6 :     if ((q->mlt_window = av_malloc_array(mlt_size, sizeof(*q->mlt_window))) == 0)
     231           0 :         return AVERROR(ENOMEM);
     232             : 
     233             :     /* Initialize the MLT window: simple sine window. */
     234           6 :     ff_sine_window_init(q->mlt_window, mlt_size);
     235        6150 :     for (j = 0; j < mlt_size; j++)
     236        6144 :         q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
     237             : 
     238             :     /* Initialize the MDCT. */
     239           6 :     if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
     240           0 :         av_freep(&q->mlt_window);
     241           0 :         return ret;
     242             :     }
     243           6 :     av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
     244           6 :            av_log2(mlt_size) + 1);
     245             : 
     246           6 :     return 0;
     247             : }
     248             : 
     249           6 : static av_cold void init_cplscales_table(COOKContext *q)
     250             : {
     251             :     int i;
     252          36 :     for (i = 0; i < 5; i++)
     253          30 :         q->cplscales[i] = cplscales[i];
     254           6 : }
     255             : 
     256             : /*************** init functions end ***********/
     257             : 
     258             : #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
     259             : #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
     260             : 
     261             : /**
     262             :  * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
     263             :  * Why? No idea, some checksum/error detection method maybe.
     264             :  *
     265             :  * Out buffer size: extra bytes are needed to cope with
     266             :  * padding/misalignment.
     267             :  * Subpackets passed to the decoder can contain two, consecutive
     268             :  * half-subpackets, of identical but arbitrary size.
     269             :  *          1234 1234 1234 1234  extraA extraB
     270             :  * Case 1:  AAAA BBBB              0      0
     271             :  * Case 2:  AAAA ABBB BB--         3      3
     272             :  * Case 3:  AAAA AABB BBBB         2      2
     273             :  * Case 4:  AAAA AAAB BBBB BB--    1      5
     274             :  *
     275             :  * Nice way to waste CPU cycles.
     276             :  *
     277             :  * @param inbuffer  pointer to byte array of indata
     278             :  * @param out       pointer to byte array of outdata
     279             :  * @param bytes     number of bytes
     280             :  */
     281         240 : static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
     282             : {
     283             :     static const uint32_t tab[4] = {
     284             :         AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u),
     285             :         AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u),
     286             :     };
     287             :     int i, off;
     288             :     uint32_t c;
     289             :     const uint32_t *buf;
     290         240 :     uint32_t *obuf = (uint32_t *) out;
     291             :     /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
     292             :      * I'm too lazy though, should be something like
     293             :      * for (i = 0; i < bitamount / 64; i++)
     294             :      *     (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
     295             :      * Buffer alignment needs to be checked. */
     296             : 
     297         240 :     off = (intptr_t) inbuffer & 3;
     298         240 :     buf = (const uint32_t *) (inbuffer - off);
     299         240 :     c = tab[off];
     300         240 :     bytes += 3 + off;
     301       11520 :     for (i = 0; i < bytes / 4; i++)
     302       11280 :         obuf[i] = c ^ buf[i];
     303             : 
     304         240 :     return off;
     305             : }
     306             : 
     307           6 : static av_cold int cook_decode_close(AVCodecContext *avctx)
     308             : {
     309             :     int i;
     310           6 :     COOKContext *q = avctx->priv_data;
     311           6 :     av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
     312             : 
     313             :     /* Free allocated memory buffers. */
     314           6 :     av_freep(&q->mlt_window);
     315           6 :     av_freep(&q->decoded_bytes_buffer);
     316             : 
     317             :     /* Free the transform. */
     318           6 :     ff_mdct_end(&q->mdct_ctx);
     319             : 
     320             :     /* Free the VLC tables. */
     321          84 :     for (i = 0; i < 13; i++)
     322          78 :         ff_free_vlc(&q->envelope_quant_index[i]);
     323          48 :     for (i = 0; i < 7; i++)
     324          42 :         ff_free_vlc(&q->sqvh[i]);
     325          12 :     for (i = 0; i < q->num_subpackets; i++)
     326           6 :         ff_free_vlc(&q->subpacket[i].channel_coupling);
     327             : 
     328           6 :     av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
     329             : 
     330           6 :     return 0;
     331             : }
     332             : 
     333             : /**
     334             :  * Fill the gain array for the timedomain quantization.
     335             :  *
     336             :  * @param gb          pointer to the GetBitContext
     337             :  * @param gaininfo    array[9] of gain indexes
     338             :  */
     339         240 : static void decode_gain_info(GetBitContext *gb, int *gaininfo)
     340             : {
     341             :     int i, n;
     342             : 
     343         240 :     n = get_unary(gb, 0, get_bits_left(gb));     // amount of elements*2 to update
     344             : 
     345         240 :     i = 0;
     346         481 :     while (n--) {
     347           1 :         int index = get_bits(gb, 3);
     348           1 :         int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
     349             : 
     350           9 :         while (i <= index)
     351           7 :             gaininfo[i++] = gain;
     352             :     }
     353        2633 :     while (i <= 8)
     354        2153 :         gaininfo[i++] = 0;
     355         240 : }
     356             : 
     357             : /**
     358             :  * Create the quant index table needed for the envelope.
     359             :  *
     360             :  * @param q                 pointer to the COOKContext
     361             :  * @param quant_index_table pointer to the array
     362             :  */
     363         240 : static int decode_envelope(COOKContext *q, COOKSubpacket *p,
     364             :                            int *quant_index_table)
     365             : {
     366             :     int i, j, vlc_index;
     367             : 
     368         240 :     quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
     369             : 
     370       10320 :     for (i = 1; i < p->total_subbands; i++) {
     371       10080 :         vlc_index = i;
     372       10080 :         if (i >= p->js_subband_start * 2) {
     373        7440 :             vlc_index -= p->js_subband_start;
     374             :         } else {
     375        2640 :             vlc_index /= 2;
     376        2640 :             if (vlc_index < 1)
     377         240 :                 vlc_index = 1;
     378             :         }
     379       10080 :         if (vlc_index > 13)
     380        5520 :             vlc_index = 13; // the VLC tables >13 are identical to No. 13
     381             : 
     382       10080 :         j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
     383       10080 :                      q->envelope_quant_index[vlc_index - 1].bits, 2);
     384       10080 :         quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
     385       10080 :         if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
     386           0 :             av_log(q->avctx, AV_LOG_ERROR,
     387             :                    "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
     388           0 :                    quant_index_table[i], i);
     389           0 :             return AVERROR_INVALIDDATA;
     390             :         }
     391             :     }
     392             : 
     393         240 :     return 0;
     394             : }
     395             : 
     396             : /**
     397             :  * Calculate the category and category_index vector.
     398             :  *
     399             :  * @param q                     pointer to the COOKContext
     400             :  * @param quant_index_table     pointer to the array
     401             :  * @param category              pointer to the category array
     402             :  * @param category_index        pointer to the category_index array
     403             :  */
     404         240 : static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table,
     405             :                        int *category, int *category_index)
     406             : {
     407             :     int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
     408         240 :     int exp_index2[102] = { 0 };
     409         240 :     int exp_index1[102] = { 0 };
     410             : 
     411         240 :     int tmp_categorize_array[128 * 2] = { 0 };
     412         240 :     int tmp_categorize_array1_idx = p->numvector_size;
     413         240 :     int tmp_categorize_array2_idx = p->numvector_size;
     414             : 
     415         240 :     bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
     416             : 
     417         240 :     if (bits_left > q->samples_per_channel)
     418         480 :         bits_left = q->samples_per_channel +
     419         240 :                     ((bits_left - q->samples_per_channel) * 5) / 8;
     420             : 
     421         240 :     bias = -32;
     422             : 
     423             :     /* Estimate bias. */
     424        1680 :     for (i = 32; i > 0; i = i / 2) {
     425        1440 :         num_bits = 0;
     426        1440 :         index    = 0;
     427       63360 :         for (j = p->total_subbands; j > 0; j--) {
     428       61920 :             exp_idx = av_clip_uintp2((i - quant_index_table[index] + bias) / 2, 3);
     429       61920 :             index++;
     430       61920 :             num_bits += expbits_tab[exp_idx];
     431             :         }
     432        1440 :         if (num_bits >= bits_left - 32)
     433        1333 :             bias += i;
     434             :     }
     435             : 
     436             :     /* Calculate total number of bits. */
     437         240 :     num_bits = 0;
     438       10560 :     for (i = 0; i < p->total_subbands; i++) {
     439       10320 :         exp_idx = av_clip_uintp2((bias - quant_index_table[i]) / 2, 3);
     440       10320 :         num_bits += expbits_tab[exp_idx];
     441       10320 :         exp_index1[i] = exp_idx;
     442       10320 :         exp_index2[i] = exp_idx;
     443             :     }
     444         240 :     tmpbias1 = tmpbias2 = num_bits;
     445             : 
     446       30720 :     for (j = 1; j < p->numvector_size; j++) {
     447       30480 :         if (tmpbias1 + tmpbias2 > 2 * bits_left) {  /* ---> */
     448       16408 :             int max = -999999;
     449       16408 :             index = -1;
     450      721952 :             for (i = 0; i < p->total_subbands; i++) {
     451      705544 :                 if (exp_index1[i] < 7) {
     452      543313 :                     v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
     453      543313 :                     if (v >= max) {
     454      186262 :                         max   = v;
     455      186262 :                         index = i;
     456             :                     }
     457             :                 }
     458             :             }
     459       16408 :             if (index == -1)
     460           0 :                 break;
     461       16408 :             tmp_categorize_array[tmp_categorize_array1_idx++] = index;
     462       32816 :             tmpbias1 -= expbits_tab[exp_index1[index]] -
     463       16408 :                         expbits_tab[exp_index1[index] + 1];
     464       16408 :             ++exp_index1[index];
     465             :         } else {  /* <--- */
     466       14072 :             int min = 999999;
     467       14072 :             index = -1;
     468      619168 :             for (i = 0; i < p->total_subbands; i++) {
     469      605096 :                 if (exp_index2[i] > 0) {
     470      527917 :                     v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
     471      527917 :                     if (v < min) {
     472       31097 :                         min   = v;
     473       31097 :                         index = i;
     474             :                     }
     475             :                 }
     476             :             }
     477       14072 :             if (index == -1)
     478           0 :                 break;
     479       14072 :             tmp_categorize_array[--tmp_categorize_array2_idx] = index;
     480       28144 :             tmpbias2 -= expbits_tab[exp_index2[index]] -
     481       14072 :                         expbits_tab[exp_index2[index] - 1];
     482       14072 :             --exp_index2[index];
     483             :         }
     484             :     }
     485             : 
     486       10560 :     for (i = 0; i < p->total_subbands; i++)
     487       10320 :         category[i] = exp_index2[i];
     488             : 
     489       30720 :     for (i = 0; i < p->numvector_size - 1; i++)
     490       30480 :         category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
     491         240 : }
     492             : 
     493             : 
     494             : /**
     495             :  * Expand the category vector.
     496             :  *
     497             :  * @param q                     pointer to the COOKContext
     498             :  * @param category              pointer to the category array
     499             :  * @param category_index        pointer to the category_index array
     500             :  */
     501         240 : static inline void expand_category(COOKContext *q, int *category,
     502             :                                    int *category_index)
     503             : {
     504             :     int i;
     505       15141 :     for (i = 0; i < q->num_vectors; i++)
     506             :     {
     507       14901 :         int idx = category_index[i];
     508       14901 :         if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
     509           0 :             --category[idx];
     510             :     }
     511         240 : }
     512             : 
     513             : /**
     514             :  * The real requantization of the mltcoefs
     515             :  *
     516             :  * @param q                     pointer to the COOKContext
     517             :  * @param index                 index
     518             :  * @param quant_index           quantisation index
     519             :  * @param subband_coef_index    array of indexes to quant_centroid_tab
     520             :  * @param subband_coef_sign     signs of coefficients
     521             :  * @param mlt_p                 pointer into the mlt buffer
     522             :  */
     523       10320 : static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
     524             :                                  int *subband_coef_index, int *subband_coef_sign,
     525             :                                  float *mlt_p)
     526             : {
     527             :     int i;
     528             :     float f1;
     529             : 
     530      216720 :     for (i = 0; i < SUBBAND_SIZE; i++) {
     531      206400 :         if (subband_coef_index[i]) {
     532       67248 :             f1 = quant_centroid_tab[index][subband_coef_index[i]];
     533       67248 :             if (subband_coef_sign[i])
     534       33713 :                 f1 = -f1;
     535             :         } else {
     536             :             /* noise coding if subband_coef_index[i] == 0 */
     537      139152 :             f1 = dither_tab[index];
     538      139152 :             if (av_lfg_get(&q->random_state) < 0x80000000)
     539       69511 :                 f1 = -f1;
     540             :         }
     541      206400 :         mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
     542             :     }
     543       10320 : }
     544             : /**
     545             :  * Unpack the subband_coef_index and subband_coef_sign vectors.
     546             :  *
     547             :  * @param q                     pointer to the COOKContext
     548             :  * @param category              pointer to the category array
     549             :  * @param subband_coef_index    array of indexes to quant_centroid_tab
     550             :  * @param subband_coef_sign     signs of coefficients
     551             :  */
     552        8969 : static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
     553             :                        int *subband_coef_index, int *subband_coef_sign)
     554             : {
     555             :     int i, j;
     556             :     int vlc, vd, tmp, result;
     557             : 
     558        8969 :     vd = vd_tab[category];
     559        8969 :     result = 0;
     560       65444 :     for (i = 0; i < vpr_tab[category]; i++) {
     561       56475 :         vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
     562       56475 :         if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
     563           0 :             vlc = 0;
     564           0 :             result = 1;
     565             :         }
     566      235855 :         for (j = vd - 1; j >= 0; j--) {
     567      179380 :             tmp = (vlc * invradix_tab[category]) / 0x100000;
     568      179380 :             subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
     569      179380 :             vlc = tmp;
     570             :         }
     571      235855 :         for (j = 0; j < vd; j++) {
     572      179380 :             if (subband_coef_index[i * vd + j]) {
     573       67248 :                 if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
     574       67248 :                     subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
     575             :                 } else {
     576           0 :                     result = 1;
     577           0 :                     subband_coef_sign[i * vd + j] = 0;
     578             :                 }
     579             :             } else {
     580      112132 :                 subband_coef_sign[i * vd + j] = 0;
     581             :             }
     582             :         }
     583             :     }
     584        8969 :     return result;
     585             : }
     586             : 
     587             : 
     588             : /**
     589             :  * Fill the mlt_buffer with mlt coefficients.
     590             :  *
     591             :  * @param q                 pointer to the COOKContext
     592             :  * @param category          pointer to the category array
     593             :  * @param quant_index_table pointer to the array
     594             :  * @param mlt_buffer        pointer to mlt coefficients
     595             :  */
     596         240 : static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
     597             :                            int *quant_index_table, float *mlt_buffer)
     598             : {
     599             :     /* A zero in this table means that the subband coefficient is
     600             :        random noise coded. */
     601             :     int subband_coef_index[SUBBAND_SIZE];
     602             :     /* A zero in this table means that the subband coefficient is a
     603             :        positive multiplicator. */
     604             :     int subband_coef_sign[SUBBAND_SIZE];
     605             :     int band, j;
     606         240 :     int index = 0;
     607             : 
     608       10560 :     for (band = 0; band < p->total_subbands; band++) {
     609       10320 :         index = category[band];
     610       10320 :         if (category[band] < 7) {
     611        8969 :             if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
     612           0 :                 index = 7;
     613           0 :                 for (j = 0; j < p->total_subbands; j++)
     614           0 :                     category[band + j] = 7;
     615             :             }
     616             :         }
     617       10320 :         if (index >= 7) {
     618        1351 :             memset(subband_coef_index, 0, sizeof(subband_coef_index));
     619        1351 :             memset(subband_coef_sign,  0, sizeof(subband_coef_sign));
     620             :         }
     621       10320 :         q->scalar_dequant(q, index, quant_index_table[band],
     622             :                           subband_coef_index, subband_coef_sign,
     623             :                           &mlt_buffer[band * SUBBAND_SIZE]);
     624             :     }
     625             : 
     626             :     /* FIXME: should this be removed, or moved into loop above? */
     627         240 :     if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
     628           0 :         return;
     629             : }
     630             : 
     631             : 
     632         240 : static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
     633             : {
     634         240 :     int category_index[128] = { 0 };
     635         240 :     int category[128]       = { 0 };
     636             :     int quant_index_table[102];
     637             :     int res, i;
     638             : 
     639         240 :     if ((res = decode_envelope(q, p, quant_index_table)) < 0)
     640           0 :         return res;
     641         240 :     q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
     642         240 :     categorize(q, p, quant_index_table, category, category_index);
     643         240 :     expand_category(q, category, category_index);
     644       10560 :     for (i=0; i<p->total_subbands; i++) {
     645       10320 :         if (category[i] > 7)
     646           0 :             return AVERROR_INVALIDDATA;
     647             :     }
     648         240 :     decode_vectors(q, p, category, quant_index_table, mlt_buffer);
     649             : 
     650         240 :     return 0;
     651             : }
     652             : 
     653             : 
     654             : /**
     655             :  * the actual requantization of the timedomain samples
     656             :  *
     657             :  * @param q                 pointer to the COOKContext
     658             :  * @param buffer            pointer to the timedomain buffer
     659             :  * @param gain_index        index for the block multiplier
     660             :  * @param gain_index_next   index for the next block multiplier
     661             :  */
     662          14 : static void interpolate_float(COOKContext *q, float *buffer,
     663             :                               int gain_index, int gain_index_next)
     664             : {
     665             :     int i;
     666             :     float fc1, fc2;
     667          14 :     fc1 = pow2tab[gain_index + 63];
     668             : 
     669          14 :     if (gain_index == gain_index_next) {             // static gain
     670        1548 :         for (i = 0; i < q->gain_size_factor; i++)
     671        1536 :             buffer[i] *= fc1;
     672             :     } else {                                        // smooth gain
     673           2 :         fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
     674         258 :         for (i = 0; i < q->gain_size_factor; i++) {
     675         256 :             buffer[i] *= fc1;
     676         256 :             fc1       *= fc2;
     677             :         }
     678             :     }
     679          14 : }
     680             : 
     681             : /**
     682             :  * Apply transform window, overlap buffers.
     683             :  *
     684             :  * @param q                 pointer to the COOKContext
     685             :  * @param inbuffer          pointer to the mltcoefficients
     686             :  * @param gains_ptr         current and previous gains
     687             :  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
     688             :  */
     689         480 : static void imlt_window_float(COOKContext *q, float *inbuffer,
     690             :                               cook_gains *gains_ptr, float *previous_buffer)
     691             : {
     692         480 :     const float fc = pow2tab[gains_ptr->previous[0] + 63];
     693             :     int i;
     694             :     /* The weird thing here, is that the two halves of the time domain
     695             :      * buffer are swapped. Also, the newest data, that we save away for
     696             :      * next frame, has the wrong sign. Hence the subtraction below.
     697             :      * Almost sounds like a complex conjugate/reverse data/FFT effect.
     698             :      */
     699             : 
     700             :     /* Apply window and overlap */
     701      492000 :     for (i = 0; i < q->samples_per_channel; i++)
     702      983040 :         inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
     703      491520 :                       previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
     704         480 : }
     705             : 
     706             : /**
     707             :  * The modulated lapped transform, this takes transform coefficients
     708             :  * and transforms them into timedomain samples.
     709             :  * Apply transform window, overlap buffers, apply gain profile
     710             :  * and buffer management.
     711             :  *
     712             :  * @param q                 pointer to the COOKContext
     713             :  * @param inbuffer          pointer to the mltcoefficients
     714             :  * @param gains_ptr         current and previous gains
     715             :  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
     716             :  */
     717         480 : static void imlt_gain(COOKContext *q, float *inbuffer,
     718             :                       cook_gains *gains_ptr, float *previous_buffer)
     719             : {
     720         480 :     float *buffer0 = q->mono_mdct_output;
     721         480 :     float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
     722             :     int i;
     723             : 
     724             :     /* Inverse modified discrete cosine transform */
     725         480 :     q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
     726             : 
     727         480 :     q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
     728             : 
     729             :     /* Apply gain profile */
     730        4320 :     for (i = 0; i < 8; i++)
     731        3840 :         if (gains_ptr->now[i] || gains_ptr->now[i + 1])
     732          42 :             q->interpolate(q, &buffer1[q->gain_size_factor * i],
     733          28 :                            gains_ptr->now[i], gains_ptr->now[i + 1]);
     734             : 
     735             :     /* Save away the current to be previous block. */
     736         480 :     memcpy(previous_buffer, buffer0,
     737         480 :            q->samples_per_channel * sizeof(*previous_buffer));
     738         480 : }
     739             : 
     740             : 
     741             : /**
     742             :  * function for getting the jointstereo coupling information
     743             :  *
     744             :  * @param q                 pointer to the COOKContext
     745             :  * @param decouple_tab      decoupling array
     746             :  */
     747         240 : static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
     748             : {
     749             :     int i;
     750         240 :     int vlc    = get_bits1(&q->gb);
     751         240 :     int start  = cplband[p->js_subband_start];
     752         240 :     int end    = cplband[p->subbands - 1];
     753         240 :     int length = end - start + 1;
     754             : 
     755         240 :     if (start > end)
     756           0 :         return 0;
     757             : 
     758         240 :     if (vlc)
     759        1806 :         for (i = 0; i < length; i++)
     760        1677 :             decouple_tab[start + i] = get_vlc2(&q->gb,
     761             :                                                p->channel_coupling.table,
     762             :                                                p->channel_coupling.bits, 2);
     763             :     else
     764        1554 :         for (i = 0; i < length; i++) {
     765        1443 :             int v = get_bits(&q->gb, p->js_vlc_bits);
     766        1443 :             if (v == (1<<p->js_vlc_bits)-1) {
     767           0 :                 av_log(q->avctx, AV_LOG_ERROR, "decouple value too large\n");
     768           0 :                 return AVERROR_INVALIDDATA;
     769             :             }
     770        1443 :             decouple_tab[start + i] = v;
     771             :         }
     772         240 :     return 0;
     773             : }
     774             : 
     775             : /**
     776             :  * function decouples a pair of signals from a single signal via multiplication.
     777             :  *
     778             :  * @param q                 pointer to the COOKContext
     779             :  * @param subband           index of the current subband
     780             :  * @param f1                multiplier for channel 1 extraction
     781             :  * @param f2                multiplier for channel 2 extraction
     782             :  * @param decode_buffer     input buffer
     783             :  * @param mlt_buffer1       pointer to left channel mlt coefficients
     784             :  * @param mlt_buffer2       pointer to right channel mlt coefficients
     785             :  */
     786        7440 : static void decouple_float(COOKContext *q,
     787             :                            COOKSubpacket *p,
     788             :                            int subband,
     789             :                            float f1, float f2,
     790             :                            float *decode_buffer,
     791             :                            float *mlt_buffer1, float *mlt_buffer2)
     792             : {
     793             :     int j, tmp_idx;
     794      156240 :     for (j = 0; j < SUBBAND_SIZE; j++) {
     795      148800 :         tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
     796      148800 :         mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
     797      148800 :         mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
     798             :     }
     799        7440 : }
     800             : 
     801             : /**
     802             :  * function for decoding joint stereo data
     803             :  *
     804             :  * @param q                 pointer to the COOKContext
     805             :  * @param mlt_buffer1       pointer to left channel mlt coefficients
     806             :  * @param mlt_buffer2       pointer to right channel mlt coefficients
     807             :  */
     808         240 : static int joint_decode(COOKContext *q, COOKSubpacket *p,
     809             :                         float *mlt_buffer_left, float *mlt_buffer_right)
     810             : {
     811             :     int i, j, res;
     812         240 :     int decouple_tab[SUBBAND_SIZE] = { 0 };
     813         240 :     float *decode_buffer = q->decode_buffer_0;
     814             :     int idx, cpl_tmp;
     815             :     float f1, f2;
     816             :     const float *cplscale;
     817             : 
     818         240 :     memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
     819             : 
     820             :     /* Make sure the buffers are zeroed out. */
     821         240 :     memset(mlt_buffer_left,  0, 1024 * sizeof(*mlt_buffer_left));
     822         240 :     memset(mlt_buffer_right, 0, 1024 * sizeof(*mlt_buffer_right));
     823         240 :     if ((res = decouple_info(q, p, decouple_tab)) < 0)
     824           0 :         return res;
     825         240 :     if ((res = mono_decode(q, p, decode_buffer)) < 0)
     826           0 :         return res;
     827             :     /* The two channels are stored interleaved in decode_buffer. */
     828        1680 :     for (i = 0; i < p->js_subband_start; i++) {
     829       30240 :         for (j = 0; j < SUBBAND_SIZE; j++) {
     830       28800 :             mlt_buffer_left[i  * 20 + j] = decode_buffer[i * 40 + j];
     831       28800 :             mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
     832             :         }
     833             :     }
     834             : 
     835             :     /* When we reach js_subband_start (the higher frequencies)
     836             :        the coefficients are stored in a coupling scheme. */
     837         240 :     idx = (1 << p->js_vlc_bits) - 1;
     838        7680 :     for (i = p->js_subband_start; i < p->subbands; i++) {
     839        7440 :         cpl_tmp = cplband[i];
     840        7440 :         idx -= decouple_tab[cpl_tmp];
     841        7440 :         cplscale = q->cplscales[p->js_vlc_bits - 2];  // choose decoupler table
     842        7440 :         f1 = cplscale[decouple_tab[cpl_tmp] + 1];
     843        7440 :         f2 = cplscale[idx];
     844        7440 :         q->decouple(q, p, i, f1, f2, decode_buffer,
     845             :                     mlt_buffer_left, mlt_buffer_right);
     846        7440 :         idx = (1 << p->js_vlc_bits) - 1;
     847             :     }
     848             : 
     849         240 :     return 0;
     850             : }
     851             : 
     852             : /**
     853             :  * First part of subpacket decoding:
     854             :  *  decode raw stream bytes and read gain info.
     855             :  *
     856             :  * @param q                 pointer to the COOKContext
     857             :  * @param inbuffer          pointer to raw stream data
     858             :  * @param gains_ptr         array of current/prev gain pointers
     859             :  */
     860         240 : static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
     861             :                                          const uint8_t *inbuffer,
     862             :                                          cook_gains *gains_ptr)
     863             : {
     864             :     int offset;
     865             : 
     866         240 :     offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
     867         240 :                           p->bits_per_subpacket / 8);
     868         240 :     init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
     869             :                   p->bits_per_subpacket);
     870         240 :     decode_gain_info(&q->gb, gains_ptr->now);
     871             : 
     872             :     /* Swap current and previous gains */
     873         240 :     FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
     874         240 : }
     875             : 
     876             : /**
     877             :  * Saturate the output signal and interleave.
     878             :  *
     879             :  * @param q                 pointer to the COOKContext
     880             :  * @param out               pointer to the output vector
     881             :  */
     882         476 : static void saturate_output_float(COOKContext *q, float *out)
     883             : {
     884         952 :     q->adsp.vector_clipf(out, q->mono_mdct_output + q->samples_per_channel,
     885         476 :                          FFALIGN(q->samples_per_channel, 8), -1.0f, 1.0f);
     886         476 : }
     887             : 
     888             : 
     889             : /**
     890             :  * Final part of subpacket decoding:
     891             :  *  Apply modulated lapped transform, gain compensation,
     892             :  *  clip and convert to integer.
     893             :  *
     894             :  * @param q                 pointer to the COOKContext
     895             :  * @param decode_buffer     pointer to the mlt coefficients
     896             :  * @param gains_ptr         array of current/prev gain pointers
     897             :  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
     898             :  * @param out               pointer to the output buffer
     899             :  */
     900         480 : static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
     901             :                                          cook_gains *gains_ptr, float *previous_buffer,
     902             :                                          float *out)
     903             : {
     904         480 :     imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
     905         480 :     if (out)
     906         476 :         q->saturate_output(q, out);
     907         480 : }
     908             : 
     909             : 
     910             : /**
     911             :  * Cook subpacket decoding. This function returns one decoded subpacket,
     912             :  * usually 1024 samples per channel.
     913             :  *
     914             :  * @param q                 pointer to the COOKContext
     915             :  * @param inbuffer          pointer to the inbuffer
     916             :  * @param outbuffer         pointer to the outbuffer
     917             :  */
     918         240 : static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
     919             :                             const uint8_t *inbuffer, float **outbuffer)
     920             : {
     921         240 :     int sub_packet_size = p->size;
     922             :     int res;
     923             : 
     924         240 :     memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
     925         240 :     decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
     926             : 
     927         240 :     if (p->joint_stereo) {
     928         240 :         if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
     929           0 :             return res;
     930             :     } else {
     931           0 :         if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
     932           0 :             return res;
     933             : 
     934           0 :         if (p->num_channels == 2) {
     935           0 :             decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
     936           0 :             if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
     937           0 :                 return res;
     938             :         }
     939             :     }
     940             : 
     941         718 :     mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
     942         240 :                           p->mono_previous_buffer1,
     943         238 :                           outbuffer ? outbuffer[p->ch_idx] : NULL);
     944             : 
     945         240 :     if (p->num_channels == 2) {
     946         240 :         if (p->joint_stereo)
     947         718 :             mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
     948         240 :                                   p->mono_previous_buffer2,
     949         238 :                                   outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
     950             :         else
     951           0 :             mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
     952           0 :                                   p->mono_previous_buffer2,
     953           0 :                                   outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
     954             :     }
     955             : 
     956         240 :     return 0;
     957             : }
     958             : 
     959             : 
     960         240 : static int cook_decode_frame(AVCodecContext *avctx, void *data,
     961             :                              int *got_frame_ptr, AVPacket *avpkt)
     962             : {
     963         240 :     AVFrame *frame     = data;
     964         240 :     const uint8_t *buf = avpkt->data;
     965         240 :     int buf_size = avpkt->size;
     966         240 :     COOKContext *q = avctx->priv_data;
     967         240 :     float **samples = NULL;
     968             :     int i, ret;
     969         240 :     int offset = 0;
     970         240 :     int chidx = 0;
     971             : 
     972         240 :     if (buf_size < avctx->block_align)
     973           0 :         return buf_size;
     974             : 
     975             :     /* get output buffer */
     976         240 :     if (q->discarded_packets >= 2) {
     977         238 :         frame->nb_samples = q->samples_per_channel;
     978         238 :         if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
     979           0 :             return ret;
     980         238 :         samples = (float **)frame->extended_data;
     981             :     }
     982             : 
     983             :     /* estimate subpacket sizes */
     984         240 :     q->subpacket[0].size = avctx->block_align;
     985             : 
     986         240 :     for (i = 1; i < q->num_subpackets; i++) {
     987           0 :         q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
     988           0 :         q->subpacket[0].size -= q->subpacket[i].size + 1;
     989           0 :         if (q->subpacket[0].size < 0) {
     990           0 :             av_log(avctx, AV_LOG_DEBUG,
     991             :                    "frame subpacket size total > avctx->block_align!\n");
     992           0 :             return AVERROR_INVALIDDATA;
     993             :         }
     994             :     }
     995             : 
     996             :     /* decode supbackets */
     997         480 :     for (i = 0; i < q->num_subpackets; i++) {
     998         480 :         q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
     999         240 :                                               q->subpacket[i].bits_per_subpdiv;
    1000         240 :         q->subpacket[i].ch_idx = chidx;
    1001         240 :         av_log(avctx, AV_LOG_DEBUG,
    1002             :                "subpacket[%i] size %i js %i %i block_align %i\n",
    1003             :                i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
    1004             :                avctx->block_align);
    1005             : 
    1006         240 :         if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
    1007           0 :             return ret;
    1008         240 :         offset += q->subpacket[i].size;
    1009         240 :         chidx += q->subpacket[i].num_channels;
    1010         480 :         av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
    1011         480 :                i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
    1012             :     }
    1013             : 
    1014             :     /* Discard the first two frames: no valid audio. */
    1015         240 :     if (q->discarded_packets < 2) {
    1016           2 :         q->discarded_packets++;
    1017           2 :         *got_frame_ptr = 0;
    1018           2 :         return avctx->block_align;
    1019             :     }
    1020             : 
    1021         238 :     *got_frame_ptr = 1;
    1022             : 
    1023         238 :     return avctx->block_align;
    1024             : }
    1025             : 
    1026           6 : static void dump_cook_context(COOKContext *q)
    1027             : {
    1028             :     //int i=0;
    1029             : #define PRINT(a, b) ff_dlog(q->avctx, " %s = %d\n", a, b);
    1030             :     ff_dlog(q->avctx, "COOKextradata\n");
    1031             :     ff_dlog(q->avctx, "cookversion=%x\n", q->subpacket[0].cookversion);
    1032           6 :     if (q->subpacket[0].cookversion > STEREO) {
    1033             :         PRINT("js_subband_start", q->subpacket[0].js_subband_start);
    1034             :         PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
    1035             :     }
    1036             :     ff_dlog(q->avctx, "COOKContext\n");
    1037             :     PRINT("nb_channels", q->avctx->channels);
    1038             :     PRINT("bit_rate", (int)q->avctx->bit_rate);
    1039             :     PRINT("sample_rate", q->avctx->sample_rate);
    1040             :     PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
    1041             :     PRINT("subbands", q->subpacket[0].subbands);
    1042             :     PRINT("js_subband_start", q->subpacket[0].js_subband_start);
    1043             :     PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
    1044             :     PRINT("numvector_size", q->subpacket[0].numvector_size);
    1045             :     PRINT("total_subbands", q->subpacket[0].total_subbands);
    1046           6 : }
    1047             : 
    1048             : /**
    1049             :  * Cook initialization
    1050             :  *
    1051             :  * @param avctx     pointer to the AVCodecContext
    1052             :  */
    1053           6 : static av_cold int cook_decode_init(AVCodecContext *avctx)
    1054             : {
    1055           6 :     COOKContext *q = avctx->priv_data;
    1056             :     GetByteContext gb;
    1057           6 :     int s = 0;
    1058           6 :     unsigned int channel_mask = 0;
    1059           6 :     int samples_per_frame = 0;
    1060             :     int ret;
    1061           6 :     q->avctx = avctx;
    1062             : 
    1063             :     /* Take care of the codec specific extradata. */
    1064           6 :     if (avctx->extradata_size < 8) {
    1065           0 :         av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
    1066           0 :         return AVERROR_INVALIDDATA;
    1067             :     }
    1068           6 :     av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
    1069             : 
    1070           6 :     bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
    1071             : 
    1072             :     /* Take data from the AVCodecContext (RM container). */
    1073           6 :     if (!avctx->channels) {
    1074           0 :         av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
    1075           0 :         return AVERROR_INVALIDDATA;
    1076             :     }
    1077             : 
    1078             :     /* Initialize RNG. */
    1079           6 :     av_lfg_init(&q->random_state, 0);
    1080             : 
    1081           6 :     ff_audiodsp_init(&q->adsp);
    1082             : 
    1083           6 :     while (bytestream2_get_bytes_left(&gb)) {
    1084             :         /* 8 for mono, 16 for stereo, ? for multichannel
    1085             :            Swap to right endianness so we don't need to care later on. */
    1086           6 :         q->subpacket[s].cookversion      = bytestream2_get_be32(&gb);
    1087           6 :         samples_per_frame                = bytestream2_get_be16(&gb);
    1088           6 :         q->subpacket[s].subbands         = bytestream2_get_be16(&gb);
    1089           6 :         bytestream2_get_be32(&gb);    // Unknown unused
    1090           6 :         q->subpacket[s].js_subband_start = bytestream2_get_be16(&gb);
    1091           6 :         if (q->subpacket[s].js_subband_start >= 51) {
    1092           0 :             av_log(avctx, AV_LOG_ERROR, "js_subband_start %d is too large\n", q->subpacket[s].js_subband_start);
    1093           0 :             return AVERROR_INVALIDDATA;
    1094             :         }
    1095           6 :         q->subpacket[s].js_vlc_bits      = bytestream2_get_be16(&gb);
    1096             : 
    1097             :         /* Initialize extradata related variables. */
    1098           6 :         q->subpacket[s].samples_per_channel = samples_per_frame / avctx->channels;
    1099           6 :         q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
    1100             : 
    1101             :         /* Initialize default data states. */
    1102           6 :         q->subpacket[s].log2_numvector_size = 5;
    1103           6 :         q->subpacket[s].total_subbands = q->subpacket[s].subbands;
    1104           6 :         q->subpacket[s].num_channels = 1;
    1105             : 
    1106             :         /* Initialize version-dependent variables */
    1107             : 
    1108           6 :         av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
    1109             :                q->subpacket[s].cookversion);
    1110           6 :         q->subpacket[s].joint_stereo = 0;
    1111           6 :         switch (q->subpacket[s].cookversion) {
    1112           0 :         case MONO:
    1113           0 :             if (avctx->channels != 1) {
    1114           0 :                 avpriv_request_sample(avctx, "Container channels != 1");
    1115           0 :                 return AVERROR_PATCHWELCOME;
    1116             :             }
    1117           0 :             av_log(avctx, AV_LOG_DEBUG, "MONO\n");
    1118           0 :             break;
    1119           2 :         case STEREO:
    1120           2 :             if (avctx->channels != 1) {
    1121           0 :                 q->subpacket[s].bits_per_subpdiv = 1;
    1122           0 :                 q->subpacket[s].num_channels = 2;
    1123             :             }
    1124           2 :             av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
    1125           2 :             break;
    1126           4 :         case JOINT_STEREO:
    1127           4 :             if (avctx->channels != 2) {
    1128           0 :                 avpriv_request_sample(avctx, "Container channels != 2");
    1129           0 :                 return AVERROR_PATCHWELCOME;
    1130             :             }
    1131           4 :             av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
    1132           4 :             if (avctx->extradata_size >= 16) {
    1133           8 :                 q->subpacket[s].total_subbands = q->subpacket[s].subbands +
    1134           4 :                                                  q->subpacket[s].js_subband_start;
    1135           4 :                 q->subpacket[s].joint_stereo = 1;
    1136           4 :                 q->subpacket[s].num_channels = 2;
    1137             :             }
    1138           4 :             if (q->subpacket[s].samples_per_channel > 256) {
    1139           4 :                 q->subpacket[s].log2_numvector_size = 6;
    1140             :             }
    1141           4 :             if (q->subpacket[s].samples_per_channel > 512) {
    1142           4 :                 q->subpacket[s].log2_numvector_size = 7;
    1143             :             }
    1144           4 :             break;
    1145           0 :         case MC_COOK:
    1146           0 :             av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
    1147           0 :             channel_mask |= q->subpacket[s].channel_mask = bytestream2_get_be32(&gb);
    1148             : 
    1149           0 :             if (av_get_channel_layout_nb_channels(q->subpacket[s].channel_mask) > 1) {
    1150           0 :                 q->subpacket[s].total_subbands = q->subpacket[s].subbands +
    1151           0 :                                                  q->subpacket[s].js_subband_start;
    1152           0 :                 q->subpacket[s].joint_stereo = 1;
    1153           0 :                 q->subpacket[s].num_channels = 2;
    1154           0 :                 q->subpacket[s].samples_per_channel = samples_per_frame >> 1;
    1155             : 
    1156           0 :                 if (q->subpacket[s].samples_per_channel > 256) {
    1157           0 :                     q->subpacket[s].log2_numvector_size = 6;
    1158             :                 }
    1159           0 :                 if (q->subpacket[s].samples_per_channel > 512) {
    1160           0 :                     q->subpacket[s].log2_numvector_size = 7;
    1161             :                 }
    1162             :             } else
    1163           0 :                 q->subpacket[s].samples_per_channel = samples_per_frame;
    1164             : 
    1165           0 :             break;
    1166           0 :         default:
    1167           0 :             avpriv_request_sample(avctx, "Cook version %d",
    1168             :                                   q->subpacket[s].cookversion);
    1169           0 :             return AVERROR_PATCHWELCOME;
    1170             :         }
    1171             : 
    1172           6 :         if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
    1173           0 :             av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
    1174           0 :             return AVERROR_INVALIDDATA;
    1175             :         } else
    1176           6 :             q->samples_per_channel = q->subpacket[0].samples_per_channel;
    1177             : 
    1178             : 
    1179             :         /* Initialize variable relations */
    1180           6 :         q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
    1181             : 
    1182             :         /* Try to catch some obviously faulty streams, otherwise it might be exploitable */
    1183           6 :         if (q->subpacket[s].total_subbands > 53) {
    1184           0 :             avpriv_request_sample(avctx, "total_subbands > 53");
    1185           0 :             return AVERROR_PATCHWELCOME;
    1186             :         }
    1187             : 
    1188          12 :         if ((q->subpacket[s].js_vlc_bits > 6) ||
    1189           6 :             (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
    1190           0 :             av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
    1191           0 :                    q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
    1192           0 :             return AVERROR_INVALIDDATA;
    1193             :         }
    1194             : 
    1195           6 :         if (q->subpacket[s].subbands > 50) {
    1196           0 :             avpriv_request_sample(avctx, "subbands > 50");
    1197           0 :             return AVERROR_PATCHWELCOME;
    1198             :         }
    1199           6 :         if (q->subpacket[s].subbands == 0) {
    1200           0 :             avpriv_request_sample(avctx, "subbands = 0");
    1201           0 :             return AVERROR_PATCHWELCOME;
    1202             :         }
    1203           6 :         q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
    1204           6 :         q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
    1205           6 :         q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
    1206           6 :         q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
    1207             : 
    1208           6 :         if (q->num_subpackets + q->subpacket[s].num_channels > q->avctx->channels) {
    1209           0 :             av_log(avctx, AV_LOG_ERROR, "Too many subpackets %d for channels %d\n", q->num_subpackets, q->avctx->channels);
    1210           0 :             return AVERROR_INVALIDDATA;
    1211             :         }
    1212             : 
    1213           6 :         q->num_subpackets++;
    1214           6 :         s++;
    1215           6 :         if (s > FFMIN(MAX_SUBPACKETS, avctx->block_align)) {
    1216           0 :             avpriv_request_sample(avctx, "subpackets > %d", FFMIN(MAX_SUBPACKETS, avctx->block_align));
    1217           0 :             return AVERROR_PATCHWELCOME;
    1218             :         }
    1219             :     }
    1220             :     /* Generate tables */
    1221           6 :     init_pow2table();
    1222           6 :     init_gain_table(q);
    1223           6 :     init_cplscales_table(q);
    1224             : 
    1225           6 :     if ((ret = init_cook_vlc_tables(q)))
    1226           0 :         return ret;
    1227             : 
    1228             : 
    1229           6 :     if (avctx->block_align >= UINT_MAX / 2)
    1230           0 :         return AVERROR(EINVAL);
    1231             : 
    1232             :     /* Pad the databuffer with:
    1233             :        DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
    1234             :        AV_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
    1235           6 :     q->decoded_bytes_buffer =
    1236          12 :         av_mallocz(avctx->block_align
    1237           6 :                    + DECODE_BYTES_PAD1(avctx->block_align)
    1238           6 :                    + AV_INPUT_BUFFER_PADDING_SIZE);
    1239           6 :     if (!q->decoded_bytes_buffer)
    1240           0 :         return AVERROR(ENOMEM);
    1241             : 
    1242             :     /* Initialize transform. */
    1243           6 :     if ((ret = init_cook_mlt(q)))
    1244           0 :         return ret;
    1245             : 
    1246             :     /* Initialize COOK signal arithmetic handling */
    1247             :     if (1) {
    1248           6 :         q->scalar_dequant  = scalar_dequant_float;
    1249           6 :         q->decouple        = decouple_float;
    1250           6 :         q->imlt_window     = imlt_window_float;
    1251           6 :         q->interpolate     = interpolate_float;
    1252           6 :         q->saturate_output = saturate_output_float;
    1253             :     }
    1254             : 
    1255             :     /* Try to catch some obviously faulty streams, otherwise it might be exploitable */
    1256          12 :     if (q->samples_per_channel != 256 && q->samples_per_channel != 512 &&
    1257           6 :         q->samples_per_channel != 1024) {
    1258           0 :         avpriv_request_sample(avctx, "samples_per_channel = %d",
    1259             :                               q->samples_per_channel);
    1260           0 :         return AVERROR_PATCHWELCOME;
    1261             :     }
    1262             : 
    1263           6 :     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
    1264           6 :     if (channel_mask)
    1265           0 :         avctx->channel_layout = channel_mask;
    1266             :     else
    1267           6 :         avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
    1268             : 
    1269             : 
    1270           6 :     dump_cook_context(q);
    1271             : 
    1272           6 :     return 0;
    1273             : }
    1274             : 
    1275             : AVCodec ff_cook_decoder = {
    1276             :     .name           = "cook",
    1277             :     .long_name      = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"),
    1278             :     .type           = AVMEDIA_TYPE_AUDIO,
    1279             :     .id             = AV_CODEC_ID_COOK,
    1280             :     .priv_data_size = sizeof(COOKContext),
    1281             :     .init           = cook_decode_init,
    1282             :     .close          = cook_decode_close,
    1283             :     .decode         = cook_decode_frame,
    1284             :     .capabilities   = AV_CODEC_CAP_DR1,
    1285             :     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
    1286             :                                                       AV_SAMPLE_FMT_NONE },
    1287             : };

Generated by: LCOV version 1.13