LCOV - code coverage report
Current view: top level - libavcodec - alsdec.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 658 1008 65.3 %
Date: 2017-12-17 11:58:42 Functions: 21 27 77.8 %

          Line data    Source code
       1             : /*
       2             :  * MPEG-4 ALS decoder
       3             :  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
       4             :  *
       5             :  * This file is part of FFmpeg.
       6             :  *
       7             :  * FFmpeg is free software; you can redistribute it and/or
       8             :  * modify it under the terms of the GNU Lesser General Public
       9             :  * License as published by the Free Software Foundation; either
      10             :  * version 2.1 of the License, or (at your option) any later version.
      11             :  *
      12             :  * FFmpeg is distributed in the hope that it will be useful,
      13             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      14             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      15             :  * Lesser General Public License for more details.
      16             :  *
      17             :  * You should have received a copy of the GNU Lesser General Public
      18             :  * License along with FFmpeg; if not, write to the Free Software
      19             :  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
      20             :  */
      21             : 
      22             : /**
      23             :  * @file
      24             :  * MPEG-4 ALS decoder
      25             :  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
      26             :  */
      27             : 
      28             : #include <inttypes.h>
      29             : 
      30             : #include "avcodec.h"
      31             : #include "get_bits.h"
      32             : #include "unary.h"
      33             : #include "mpeg4audio.h"
      34             : #include "bgmc.h"
      35             : #include "bswapdsp.h"
      36             : #include "internal.h"
      37             : #include "mlz.h"
      38             : #include "libavutil/samplefmt.h"
      39             : #include "libavutil/crc.h"
      40             : #include "libavutil/softfloat_ieee754.h"
      41             : #include "libavutil/intfloat.h"
      42             : #include "libavutil/intreadwrite.h"
      43             : 
      44             : #include <stdint.h>
      45             : 
      46             : /** Rice parameters and corresponding index offsets for decoding the
      47             :  *  indices of scaled PARCOR values. The table chosen is set globally
      48             :  *  by the encoder and stored in ALSSpecificConfig.
      49             :  */
      50             : static const int8_t parcor_rice_table[3][20][2] = {
      51             :     { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
      52             :       { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
      53             :       { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
      54             :       {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
      55             :     { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
      56             :       { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
      57             :       {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
      58             :       {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
      59             :     { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
      60             :       { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
      61             :       {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
      62             :       {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
      63             : };
      64             : 
      65             : 
      66             : /** Scaled PARCOR values used for the first two PARCOR coefficients.
      67             :  *  To be indexed by the Rice coded indices.
      68             :  *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
      69             :  *  Actual values are divided by 32 in order to be stored in 16 bits.
      70             :  */
      71             : static const int16_t parcor_scaled_values[] = {
      72             :     -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
      73             :     -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
      74             :     -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
      75             :     -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
      76             :     -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
      77             :      -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
      78             :      -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
      79             :      -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
      80             :      -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
      81             :      -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
      82             :      -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
      83             :      -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
      84             :      -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
      85             :      -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
      86             :      -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
      87             :      -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
      88             :      -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
      89             :      -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
      90             :      -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
      91             :      -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
      92             :      -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
      93             :      -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
      94             :       -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
      95             :        46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
      96             :       143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
      97             :       244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
      98             :       349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
      99             :       458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
     100             :       571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
     101             :       688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
     102             :       810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
     103             :       935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
     104             : };
     105             : 
     106             : 
     107             : /** Gain values of p(0) for long-term prediction.
     108             :  *  To be indexed by the Rice coded indices.
     109             :  */
     110             : static const uint8_t ltp_gain_values [4][4] = {
     111             :     { 0,  8, 16,  24},
     112             :     {32, 40, 48,  56},
     113             :     {64, 70, 76,  82},
     114             :     {88, 92, 96, 100}
     115             : };
     116             : 
     117             : 
     118             : /** Inter-channel weighting factors for multi-channel correlation.
     119             :  *  To be indexed by the Rice coded indices.
     120             :  */
     121             : static const int16_t mcc_weightings[] = {
     122             :     204,  192,  179,  166,  153,  140,  128,  115,
     123             :     102,   89,   76,   64,   51,   38,   25,   12,
     124             :       0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
     125             :    -102, -115, -128, -140, -153, -166, -179, -192
     126             : };
     127             : 
     128             : 
     129             : /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
     130             :  */
     131             : static const uint8_t tail_code[16][6] = {
     132             :     { 74, 44, 25, 13,  7, 3},
     133             :     { 68, 42, 24, 13,  7, 3},
     134             :     { 58, 39, 23, 13,  7, 3},
     135             :     {126, 70, 37, 19, 10, 5},
     136             :     {132, 70, 37, 20, 10, 5},
     137             :     {124, 70, 38, 20, 10, 5},
     138             :     {120, 69, 37, 20, 11, 5},
     139             :     {116, 67, 37, 20, 11, 5},
     140             :     {108, 66, 36, 20, 10, 5},
     141             :     {102, 62, 36, 20, 10, 5},
     142             :     { 88, 58, 34, 19, 10, 5},
     143             :     {162, 89, 49, 25, 13, 7},
     144             :     {156, 87, 49, 26, 14, 7},
     145             :     {150, 86, 47, 26, 14, 7},
     146             :     {142, 84, 47, 26, 14, 7},
     147             :     {131, 79, 46, 26, 14, 7}
     148             : };
     149             : 
     150             : 
     151             : enum RA_Flag {
     152             :     RA_FLAG_NONE,
     153             :     RA_FLAG_FRAMES,
     154             :     RA_FLAG_HEADER
     155             : };
     156             : 
     157             : 
     158             : typedef struct ALSSpecificConfig {
     159             :     uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
     160             :     int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
     161             :     int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
     162             :     int msb_first;            ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
     163             :     int frame_length;         ///< frame length for each frame (last frame may differ)
     164             :     int ra_distance;          ///< distance between RA frames (in frames, 0...255)
     165             :     enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
     166             :     int adapt_order;          ///< adaptive order: 1 = on, 0 = off
     167             :     int coef_table;           ///< table index of Rice code parameters
     168             :     int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
     169             :     int max_order;            ///< maximum prediction order (0..1023)
     170             :     int block_switching;      ///< number of block switching levels
     171             :     int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
     172             :     int sb_part;              ///< sub-block partition
     173             :     int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
     174             :     int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
     175             :     int chan_config;          ///< indicates that a chan_config_info field is present
     176             :     int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
     177             :     int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
     178             :     int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
     179             :     int *chan_pos;            ///< original channel positions
     180             :     int crc_enabled;          ///< enable Cyclic Redundancy Checksum
     181             : } ALSSpecificConfig;
     182             : 
     183             : 
     184             : typedef struct ALSChannelData {
     185             :     int stop_flag;
     186             :     int master_channel;
     187             :     int time_diff_flag;
     188             :     int time_diff_sign;
     189             :     int time_diff_index;
     190             :     int weighting[6];
     191             : } ALSChannelData;
     192             : 
     193             : 
     194             : typedef struct ALSDecContext {
     195             :     AVCodecContext *avctx;
     196             :     ALSSpecificConfig sconf;
     197             :     GetBitContext gb;
     198             :     BswapDSPContext bdsp;
     199             :     const AVCRC *crc_table;
     200             :     uint32_t crc_org;               ///< CRC value of the original input data
     201             :     uint32_t crc;                   ///< CRC value calculated from decoded data
     202             :     unsigned int cur_frame_length;  ///< length of the current frame to decode
     203             :     unsigned int frame_id;          ///< the frame ID / number of the current frame
     204             :     unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
     205             :     unsigned int cs_switch;         ///< if true, channel rearrangement is done
     206             :     unsigned int num_blocks;        ///< number of blocks used in the current frame
     207             :     unsigned int s_max;             ///< maximum Rice parameter allowed in entropy coding
     208             :     uint8_t *bgmc_lut;              ///< pointer at lookup tables used for BGMC
     209             :     int *bgmc_lut_status;           ///< pointer at lookup table status flags used for BGMC
     210             :     int ltp_lag_length;             ///< number of bits used for ltp lag value
     211             :     int *const_block;               ///< contains const_block flags for all channels
     212             :     unsigned int *shift_lsbs;       ///< contains shift_lsbs flags for all channels
     213             :     unsigned int *opt_order;        ///< contains opt_order flags for all channels
     214             :     int *store_prev_samples;        ///< contains store_prev_samples flags for all channels
     215             :     int *use_ltp;                   ///< contains use_ltp flags for all channels
     216             :     int *ltp_lag;                   ///< contains ltp lag values for all channels
     217             :     int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
     218             :     int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
     219             :     int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
     220             :     int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
     221             :     int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
     222             :     int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
     223             :     int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
     224             :     ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
     225             :     ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
     226             :     int *reverted_channels;         ///< stores a flag for each reverted channel
     227             :     int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
     228             :     int32_t **raw_samples;          ///< decoded raw samples for each channel
     229             :     int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
     230             :     uint8_t *crc_buffer;            ///< buffer of byte order corrected samples used for CRC check
     231             :     MLZ* mlz;                       ///< masked lz decompression structure
     232             :     SoftFloat_IEEE754 *acf;         ///< contains common multiplier for all channels
     233             :     int *last_acf_mantissa;         ///< contains the last acf mantissa data of common multiplier for all channels
     234             :     int *shift_value;               ///< value by which the binary point is to be shifted for all channels
     235             :     int *last_shift_value;          ///< contains last shift value for all channels
     236             :     int **raw_mantissa;             ///< decoded mantissa bits of the difference signal
     237             :     unsigned char *larray;          ///< buffer to store the output of masked lz decompression
     238             :     int *nbits;                     ///< contains the number of bits to read for masked lz decompression for all samples
     239             : } ALSDecContext;
     240             : 
     241             : 
     242             : typedef struct ALSBlockData {
     243             :     unsigned int block_length;      ///< number of samples within the block
     244             :     unsigned int ra_block;          ///< if true, this is a random access block
     245             :     int          *const_block;      ///< if true, this is a constant value block
     246             :     int          js_blocks;         ///< true if this block contains a difference signal
     247             :     unsigned int *shift_lsbs;       ///< shift of values for this block
     248             :     unsigned int *opt_order;        ///< prediction order of this block
     249             :     int          *store_prev_samples;///< if true, carryover samples have to be stored
     250             :     int          *use_ltp;          ///< if true, long-term prediction is used
     251             :     int          *ltp_lag;          ///< lag value for long-term prediction
     252             :     int          *ltp_gain;         ///< gain values for ltp 5-tap filter
     253             :     int32_t      *quant_cof;        ///< quantized parcor coefficients
     254             :     int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
     255             :     int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
     256             :     int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
     257             :     int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
     258             : } ALSBlockData;
     259             : 
     260             : 
     261          12 : static av_cold void dprint_specific_config(ALSDecContext *ctx)
     262             : {
     263             : #ifdef DEBUG
     264             :     AVCodecContext *avctx    = ctx->avctx;
     265             :     ALSSpecificConfig *sconf = &ctx->sconf;
     266             : 
     267             :     ff_dlog(avctx, "resolution = %i\n",           sconf->resolution);
     268             :     ff_dlog(avctx, "floating = %i\n",             sconf->floating);
     269             :     ff_dlog(avctx, "frame_length = %i\n",         sconf->frame_length);
     270             :     ff_dlog(avctx, "ra_distance = %i\n",          sconf->ra_distance);
     271             :     ff_dlog(avctx, "ra_flag = %i\n",              sconf->ra_flag);
     272             :     ff_dlog(avctx, "adapt_order = %i\n",          sconf->adapt_order);
     273             :     ff_dlog(avctx, "coef_table = %i\n",           sconf->coef_table);
     274             :     ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
     275             :     ff_dlog(avctx, "max_order = %i\n",            sconf->max_order);
     276             :     ff_dlog(avctx, "block_switching = %i\n",      sconf->block_switching);
     277             :     ff_dlog(avctx, "bgmc = %i\n",                 sconf->bgmc);
     278             :     ff_dlog(avctx, "sb_part = %i\n",              sconf->sb_part);
     279             :     ff_dlog(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
     280             :     ff_dlog(avctx, "mc_coding = %i\n",            sconf->mc_coding);
     281             :     ff_dlog(avctx, "chan_config = %i\n",          sconf->chan_config);
     282             :     ff_dlog(avctx, "chan_sort = %i\n",            sconf->chan_sort);
     283             :     ff_dlog(avctx, "RLSLMS = %i\n",               sconf->rlslms);
     284             :     ff_dlog(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
     285             : #endif
     286          12 : }
     287             : 
     288             : 
     289             : /** Read an ALSSpecificConfig from a buffer into the output struct.
     290             :  */
     291          12 : static av_cold int read_specific_config(ALSDecContext *ctx)
     292             : {
     293             :     GetBitContext gb;
     294             :     uint64_t ht_size;
     295             :     int i, config_offset;
     296          12 :     MPEG4AudioConfig m4ac = {0};
     297          12 :     ALSSpecificConfig *sconf = &ctx->sconf;
     298          12 :     AVCodecContext *avctx    = ctx->avctx;
     299             :     uint32_t als_id, header_size, trailer_size;
     300             :     int ret;
     301             : 
     302          12 :     if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
     303           0 :         return ret;
     304             : 
     305          12 :     config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
     306          12 :                                                  avctx->extradata_size * 8, 1);
     307             : 
     308          12 :     if (config_offset < 0)
     309           0 :         return AVERROR_INVALIDDATA;
     310             : 
     311          12 :     skip_bits_long(&gb, config_offset);
     312             : 
     313          12 :     if (get_bits_left(&gb) < (30 << 3))
     314           0 :         return AVERROR_INVALIDDATA;
     315             : 
     316             :     // read the fixed items
     317          12 :     als_id                      = get_bits_long(&gb, 32);
     318          12 :     avctx->sample_rate          = m4ac.sample_rate;
     319          12 :     skip_bits_long(&gb, 32); // sample rate already known
     320          12 :     sconf->samples              = get_bits_long(&gb, 32);
     321          12 :     avctx->channels             = m4ac.channels;
     322          12 :     skip_bits(&gb, 16);      // number of channels already known
     323          12 :     skip_bits(&gb, 3);       // skip file_type
     324          12 :     sconf->resolution           = get_bits(&gb, 3);
     325          12 :     sconf->floating             = get_bits1(&gb);
     326          12 :     sconf->msb_first            = get_bits1(&gb);
     327          12 :     sconf->frame_length         = get_bits(&gb, 16) + 1;
     328          12 :     sconf->ra_distance          = get_bits(&gb, 8);
     329          12 :     sconf->ra_flag              = get_bits(&gb, 2);
     330          12 :     sconf->adapt_order          = get_bits1(&gb);
     331          12 :     sconf->coef_table           = get_bits(&gb, 2);
     332          12 :     sconf->long_term_prediction = get_bits1(&gb);
     333          12 :     sconf->max_order            = get_bits(&gb, 10);
     334          12 :     sconf->block_switching      = get_bits(&gb, 2);
     335          12 :     sconf->bgmc                 = get_bits1(&gb);
     336          12 :     sconf->sb_part              = get_bits1(&gb);
     337          12 :     sconf->joint_stereo         = get_bits1(&gb);
     338          12 :     sconf->mc_coding            = get_bits1(&gb);
     339          12 :     sconf->chan_config          = get_bits1(&gb);
     340          12 :     sconf->chan_sort            = get_bits1(&gb);
     341          12 :     sconf->crc_enabled          = get_bits1(&gb);
     342          12 :     sconf->rlslms               = get_bits1(&gb);
     343          12 :     skip_bits(&gb, 5);       // skip 5 reserved bits
     344          12 :     skip_bits1(&gb);         // skip aux_data_enabled
     345             : 
     346             : 
     347             :     // check for ALSSpecificConfig struct
     348          12 :     if (als_id != MKBETAG('A','L','S','\0'))
     349           0 :         return AVERROR_INVALIDDATA;
     350             : 
     351          12 :     ctx->cur_frame_length = sconf->frame_length;
     352             : 
     353             :     // read channel config
     354          12 :     if (sconf->chan_config)
     355           0 :         sconf->chan_config_info = get_bits(&gb, 16);
     356             :     // TODO: use this to set avctx->channel_layout
     357             : 
     358             : 
     359             :     // read channel sorting
     360          12 :     if (sconf->chan_sort && avctx->channels > 1) {
     361           0 :         int chan_pos_bits = av_ceil_log2(avctx->channels);
     362           0 :         int bits_needed  = avctx->channels * chan_pos_bits + 7;
     363           0 :         if (get_bits_left(&gb) < bits_needed)
     364           0 :             return AVERROR_INVALIDDATA;
     365             : 
     366           0 :         if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
     367           0 :             return AVERROR(ENOMEM);
     368             : 
     369           0 :         ctx->cs_switch = 1;
     370             : 
     371           0 :         for (i = 0; i < avctx->channels; i++) {
     372           0 :             sconf->chan_pos[i] = -1;
     373             :         }
     374             : 
     375           0 :         for (i = 0; i < avctx->channels; i++) {
     376             :             int idx;
     377             : 
     378           0 :             idx = get_bits(&gb, chan_pos_bits);
     379           0 :             if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
     380           0 :                 av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
     381           0 :                 ctx->cs_switch = 0;
     382           0 :                 break;
     383             :             }
     384           0 :             sconf->chan_pos[idx] = i;
     385             :         }
     386             : 
     387           0 :         align_get_bits(&gb);
     388             :     }
     389             : 
     390             : 
     391             :     // read fixed header and trailer sizes,
     392             :     // if size = 0xFFFFFFFF then there is no data field!
     393          12 :     if (get_bits_left(&gb) < 64)
     394           0 :         return AVERROR_INVALIDDATA;
     395             : 
     396          12 :     header_size  = get_bits_long(&gb, 32);
     397          12 :     trailer_size = get_bits_long(&gb, 32);
     398          12 :     if (header_size  == 0xFFFFFFFF)
     399           0 :         header_size  = 0;
     400          12 :     if (trailer_size == 0xFFFFFFFF)
     401           0 :         trailer_size = 0;
     402             : 
     403          12 :     ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
     404             : 
     405             : 
     406             :     // skip the header and trailer data
     407          12 :     if (get_bits_left(&gb) < ht_size)
     408           0 :         return AVERROR_INVALIDDATA;
     409             : 
     410          12 :     if (ht_size > INT32_MAX)
     411           0 :         return AVERROR_PATCHWELCOME;
     412             : 
     413          12 :     skip_bits_long(&gb, ht_size);
     414             : 
     415             : 
     416             :     // initialize CRC calculation
     417          12 :     if (sconf->crc_enabled) {
     418          12 :         if (get_bits_left(&gb) < 32)
     419           0 :             return AVERROR_INVALIDDATA;
     420             : 
     421          12 :         if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
     422           0 :             ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
     423           0 :             ctx->crc       = 0xFFFFFFFF;
     424           0 :             ctx->crc_org   = ~get_bits_long(&gb, 32);
     425             :         } else
     426          12 :             skip_bits_long(&gb, 32);
     427             :     }
     428             : 
     429             : 
     430             :     // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
     431             : 
     432          12 :     dprint_specific_config(ctx);
     433             : 
     434          12 :     return 0;
     435             : }
     436             : 
     437             : 
     438             : /** Check the ALSSpecificConfig for unsupported features.
     439             :  */
     440          12 : static int check_specific_config(ALSDecContext *ctx)
     441             : {
     442          12 :     ALSSpecificConfig *sconf = &ctx->sconf;
     443          12 :     int error = 0;
     444             : 
     445             :     // report unsupported feature and set error value
     446             :     #define MISSING_ERR(cond, str, errval)              \
     447             :     {                                                   \
     448             :         if (cond) {                                     \
     449             :             avpriv_report_missing_feature(ctx->avctx,   \
     450             :                                           str);         \
     451             :             error = errval;                             \
     452             :         }                                               \
     453             :     }
     454             : 
     455          12 :     MISSING_ERR(sconf->rlslms,    "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
     456             : 
     457          12 :     return error;
     458             : }
     459             : 
     460             : 
     461             : /** Parse the bs_info field to extract the block partitioning used in
     462             :  *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
     463             :  */
     464        3037 : static void parse_bs_info(const uint32_t bs_info, unsigned int n,
     465             :                           unsigned int div, unsigned int **div_blocks,
     466             :                           unsigned int *num_blocks)
     467             : {
     468        3037 :     if (n < 31 && ((bs_info << n) & 0x40000000)) {
     469             :         // if the level is valid and the investigated bit n is set
     470             :         // then recursively check both children at bits (2n+1) and (2n+2)
     471          72 :         n   *= 2;
     472          72 :         div += 1;
     473          72 :         parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
     474          72 :         parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
     475             :     } else {
     476             :         // else the bit is not set or the last level has been reached
     477             :         // (bit implicitly not set)
     478        2965 :         **div_blocks = div;
     479        2965 :         (*div_blocks)++;
     480        2965 :         (*num_blocks)++;
     481             :     }
     482        3037 : }
     483             : 
     484             : 
     485             : /** Read and decode a Rice codeword.
     486             :  */
     487     7227443 : static int32_t decode_rice(GetBitContext *gb, unsigned int k)
     488             : {
     489     7227443 :     int max = get_bits_left(gb) - k;
     490     7227443 :     int q   = get_unary(gb, 0, max);
     491     7227443 :     int r   = k ? get_bits1(gb) : !(q & 1);
     492             : 
     493     7227443 :     if (k > 1) {
     494     6978114 :         q <<= (k - 1);
     495     6978114 :         q  += get_bits_long(gb, k - 1);
     496      249329 :     } else if (!k) {
     497      197959 :         q >>= 1;
     498             :     }
     499     7227443 :     return r ? q : ~q;
     500             : }
     501             : 
     502             : 
     503             : /** Convert PARCOR coefficient k to direct filter coefficient.
     504             :  */
     505      106098 : static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
     506             : {
     507             :     int i, j;
     508             : 
     509     2187368 :     for (i = 0, j = k - 1; i < j; i++, j--) {
     510     2081270 :         int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
     511     2081270 :         cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
     512     2081270 :         cof[i]  += tmp1;
     513             :     }
     514      106098 :     if (i == j)
     515       52785 :         cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
     516             : 
     517      106098 :     cof[k] = par[k];
     518      106098 : }
     519             : 
     520             : 
     521             : /** Read block switching field if necessary and set actual block sizes.
     522             :  *  Also assure that the block sizes of the last frame correspond to the
     523             :  *  actual number of samples.
     524             :  */
     525        2893 : static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
     526             :                             uint32_t *bs_info)
     527             : {
     528        2893 :     ALSSpecificConfig *sconf     = &ctx->sconf;
     529        2893 :     GetBitContext *gb            = &ctx->gb;
     530        2893 :     unsigned int *ptr_div_blocks = div_blocks;
     531             :     unsigned int b;
     532             : 
     533        2893 :     if (sconf->block_switching) {
     534         109 :         unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
     535         109 :         *bs_info = get_bits_long(gb, bs_info_len);
     536         109 :         *bs_info <<= (32 - bs_info_len);
     537             :     }
     538             : 
     539        2893 :     ctx->num_blocks = 0;
     540        2893 :     parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
     541             : 
     542             :     // The last frame may have an overdetermined block structure given in
     543             :     // the bitstream. In that case the defined block structure would need
     544             :     // more samples than available to be consistent.
     545             :     // The block structure is actually used but the block sizes are adapted
     546             :     // to fit the actual number of available samples.
     547             :     // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
     548             :     // This results in the actual block sizes:    2 2 1 0.
     549             :     // This is not specified in 14496-3 but actually done by the reference
     550             :     // codec RM22 revision 2.
     551             :     // This appears to happen in case of an odd number of samples in the last
     552             :     // frame which is actually not allowed by the block length switching part
     553             :     // of 14496-3.
     554             :     // The ALS conformance files feature an odd number of samples in the last
     555             :     // frame.
     556             : 
     557        5858 :     for (b = 0; b < ctx->num_blocks; b++)
     558        2965 :         div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
     559             : 
     560        2893 :     if (ctx->cur_frame_length != ctx->sconf.frame_length) {
     561          10 :         unsigned int remaining = ctx->cur_frame_length;
     562             : 
     563          15 :         for (b = 0; b < ctx->num_blocks; b++) {
     564          15 :             if (remaining <= div_blocks[b]) {
     565          10 :                 div_blocks[b] = remaining;
     566          10 :                 ctx->num_blocks = b + 1;
     567          10 :                 break;
     568             :             }
     569             : 
     570           5 :             remaining -= div_blocks[b];
     571             :         }
     572             :     }
     573        2893 : }
     574             : 
     575             : 
     576             : /** Read the block data for a constant block
     577             :  */
     578           0 : static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
     579             : {
     580           0 :     ALSSpecificConfig *sconf = &ctx->sconf;
     581           0 :     AVCodecContext *avctx    = ctx->avctx;
     582           0 :     GetBitContext *gb        = &ctx->gb;
     583             : 
     584           0 :     if (bd->block_length <= 0)
     585           0 :         return AVERROR_INVALIDDATA;
     586             : 
     587           0 :     *bd->raw_samples = 0;
     588           0 :     *bd->const_block = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
     589           0 :     bd->js_blocks    = get_bits1(gb);
     590             : 
     591             :     // skip 5 reserved bits
     592           0 :     skip_bits(gb, 5);
     593             : 
     594           0 :     if (*bd->const_block) {
     595           0 :         unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
     596           0 :         *bd->raw_samples = get_sbits_long(gb, const_val_bits);
     597             :     }
     598             : 
     599             :     // ensure constant block decoding by reusing this field
     600           0 :     *bd->const_block = 1;
     601             : 
     602           0 :     return 0;
     603             : }
     604             : 
     605             : 
     606             : /** Decode the block data for a constant block
     607             :  */
     608           0 : static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
     609             : {
     610           0 :     int      smp = bd->block_length - 1;
     611           0 :     int32_t  val = *bd->raw_samples;
     612           0 :     int32_t *dst = bd->raw_samples + 1;
     613             : 
     614             :     // write raw samples into buffer
     615           0 :     for (; smp; smp--)
     616           0 :         *dst++ = val;
     617           0 : }
     618             : 
     619             : 
     620             : /** Read the block data for a non-constant block
     621             :  */
     622        3729 : static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
     623             : {
     624        3729 :     ALSSpecificConfig *sconf = &ctx->sconf;
     625        3729 :     AVCodecContext *avctx    = ctx->avctx;
     626        3729 :     GetBitContext *gb        = &ctx->gb;
     627             :     unsigned int k;
     628             :     unsigned int s[8];
     629             :     unsigned int sx[8];
     630             :     unsigned int sub_blocks, log2_sub_blocks, sb_length;
     631        3729 :     unsigned int start      = 0;
     632             :     unsigned int opt_order;
     633             :     int          sb;
     634        3729 :     int32_t      *quant_cof = bd->quant_cof;
     635             :     int32_t      *current_res;
     636             : 
     637             : 
     638             :     // ensure variable block decoding by reusing this field
     639        3729 :     *bd->const_block = 0;
     640             : 
     641        3729 :     *bd->opt_order  = 1;
     642        3729 :     bd->js_blocks   = get_bits1(gb);
     643             : 
     644        3729 :     opt_order       = *bd->opt_order;
     645             : 
     646             :     // determine the number of subblocks for entropy decoding
     647        3729 :     if (!sconf->bgmc && !sconf->sb_part) {
     648           0 :         log2_sub_blocks = 0;
     649             :     } else {
     650        3729 :         if (sconf->bgmc && sconf->sb_part)
     651         696 :             log2_sub_blocks = get_bits(gb, 2);
     652             :         else
     653        3033 :             log2_sub_blocks = 2 * get_bits1(gb);
     654             :     }
     655             : 
     656        3729 :     sub_blocks = 1 << log2_sub_blocks;
     657             : 
     658             :     // do not continue in case of a damaged stream since
     659             :     // block_length must be evenly divisible by sub_blocks
     660        3729 :     if (bd->block_length & (sub_blocks - 1)) {
     661           0 :         av_log(avctx, AV_LOG_WARNING,
     662             :                "Block length is not evenly divisible by the number of subblocks.\n");
     663           0 :         return AVERROR_INVALIDDATA;
     664             :     }
     665             : 
     666        3729 :     sb_length = bd->block_length >> log2_sub_blocks;
     667             : 
     668        3729 :     if (sconf->bgmc) {
     669         696 :         s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
     670        2121 :         for (k = 1; k < sub_blocks; k++)
     671        1425 :             s[k] = s[k - 1] + decode_rice(gb, 2);
     672             : 
     673        2817 :         for (k = 0; k < sub_blocks; k++) {
     674        2121 :             sx[k]   = s[k] & 0x0F;
     675        2121 :             s [k] >>= 4;
     676             :         }
     677             :     } else {
     678        3033 :         s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
     679        5313 :         for (k = 1; k < sub_blocks; k++)
     680        2280 :             s[k] = s[k - 1] + decode_rice(gb, 0);
     681             :     }
     682        7434 :     for (k = 1; k < sub_blocks; k++)
     683        3705 :         if (s[k] > 32) {
     684           0 :             av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
     685           0 :             return AVERROR_INVALIDDATA;
     686             :         }
     687             : 
     688        3729 :     if (get_bits1(gb))
     689           0 :         *bd->shift_lsbs = get_bits(gb, 4) + 1;
     690             : 
     691        3729 :     *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
     692             : 
     693             : 
     694        3729 :     if (!sconf->rlslms) {
     695        4674 :         if (sconf->adapt_order && sconf->max_order) {
     696         945 :             int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
     697         945 :                                                 2, sconf->max_order + 1));
     698         945 :             *bd->opt_order       = get_bits(gb, opt_order_length);
     699         945 :             if (*bd->opt_order > sconf->max_order) {
     700           0 :                 *bd->opt_order = sconf->max_order;
     701           0 :                 av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
     702           0 :                 return AVERROR_INVALIDDATA;
     703             :             }
     704             :         } else {
     705        2784 :             *bd->opt_order = sconf->max_order;
     706             :         }
     707        3729 :         opt_order = *bd->opt_order;
     708             : 
     709        3729 :         if (opt_order) {
     710             :             int add_base;
     711             : 
     712        3729 :             if (sconf->coef_table == 3) {
     713           0 :                 add_base = 0x7F;
     714             : 
     715             :                 // read coefficient 0
     716           0 :                 quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
     717             : 
     718             :                 // read coefficient 1
     719           0 :                 if (opt_order > 1)
     720           0 :                     quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
     721             : 
     722             :                 // read coefficients 2 to opt_order
     723           0 :                 for (k = 2; k < opt_order; k++)
     724           0 :                     quant_cof[k] = get_bits(gb, 7);
     725             :             } else {
     726             :                 int k_max;
     727        3729 :                 add_base = 1;
     728             : 
     729             :                 // read coefficient 0 to 19
     730        3729 :                 k_max = FFMIN(opt_order, 20);
     731       49527 :                 for (k = 0; k < k_max; k++) {
     732       45798 :                     int rice_param = parcor_rice_table[sconf->coef_table][k][1];
     733       45798 :                     int offset     = parcor_rice_table[sconf->coef_table][k][0];
     734       45798 :                     quant_cof[k] = decode_rice(gb, rice_param) + offset;
     735       45798 :                     if (quant_cof[k] < -64 || quant_cof[k] > 63) {
     736           0 :                         av_log(avctx, AV_LOG_ERROR,
     737             :                                "quant_cof %"PRId32" is out of range.\n",
     738           0 :                                quant_cof[k]);
     739           0 :                         return AVERROR_INVALIDDATA;
     740             :                     }
     741             :                 }
     742             : 
     743             :                 // read coefficients 20 to 126
     744        3729 :                 k_max = FFMIN(opt_order, 127);
     745       64029 :                 for (; k < k_max; k++)
     746       60300 :                     quant_cof[k] = decode_rice(gb, 2) + (k & 1);
     747             : 
     748             :                 // read coefficients 127 to opt_order
     749        3729 :                 for (; k < opt_order; k++)
     750           0 :                     quant_cof[k] = decode_rice(gb, 1);
     751             : 
     752        3729 :                 quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
     753             : 
     754        3729 :                 if (opt_order > 1)
     755        3729 :                     quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
     756             :             }
     757             : 
     758      102369 :             for (k = 2; k < opt_order; k++)
     759       98640 :                 quant_cof[k] = (quant_cof[k] * (1 << 14)) + (add_base << 13);
     760             :         }
     761             :     }
     762             : 
     763             :     // read LTP gain and lag values
     764        3729 :     if (sconf->long_term_prediction) {
     765         696 :         *bd->use_ltp = get_bits1(gb);
     766             : 
     767         696 :         if (*bd->use_ltp) {
     768             :             int r, c;
     769             : 
     770         674 :             bd->ltp_gain[0]   = decode_rice(gb, 1) << 3;
     771         674 :             bd->ltp_gain[1]   = decode_rice(gb, 2) << 3;
     772             : 
     773         674 :             r                 = get_unary(gb, 0, 4);
     774         674 :             c                 = get_bits(gb, 2);
     775         674 :             if (r >= 4) {
     776           0 :                 av_log(avctx, AV_LOG_ERROR, "r overflow\n");
     777           0 :                 return AVERROR_INVALIDDATA;
     778             :             }
     779             : 
     780         674 :             bd->ltp_gain[2]   = ltp_gain_values[r][c];
     781             : 
     782         674 :             bd->ltp_gain[3]   = decode_rice(gb, 2) << 3;
     783         674 :             bd->ltp_gain[4]   = decode_rice(gb, 1) << 3;
     784             : 
     785         674 :             *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
     786         674 :             *bd->ltp_lag     += FFMAX(4, opt_order + 1);
     787             :         }
     788             :     }
     789             : 
     790             :     // read first value and residuals in case of a random access block
     791        3729 :     if (bd->ra_block) {
     792         696 :         if (opt_order)
     793         696 :             bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
     794         696 :         if (opt_order > 1)
     795         696 :             bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
     796         696 :         if (opt_order > 2)
     797         695 :             bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
     798             : 
     799         696 :         start = FFMIN(opt_order, 3);
     800             :     }
     801             : 
     802             :     // read all residuals
     803        3729 :     if (sconf->bgmc) {
     804             :         int          delta[8];
     805             :         unsigned int k    [8];
     806         696 :         unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
     807             : 
     808             :         // read most significant bits
     809             :         unsigned int high;
     810             :         unsigned int low;
     811             :         unsigned int value;
     812             : 
     813         696 :         ff_bgmc_decode_init(gb, &high, &low, &value);
     814             : 
     815         696 :         current_res = bd->raw_samples + start;
     816             : 
     817        2817 :         for (sb = 0; sb < sub_blocks; sb++) {
     818        2121 :             unsigned int sb_len  = sb_length - (sb ? 0 : start);
     819             : 
     820        2121 :             k    [sb] = s[sb] > b ? s[sb] - b : 0;
     821        2121 :             delta[sb] = 5 - s[sb] + k[sb];
     822             : 
     823        2121 :             ff_bgmc_decode(gb, sb_len, current_res,
     824             :                         delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
     825             : 
     826        2121 :             current_res += sb_len;
     827             :         }
     828             : 
     829         696 :         ff_bgmc_decode_end(gb);
     830             : 
     831             : 
     832             :         // read least significant bits and tails
     833         696 :         current_res = bd->raw_samples + start;
     834             : 
     835        2817 :         for (sb = 0; sb < sub_blocks; sb++, start = 0) {
     836        2121 :             unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
     837        2121 :             unsigned int cur_k         = k[sb];
     838        2121 :             unsigned int cur_s         = s[sb];
     839             : 
     840     1423939 :             for (; start < sb_length; start++) {
     841     1421818 :                 int32_t res = *current_res;
     842             : 
     843     1421818 :                 if (res == cur_tail_code) {
     844        8228 :                     unsigned int max_msb =   (2 + (sx[sb] > 2) + (sx[sb] > 10))
     845        4114 :                                           << (5 - delta[sb]);
     846             : 
     847        4114 :                     res = decode_rice(gb, cur_s);
     848             : 
     849        4114 :                     if (res >= 0) {
     850        2022 :                         res += (max_msb    ) << cur_k;
     851             :                     } else {
     852        2092 :                         res -= (max_msb - 1) << cur_k;
     853             :                     }
     854             :                 } else {
     855     1417704 :                     if (res > cur_tail_code)
     856       17223 :                         res--;
     857             : 
     858     1417704 :                     if (res & 1)
     859      650779 :                         res = -res;
     860             : 
     861     1417704 :                     res >>= 1;
     862             : 
     863     1417704 :                     if (cur_k) {
     864         765 :                         res  *= 1 << cur_k;
     865         765 :                         res  |= get_bits_long(gb, cur_k);
     866             :                     }
     867             :                 }
     868             : 
     869     1421818 :                 *current_res++ = res;
     870             :             }
     871             :         }
     872             :     } else {
     873        3033 :         current_res = bd->raw_samples + start;
     874             : 
     875        8346 :         for (sb = 0; sb < sub_blocks; sb++, start = 0)
     876     7112316 :             for (; start < sb_length; start++)
     877     7107003 :                 *current_res++ = decode_rice(gb, s[sb]);
     878             :      }
     879             : 
     880        3729 :     return 0;
     881             : }
     882             : 
     883             : 
     884             : /** Decode the block data for a non-constant block
     885             :  */
     886        3729 : static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
     887             : {
     888        3729 :     ALSSpecificConfig *sconf = &ctx->sconf;
     889        3729 :     unsigned int block_length = bd->block_length;
     890        3729 :     unsigned int smp = 0;
     891             :     unsigned int k;
     892        3729 :     int opt_order             = *bd->opt_order;
     893             :     int sb;
     894             :     int64_t y;
     895        3729 :     int32_t *quant_cof        = bd->quant_cof;
     896        3729 :     int32_t *lpc_cof          = bd->lpc_cof;
     897        3729 :     int32_t *raw_samples      = bd->raw_samples;
     898        3729 :     int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
     899        3729 :     int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
     900             : 
     901             :     // reverse long-term prediction
     902        3729 :     if (*bd->use_ltp) {
     903             :         int ltp_smp;
     904             : 
     905     1280397 :         for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
     906     1279723 :             int center = ltp_smp - *bd->ltp_lag;
     907     1279723 :             int begin  = FFMAX(0, center - 2);
     908     1279723 :             int end    = center + 3;
     909     1279723 :             int tab    = 5 - (end - begin);
     910             :             int base;
     911             : 
     912     1279723 :             y = 1 << 6;
     913             : 
     914     7671598 :             for (base = begin; base < end; base++, tab++)
     915     6391875 :                 y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
     916             : 
     917     1279723 :             raw_samples[ltp_smp] += y >> 7;
     918             :         }
     919             :     }
     920             : 
     921             :     // reconstruct all samples from residuals
     922        3729 :     if (bd->ra_block) {
     923       53974 :         for (smp = 0; smp < FFMIN(opt_order, block_length); smp++) {
     924       53278 :             y = 1 << 19;
     925             : 
     926     2692244 :             for (sb = 0; sb < smp; sb++)
     927     2638966 :                 y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
     928             : 
     929       53278 :             *raw_samples++ -= y >> 20;
     930       53278 :             parcor_to_lpc(smp, quant_cof, lpc_cof);
     931             :         }
     932             :     } else {
     933       55853 :         for (k = 0; k < opt_order; k++)
     934       52820 :             parcor_to_lpc(k, quant_cof, lpc_cof);
     935             : 
     936             :         // store previous samples in case that they have to be altered
     937        3033 :         if (*bd->store_prev_samples)
     938           9 :             memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
     939           9 :                    sizeof(*bd->prev_raw_samples) * sconf->max_order);
     940             : 
     941             :         // reconstruct difference signal for prediction (joint-stereo)
     942        3033 :         if (bd->js_blocks && bd->raw_other) {
     943             :             int32_t *left, *right;
     944             : 
     945           9 :             if (bd->raw_other > raw_samples) {  // D = R - L
     946           4 :                 left  = raw_samples;
     947           4 :                 right = bd->raw_other;
     948             :             } else {                                // D = R - L
     949           5 :                 left  = bd->raw_other;
     950           5 :                 right = raw_samples;
     951             :             }
     952             : 
     953         333 :             for (sb = -1; sb >= -sconf->max_order; sb--)
     954         324 :                 raw_samples[sb] = right[sb] - left[sb];
     955             :         }
     956             : 
     957             :         // reconstruct shifted signal
     958        3033 :         if (*bd->shift_lsbs)
     959           0 :             for (sb = -1; sb >= -sconf->max_order; sb--)
     960           0 :                 raw_samples[sb] >>= *bd->shift_lsbs;
     961             :     }
     962             : 
     963             :     // reverse linear prediction coefficients for efficiency
     964        3729 :     lpc_cof = lpc_cof + opt_order;
     965             : 
     966      109827 :     for (sb = 0; sb < opt_order; sb++)
     967      106098 :         lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
     968             : 
     969             :     // reconstruct raw samples
     970        3729 :     raw_samples = bd->raw_samples + smp;
     971        3729 :     lpc_cof     = lpc_cof_reversed + opt_order;
     972             : 
     973     8481359 :     for (; raw_samples < raw_samples_end; raw_samples++) {
     974     8477630 :         y = 1 << 19;
     975             : 
     976   329357942 :         for (sb = -opt_order; sb < 0; sb++)
     977   320880312 :             y += MUL64(lpc_cof[sb], raw_samples[sb]);
     978             : 
     979     8477630 :         *raw_samples -= y >> 20;
     980             :     }
     981             : 
     982        3729 :     raw_samples = bd->raw_samples;
     983             : 
     984             :     // restore previous samples in case that they have been altered
     985        3729 :     if (*bd->store_prev_samples)
     986           9 :         memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
     987           9 :                sizeof(*raw_samples) * sconf->max_order);
     988             : 
     989        3729 :     return 0;
     990             : }
     991             : 
     992             : 
     993             : /** Read the block data.
     994             :  */
     995        3729 : static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
     996             : {
     997             :     int ret;
     998        3729 :     GetBitContext *gb        = &ctx->gb;
     999        3729 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1000             : 
    1001        3729 :     *bd->shift_lsbs = 0;
    1002             :     // read block type flag and read the samples accordingly
    1003        3729 :     if (get_bits1(gb)) {
    1004        3729 :         ret = read_var_block_data(ctx, bd);
    1005             :     } else {
    1006           0 :         ret = read_const_block_data(ctx, bd);
    1007             :     }
    1008             : 
    1009        3729 :     if (!sconf->mc_coding || ctx->js_switch)
    1010        3033 :         align_get_bits(gb);
    1011             : 
    1012        3729 :     return ret;
    1013             : }
    1014             : 
    1015             : 
    1016             : /** Decode the block data.
    1017             :  */
    1018        3729 : static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
    1019             : {
    1020             :     unsigned int smp;
    1021        3729 :     int ret = 0;
    1022             : 
    1023             :     // read block type flag and read the samples accordingly
    1024        3729 :     if (*bd->const_block)
    1025           0 :         decode_const_block_data(ctx, bd);
    1026             :     else
    1027        3729 :         ret = decode_var_block_data(ctx, bd); // always return 0
    1028             : 
    1029        3729 :     if (ret < 0)
    1030           0 :         return ret;
    1031             : 
    1032             :     // TODO: read RLSLMS extension data
    1033             : 
    1034        3729 :     if (*bd->shift_lsbs)
    1035           0 :         for (smp = 0; smp < bd->block_length; smp++)
    1036           0 :             bd->raw_samples[smp] <<= *bd->shift_lsbs;
    1037             : 
    1038        3729 :     return 0;
    1039             : }
    1040             : 
    1041             : 
    1042             : /** Read and decode block data successively.
    1043             :  */
    1044        3033 : static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
    1045             : {
    1046             :     int ret;
    1047             : 
    1048        3033 :     if ((ret = read_block(ctx, bd)) < 0)
    1049           0 :         return ret;
    1050             : 
    1051        3033 :     return decode_block(ctx, bd);
    1052             : }
    1053             : 
    1054             : 
    1055             : /** Compute the number of samples left to decode for the current frame and
    1056             :  *  sets these samples to zero.
    1057             :  */
    1058           0 : static void zero_remaining(unsigned int b, unsigned int b_max,
    1059             :                            const unsigned int *div_blocks, int32_t *buf)
    1060             : {
    1061           0 :     unsigned int count = 0;
    1062             : 
    1063           0 :     while (b < b_max)
    1064           0 :         count += div_blocks[b++];
    1065             : 
    1066           0 :     if (count)
    1067           0 :         memset(buf, 0, sizeof(*buf) * count);
    1068           0 : }
    1069             : 
    1070             : 
    1071             : /** Decode blocks independently.
    1072             :  */
    1073        2132 : static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
    1074             :                              unsigned int c, const unsigned int *div_blocks,
    1075             :                              unsigned int *js_blocks)
    1076             : {
    1077             :     int ret;
    1078             :     unsigned int b;
    1079        2132 :     ALSBlockData bd = { 0 };
    1080             : 
    1081        2132 :     bd.ra_block         = ra_frame;
    1082        2132 :     bd.const_block      = ctx->const_block;
    1083        2132 :     bd.shift_lsbs       = ctx->shift_lsbs;
    1084        2132 :     bd.opt_order        = ctx->opt_order;
    1085        2132 :     bd.store_prev_samples = ctx->store_prev_samples;
    1086        2132 :     bd.use_ltp          = ctx->use_ltp;
    1087        2132 :     bd.ltp_lag          = ctx->ltp_lag;
    1088        2132 :     bd.ltp_gain         = ctx->ltp_gain[0];
    1089        2132 :     bd.quant_cof        = ctx->quant_cof[0];
    1090        2132 :     bd.lpc_cof          = ctx->lpc_cof[0];
    1091        2132 :     bd.prev_raw_samples = ctx->prev_raw_samples;
    1092        2132 :     bd.raw_samples      = ctx->raw_samples[c];
    1093             : 
    1094             : 
    1095        4305 :     for (b = 0; b < ctx->num_blocks; b++) {
    1096        2173 :         bd.block_length     = div_blocks[b];
    1097             : 
    1098        2173 :         if ((ret = read_decode_block(ctx, &bd)) < 0) {
    1099             :             // damaged block, write zero for the rest of the frame
    1100           0 :             zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
    1101           0 :             return ret;
    1102             :         }
    1103        2173 :         bd.raw_samples += div_blocks[b];
    1104        2173 :         bd.ra_block     = 0;
    1105             :     }
    1106             : 
    1107        2132 :     return 0;
    1108             : }
    1109             : 
    1110             : 
    1111             : /** Decode blocks dependently.
    1112             :  */
    1113         413 : static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
    1114             :                          unsigned int c, const unsigned int *div_blocks,
    1115             :                          unsigned int *js_blocks)
    1116             : {
    1117         413 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1118         413 :     unsigned int offset = 0;
    1119             :     unsigned int b;
    1120             :     int ret;
    1121         413 :     ALSBlockData bd[2] = { { 0 } };
    1122             : 
    1123         413 :     bd[0].ra_block         = ra_frame;
    1124         413 :     bd[0].const_block      = ctx->const_block;
    1125         413 :     bd[0].shift_lsbs       = ctx->shift_lsbs;
    1126         413 :     bd[0].opt_order        = ctx->opt_order;
    1127         413 :     bd[0].store_prev_samples = ctx->store_prev_samples;
    1128         413 :     bd[0].use_ltp          = ctx->use_ltp;
    1129         413 :     bd[0].ltp_lag          = ctx->ltp_lag;
    1130         413 :     bd[0].ltp_gain         = ctx->ltp_gain[0];
    1131         413 :     bd[0].quant_cof        = ctx->quant_cof[0];
    1132         413 :     bd[0].lpc_cof          = ctx->lpc_cof[0];
    1133         413 :     bd[0].prev_raw_samples = ctx->prev_raw_samples;
    1134         413 :     bd[0].js_blocks        = *js_blocks;
    1135             : 
    1136         413 :     bd[1].ra_block         = ra_frame;
    1137         413 :     bd[1].const_block      = ctx->const_block;
    1138         413 :     bd[1].shift_lsbs       = ctx->shift_lsbs;
    1139         413 :     bd[1].opt_order        = ctx->opt_order;
    1140         413 :     bd[1].store_prev_samples = ctx->store_prev_samples;
    1141         413 :     bd[1].use_ltp          = ctx->use_ltp;
    1142         413 :     bd[1].ltp_lag          = ctx->ltp_lag;
    1143         413 :     bd[1].ltp_gain         = ctx->ltp_gain[0];
    1144         413 :     bd[1].quant_cof        = ctx->quant_cof[0];
    1145         413 :     bd[1].lpc_cof          = ctx->lpc_cof[0];
    1146         413 :     bd[1].prev_raw_samples = ctx->prev_raw_samples;
    1147         413 :     bd[1].js_blocks        = *(js_blocks + 1);
    1148             : 
    1149             :     // decode all blocks
    1150         843 :     for (b = 0; b < ctx->num_blocks; b++) {
    1151             :         unsigned int s;
    1152             : 
    1153         430 :         bd[0].block_length = div_blocks[b];
    1154         430 :         bd[1].block_length = div_blocks[b];
    1155             : 
    1156         430 :         bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
    1157         430 :         bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;
    1158             : 
    1159         430 :         bd[0].raw_other    = bd[1].raw_samples;
    1160         430 :         bd[1].raw_other    = bd[0].raw_samples;
    1161             : 
    1162         430 :         if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
    1163             :             (ret = read_decode_block(ctx, &bd[1])) < 0)
    1164             :             goto fail;
    1165             : 
    1166             :         // reconstruct joint-stereo blocks
    1167         430 :         if (bd[0].js_blocks) {
    1168           4 :             if (bd[1].js_blocks)
    1169           0 :                 av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
    1170             : 
    1171       16388 :             for (s = 0; s < div_blocks[b]; s++)
    1172       16384 :                 bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
    1173         426 :         } else if (bd[1].js_blocks) {
    1174       10245 :             for (s = 0; s < div_blocks[b]; s++)
    1175       10240 :                 bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
    1176             :         }
    1177             : 
    1178         430 :         offset  += div_blocks[b];
    1179         430 :         bd[0].ra_block = 0;
    1180         430 :         bd[1].ra_block = 0;
    1181             :     }
    1182             : 
    1183             :     // store carryover raw samples,
    1184             :     // the others channel raw samples are stored by the calling function.
    1185         826 :     memmove(ctx->raw_samples[c] - sconf->max_order,
    1186         413 :             ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
    1187         413 :             sizeof(*ctx->raw_samples[c]) * sconf->max_order);
    1188             : 
    1189         413 :     return 0;
    1190           0 : fail:
    1191             :     // damaged block, write zero for the rest of the frame
    1192           0 :     zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
    1193           0 :     zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
    1194           0 :     return ret;
    1195             : }
    1196             : 
    1197        1740 : static inline int als_weighting(GetBitContext *gb, int k, int off)
    1198             : {
    1199        1740 :     int idx = av_clip(decode_rice(gb, k) + off,
    1200             :                       0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
    1201        1740 :     return mcc_weightings[idx];
    1202             : }
    1203             : 
    1204             : /** Read the channel data.
    1205             :   */
    1206         696 : static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
    1207             : {
    1208         696 :     GetBitContext *gb       = &ctx->gb;
    1209         696 :     ALSChannelData *current = cd;
    1210         696 :     unsigned int channels   = ctx->avctx->channels;
    1211         696 :     int entries             = 0;
    1212             : 
    1213        1735 :     while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
    1214         343 :         current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
    1215             : 
    1216         343 :         if (current->master_channel >= channels) {
    1217           0 :             av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
    1218           0 :             return AVERROR_INVALIDDATA;
    1219             :         }
    1220             : 
    1221         343 :         if (current->master_channel != c) {
    1222         343 :             current->time_diff_flag = get_bits1(gb);
    1223         343 :             current->weighting[0]   = als_weighting(gb, 1, 16);
    1224         343 :             current->weighting[1]   = als_weighting(gb, 2, 14);
    1225         343 :             current->weighting[2]   = als_weighting(gb, 1, 16);
    1226             : 
    1227         343 :             if (current->time_diff_flag) {
    1228         237 :                 current->weighting[3] = als_weighting(gb, 1, 16);
    1229         237 :                 current->weighting[4] = als_weighting(gb, 1, 16);
    1230         237 :                 current->weighting[5] = als_weighting(gb, 1, 16);
    1231             : 
    1232         237 :                 current->time_diff_sign  = get_bits1(gb);
    1233         237 :                 current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
    1234             :             }
    1235             :         }
    1236             : 
    1237         343 :         current++;
    1238         343 :         entries++;
    1239             :     }
    1240             : 
    1241         696 :     if (entries == channels) {
    1242           0 :         av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
    1243           0 :         return AVERROR_INVALIDDATA;
    1244             :     }
    1245             : 
    1246         696 :     align_get_bits(gb);
    1247         696 :     return 0;
    1248             : }
    1249             : 
    1250             : 
    1251             : /** Recursively reverts the inter-channel correlation for a block.
    1252             :  */
    1253        1039 : static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
    1254             :                                        ALSChannelData **cd, int *reverted,
    1255             :                                        unsigned int offset, int c)
    1256             : {
    1257        1039 :     ALSChannelData *ch = cd[c];
    1258        1039 :     unsigned int   dep = 0;
    1259        1039 :     unsigned int channels = ctx->avctx->channels;
    1260        1039 :     unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
    1261             : 
    1262        1039 :     if (reverted[c])
    1263         343 :         return 0;
    1264             : 
    1265         696 :     reverted[c] = 1;
    1266             : 
    1267        1735 :     while (dep < channels && !ch[dep].stop_flag) {
    1268         343 :         revert_channel_correlation(ctx, bd, cd, reverted, offset,
    1269         343 :                                    ch[dep].master_channel);
    1270             : 
    1271         343 :         dep++;
    1272             :     }
    1273             : 
    1274         696 :     if (dep == channels) {
    1275           0 :         av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
    1276           0 :         return AVERROR_INVALIDDATA;
    1277             :     }
    1278             : 
    1279         696 :     bd->const_block = ctx->const_block + c;
    1280         696 :     bd->shift_lsbs  = ctx->shift_lsbs + c;
    1281         696 :     bd->opt_order   = ctx->opt_order + c;
    1282         696 :     bd->store_prev_samples = ctx->store_prev_samples + c;
    1283         696 :     bd->use_ltp     = ctx->use_ltp + c;
    1284         696 :     bd->ltp_lag     = ctx->ltp_lag + c;
    1285         696 :     bd->ltp_gain    = ctx->ltp_gain[c];
    1286         696 :     bd->lpc_cof     = ctx->lpc_cof[c];
    1287         696 :     bd->quant_cof   = ctx->quant_cof[c];
    1288         696 :     bd->raw_samples = ctx->raw_samples[c] + offset;
    1289             : 
    1290        1039 :     for (dep = 0; !ch[dep].stop_flag; dep++) {
    1291             :         ptrdiff_t smp;
    1292         343 :         ptrdiff_t begin = 1;
    1293         343 :         ptrdiff_t end   = bd->block_length - 1;
    1294             :         int64_t y;
    1295         343 :         int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
    1296             : 
    1297         343 :         if (ch[dep].master_channel == c)
    1298           0 :             continue;
    1299             : 
    1300         343 :         if (ch[dep].time_diff_flag) {
    1301         237 :             int t = ch[dep].time_diff_index;
    1302             : 
    1303         237 :             if (ch[dep].time_diff_sign) {
    1304          91 :                 t      = -t;
    1305          91 :                 if (begin < t) {
    1306           0 :                     av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
    1307           0 :                     return AVERROR_INVALIDDATA;
    1308             :                 }
    1309          91 :                 begin -= t;
    1310             :             } else {
    1311         146 :                 if (end < t) {
    1312           0 :                     av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
    1313           0 :                     return AVERROR_INVALIDDATA;
    1314             :                 }
    1315         146 :                 end   -= t;
    1316             :             }
    1317             : 
    1318         474 :             if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
    1319         237 :                 FFMAX(end   + 1,   end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
    1320           0 :                 av_log(ctx->avctx, AV_LOG_ERROR,
    1321             :                        "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
    1322           0 :                        master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1,   end + 1 + t),
    1323           0 :                        ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
    1324           0 :                 return AVERROR_INVALIDDATA;
    1325             :             }
    1326             : 
    1327      481197 :             for (smp = begin; smp < end; smp++) {
    1328      961920 :                 y  = (1 << 6) +
    1329      961920 :                      MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
    1330      961920 :                      MUL64(ch[dep].weighting[1], master[smp        ]) +
    1331      961920 :                      MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
    1332      961920 :                      MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
    1333      480960 :                      MUL64(ch[dep].weighting[4], master[smp     + t]) +
    1334      480960 :                      MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
    1335             : 
    1336      480960 :                 bd->raw_samples[smp] += y >> 7;
    1337             :             }
    1338             :         } else {
    1339             : 
    1340         212 :             if (begin - 1 < ctx->raw_buffer - master ||
    1341         106 :                 end   + 1 > ctx->raw_buffer + channels * channel_size - master) {
    1342           0 :                 av_log(ctx->avctx, AV_LOG_ERROR,
    1343             :                        "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
    1344           0 :                        master + begin - 1, master + end + 1,
    1345           0 :                        ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
    1346           0 :                 return AVERROR_INVALIDDATA;
    1347             :             }
    1348             : 
    1349      216982 :             for (smp = begin; smp < end; smp++) {
    1350      433752 :                 y  = (1 << 6) +
    1351      433752 :                      MUL64(ch[dep].weighting[0], master[smp - 1]) +
    1352      216876 :                      MUL64(ch[dep].weighting[1], master[smp    ]) +
    1353      216876 :                      MUL64(ch[dep].weighting[2], master[smp + 1]);
    1354             : 
    1355      216876 :                 bd->raw_samples[smp] += y >> 7;
    1356             :             }
    1357             :         }
    1358             :     }
    1359             : 
    1360         696 :     return 0;
    1361             : }
    1362             : 
    1363             : 
    1364             : /** multiply two softfloats and handle the rounding off
    1365             :  */
    1366           0 : static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b) {
    1367             :     uint64_t mantissa_temp;
    1368             :     uint64_t mask_64;
    1369             :     int cutoff_bit_count;
    1370             :     unsigned char last_2_bits;
    1371             :     unsigned int mantissa;
    1372             :     int32_t sign;
    1373           0 :     uint32_t return_val = 0;
    1374           0 :     int bit_count       = 48;
    1375             : 
    1376           0 :     sign = a.sign ^ b.sign;
    1377             : 
    1378             :     // Multiply mantissa bits in a 64-bit register
    1379           0 :     mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
    1380           0 :     mask_64       = (uint64_t)0x1 << 47;
    1381             : 
    1382             :     // Count the valid bit count
    1383           0 :     while (!(mantissa_temp & mask_64) && mask_64) {
    1384           0 :         bit_count--;
    1385           0 :         mask_64 >>= 1;
    1386             :     }
    1387             : 
    1388             :     // Round off
    1389           0 :     cutoff_bit_count = bit_count - 24;
    1390           0 :     if (cutoff_bit_count > 0) {
    1391           0 :         last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
    1392           0 :         if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
    1393             :             // Need to round up
    1394           0 :             mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
    1395             :         }
    1396             :     }
    1397             : 
    1398           0 :     mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
    1399             : 
    1400             :     // Need one more shift?
    1401           0 :     if (mantissa & 0x01000000ul) {
    1402           0 :         bit_count++;
    1403           0 :         mantissa >>= 1;
    1404             :     }
    1405             : 
    1406           0 :     if (!sign) {
    1407           0 :         return_val = 0x80000000U;
    1408             :     }
    1409             : 
    1410           0 :     return_val |= (a.exp + b.exp + bit_count - 47) << 23;
    1411           0 :     return_val |= mantissa;
    1412           0 :     return av_bits2sf_ieee754(return_val);
    1413             : }
    1414             : 
    1415             : 
    1416             : /** Read and decode the floating point sample data
    1417             :  */
    1418           0 : static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
    1419           0 :     AVCodecContext *avctx   = ctx->avctx;
    1420           0 :     GetBitContext *gb       = &ctx->gb;
    1421           0 :     SoftFloat_IEEE754 *acf  = ctx->acf;
    1422           0 :     int *shift_value        = ctx->shift_value;
    1423           0 :     int *last_shift_value   = ctx->last_shift_value;
    1424           0 :     int *last_acf_mantissa  = ctx->last_acf_mantissa;
    1425           0 :     int **raw_mantissa      = ctx->raw_mantissa;
    1426           0 :     int *nbits              = ctx->nbits;
    1427           0 :     unsigned char *larray   = ctx->larray;
    1428           0 :     int frame_length        = ctx->cur_frame_length;
    1429           0 :     SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
    1430             :     unsigned int partA_flag;
    1431             :     unsigned int highest_byte;
    1432             :     unsigned int shift_amp;
    1433             :     uint32_t tmp_32;
    1434             :     int use_acf;
    1435             :     int nchars;
    1436             :     int i;
    1437             :     int c;
    1438             :     long k;
    1439             :     long nbits_aligned;
    1440             :     unsigned long acc;
    1441             :     unsigned long j;
    1442             :     uint32_t sign;
    1443             :     uint32_t e;
    1444             :     uint32_t mantissa;
    1445             : 
    1446           0 :     skip_bits_long(gb, 32); //num_bytes_diff_float
    1447           0 :     use_acf = get_bits1(gb);
    1448             : 
    1449           0 :     if (ra_frame) {
    1450           0 :         memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
    1451           0 :         memset(last_shift_value,  0, avctx->channels * sizeof(*last_shift_value) );
    1452           0 :         ff_mlz_flush_dict(ctx->mlz);
    1453             :     }
    1454             : 
    1455           0 :     for (c = 0; c < avctx->channels; ++c) {
    1456           0 :         if (use_acf) {
    1457             :             //acf_flag
    1458           0 :             if (get_bits1(gb)) {
    1459           0 :                 tmp_32 = get_bits(gb, 23);
    1460           0 :                 last_acf_mantissa[c] = tmp_32;
    1461             :             } else {
    1462           0 :                 tmp_32 = last_acf_mantissa[c];
    1463             :             }
    1464           0 :             acf[c] = av_bits2sf_ieee754(tmp_32);
    1465             :         } else {
    1466           0 :             acf[c] = FLOAT_1;
    1467             :         }
    1468             : 
    1469           0 :         highest_byte = get_bits(gb, 2);
    1470           0 :         partA_flag   = get_bits1(gb);
    1471           0 :         shift_amp    = get_bits1(gb);
    1472             : 
    1473           0 :         if (shift_amp) {
    1474           0 :             shift_value[c] = get_bits(gb, 8);
    1475           0 :             last_shift_value[c] = shift_value[c];
    1476             :         } else {
    1477           0 :             shift_value[c] = last_shift_value[c];
    1478             :         }
    1479             : 
    1480           0 :         if (partA_flag) {
    1481           0 :             if (!get_bits1(gb)) { //uncompressed
    1482           0 :                 for (i = 0; i < frame_length; ++i) {
    1483           0 :                     if (ctx->raw_samples[c][i] == 0) {
    1484           0 :                         ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
    1485             :                     }
    1486             :                 }
    1487             :             } else { //compressed
    1488           0 :                 nchars = 0;
    1489           0 :                 for (i = 0; i < frame_length; ++i) {
    1490           0 :                     if (ctx->raw_samples[c][i] == 0) {
    1491           0 :                         nchars += 4;
    1492             :                     }
    1493             :                 }
    1494             : 
    1495           0 :                 tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
    1496           0 :                 if(tmp_32 != nchars) {
    1497           0 :                     av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
    1498           0 :                     return AVERROR_INVALIDDATA;
    1499             :                 }
    1500             : 
    1501           0 :                 for (i = 0; i < frame_length; ++i) {
    1502           0 :                     ctx->raw_mantissa[c][i] = AV_RB32(larray);
    1503             :                 }
    1504             :             }
    1505             :         }
    1506             : 
    1507             :         //decode part B
    1508           0 :         if (highest_byte) {
    1509           0 :             for (i = 0; i < frame_length; ++i) {
    1510           0 :                 if (ctx->raw_samples[c][i] != 0) {
    1511             :                     //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
    1512           0 :                     if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
    1513           0 :                         nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
    1514             :                     } else {
    1515           0 :                         nbits[i] = 23;
    1516             :                     }
    1517           0 :                     nbits[i] = FFMIN(nbits[i], highest_byte*8);
    1518             :                 }
    1519             :             }
    1520             : 
    1521           0 :             if (!get_bits1(gb)) { //uncompressed
    1522           0 :                 for (i = 0; i < frame_length; ++i) {
    1523           0 :                     if (ctx->raw_samples[c][i] != 0) {
    1524           0 :                         raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
    1525             :                     }
    1526             :                 }
    1527             :             } else { //compressed
    1528           0 :                 nchars = 0;
    1529           0 :                 for (i = 0; i < frame_length; ++i) {
    1530           0 :                     if (ctx->raw_samples[c][i]) {
    1531           0 :                         nchars += (int) nbits[i] / 8;
    1532           0 :                         if (nbits[i] & 7) {
    1533           0 :                             ++nchars;
    1534             :                         }
    1535             :                     }
    1536             :                 }
    1537             : 
    1538           0 :                 tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
    1539           0 :                 if(tmp_32 != nchars) {
    1540           0 :                     av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
    1541           0 :                     return AVERROR_INVALIDDATA;
    1542             :                 }
    1543             : 
    1544           0 :                 j = 0;
    1545           0 :                 for (i = 0; i < frame_length; ++i) {
    1546           0 :                     if (ctx->raw_samples[c][i]) {
    1547           0 :                         if (nbits[i] & 7) {
    1548           0 :                             nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
    1549             :                         } else {
    1550           0 :                             nbits_aligned = nbits[i];
    1551             :                         }
    1552           0 :                         acc = 0;
    1553           0 :                         for (k = 0; k < nbits_aligned/8; ++k) {
    1554           0 :                             acc = (acc << 8) + larray[j++];
    1555             :                         }
    1556           0 :                         acc >>= (nbits_aligned - nbits[i]);
    1557           0 :                         raw_mantissa[c][i] = acc;
    1558             :                     }
    1559             :                 }
    1560             :             }
    1561             :         }
    1562             : 
    1563           0 :         for (i = 0; i < frame_length; ++i) {
    1564           0 :             SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
    1565           0 :             pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
    1566             : 
    1567           0 :             if (ctx->raw_samples[c][i] != 0) {
    1568           0 :                 if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
    1569           0 :                     pcm_sf = multiply(acf[c], pcm_sf);
    1570             :                 }
    1571             : 
    1572           0 :                 sign = pcm_sf.sign;
    1573           0 :                 e = pcm_sf.exp;
    1574           0 :                 mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
    1575             : 
    1576           0 :                 while(mantissa >= 0x1000000) {
    1577           0 :                     e++;
    1578           0 :                     mantissa >>= 1;
    1579             :                 }
    1580             : 
    1581           0 :                 if (mantissa) e += (shift_value[c] - 127);
    1582           0 :                 mantissa &= 0x007fffffUL;
    1583             : 
    1584           0 :                 tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
    1585           0 :                 ctx->raw_samples[c][i] = tmp_32;
    1586             :             } else {
    1587           0 :                 ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
    1588             :             }
    1589             :         }
    1590           0 :         align_get_bits(gb);
    1591             :     }
    1592           0 :     return 0;
    1593             : }
    1594             : 
    1595             : 
    1596             : /** Read the frame data.
    1597             :  */
    1598        1827 : static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
    1599             : {
    1600        1827 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1601        1827 :     AVCodecContext *avctx    = ctx->avctx;
    1602        1827 :     GetBitContext *gb = &ctx->gb;
    1603             :     unsigned int div_blocks[32];                ///< block sizes.
    1604             :     unsigned int c;
    1605             :     unsigned int js_blocks[2];
    1606        1827 :     uint32_t bs_info = 0;
    1607             :     int ret;
    1608             : 
    1609             :     // skip the size of the ra unit if present in the frame
    1610        1827 :     if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
    1611           0 :         skip_bits_long(gb, 32);
    1612             : 
    1613        1827 :     if (sconf->mc_coding && sconf->joint_stereo) {
    1614           0 :         ctx->js_switch = get_bits1(gb);
    1615           0 :         align_get_bits(gb);
    1616             :     }
    1617             : 
    1618        3306 :     if (!sconf->mc_coding || ctx->js_switch) {
    1619        1479 :         int independent_bs = !sconf->joint_stereo;
    1620             : 
    1621        4024 :         for (c = 0; c < avctx->channels; c++) {
    1622        2545 :             js_blocks[0] = 0;
    1623        2545 :             js_blocks[1] = 0;
    1624             : 
    1625        2545 :             get_block_sizes(ctx, div_blocks, &bs_info);
    1626             : 
    1627             :             // if joint_stereo and block_switching is set, independent decoding
    1628             :             // is signaled via the first bit of bs_info
    1629        2545 :             if (sconf->joint_stereo && sconf->block_switching)
    1630         109 :                 if (bs_info >> 31)
    1631          22 :                     independent_bs = 2;
    1632             : 
    1633             :             // if this is the last channel, it has to be decoded independently
    1634        2545 :             if (c == avctx->channels - 1 || (c & 1))
    1635        1066 :                 independent_bs = 1;
    1636             : 
    1637        2545 :             if (independent_bs) {
    1638        2132 :                 ret = decode_blocks_ind(ctx, ra_frame, c,
    1639             :                                         div_blocks, js_blocks);
    1640        2132 :                 if (ret < 0)
    1641           0 :                     return ret;
    1642        2132 :                 independent_bs--;
    1643             :             } else {
    1644         413 :                 ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
    1645         413 :                 if (ret < 0)
    1646           0 :                     return ret;
    1647             : 
    1648         413 :                 c++;
    1649             :             }
    1650             : 
    1651             :             // store carryover raw samples
    1652        5090 :             memmove(ctx->raw_samples[c] - sconf->max_order,
    1653        2545 :                     ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
    1654        2545 :                     sizeof(*ctx->raw_samples[c]) * sconf->max_order);
    1655             :         }
    1656             :     } else { // multi-channel coding
    1657         348 :         ALSBlockData   bd = { 0 };
    1658             :         int            b, ret;
    1659         348 :         int            *reverted_channels = ctx->reverted_channels;
    1660         348 :         unsigned int   offset             = 0;
    1661             : 
    1662        1044 :         for (c = 0; c < avctx->channels; c++)
    1663         696 :             if (ctx->chan_data[c] < ctx->chan_data_buffer) {
    1664           0 :                 av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
    1665           0 :                 return AVERROR_INVALIDDATA;
    1666             :             }
    1667             : 
    1668         348 :         memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
    1669             : 
    1670         348 :         bd.ra_block         = ra_frame;
    1671         348 :         bd.prev_raw_samples = ctx->prev_raw_samples;
    1672             : 
    1673         348 :         get_block_sizes(ctx, div_blocks, &bs_info);
    1674             : 
    1675         696 :         for (b = 0; b < ctx->num_blocks; b++) {
    1676         348 :             bd.block_length = div_blocks[b];
    1677         348 :             if (bd.block_length <= 0) {
    1678           0 :                 av_log(ctx->avctx, AV_LOG_WARNING,
    1679             :                        "Invalid block length %u in channel data!\n",
    1680             :                        bd.block_length);
    1681           0 :                 continue;
    1682             :             }
    1683             : 
    1684        1044 :             for (c = 0; c < avctx->channels; c++) {
    1685         696 :                 bd.const_block = ctx->const_block + c;
    1686         696 :                 bd.shift_lsbs  = ctx->shift_lsbs + c;
    1687         696 :                 bd.opt_order   = ctx->opt_order + c;
    1688         696 :                 bd.store_prev_samples = ctx->store_prev_samples + c;
    1689         696 :                 bd.use_ltp     = ctx->use_ltp + c;
    1690         696 :                 bd.ltp_lag     = ctx->ltp_lag + c;
    1691         696 :                 bd.ltp_gain    = ctx->ltp_gain[c];
    1692         696 :                 bd.lpc_cof     = ctx->lpc_cof[c];
    1693         696 :                 bd.quant_cof   = ctx->quant_cof[c];
    1694         696 :                 bd.raw_samples = ctx->raw_samples[c] + offset;
    1695         696 :                 bd.raw_other   = NULL;
    1696             : 
    1697         696 :                 if ((ret = read_block(ctx, &bd)) < 0)
    1698           0 :                     return ret;
    1699         696 :                 if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
    1700           0 :                     return ret;
    1701             :             }
    1702             : 
    1703        1044 :             for (c = 0; c < avctx->channels; c++) {
    1704         696 :                 ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
    1705             :                                                  reverted_channels, offset, c);
    1706         696 :                 if (ret < 0)
    1707           0 :                     return ret;
    1708             :             }
    1709        1044 :             for (c = 0; c < avctx->channels; c++) {
    1710         696 :                 bd.const_block = ctx->const_block + c;
    1711         696 :                 bd.shift_lsbs  = ctx->shift_lsbs + c;
    1712         696 :                 bd.opt_order   = ctx->opt_order + c;
    1713         696 :                 bd.store_prev_samples = ctx->store_prev_samples + c;
    1714         696 :                 bd.use_ltp     = ctx->use_ltp + c;
    1715         696 :                 bd.ltp_lag     = ctx->ltp_lag + c;
    1716         696 :                 bd.ltp_gain    = ctx->ltp_gain[c];
    1717         696 :                 bd.lpc_cof     = ctx->lpc_cof[c];
    1718         696 :                 bd.quant_cof   = ctx->quant_cof[c];
    1719         696 :                 bd.raw_samples = ctx->raw_samples[c] + offset;
    1720             : 
    1721         696 :                 if ((ret = decode_block(ctx, &bd)) < 0)
    1722           0 :                     return ret;
    1723             :             }
    1724             : 
    1725         348 :             memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
    1726         348 :             offset      += div_blocks[b];
    1727         348 :             bd.ra_block  = 0;
    1728             :         }
    1729             : 
    1730             :         // store carryover raw samples
    1731        1044 :         for (c = 0; c < avctx->channels; c++)
    1732        1392 :             memmove(ctx->raw_samples[c] - sconf->max_order,
    1733         696 :                     ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
    1734         696 :                     sizeof(*ctx->raw_samples[c]) * sconf->max_order);
    1735             :     }
    1736             : 
    1737        1827 :     if (sconf->floating) {
    1738           0 :         read_diff_float_data(ctx, ra_frame);
    1739             :     }
    1740             : 
    1741        1827 :     if (get_bits_left(gb) < 0) {
    1742           0 :         av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
    1743           0 :         return AVERROR_INVALIDDATA;
    1744             :     }
    1745             : 
    1746        1827 :     return 0;
    1747             : }
    1748             : 
    1749             : 
    1750             : /** Decode an ALS frame.
    1751             :  */
    1752        1827 : static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
    1753             :                         AVPacket *avpkt)
    1754             : {
    1755        1827 :     ALSDecContext *ctx       = avctx->priv_data;
    1756        1827 :     AVFrame *frame           = data;
    1757        1827 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1758        1827 :     const uint8_t *buffer    = avpkt->data;
    1759        1827 :     int buffer_size          = avpkt->size;
    1760             :     int invalid_frame, ret;
    1761             :     unsigned int c, sample, ra_frame, bytes_read, shift;
    1762             : 
    1763        1827 :     if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
    1764           0 :         return ret;
    1765             : 
    1766             :     // In the case that the distance between random access frames is set to zero
    1767             :     // (sconf->ra_distance == 0) no frame is treated as a random access frame.
    1768             :     // For the first frame, if prediction is used, all samples used from the
    1769             :     // previous frame are assumed to be zero.
    1770        1827 :     ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
    1771             : 
    1772             :     // the last frame to decode might have a different length
    1773        1827 :     if (sconf->samples != 0xFFFFFFFF)
    1774        1827 :         ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
    1775             :                                       sconf->frame_length);
    1776             :     else
    1777           0 :         ctx->cur_frame_length = sconf->frame_length;
    1778             : 
    1779             :     // decode the frame data
    1780        1827 :     if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
    1781           0 :         av_log(ctx->avctx, AV_LOG_WARNING,
    1782             :                "Reading frame data failed. Skipping RA unit.\n");
    1783             : 
    1784        1827 :     ctx->frame_id++;
    1785             : 
    1786             :     /* get output buffer */
    1787        1827 :     frame->nb_samples = ctx->cur_frame_length;
    1788        1827 :     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
    1789           0 :         return ret;
    1790             : 
    1791             :     // transform decoded frame into output format
    1792             :     #define INTERLEAVE_OUTPUT(bps)                                                   \
    1793             :     {                                                                                \
    1794             :         int##bps##_t *dest = (int##bps##_t*)frame->data[0];                          \
    1795             :         shift = bps - ctx->avctx->bits_per_raw_sample;                               \
    1796             :         if (!ctx->cs_switch) {                                                       \
    1797             :             for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
    1798             :                 for (c = 0; c < avctx->channels; c++)                                \
    1799             :                     *dest++ = ctx->raw_samples[c][sample] << shift;                  \
    1800             :         } else {                                                                     \
    1801             :             for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
    1802             :                 for (c = 0; c < avctx->channels; c++)                                \
    1803             :                     *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
    1804             :         }                                                                            \
    1805             :     }
    1806             : 
    1807        1827 :     if (ctx->avctx->bits_per_raw_sample <= 16) {
    1808        1827 :         INTERLEAVE_OUTPUT(16)
    1809             :     } else {
    1810           0 :         INTERLEAVE_OUTPUT(32)
    1811             :     }
    1812             : 
    1813             :     // update CRC
    1814        1827 :     if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
    1815           0 :         int swap = HAVE_BIGENDIAN != sconf->msb_first;
    1816             : 
    1817           0 :         if (ctx->avctx->bits_per_raw_sample == 24) {
    1818           0 :             int32_t *src = (int32_t *)frame->data[0];
    1819             : 
    1820           0 :             for (sample = 0;
    1821           0 :                  sample < ctx->cur_frame_length * avctx->channels;
    1822           0 :                  sample++) {
    1823             :                 int32_t v;
    1824             : 
    1825           0 :                 if (swap)
    1826           0 :                     v = av_bswap32(src[sample]);
    1827             :                 else
    1828           0 :                     v = src[sample];
    1829             :                 if (!HAVE_BIGENDIAN)
    1830           0 :                     v >>= 8;
    1831             : 
    1832           0 :                 ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
    1833             :             }
    1834             :         } else {
    1835             :             uint8_t *crc_source;
    1836             : 
    1837           0 :             if (swap) {
    1838           0 :                 if (ctx->avctx->bits_per_raw_sample <= 16) {
    1839           0 :                     int16_t *src  = (int16_t*) frame->data[0];
    1840           0 :                     int16_t *dest = (int16_t*) ctx->crc_buffer;
    1841           0 :                     for (sample = 0;
    1842           0 :                          sample < ctx->cur_frame_length * avctx->channels;
    1843           0 :                          sample++)
    1844           0 :                         *dest++ = av_bswap16(src[sample]);
    1845             :                 } else {
    1846           0 :                     ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
    1847           0 :                                         (uint32_t *) frame->data[0],
    1848           0 :                                         ctx->cur_frame_length * avctx->channels);
    1849             :                 }
    1850           0 :                 crc_source = ctx->crc_buffer;
    1851             :             } else {
    1852           0 :                 crc_source = frame->data[0];
    1853             :             }
    1854             : 
    1855           0 :             ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
    1856           0 :                               ctx->cur_frame_length * avctx->channels *
    1857           0 :                               av_get_bytes_per_sample(avctx->sample_fmt));
    1858             :         }
    1859             : 
    1860             : 
    1861             :         // check CRC sums if this is the last frame
    1862           0 :         if (ctx->cur_frame_length != sconf->frame_length &&
    1863           0 :             ctx->crc_org != ctx->crc) {
    1864           0 :             av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
    1865           0 :             if (avctx->err_recognition & AV_EF_EXPLODE)
    1866           0 :                 return AVERROR_INVALIDDATA;
    1867             :         }
    1868             :     }
    1869             : 
    1870        1827 :     *got_frame_ptr = 1;
    1871             : 
    1872        3654 :     bytes_read = invalid_frame ? buffer_size :
    1873        1827 :                                  (get_bits_count(&ctx->gb) + 7) >> 3;
    1874             : 
    1875        1827 :     return bytes_read;
    1876             : }
    1877             : 
    1878             : 
    1879             : /** Uninitialize the ALS decoder.
    1880             :  */
    1881          12 : static av_cold int decode_end(AVCodecContext *avctx)
    1882             : {
    1883          12 :     ALSDecContext *ctx = avctx->priv_data;
    1884             :     int i;
    1885             : 
    1886          12 :     av_freep(&ctx->sconf.chan_pos);
    1887             : 
    1888          12 :     ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
    1889             : 
    1890          12 :     av_freep(&ctx->const_block);
    1891          12 :     av_freep(&ctx->shift_lsbs);
    1892          12 :     av_freep(&ctx->opt_order);
    1893          12 :     av_freep(&ctx->store_prev_samples);
    1894          12 :     av_freep(&ctx->use_ltp);
    1895          12 :     av_freep(&ctx->ltp_lag);
    1896          12 :     av_freep(&ctx->ltp_gain);
    1897          12 :     av_freep(&ctx->ltp_gain_buffer);
    1898          12 :     av_freep(&ctx->quant_cof);
    1899          12 :     av_freep(&ctx->lpc_cof);
    1900          12 :     av_freep(&ctx->quant_cof_buffer);
    1901          12 :     av_freep(&ctx->lpc_cof_buffer);
    1902          12 :     av_freep(&ctx->lpc_cof_reversed_buffer);
    1903          12 :     av_freep(&ctx->prev_raw_samples);
    1904          12 :     av_freep(&ctx->raw_samples);
    1905          12 :     av_freep(&ctx->raw_buffer);
    1906          12 :     av_freep(&ctx->chan_data);
    1907          12 :     av_freep(&ctx->chan_data_buffer);
    1908          12 :     av_freep(&ctx->reverted_channels);
    1909          12 :     av_freep(&ctx->crc_buffer);
    1910          12 :     if (ctx->mlz) {
    1911           0 :         av_freep(&ctx->mlz->dict);
    1912           0 :         av_freep(&ctx->mlz);
    1913             :     }
    1914          12 :     av_freep(&ctx->acf);
    1915          12 :     av_freep(&ctx->last_acf_mantissa);
    1916          12 :     av_freep(&ctx->shift_value);
    1917          12 :     av_freep(&ctx->last_shift_value);
    1918          12 :     if (ctx->raw_mantissa) {
    1919           0 :         for (i = 0; i < avctx->channels; i++) {
    1920           0 :             av_freep(&ctx->raw_mantissa[i]);
    1921             :         }
    1922           0 :         av_freep(&ctx->raw_mantissa);
    1923             :     }
    1924          12 :     av_freep(&ctx->larray);
    1925          12 :     av_freep(&ctx->nbits);
    1926             : 
    1927          12 :     return 0;
    1928             : }
    1929             : 
    1930             : 
    1931             : /** Initialize the ALS decoder.
    1932             :  */
    1933          12 : static av_cold int decode_init(AVCodecContext *avctx)
    1934             : {
    1935             :     unsigned int c;
    1936             :     unsigned int channel_size;
    1937             :     int num_buffers, ret;
    1938          12 :     ALSDecContext *ctx = avctx->priv_data;
    1939          12 :     ALSSpecificConfig *sconf = &ctx->sconf;
    1940          12 :     ctx->avctx = avctx;
    1941             : 
    1942          12 :     if (!avctx->extradata) {
    1943           0 :         av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
    1944           0 :         return AVERROR_INVALIDDATA;
    1945             :     }
    1946             : 
    1947          12 :     if ((ret = read_specific_config(ctx)) < 0) {
    1948           0 :         av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
    1949           0 :         goto fail;
    1950             :     }
    1951             : 
    1952          12 :     if ((ret = check_specific_config(ctx)) < 0) {
    1953           0 :         goto fail;
    1954             :     }
    1955             : 
    1956          12 :     if (sconf->bgmc) {
    1957           2 :         ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
    1958           2 :         if (ret < 0)
    1959           0 :             goto fail;
    1960             :     }
    1961          12 :     if (sconf->floating) {
    1962           0 :         avctx->sample_fmt          = AV_SAMPLE_FMT_FLT;
    1963           0 :         avctx->bits_per_raw_sample = 32;
    1964             :     } else {
    1965          24 :         avctx->sample_fmt          = sconf->resolution > 1
    1966          12 :                                      ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
    1967          12 :         avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
    1968          12 :         if (avctx->bits_per_raw_sample > 32) {
    1969           0 :             av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
    1970             :                    avctx->bits_per_raw_sample);
    1971           0 :             ret = AVERROR_INVALIDDATA;
    1972           0 :             goto fail;
    1973             :         }
    1974             :     }
    1975             : 
    1976             :     // set maximum Rice parameter for progressive decoding based on resolution
    1977             :     // This is not specified in 14496-3 but actually done by the reference
    1978             :     // codec RM22 revision 2.
    1979          12 :     ctx->s_max = sconf->resolution > 1 ? 31 : 15;
    1980             : 
    1981             :     // set lag value for long-term prediction
    1982          24 :     ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
    1983          12 :                               (avctx->sample_rate >= 192000);
    1984             : 
    1985             :     // allocate quantized parcor coefficient buffer
    1986          12 :     num_buffers = sconf->mc_coding ? avctx->channels : 1;
    1987             : 
    1988          12 :     ctx->quant_cof        = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
    1989          12 :     ctx->lpc_cof          = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
    1990          12 :     ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
    1991             :                                             sizeof(*ctx->quant_cof_buffer));
    1992          12 :     ctx->lpc_cof_buffer   = av_malloc_array(num_buffers * sconf->max_order,
    1993             :                                             sizeof(*ctx->lpc_cof_buffer));
    1994          12 :     ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
    1995             :                                                    sizeof(*ctx->lpc_cof_buffer));
    1996             : 
    1997          24 :     if (!ctx->quant_cof              || !ctx->lpc_cof        ||
    1998          36 :         !ctx->quant_cof_buffer       || !ctx->lpc_cof_buffer ||
    1999          12 :         !ctx->lpc_cof_reversed_buffer) {
    2000           0 :         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2001           0 :         ret = AVERROR(ENOMEM);
    2002           0 :         goto fail;
    2003             :     }
    2004             : 
    2005             :     // assign quantized parcor coefficient buffers
    2006          26 :     for (c = 0; c < num_buffers; c++) {
    2007          14 :         ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
    2008          14 :         ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
    2009             :     }
    2010             : 
    2011             :     // allocate and assign lag and gain data buffer for ltp mode
    2012          12 :     ctx->const_block     = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
    2013          12 :     ctx->shift_lsbs      = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
    2014          12 :     ctx->opt_order       = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
    2015          12 :     ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
    2016          12 :     ctx->use_ltp         = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
    2017          12 :     ctx->ltp_lag         = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
    2018          12 :     ctx->ltp_gain        = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
    2019          12 :     ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
    2020             : 
    2021          24 :     if (!ctx->const_block || !ctx->shift_lsbs ||
    2022          36 :         !ctx->opt_order || !ctx->store_prev_samples ||
    2023          36 :         !ctx->use_ltp  || !ctx->ltp_lag ||
    2024          24 :         !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
    2025           0 :         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2026           0 :         ret = AVERROR(ENOMEM);
    2027           0 :         goto fail;
    2028             :     }
    2029             : 
    2030          26 :     for (c = 0; c < num_buffers; c++)
    2031          14 :         ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
    2032             : 
    2033             :     // allocate and assign channel data buffer for mcc mode
    2034          12 :     if (sconf->mc_coding) {
    2035           2 :         ctx->chan_data_buffer  = av_mallocz_array(num_buffers * num_buffers,
    2036             :                                                  sizeof(*ctx->chan_data_buffer));
    2037           2 :         ctx->chan_data         = av_mallocz_array(num_buffers,
    2038             :                                                  sizeof(*ctx->chan_data));
    2039           2 :         ctx->reverted_channels = av_malloc_array(num_buffers,
    2040             :                                                  sizeof(*ctx->reverted_channels));
    2041             : 
    2042           2 :         if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
    2043           0 :             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2044           0 :             ret = AVERROR(ENOMEM);
    2045           0 :             goto fail;
    2046             :         }
    2047             : 
    2048           6 :         for (c = 0; c < num_buffers; c++)
    2049           4 :             ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
    2050             :     } else {
    2051          10 :         ctx->chan_data         = NULL;
    2052          10 :         ctx->chan_data_buffer  = NULL;
    2053          10 :         ctx->reverted_channels = NULL;
    2054             :     }
    2055             : 
    2056          12 :     channel_size      = sconf->frame_length + sconf->max_order;
    2057             : 
    2058          12 :     ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
    2059          12 :     ctx->raw_buffer       = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
    2060          12 :     ctx->raw_samples      = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
    2061             : 
    2062          12 :     if (sconf->floating) {
    2063           0 :         ctx->acf               = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
    2064           0 :         ctx->shift_value       = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
    2065           0 :         ctx->last_shift_value  = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
    2066           0 :         ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
    2067           0 :         ctx->raw_mantissa      = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
    2068             : 
    2069           0 :         ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
    2070           0 :         ctx->nbits  = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
    2071           0 :         ctx->mlz    = av_mallocz(sizeof(*ctx->mlz));
    2072             : 
    2073           0 :         if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
    2074           0 :             || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
    2075           0 :             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2076           0 :             ret = AVERROR(ENOMEM);
    2077           0 :             goto fail;
    2078             :         }
    2079             : 
    2080           0 :         ff_mlz_init_dict(avctx, ctx->mlz);
    2081           0 :         ff_mlz_flush_dict(ctx->mlz);
    2082             : 
    2083           0 :         for (c = 0; c < avctx->channels; ++c) {
    2084           0 :             ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
    2085             :         }
    2086             :     }
    2087             : 
    2088             :     // allocate previous raw sample buffer
    2089          12 :     if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
    2090           0 :         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2091           0 :         ret = AVERROR(ENOMEM);
    2092           0 :         goto fail;
    2093             :     }
    2094             : 
    2095             :     // assign raw samples buffers
    2096          12 :     ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
    2097          24 :     for (c = 1; c < avctx->channels; c++)
    2098          12 :         ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
    2099             : 
    2100             :     // allocate crc buffer
    2101          12 :     if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
    2102           0 :         (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
    2103           0 :         ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
    2104           0 :                                           avctx->channels *
    2105           0 :                                           av_get_bytes_per_sample(avctx->sample_fmt),
    2106             :                                           sizeof(*ctx->crc_buffer));
    2107           0 :         if (!ctx->crc_buffer) {
    2108           0 :             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
    2109           0 :             ret = AVERROR(ENOMEM);
    2110           0 :             goto fail;
    2111             :         }
    2112             :     }
    2113             : 
    2114          12 :     ff_bswapdsp_init(&ctx->bdsp);
    2115             : 
    2116          12 :     return 0;
    2117             : 
    2118           0 : fail:
    2119           0 :     decode_end(avctx);
    2120           0 :     return ret;
    2121             : }
    2122             : 
    2123             : 
    2124             : /** Flush (reset) the frame ID after seeking.
    2125             :  */
    2126           0 : static av_cold void flush(AVCodecContext *avctx)
    2127             : {
    2128           0 :     ALSDecContext *ctx = avctx->priv_data;
    2129             : 
    2130           0 :     ctx->frame_id = 0;
    2131           0 : }
    2132             : 
    2133             : 
    2134             : AVCodec ff_als_decoder = {
    2135             :     .name           = "als",
    2136             :     .long_name      = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
    2137             :     .type           = AVMEDIA_TYPE_AUDIO,
    2138             :     .id             = AV_CODEC_ID_MP4ALS,
    2139             :     .priv_data_size = sizeof(ALSDecContext),
    2140             :     .init           = decode_init,
    2141             :     .close          = decode_end,
    2142             :     .decode         = decode_frame,
    2143             :     .flush          = flush,
    2144             :     .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
    2145             : };

Generated by: LCOV version 1.13