FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavfilter/vf_vif.c
Date: 2024-11-20 23:03:26
Exec Total Coverage
Lines: 0 302 0.0%
Functions: 0 16 0.0%
Branches: 0 122 0.0%

Line Branch Exec Source
1 /*
2 * Copyright (c) 2017 Ronald S. Bultje <rsbultje@gmail.com>
3 * Copyright (c) 2017 Ashish Pratap Singh <ashk43712@gmail.com>
4 * Copyright (c) 2021 Paul B Mahol
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * Calculate VIF between two input videos.
26 */
27
28 #include <float.h>
29
30 #include "libavutil/mem.h"
31 #include "libavutil/opt.h"
32 #include "libavutil/pixdesc.h"
33 #include "avfilter.h"
34 #include "filters.h"
35 #include "framesync.h"
36
37 #define NUM_DATA_BUFS 13
38
39 typedef struct VIFContext {
40 const AVClass *class;
41 FFFrameSync fs;
42 const AVPixFmtDescriptor *desc;
43 int width;
44 int height;
45 int nb_threads;
46 float factor;
47 float *data_buf[NUM_DATA_BUFS];
48 float **temp;
49 float *ref_data;
50 float *main_data;
51 double vif_sum[4];
52 double vif_min[4];
53 double vif_max[4];
54 uint64_t nb_frames;
55 } VIFContext;
56
57 #define OFFSET(x) offsetof(VIFContext, x)
58
59 static const AVOption vif_options[] = {
60 { NULL }
61 };
62
63 FRAMESYNC_DEFINE_CLASS(vif, VIFContext, fs);
64
65 static const uint8_t vif_filter1d_width1[4] = { 17, 9, 5, 3 };
66
67 static const float vif_filter1d_table[4][17] =
68 {
69 {
70 0.00745626912, 0.0142655009, 0.0250313189, 0.0402820669, 0.0594526194,
71 0.0804751068, 0.0999041125, 0.113746084, 0.118773937, 0.113746084,
72 0.0999041125, 0.0804751068, 0.0594526194, 0.0402820669, 0.0250313189,
73 0.0142655009, 0.00745626912
74 },
75 {
76 0.0189780835, 0.0558981746, 0.120920904, 0.192116052, 0.224173605,
77 0.192116052, 0.120920904, 0.0558981746, 0.0189780835
78 },
79 {
80 0.054488685, 0.244201347, 0.402619958, 0.244201347, 0.054488685
81 },
82 {
83 0.166378498, 0.667243004, 0.166378498
84 }
85 };
86
87 typedef struct ThreadData {
88 const float *filter;
89 const float *src;
90 float *dst;
91 int w, h;
92 int src_stride;
93 int dst_stride;
94 int filter_width;
95 float **temp;
96 } ThreadData;
97
98 static void vif_dec2(const float *src, float *dst, int w, int h,
99 int src_stride, int dst_stride)
100 {
101 const int dst_px_stride = dst_stride / 2;
102
103 for (int i = 0; i < h / 2; i++) {
104 for (int j = 0; j < w / 2; j++)
105 dst[i * dst_px_stride + j] = src[(i * 2) * src_stride + (j * 2)];
106 }
107 }
108
109 static void vif_statistic(const float *mu1_sq, const float *mu2_sq,
110 const float *mu1_mu2, const float *xx_filt,
111 const float *yy_filt, const float *xy_filt,
112 float *num, float *den, int w, int h)
113 {
114 static const float sigma_nsq = 2;
115 float mu1_sq_val, mu2_sq_val, mu1_mu2_val, xx_filt_val, yy_filt_val, xy_filt_val;
116 float sigma1_sq, sigma2_sq, sigma12, g, sv_sq, eps = 1.0e-10f;
117 float gain_limit = 100.f;
118 float num_val, den_val;
119 float accum_num = 0.0f;
120 float accum_den = 0.0f;
121
122 for (int i = 0; i < h; i++) {
123 float accum_inner_num = 0.f;
124 float accum_inner_den = 0.f;
125
126 for (int j = 0; j < w; j++) {
127 mu1_sq_val = mu1_sq[i * w + j];
128 mu2_sq_val = mu2_sq[i * w + j];
129 mu1_mu2_val = mu1_mu2[i * w + j];
130 xx_filt_val = xx_filt[i * w + j];
131 yy_filt_val = yy_filt[i * w + j];
132 xy_filt_val = xy_filt[i * w + j];
133
134 sigma1_sq = xx_filt_val - mu1_sq_val;
135 sigma2_sq = yy_filt_val - mu2_sq_val;
136 sigma12 = xy_filt_val - mu1_mu2_val;
137
138 sigma1_sq = FFMAX(sigma1_sq, 0.0f);
139 sigma2_sq = FFMAX(sigma2_sq, 0.0f);
140 sigma12 = FFMAX(sigma12, 0.0f);
141
142 g = sigma12 / (sigma1_sq + eps);
143 sv_sq = sigma2_sq - g * sigma12;
144
145 if (sigma1_sq < eps) {
146 g = 0.0f;
147 sv_sq = sigma2_sq;
148 sigma1_sq = 0.0f;
149 }
150
151 if (sigma2_sq < eps) {
152 g = 0.0f;
153 sv_sq = 0.0f;
154 }
155
156 if (g < 0.0f) {
157 sv_sq = sigma2_sq;
158 g = 0.0f;
159 }
160 sv_sq = FFMAX(sv_sq, eps);
161
162 g = FFMIN(g, gain_limit);
163
164 num_val = log2f(1.0f + g * g * sigma1_sq / (sv_sq + sigma_nsq));
165 den_val = log2f(1.0f + sigma1_sq / sigma_nsq);
166
167 if (isnan(den_val))
168 num_val = den_val = 1.f;
169
170 accum_inner_num += num_val;
171 accum_inner_den += den_val;
172 }
173
174 accum_num += accum_inner_num;
175 accum_den += accum_inner_den;
176 }
177
178 num[0] = accum_num;
179 den[0] = accum_den;
180 }
181
182 static void vif_xx_yy_xy(const float *x, const float *y, float *xx, float *yy,
183 float *xy, int w, int h)
184 {
185 for (int i = 0; i < h; i++) {
186 for (int j = 0; j < w; j++) {
187 float xval = x[j];
188 float yval = y[j];
189 float xxval = xval * xval;
190 float yyval = yval * yval;
191 float xyval = xval * yval;
192
193 xx[j] = xxval;
194 yy[j] = yyval;
195 xy[j] = xyval;
196 }
197
198 xx += w;
199 yy += w;
200 xy += w;
201 x += w;
202 y += w;
203 }
204 }
205
206 static int vif_filter1d(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
207 {
208 ThreadData *td = arg;
209 const float *filter = td->filter;
210 const float *src = td->src;
211 float *dst = td->dst;
212 int w = td->w;
213 int h = td->h;
214 int src_stride = td->src_stride;
215 int dst_stride = td->dst_stride;
216 int filt_w = td->filter_width;
217 float *temp = td->temp[jobnr];
218 const int slice_start = (h * jobnr) / nb_jobs;
219 const int slice_end = (h * (jobnr+1)) / nb_jobs;
220
221 for (int i = slice_start; i < slice_end; i++) {
222 /** Vertical pass. */
223 for (int j = 0; j < w; j++) {
224 float sum = 0.f;
225
226 if (i >= filt_w / 2 && i < h - filt_w / 2 - 1) {
227 for (int filt_i = 0; filt_i < filt_w; filt_i++) {
228 const float filt_coeff = filter[filt_i];
229 float img_coeff;
230 int ii = i - filt_w / 2 + filt_i;
231
232 img_coeff = src[ii * src_stride + j];
233 sum += filt_coeff * img_coeff;
234 }
235 } else {
236 for (int filt_i = 0; filt_i < filt_w; filt_i++) {
237 const float filt_coeff = filter[filt_i];
238 int ii = i - filt_w / 2 + filt_i;
239 float img_coeff;
240
241 ii = ii < 0 ? -ii : (ii >= h ? 2 * h - ii - 1 : ii);
242
243 img_coeff = src[ii * src_stride + j];
244 sum += filt_coeff * img_coeff;
245 }
246 }
247
248 temp[j] = sum;
249 }
250
251 /** Horizontal pass. */
252 for (int j = 0; j < w; j++) {
253 float sum = 0.f;
254
255 if (j >= filt_w / 2 && j < w - filt_w / 2 - 1) {
256 for (int filt_j = 0; filt_j < filt_w; filt_j++) {
257 const float filt_coeff = filter[filt_j];
258 int jj = j - filt_w / 2 + filt_j;
259 float img_coeff;
260
261 img_coeff = temp[jj];
262 sum += filt_coeff * img_coeff;
263 }
264 } else {
265 for (int filt_j = 0; filt_j < filt_w; filt_j++) {
266 const float filt_coeff = filter[filt_j];
267 int jj = j - filt_w / 2 + filt_j;
268 float img_coeff;
269
270 jj = jj < 0 ? -jj : (jj >= w ? 2 * w - jj - 1 : jj);
271
272 img_coeff = temp[jj];
273 sum += filt_coeff * img_coeff;
274 }
275 }
276
277 dst[i * dst_stride + j] = sum;
278 }
279 }
280
281 return 0;
282 }
283
284 static int compute_vif2(AVFilterContext *ctx,
285 const float *ref, const float *main, int w, int h,
286 int ref_stride, int main_stride, float *score,
287 float *const data_buf[NUM_DATA_BUFS], float **temp,
288 int gnb_threads)
289 {
290 ThreadData td;
291 float *ref_scale = data_buf[0];
292 float *main_scale = data_buf[1];
293 float *ref_sq = data_buf[2];
294 float *main_sq = data_buf[3];
295 float *ref_main = data_buf[4];
296 float *mu1 = data_buf[5];
297 float *mu2 = data_buf[6];
298 float *mu1_sq = data_buf[7];
299 float *mu2_sq = data_buf[8];
300 float *mu1_mu2 = data_buf[9];
301 float *ref_sq_filt = data_buf[10];
302 float *main_sq_filt = data_buf[11];
303 float *ref_main_filt = data_buf[12];
304
305 const float *curr_ref_scale = ref;
306 const float *curr_main_scale = main;
307 int curr_ref_stride = ref_stride;
308 int curr_main_stride = main_stride;
309
310 float num = 0.f;
311 float den = 0.f;
312
313 for (int scale = 0; scale < 4; scale++) {
314 const float *filter = vif_filter1d_table[scale];
315 int filter_width = vif_filter1d_width1[scale];
316 const int nb_threads = FFMIN(h, gnb_threads);
317 int buf_valid_w = w;
318 int buf_valid_h = h;
319
320 td.filter = filter;
321 td.filter_width = filter_width;
322
323 if (scale > 0) {
324 td.src = curr_ref_scale;
325 td.dst = mu1;
326 td.w = w;
327 td.h = h;
328 td.src_stride = curr_ref_stride;
329 td.dst_stride = w;
330 td.temp = temp;
331 ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads);
332
333 td.src = curr_main_scale;
334 td.dst = mu2;
335 td.src_stride = curr_main_stride;
336 ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads);
337
338 vif_dec2(mu1, ref_scale, buf_valid_w, buf_valid_h, w, w);
339 vif_dec2(mu2, main_scale, buf_valid_w, buf_valid_h, w, w);
340
341 w = buf_valid_w / 2;
342 h = buf_valid_h / 2;
343
344 buf_valid_w = w;
345 buf_valid_h = h;
346
347 curr_ref_scale = ref_scale;
348 curr_main_scale = main_scale;
349
350 curr_ref_stride = w;
351 curr_main_stride = w;
352 }
353
354 td.src = curr_ref_scale;
355 td.dst = mu1;
356 td.w = w;
357 td.h = h;
358 td.src_stride = curr_ref_stride;
359 td.dst_stride = w;
360 td.temp = temp;
361 ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads);
362
363 td.src = curr_main_scale;
364 td.dst = mu2;
365 td.src_stride = curr_main_stride;
366 ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads);
367
368 vif_xx_yy_xy(mu1, mu2, mu1_sq, mu2_sq, mu1_mu2, w, h);
369
370 vif_xx_yy_xy(curr_ref_scale, curr_main_scale, ref_sq, main_sq, ref_main, w, h);
371
372 td.src = ref_sq;
373 td.dst = ref_sq_filt;
374 td.src_stride = w;
375 ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads);
376
377 td.src = main_sq;
378 td.dst = main_sq_filt;
379 td.src_stride = w;
380 ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads);
381
382 td.src = ref_main;
383 td.dst = ref_main_filt;
384 ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads);
385
386 vif_statistic(mu1_sq, mu2_sq, mu1_mu2, ref_sq_filt, main_sq_filt,
387 ref_main_filt, &num, &den, w, h);
388
389 score[scale] = den <= FLT_EPSILON ? 1.f : num / den;
390 }
391
392 return 0;
393 }
394
395 #define offset_fn(type, bits) \
396 static void offset_##bits##bit(VIFContext *s, \
397 const AVFrame *ref, \
398 AVFrame *main, int stride)\
399 { \
400 int w = s->width; \
401 int h = s->height; \
402 \
403 int ref_stride = ref->linesize[0]; \
404 int main_stride = main->linesize[0]; \
405 \
406 const type *ref_ptr = (const type *) ref->data[0]; \
407 const type *main_ptr = (const type *) main->data[0]; \
408 \
409 const float factor = s->factor; \
410 \
411 float *ref_ptr_data = s->ref_data; \
412 float *main_ptr_data = s->main_data; \
413 \
414 for (int i = 0; i < h; i++) { \
415 for (int j = 0; j < w; j++) { \
416 ref_ptr_data[j] = ref_ptr[j] * factor - 128.f; \
417 main_ptr_data[j] = main_ptr[j] * factor - 128.f; \
418 } \
419 ref_ptr += ref_stride / sizeof(type); \
420 ref_ptr_data += w; \
421 main_ptr += main_stride / sizeof(type); \
422 main_ptr_data += w; \
423 } \
424 }
425
426 offset_fn(uint8_t, 8)
427 offset_fn(uint16_t, 16)
428
429 static void set_meta(AVDictionary **metadata, const char *key, float d)
430 {
431 char value[257];
432 snprintf(value, sizeof(value), "%f", d);
433 av_dict_set(metadata, key, value, 0);
434 }
435
436 static AVFrame *do_vif(AVFilterContext *ctx, AVFrame *main, const AVFrame *ref)
437 {
438 VIFContext *s = ctx->priv;
439 AVDictionary **metadata = &main->metadata;
440 float score[4];
441
442 s->factor = 1.f / (1 << (s->desc->comp[0].depth - 8));
443 if (s->desc->comp[0].depth <= 8) {
444 offset_8bit(s, ref, main, s->width);
445 } else {
446 offset_16bit(s, ref, main, s->width);
447 }
448
449 compute_vif2(ctx, s->ref_data, s->main_data,
450 s->width, s->height, s->width, s->width,
451 score, s->data_buf, s->temp, s->nb_threads);
452
453 set_meta(metadata, "lavfi.vif.scale.0", score[0]);
454 set_meta(metadata, "lavfi.vif.scale.1", score[1]);
455 set_meta(metadata, "lavfi.vif.scale.2", score[2]);
456 set_meta(metadata, "lavfi.vif.scale.3", score[3]);
457
458 for (int i = 0; i < 4; i++) {
459 s->vif_min[i] = FFMIN(s->vif_min[i], score[i]);
460 s->vif_max[i] = FFMAX(s->vif_max[i], score[i]);
461 s->vif_sum[i] += score[i];
462 }
463
464 s->nb_frames++;
465
466 return main;
467 }
468
469 static const enum AVPixelFormat pix_fmts[] = {
470 AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10,
471 AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
472 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
473 AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
474 AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
475 AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
476 #define PF(suf) AV_PIX_FMT_YUV420##suf, AV_PIX_FMT_YUV422##suf, AV_PIX_FMT_YUV444##suf
477 PF(P9), PF(P10), PF(P12), PF(P14), PF(P16),
478 AV_PIX_FMT_NONE
479 };
480
481 static int config_input_ref(AVFilterLink *inlink)
482 {
483 AVFilterContext *ctx = inlink->dst;
484 VIFContext *s = ctx->priv;
485
486 if (ctx->inputs[0]->w != ctx->inputs[1]->w ||
487 ctx->inputs[0]->h != ctx->inputs[1]->h) {
488 av_log(ctx, AV_LOG_ERROR, "Width and height of input videos must be same.\n");
489 return AVERROR(EINVAL);
490 }
491
492 s->desc = av_pix_fmt_desc_get(inlink->format);
493 s->width = ctx->inputs[0]->w;
494 s->height = ctx->inputs[0]->h;
495 s->nb_threads = ff_filter_get_nb_threads(ctx);
496
497 for (int i = 0; i < 4; i++) {
498 s->vif_min[i] = DBL_MAX;
499 s->vif_max[i] = -DBL_MAX;
500 }
501
502 for (int i = 0; i < NUM_DATA_BUFS; i++) {
503 if (!(s->data_buf[i] = av_calloc(s->width, s->height * sizeof(float))))
504 return AVERROR(ENOMEM);
505 }
506
507 if (!(s->ref_data = av_calloc(s->width, s->height * sizeof(float))))
508 return AVERROR(ENOMEM);
509
510 if (!(s->main_data = av_calloc(s->width, s->height * sizeof(float))))
511 return AVERROR(ENOMEM);
512
513 if (!(s->temp = av_calloc(s->nb_threads, sizeof(s->temp[0]))))
514 return AVERROR(ENOMEM);
515
516 for (int i = 0; i < s->nb_threads; i++) {
517 if (!(s->temp[i] = av_calloc(s->width, sizeof(float))))
518 return AVERROR(ENOMEM);
519 }
520
521 return 0;
522 }
523
524 static int process_frame(FFFrameSync *fs)
525 {
526 AVFilterContext *ctx = fs->parent;
527 VIFContext *s = fs->opaque;
528 AVFilterLink *outlink = ctx->outputs[0];
529 AVFrame *out_frame, *main_frame = NULL, *ref_frame = NULL;
530 int ret;
531
532 ret = ff_framesync_dualinput_get(fs, &main_frame, &ref_frame);
533 if (ret < 0)
534 return ret;
535
536 if (ctx->is_disabled || !ref_frame) {
537 out_frame = main_frame;
538 } else {
539 out_frame = do_vif(ctx, main_frame, ref_frame);
540 }
541
542 out_frame->pts = av_rescale_q(s->fs.pts, s->fs.time_base, outlink->time_base);
543
544 return ff_filter_frame(outlink, out_frame);
545 }
546
547
548 static int config_output(AVFilterLink *outlink)
549 {
550 AVFilterContext *ctx = outlink->src;
551 VIFContext *s = ctx->priv;
552 AVFilterLink *mainlink = ctx->inputs[0];
553 FilterLink *il = ff_filter_link(mainlink);
554 FilterLink *ol = ff_filter_link(outlink);
555 FFFrameSyncIn *in;
556 int ret;
557
558 outlink->w = mainlink->w;
559 outlink->h = mainlink->h;
560 outlink->time_base = mainlink->time_base;
561 outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio;
562 ol->frame_rate = il->frame_rate;
563 if ((ret = ff_framesync_init(&s->fs, ctx, 2)) < 0)
564 return ret;
565
566 in = s->fs.in;
567 in[0].time_base = mainlink->time_base;
568 in[1].time_base = ctx->inputs[1]->time_base;
569 in[0].sync = 2;
570 in[0].before = EXT_STOP;
571 in[0].after = EXT_STOP;
572 in[1].sync = 1;
573 in[1].before = EXT_STOP;
574 in[1].after = EXT_STOP;
575 s->fs.opaque = s;
576 s->fs.on_event = process_frame;
577
578 return ff_framesync_configure(&s->fs);
579 }
580
581 static int activate(AVFilterContext *ctx)
582 {
583 VIFContext *s = ctx->priv;
584 return ff_framesync_activate(&s->fs);
585 }
586
587 static av_cold void uninit(AVFilterContext *ctx)
588 {
589 VIFContext *s = ctx->priv;
590
591 if (s->nb_frames > 0) {
592 for (int i = 0; i < 4; i++)
593 av_log(ctx, AV_LOG_INFO, "VIF scale=%d average:%f min:%f: max:%f\n",
594 i, s->vif_sum[i] / s->nb_frames, s->vif_min[i], s->vif_max[i]);
595 }
596
597 for (int i = 0; i < NUM_DATA_BUFS; i++)
598 av_freep(&s->data_buf[i]);
599
600 av_freep(&s->ref_data);
601 av_freep(&s->main_data);
602
603 for (int i = 0; i < s->nb_threads && s->temp; i++)
604 av_freep(&s->temp[i]);
605
606 av_freep(&s->temp);
607
608 ff_framesync_uninit(&s->fs);
609 }
610
611 static const AVFilterPad vif_inputs[] = {
612 {
613 .name = "main",
614 .type = AVMEDIA_TYPE_VIDEO,
615 },{
616 .name = "reference",
617 .type = AVMEDIA_TYPE_VIDEO,
618 .config_props = config_input_ref,
619 },
620 };
621
622 static const AVFilterPad vif_outputs[] = {
623 {
624 .name = "default",
625 .type = AVMEDIA_TYPE_VIDEO,
626 .config_props = config_output,
627 },
628 };
629
630 const AVFilter ff_vf_vif = {
631 .name = "vif",
632 .description = NULL_IF_CONFIG_SMALL("Calculate the VIF between two video streams."),
633 .preinit = vif_framesync_preinit,
634 .uninit = uninit,
635 .priv_size = sizeof(VIFContext),
636 .priv_class = &vif_class,
637 .activate = activate,
638 FILTER_INPUTS(vif_inputs),
639 FILTER_OUTPUTS(vif_outputs),
640 FILTER_PIXFMTS_ARRAY(pix_fmts),
641 .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
642 AVFILTER_FLAG_SLICE_THREADS |
643 AVFILTER_FLAG_METADATA_ONLY,
644 };
645