Line |
Branch |
Exec |
Source |
1 |
|
|
/* |
2 |
|
|
* Copyright (c) 2019 Eugene Lyapustin |
3 |
|
|
* |
4 |
|
|
* This file is part of FFmpeg. |
5 |
|
|
* |
6 |
|
|
* FFmpeg is free software; you can redistribute it and/or |
7 |
|
|
* modify it under the terms of the GNU Lesser General Public |
8 |
|
|
* License as published by the Free Software Foundation; either |
9 |
|
|
* version 2.1 of the License, or (at your option) any later version. |
10 |
|
|
* |
11 |
|
|
* FFmpeg is distributed in the hope that it will be useful, |
12 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 |
|
|
* Lesser General Public License for more details. |
15 |
|
|
* |
16 |
|
|
* You should have received a copy of the GNU Lesser General Public |
17 |
|
|
* License along with FFmpeg; if not, write to the Free Software |
18 |
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
19 |
|
|
*/ |
20 |
|
|
|
21 |
|
|
/** |
22 |
|
|
* @file |
23 |
|
|
* 360 video conversion filter. |
24 |
|
|
* Principle of operation: |
25 |
|
|
* |
26 |
|
|
* (for each pixel in output frame) |
27 |
|
|
* 1) Calculate OpenGL-like coordinates (x, y, z) for pixel position (i, j) |
28 |
|
|
* 2) Apply 360 operations (rotation, mirror) to (x, y, z) |
29 |
|
|
* 3) Calculate pixel position (u, v) in input frame |
30 |
|
|
* 4) Calculate interpolation window and weight for each pixel |
31 |
|
|
* |
32 |
|
|
* (for each frame) |
33 |
|
|
* 5) Remap input frame to output frame using precalculated data |
34 |
|
|
*/ |
35 |
|
|
|
36 |
|
|
#include <math.h> |
37 |
|
|
|
38 |
|
|
#include "libavutil/avassert.h" |
39 |
|
|
#include "libavutil/mem.h" |
40 |
|
|
#include "libavutil/pixdesc.h" |
41 |
|
|
#include "libavutil/opt.h" |
42 |
|
|
#include "avfilter.h" |
43 |
|
|
#include "filters.h" |
44 |
|
|
#include "formats.h" |
45 |
|
|
#include "video.h" |
46 |
|
|
#include "v360.h" |
47 |
|
|
|
48 |
|
|
typedef struct ThreadData { |
49 |
|
|
AVFrame *in; |
50 |
|
|
AVFrame *out; |
51 |
|
|
} ThreadData; |
52 |
|
|
|
53 |
|
|
#define OFFSET(x) offsetof(V360Context, x) |
54 |
|
|
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM |
55 |
|
|
#define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM |
56 |
|
|
|
57 |
|
|
static const AVOption v360_options[] = { |
58 |
|
|
{ "input", "set input projection", OFFSET(in), AV_OPT_TYPE_INT, {.i64=EQUIRECTANGULAR}, 0, NB_PROJECTIONS-1, FLAGS, .unit = "in" }, |
59 |
|
|
{ "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, .unit = "in" }, |
60 |
|
|
{ "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, .unit = "in" }, |
61 |
|
|
{ "c3x2", "cubemap 3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, .unit = "in" }, |
62 |
|
|
{ "c6x1", "cubemap 6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, .unit = "in" }, |
63 |
|
|
{ "eac", "equi-angular cubemap", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, .unit = "in" }, |
64 |
|
|
{ "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, .unit = "in" }, |
65 |
|
|
{ "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "in" }, |
66 |
|
|
{"rectilinear", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "in" }, |
67 |
|
|
{ "gnomonic", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "in" }, |
68 |
|
|
{ "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, .unit = "in" }, |
69 |
|
|
{ "fb", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, .unit = "in" }, |
70 |
|
|
{ "c1x6", "cubemap 1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, .unit = "in" }, |
71 |
|
|
{ "sg", "stereographic", 0, AV_OPT_TYPE_CONST, {.i64=STEREOGRAPHIC}, 0, 0, FLAGS, .unit = "in" }, |
72 |
|
|
{ "mercator", "mercator", 0, AV_OPT_TYPE_CONST, {.i64=MERCATOR}, 0, 0, FLAGS, .unit = "in" }, |
73 |
|
|
{ "ball", "ball", 0, AV_OPT_TYPE_CONST, {.i64=BALL}, 0, 0, FLAGS, .unit = "in" }, |
74 |
|
|
{ "hammer", "hammer", 0, AV_OPT_TYPE_CONST, {.i64=HAMMER}, 0, 0, FLAGS, .unit = "in" }, |
75 |
|
|
{"sinusoidal", "sinusoidal", 0, AV_OPT_TYPE_CONST, {.i64=SINUSOIDAL}, 0, 0, FLAGS, .unit = "in" }, |
76 |
|
|
{ "fisheye", "fisheye", 0, AV_OPT_TYPE_CONST, {.i64=FISHEYE}, 0, 0, FLAGS, .unit = "in" }, |
77 |
|
|
{ "pannini", "pannini", 0, AV_OPT_TYPE_CONST, {.i64=PANNINI}, 0, 0, FLAGS, .unit = "in" }, |
78 |
|
|
{"cylindrical", "cylindrical", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICAL}, 0, 0, FLAGS, .unit = "in" }, |
79 |
|
|
{"tetrahedron", "tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=TETRAHEDRON}, 0, 0, FLAGS, .unit = "in" }, |
80 |
|
|
{"barrelsplit", "barrel split facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL_SPLIT}, 0, 0, FLAGS, .unit = "in" }, |
81 |
|
|
{ "tsp", "truncated square pyramid", 0, AV_OPT_TYPE_CONST, {.i64=TSPYRAMID}, 0, 0, FLAGS, .unit = "in" }, |
82 |
|
|
{ "hequirect", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, .unit = "in" }, |
83 |
|
|
{ "he", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, .unit = "in" }, |
84 |
|
|
{ "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, .unit = "in" }, |
85 |
|
|
{ "og", "orthographic", 0, AV_OPT_TYPE_CONST, {.i64=ORTHOGRAPHIC}, 0, 0, FLAGS, .unit = "in" }, |
86 |
|
|
{"octahedron", "octahedron", 0, AV_OPT_TYPE_CONST, {.i64=OCTAHEDRON}, 0, 0, FLAGS, .unit = "in" }, |
87 |
|
|
{"cylindricalea", "cylindrical equal area", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICALEA}, 0, 0, FLAGS, .unit = "in" }, |
88 |
|
|
{ "output", "set output projection", OFFSET(out), AV_OPT_TYPE_INT, {.i64=CUBEMAP_3_2}, 0, NB_PROJECTIONS-1, FLAGS, .unit = "out" }, |
89 |
|
|
{ "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, .unit = "out" }, |
90 |
|
|
{ "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, .unit = "out" }, |
91 |
|
|
{ "c3x2", "cubemap 3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, .unit = "out" }, |
92 |
|
|
{ "c6x1", "cubemap 6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, .unit = "out" }, |
93 |
|
|
{ "eac", "equi-angular cubemap", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, .unit = "out" }, |
94 |
|
|
{ "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, .unit = "out" }, |
95 |
|
|
{ "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "out" }, |
96 |
|
|
{"rectilinear", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "out" }, |
97 |
|
|
{ "gnomonic", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "out" }, |
98 |
|
|
{ "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, .unit = "out" }, |
99 |
|
|
{ "fb", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, .unit = "out" }, |
100 |
|
|
{ "c1x6", "cubemap 1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, .unit = "out" }, |
101 |
|
|
{ "sg", "stereographic", 0, AV_OPT_TYPE_CONST, {.i64=STEREOGRAPHIC}, 0, 0, FLAGS, .unit = "out" }, |
102 |
|
|
{ "mercator", "mercator", 0, AV_OPT_TYPE_CONST, {.i64=MERCATOR}, 0, 0, FLAGS, .unit = "out" }, |
103 |
|
|
{ "ball", "ball", 0, AV_OPT_TYPE_CONST, {.i64=BALL}, 0, 0, FLAGS, .unit = "out" }, |
104 |
|
|
{ "hammer", "hammer", 0, AV_OPT_TYPE_CONST, {.i64=HAMMER}, 0, 0, FLAGS, .unit = "out" }, |
105 |
|
|
{"sinusoidal", "sinusoidal", 0, AV_OPT_TYPE_CONST, {.i64=SINUSOIDAL}, 0, 0, FLAGS, .unit = "out" }, |
106 |
|
|
{ "fisheye", "fisheye", 0, AV_OPT_TYPE_CONST, {.i64=FISHEYE}, 0, 0, FLAGS, .unit = "out" }, |
107 |
|
|
{ "pannini", "pannini", 0, AV_OPT_TYPE_CONST, {.i64=PANNINI}, 0, 0, FLAGS, .unit = "out" }, |
108 |
|
|
{"cylindrical", "cylindrical", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICAL}, 0, 0, FLAGS, .unit = "out" }, |
109 |
|
|
{"perspective", "perspective", 0, AV_OPT_TYPE_CONST, {.i64=PERSPECTIVE}, 0, 0, FLAGS, .unit = "out" }, |
110 |
|
|
{"tetrahedron", "tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=TETRAHEDRON}, 0, 0, FLAGS, .unit = "out" }, |
111 |
|
|
{"barrelsplit", "barrel split facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL_SPLIT}, 0, 0, FLAGS, .unit = "out" }, |
112 |
|
|
{ "tsp", "truncated square pyramid", 0, AV_OPT_TYPE_CONST, {.i64=TSPYRAMID}, 0, 0, FLAGS, .unit = "out" }, |
113 |
|
|
{ "hequirect", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, .unit = "out" }, |
114 |
|
|
{ "he", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, .unit = "out" }, |
115 |
|
|
{ "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, .unit = "out" }, |
116 |
|
|
{ "og", "orthographic", 0, AV_OPT_TYPE_CONST, {.i64=ORTHOGRAPHIC}, 0, 0, FLAGS, .unit = "out" }, |
117 |
|
|
{"octahedron", "octahedron", 0, AV_OPT_TYPE_CONST, {.i64=OCTAHEDRON}, 0, 0, FLAGS, .unit = "out" }, |
118 |
|
|
{"cylindricalea", "cylindrical equal area", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICALEA}, 0, 0, FLAGS, .unit = "out" }, |
119 |
|
|
{ "interp", "set interpolation method", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=BILINEAR}, 0, NB_INTERP_METHODS-1, FLAGS, .unit = "interp" }, |
120 |
|
|
{ "near", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, .unit = "interp" }, |
121 |
|
|
{ "nearest", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, .unit = "interp" }, |
122 |
|
|
{ "line", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, .unit = "interp" }, |
123 |
|
|
{ "linear", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, .unit = "interp" }, |
124 |
|
|
{ "lagrange9", "lagrange9 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LAGRANGE9}, 0, 0, FLAGS, .unit = "interp" }, |
125 |
|
|
{ "cube", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, .unit = "interp" }, |
126 |
|
|
{ "cubic", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, .unit = "interp" }, |
127 |
|
|
{ "lanc", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, .unit = "interp" }, |
128 |
|
|
{ "lanczos", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, .unit = "interp" }, |
129 |
|
|
{ "sp16", "spline16 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=SPLINE16}, 0, 0, FLAGS, .unit = "interp" }, |
130 |
|
|
{ "spline16", "spline16 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=SPLINE16}, 0, 0, FLAGS, .unit = "interp" }, |
131 |
|
|
{ "gauss", "gaussian interpolation", 0, AV_OPT_TYPE_CONST, {.i64=GAUSSIAN}, 0, 0, FLAGS, .unit = "interp" }, |
132 |
|
|
{ "gaussian", "gaussian interpolation", 0, AV_OPT_TYPE_CONST, {.i64=GAUSSIAN}, 0, 0, FLAGS, .unit = "interp" }, |
133 |
|
|
{ "mitchell", "mitchell interpolation", 0, AV_OPT_TYPE_CONST, {.i64=MITCHELL}, 0, 0, FLAGS, .unit = "interp" }, |
134 |
|
|
{ "w", "output width", OFFSET(width), AV_OPT_TYPE_INT, {.i64=0}, 0, INT16_MAX, FLAGS, .unit = "w"}, |
135 |
|
|
{ "h", "output height", OFFSET(height), AV_OPT_TYPE_INT, {.i64=0}, 0, INT16_MAX, FLAGS, .unit = "h"}, |
136 |
|
|
{ "in_stereo", "input stereo format", OFFSET(in_stereo), AV_OPT_TYPE_INT, {.i64=STEREO_2D}, 0, NB_STEREO_FMTS-1, FLAGS, .unit = "stereo" }, |
137 |
|
|
{"out_stereo", "output stereo format", OFFSET(out_stereo), AV_OPT_TYPE_INT, {.i64=STEREO_2D}, 0, NB_STEREO_FMTS-1, FLAGS, .unit = "stereo" }, |
138 |
|
|
{ "2d", "2d mono", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_2D}, 0, 0, FLAGS, .unit = "stereo" }, |
139 |
|
|
{ "sbs", "side by side", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_SBS}, 0, 0, FLAGS, .unit = "stereo" }, |
140 |
|
|
{ "tb", "top bottom", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_TB}, 0, 0, FLAGS, .unit = "stereo" }, |
141 |
|
|
{ "in_forder", "input cubemap face order", OFFSET(in_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, .unit = "in_forder"}, |
142 |
|
|
{"out_forder", "output cubemap face order", OFFSET(out_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, .unit = "out_forder"}, |
143 |
|
|
{ "in_frot", "input cubemap face rotation", OFFSET(in_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, .unit = "in_frot"}, |
144 |
|
|
{ "out_frot", "output cubemap face rotation",OFFSET(out_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, .unit = "out_frot"}, |
145 |
|
|
{ "in_pad", "percent input cubemap pads", OFFSET(in_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 0.1,TFLAGS, .unit = "in_pad"}, |
146 |
|
|
{ "out_pad", "percent output cubemap pads", OFFSET(out_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 0.1,TFLAGS, .unit = "out_pad"}, |
147 |
|
|
{ "fin_pad", "fixed input cubemap pads", OFFSET(fin_pad), AV_OPT_TYPE_INT, {.i64=0}, 0, 100,TFLAGS, .unit = "fin_pad"}, |
148 |
|
|
{ "fout_pad", "fixed output cubemap pads", OFFSET(fout_pad), AV_OPT_TYPE_INT, {.i64=0}, 0, 100,TFLAGS, .unit = "fout_pad"}, |
149 |
|
|
{ "yaw", "yaw rotation", OFFSET(yaw), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, .unit = "yaw"}, |
150 |
|
|
{ "pitch", "pitch rotation", OFFSET(pitch), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, .unit = "pitch"}, |
151 |
|
|
{ "roll", "roll rotation", OFFSET(roll), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, .unit = "roll"}, |
152 |
|
|
{ "rorder", "rotation order", OFFSET(rorder), AV_OPT_TYPE_STRING, {.str="ypr"}, 0, 0,TFLAGS, .unit = "rorder"}, |
153 |
|
|
{ "h_fov", "output horizontal field of view",OFFSET(h_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "h_fov"}, |
154 |
|
|
{ "v_fov", "output vertical field of view", OFFSET(v_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "v_fov"}, |
155 |
|
|
{ "d_fov", "output diagonal field of view", OFFSET(d_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "d_fov"}, |
156 |
|
|
{ "h_flip", "flip out video horizontally", OFFSET(h_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "h_flip"}, |
157 |
|
|
{ "v_flip", "flip out video vertically", OFFSET(v_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "v_flip"}, |
158 |
|
|
{ "d_flip", "flip out video indepth", OFFSET(d_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "d_flip"}, |
159 |
|
|
{ "ih_flip", "flip in video horizontally", OFFSET(ih_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "ih_flip"}, |
160 |
|
|
{ "iv_flip", "flip in video vertically", OFFSET(iv_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "iv_flip"}, |
161 |
|
|
{ "in_trans", "transpose video input", OFFSET(in_transpose), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, .unit = "in_transpose"}, |
162 |
|
|
{ "out_trans", "transpose video output", OFFSET(out_transpose), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, .unit = "out_transpose"}, |
163 |
|
|
{ "ih_fov", "input horizontal field of view",OFFSET(ih_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "ih_fov"}, |
164 |
|
|
{ "iv_fov", "input vertical field of view", OFFSET(iv_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "iv_fov"}, |
165 |
|
|
{ "id_fov", "input diagonal field of view", OFFSET(id_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "id_fov"}, |
166 |
|
|
{ "h_offset", "output horizontal off-axis offset",OFFSET(h_offset), AV_OPT_TYPE_FLOAT,{.dbl=0.f}, -1.f, 1.f,TFLAGS, .unit = "h_offset"}, |
167 |
|
|
{ "v_offset", "output vertical off-axis offset", OFFSET(v_offset), AV_OPT_TYPE_FLOAT,{.dbl=0.f}, -1.f, 1.f,TFLAGS, .unit = "v_offset"}, |
168 |
|
|
{"alpha_mask", "build mask in alpha plane", OFFSET(alpha), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, .unit = "alpha"}, |
169 |
|
|
{ "reset_rot", "reset rotation", OFFSET(reset_rot), AV_OPT_TYPE_BOOL, {.i64=0}, -1, 1,TFLAGS, .unit = "reset_rot"}, |
170 |
|
|
{ NULL } |
171 |
|
|
}; |
172 |
|
|
|
173 |
|
|
AVFILTER_DEFINE_CLASS(v360); |
174 |
|
|
|
175 |
|
✗ |
static int query_formats(const AVFilterContext *ctx, |
176 |
|
|
AVFilterFormatsConfig **cfg_in, |
177 |
|
|
AVFilterFormatsConfig **cfg_out) |
178 |
|
|
{ |
179 |
|
✗ |
const V360Context *s = ctx->priv; |
180 |
|
|
static const enum AVPixelFormat pix_fmts[] = { |
181 |
|
|
// YUVA444 |
182 |
|
|
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9, |
183 |
|
|
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, |
184 |
|
|
AV_PIX_FMT_YUVA444P16, |
185 |
|
|
|
186 |
|
|
// YUVA422 |
187 |
|
|
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9, |
188 |
|
|
AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, |
189 |
|
|
AV_PIX_FMT_YUVA422P16, |
190 |
|
|
|
191 |
|
|
// YUVA420 |
192 |
|
|
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9, |
193 |
|
|
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16, |
194 |
|
|
|
195 |
|
|
// YUVJ |
196 |
|
|
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, |
197 |
|
|
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, |
198 |
|
|
AV_PIX_FMT_YUVJ411P, |
199 |
|
|
|
200 |
|
|
// YUV444 |
201 |
|
|
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV444P9, |
202 |
|
|
AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12, |
203 |
|
|
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16, |
204 |
|
|
|
205 |
|
|
// YUV440 |
206 |
|
|
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV440P10, |
207 |
|
|
AV_PIX_FMT_YUV440P12, |
208 |
|
|
|
209 |
|
|
// YUV422 |
210 |
|
|
AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV422P9, |
211 |
|
|
AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12, |
212 |
|
|
AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16, |
213 |
|
|
|
214 |
|
|
// YUV420 |
215 |
|
|
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV420P9, |
216 |
|
|
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12, |
217 |
|
|
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16, |
218 |
|
|
|
219 |
|
|
// YUV411 |
220 |
|
|
AV_PIX_FMT_YUV411P, |
221 |
|
|
|
222 |
|
|
// YUV410 |
223 |
|
|
AV_PIX_FMT_YUV410P, |
224 |
|
|
|
225 |
|
|
// GBR |
226 |
|
|
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, |
227 |
|
|
AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, |
228 |
|
|
AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, |
229 |
|
|
|
230 |
|
|
// GBRA |
231 |
|
|
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, |
232 |
|
|
AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, |
233 |
|
|
|
234 |
|
|
// GRAY |
235 |
|
|
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, |
236 |
|
|
AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, |
237 |
|
|
AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, |
238 |
|
|
|
239 |
|
|
AV_PIX_FMT_NONE |
240 |
|
|
}; |
241 |
|
|
static const enum AVPixelFormat alpha_pix_fmts[] = { |
242 |
|
|
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9, |
243 |
|
|
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, |
244 |
|
|
AV_PIX_FMT_YUVA444P16, |
245 |
|
|
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9, |
246 |
|
|
AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, |
247 |
|
|
AV_PIX_FMT_YUVA422P16, |
248 |
|
|
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9, |
249 |
|
|
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16, |
250 |
|
|
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, |
251 |
|
|
AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, |
252 |
|
|
AV_PIX_FMT_NONE |
253 |
|
|
}; |
254 |
|
|
|
255 |
|
✗ |
return ff_set_common_formats_from_list2(ctx, cfg_in, cfg_out, |
256 |
|
✗ |
s->alpha ? alpha_pix_fmts : pix_fmts); |
257 |
|
|
} |
258 |
|
|
|
259 |
|
|
#define DEFINE_REMAP1_LINE(bits, div) \ |
260 |
|
|
static void remap1_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \ |
261 |
|
|
ptrdiff_t in_linesize, \ |
262 |
|
|
const int16_t *const u, const int16_t *const v, \ |
263 |
|
|
const int16_t *const ker) \ |
264 |
|
|
{ \ |
265 |
|
|
const uint##bits##_t *const s = (const uint##bits##_t *const)src; \ |
266 |
|
|
uint##bits##_t *d = (uint##bits##_t *)dst; \ |
267 |
|
|
\ |
268 |
|
|
in_linesize /= div; \ |
269 |
|
|
\ |
270 |
|
|
for (int x = 0; x < width; x++) \ |
271 |
|
|
d[x] = s[v[x] * in_linesize + u[x]]; \ |
272 |
|
|
} |
273 |
|
|
|
274 |
|
✗ |
DEFINE_REMAP1_LINE( 8, 1) |
275 |
|
✗ |
DEFINE_REMAP1_LINE(16, 2) |
276 |
|
|
|
277 |
|
|
/** |
278 |
|
|
* Generate remapping function with a given window size and pixel depth. |
279 |
|
|
* |
280 |
|
|
* @param ws size of interpolation window |
281 |
|
|
* @param bits number of bits per pixel |
282 |
|
|
*/ |
283 |
|
|
#define DEFINE_REMAP(ws, bits) \ |
284 |
|
|
static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ |
285 |
|
|
{ \ |
286 |
|
|
ThreadData *td = arg; \ |
287 |
|
|
const V360Context *s = ctx->priv; \ |
288 |
|
|
const SliceXYRemap *r = &s->slice_remap[jobnr]; \ |
289 |
|
|
const AVFrame *in = td->in; \ |
290 |
|
|
AVFrame *out = td->out; \ |
291 |
|
|
\ |
292 |
|
|
av_assert1(s->nb_planes <= AV_VIDEO_MAX_PLANES); \ |
293 |
|
|
\ |
294 |
|
|
for (int stereo = 0; stereo < 1 + s->out_stereo > STEREO_2D; stereo++) { \ |
295 |
|
|
for (int plane = 0; plane < s->nb_planes; plane++) { \ |
296 |
|
|
const unsigned map = s->map[plane]; \ |
297 |
|
|
const int in_linesize = in->linesize[plane]; \ |
298 |
|
|
const int out_linesize = out->linesize[plane]; \ |
299 |
|
|
const int uv_linesize = s->uv_linesize[plane]; \ |
300 |
|
|
const int in_offset_w = stereo ? s->in_offset_w[plane] : 0; \ |
301 |
|
|
const int in_offset_h = stereo ? s->in_offset_h[plane] : 0; \ |
302 |
|
|
const int out_offset_w = stereo ? s->out_offset_w[plane] : 0; \ |
303 |
|
|
const int out_offset_h = stereo ? s->out_offset_h[plane] : 0; \ |
304 |
|
|
const uint8_t *const src = in->data[plane] + \ |
305 |
|
|
in_offset_h * in_linesize + in_offset_w * (bits >> 3); \ |
306 |
|
|
uint8_t *dst = out->data[plane] + out_offset_h * out_linesize + out_offset_w * (bits >> 3); \ |
307 |
|
|
const uint8_t *mask = plane == 3 ? r->mask : NULL; \ |
308 |
|
|
const int width = s->pr_width[plane]; \ |
309 |
|
|
const int height = s->pr_height[plane]; \ |
310 |
|
|
\ |
311 |
|
|
const int slice_start = (height * jobnr ) / nb_jobs; \ |
312 |
|
|
const int slice_end = (height * (jobnr + 1)) / nb_jobs; \ |
313 |
|
|
\ |
314 |
|
|
for (int y = slice_start; y < slice_end && !mask; y++) { \ |
315 |
|
|
const int16_t *const u = r->u[map] + (y - slice_start) * uv_linesize * ws * ws; \ |
316 |
|
|
const int16_t *const v = r->v[map] + (y - slice_start) * uv_linesize * ws * ws; \ |
317 |
|
|
const int16_t *const ker = r->ker[map] + (y - slice_start) * uv_linesize * ws * ws; \ |
318 |
|
|
\ |
319 |
|
|
s->remap_line(dst + y * out_linesize, width, src, in_linesize, u, v, ker); \ |
320 |
|
|
} \ |
321 |
|
|
\ |
322 |
|
|
for (int y = slice_start; y < slice_end && mask; y++) { \ |
323 |
|
|
memcpy(dst + y * out_linesize, mask + \ |
324 |
|
|
(y - slice_start) * width * (bits >> 3), width * (bits >> 3)); \ |
325 |
|
|
} \ |
326 |
|
|
} \ |
327 |
|
|
} \ |
328 |
|
|
\ |
329 |
|
|
return 0; \ |
330 |
|
|
} |
331 |
|
|
|
332 |
|
✗ |
DEFINE_REMAP(1, 8) |
333 |
|
✗ |
DEFINE_REMAP(2, 8) |
334 |
|
✗ |
DEFINE_REMAP(3, 8) |
335 |
|
✗ |
DEFINE_REMAP(4, 8) |
336 |
|
✗ |
DEFINE_REMAP(1, 16) |
337 |
|
✗ |
DEFINE_REMAP(2, 16) |
338 |
|
✗ |
DEFINE_REMAP(3, 16) |
339 |
|
✗ |
DEFINE_REMAP(4, 16) |
340 |
|
|
|
341 |
|
|
#define DEFINE_REMAP_LINE(ws, bits, div) \ |
342 |
|
|
static void remap##ws##_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \ |
343 |
|
|
ptrdiff_t in_linesize, \ |
344 |
|
|
const int16_t *const u, const int16_t *const v, \ |
345 |
|
|
const int16_t *const ker) \ |
346 |
|
|
{ \ |
347 |
|
|
const uint##bits##_t *const s = (const uint##bits##_t *const)src; \ |
348 |
|
|
uint##bits##_t *d = (uint##bits##_t *)dst; \ |
349 |
|
|
\ |
350 |
|
|
in_linesize /= div; \ |
351 |
|
|
\ |
352 |
|
|
for (int x = 0; x < width; x++) { \ |
353 |
|
|
const int16_t *const uu = u + x * ws * ws; \ |
354 |
|
|
const int16_t *const vv = v + x * ws * ws; \ |
355 |
|
|
const int16_t *const kker = ker + x * ws * ws; \ |
356 |
|
|
int tmp = 0; \ |
357 |
|
|
\ |
358 |
|
|
for (int i = 0; i < ws; i++) { \ |
359 |
|
|
const int iws = i * ws; \ |
360 |
|
|
for (int j = 0; j < ws; j++) { \ |
361 |
|
|
tmp += kker[iws + j] * s[vv[iws + j] * in_linesize + uu[iws + j]]; \ |
362 |
|
|
} \ |
363 |
|
|
} \ |
364 |
|
|
\ |
365 |
|
|
d[x] = av_clip_uint##bits(tmp >> 14); \ |
366 |
|
|
} \ |
367 |
|
|
} |
368 |
|
|
|
369 |
|
✗ |
DEFINE_REMAP_LINE(2, 8, 1) |
370 |
|
✗ |
DEFINE_REMAP_LINE(3, 8, 1) |
371 |
|
✗ |
DEFINE_REMAP_LINE(4, 8, 1) |
372 |
|
✗ |
DEFINE_REMAP_LINE(2, 16, 2) |
373 |
|
✗ |
DEFINE_REMAP_LINE(3, 16, 2) |
374 |
|
✗ |
DEFINE_REMAP_LINE(4, 16, 2) |
375 |
|
|
|
376 |
|
✗ |
void ff_v360_init(V360Context *s, int depth) |
377 |
|
|
{ |
378 |
|
✗ |
switch (s->interp) { |
379 |
|
✗ |
case NEAREST: |
380 |
|
✗ |
s->remap_line = depth <= 8 ? remap1_8bit_line_c : remap1_16bit_line_c; |
381 |
|
✗ |
break; |
382 |
|
✗ |
case BILINEAR: |
383 |
|
✗ |
s->remap_line = depth <= 8 ? remap2_8bit_line_c : remap2_16bit_line_c; |
384 |
|
✗ |
break; |
385 |
|
✗ |
case LAGRANGE9: |
386 |
|
✗ |
s->remap_line = depth <= 8 ? remap3_8bit_line_c : remap3_16bit_line_c; |
387 |
|
✗ |
break; |
388 |
|
✗ |
case BICUBIC: |
389 |
|
|
case LANCZOS: |
390 |
|
|
case SPLINE16: |
391 |
|
|
case GAUSSIAN: |
392 |
|
|
case MITCHELL: |
393 |
|
✗ |
s->remap_line = depth <= 8 ? remap4_8bit_line_c : remap4_16bit_line_c; |
394 |
|
✗ |
break; |
395 |
|
|
} |
396 |
|
|
|
397 |
|
|
#if ARCH_X86 |
398 |
|
✗ |
ff_v360_init_x86(s, depth); |
399 |
|
|
#endif |
400 |
|
✗ |
} |
401 |
|
|
|
402 |
|
|
/** |
403 |
|
|
* Save nearest pixel coordinates for remapping. |
404 |
|
|
* |
405 |
|
|
* @param du horizontal relative coordinate |
406 |
|
|
* @param dv vertical relative coordinate |
407 |
|
|
* @param rmap calculated 4x4 window |
408 |
|
|
* @param u u remap data |
409 |
|
|
* @param v v remap data |
410 |
|
|
* @param ker ker remap data |
411 |
|
|
*/ |
412 |
|
✗ |
static void nearest_kernel(float du, float dv, const XYRemap *rmap, |
413 |
|
|
int16_t *u, int16_t *v, int16_t *ker) |
414 |
|
|
{ |
415 |
|
✗ |
const int i = lrintf(dv) + 1; |
416 |
|
✗ |
const int j = lrintf(du) + 1; |
417 |
|
|
|
418 |
|
✗ |
u[0] = rmap->u[i][j]; |
419 |
|
✗ |
v[0] = rmap->v[i][j]; |
420 |
|
✗ |
} |
421 |
|
|
|
422 |
|
|
/** |
423 |
|
|
* Calculate kernel for bilinear interpolation. |
424 |
|
|
* |
425 |
|
|
* @param du horizontal relative coordinate |
426 |
|
|
* @param dv vertical relative coordinate |
427 |
|
|
* @param rmap calculated 4x4 window |
428 |
|
|
* @param u u remap data |
429 |
|
|
* @param v v remap data |
430 |
|
|
* @param ker ker remap data |
431 |
|
|
*/ |
432 |
|
✗ |
static void bilinear_kernel(float du, float dv, const XYRemap *rmap, |
433 |
|
|
int16_t *u, int16_t *v, int16_t *ker) |
434 |
|
|
{ |
435 |
|
✗ |
for (int i = 0; i < 2; i++) { |
436 |
|
✗ |
for (int j = 0; j < 2; j++) { |
437 |
|
✗ |
u[i * 2 + j] = rmap->u[i + 1][j + 1]; |
438 |
|
✗ |
v[i * 2 + j] = rmap->v[i + 1][j + 1]; |
439 |
|
|
} |
440 |
|
|
} |
441 |
|
|
|
442 |
|
✗ |
ker[0] = lrintf((1.f - du) * (1.f - dv) * 16385.f); |
443 |
|
✗ |
ker[1] = lrintf( du * (1.f - dv) * 16385.f); |
444 |
|
✗ |
ker[2] = lrintf((1.f - du) * dv * 16385.f); |
445 |
|
✗ |
ker[3] = lrintf( du * dv * 16385.f); |
446 |
|
✗ |
} |
447 |
|
|
|
448 |
|
|
/** |
449 |
|
|
* Calculate 1-dimensional lagrange coefficients. |
450 |
|
|
* |
451 |
|
|
* @param t relative coordinate |
452 |
|
|
* @param coeffs coefficients |
453 |
|
|
*/ |
454 |
|
✗ |
static inline void calculate_lagrange_coeffs(float t, float *coeffs) |
455 |
|
|
{ |
456 |
|
✗ |
coeffs[0] = (t - 1.f) * (t - 2.f) * 0.5f; |
457 |
|
✗ |
coeffs[1] = -t * (t - 2.f); |
458 |
|
✗ |
coeffs[2] = t * (t - 1.f) * 0.5f; |
459 |
|
✗ |
} |
460 |
|
|
|
461 |
|
|
/** |
462 |
|
|
* Calculate kernel for lagrange interpolation. |
463 |
|
|
* |
464 |
|
|
* @param du horizontal relative coordinate |
465 |
|
|
* @param dv vertical relative coordinate |
466 |
|
|
* @param rmap calculated 4x4 window |
467 |
|
|
* @param u u remap data |
468 |
|
|
* @param v v remap data |
469 |
|
|
* @param ker ker remap data |
470 |
|
|
*/ |
471 |
|
✗ |
static void lagrange_kernel(float du, float dv, const XYRemap *rmap, |
472 |
|
|
int16_t *u, int16_t *v, int16_t *ker) |
473 |
|
|
{ |
474 |
|
|
float du_coeffs[3]; |
475 |
|
|
float dv_coeffs[3]; |
476 |
|
|
|
477 |
|
✗ |
calculate_lagrange_coeffs(du, du_coeffs); |
478 |
|
✗ |
calculate_lagrange_coeffs(dv, dv_coeffs); |
479 |
|
|
|
480 |
|
✗ |
for (int i = 0; i < 3; i++) { |
481 |
|
✗ |
for (int j = 0; j < 3; j++) { |
482 |
|
✗ |
u[i * 3 + j] = rmap->u[i + 1][j + 1]; |
483 |
|
✗ |
v[i * 3 + j] = rmap->v[i + 1][j + 1]; |
484 |
|
✗ |
ker[i * 3 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f); |
485 |
|
|
} |
486 |
|
|
} |
487 |
|
✗ |
} |
488 |
|
|
|
489 |
|
|
/** |
490 |
|
|
* Calculate 1-dimensional cubic coefficients. |
491 |
|
|
* |
492 |
|
|
* @param t relative coordinate |
493 |
|
|
* @param coeffs coefficients |
494 |
|
|
*/ |
495 |
|
✗ |
static inline void calculate_bicubic_coeffs(float t, float *coeffs) |
496 |
|
|
{ |
497 |
|
✗ |
const float tt = t * t; |
498 |
|
✗ |
const float ttt = t * t * t; |
499 |
|
|
|
500 |
|
✗ |
coeffs[0] = - t / 3.f + tt / 2.f - ttt / 6.f; |
501 |
|
✗ |
coeffs[1] = 1.f - t / 2.f - tt + ttt / 2.f; |
502 |
|
✗ |
coeffs[2] = t + tt / 2.f - ttt / 2.f; |
503 |
|
✗ |
coeffs[3] = - t / 6.f + ttt / 6.f; |
504 |
|
✗ |
} |
505 |
|
|
|
506 |
|
|
/** |
507 |
|
|
* Calculate kernel for bicubic interpolation. |
508 |
|
|
* |
509 |
|
|
* @param du horizontal relative coordinate |
510 |
|
|
* @param dv vertical relative coordinate |
511 |
|
|
* @param rmap calculated 4x4 window |
512 |
|
|
* @param u u remap data |
513 |
|
|
* @param v v remap data |
514 |
|
|
* @param ker ker remap data |
515 |
|
|
*/ |
516 |
|
✗ |
static void bicubic_kernel(float du, float dv, const XYRemap *rmap, |
517 |
|
|
int16_t *u, int16_t *v, int16_t *ker) |
518 |
|
|
{ |
519 |
|
|
float du_coeffs[4]; |
520 |
|
|
float dv_coeffs[4]; |
521 |
|
|
|
522 |
|
✗ |
calculate_bicubic_coeffs(du, du_coeffs); |
523 |
|
✗ |
calculate_bicubic_coeffs(dv, dv_coeffs); |
524 |
|
|
|
525 |
|
✗ |
for (int i = 0; i < 4; i++) { |
526 |
|
✗ |
for (int j = 0; j < 4; j++) { |
527 |
|
✗ |
u[i * 4 + j] = rmap->u[i][j]; |
528 |
|
✗ |
v[i * 4 + j] = rmap->v[i][j]; |
529 |
|
✗ |
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f); |
530 |
|
|
} |
531 |
|
|
} |
532 |
|
✗ |
} |
533 |
|
|
|
534 |
|
|
/** |
535 |
|
|
* Calculate 1-dimensional lanczos coefficients. |
536 |
|
|
* |
537 |
|
|
* @param t relative coordinate |
538 |
|
|
* @param coeffs coefficients |
539 |
|
|
*/ |
540 |
|
✗ |
static inline void calculate_lanczos_coeffs(float t, float *coeffs) |
541 |
|
|
{ |
542 |
|
✗ |
float sum = 0.f; |
543 |
|
|
|
544 |
|
✗ |
for (int i = 0; i < 4; i++) { |
545 |
|
✗ |
const float x = M_PI * (t - i + 1); |
546 |
|
✗ |
if (x == 0.f) { |
547 |
|
✗ |
coeffs[i] = 1.f; |
548 |
|
|
} else { |
549 |
|
✗ |
coeffs[i] = sinf(x) * sinf(x / 2.f) / (x * x / 2.f); |
550 |
|
|
} |
551 |
|
✗ |
sum += coeffs[i]; |
552 |
|
|
} |
553 |
|
|
|
554 |
|
✗ |
for (int i = 0; i < 4; i++) { |
555 |
|
✗ |
coeffs[i] /= sum; |
556 |
|
|
} |
557 |
|
✗ |
} |
558 |
|
|
|
559 |
|
|
/** |
560 |
|
|
* Calculate kernel for lanczos interpolation. |
561 |
|
|
* |
562 |
|
|
* @param du horizontal relative coordinate |
563 |
|
|
* @param dv vertical relative coordinate |
564 |
|
|
* @param rmap calculated 4x4 window |
565 |
|
|
* @param u u remap data |
566 |
|
|
* @param v v remap data |
567 |
|
|
* @param ker ker remap data |
568 |
|
|
*/ |
569 |
|
✗ |
static void lanczos_kernel(float du, float dv, const XYRemap *rmap, |
570 |
|
|
int16_t *u, int16_t *v, int16_t *ker) |
571 |
|
|
{ |
572 |
|
|
float du_coeffs[4]; |
573 |
|
|
float dv_coeffs[4]; |
574 |
|
|
|
575 |
|
✗ |
calculate_lanczos_coeffs(du, du_coeffs); |
576 |
|
✗ |
calculate_lanczos_coeffs(dv, dv_coeffs); |
577 |
|
|
|
578 |
|
✗ |
for (int i = 0; i < 4; i++) { |
579 |
|
✗ |
for (int j = 0; j < 4; j++) { |
580 |
|
✗ |
u[i * 4 + j] = rmap->u[i][j]; |
581 |
|
✗ |
v[i * 4 + j] = rmap->v[i][j]; |
582 |
|
✗ |
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f); |
583 |
|
|
} |
584 |
|
|
} |
585 |
|
✗ |
} |
586 |
|
|
|
587 |
|
|
/** |
588 |
|
|
* Calculate 1-dimensional spline16 coefficients. |
589 |
|
|
* |
590 |
|
|
* @param t relative coordinate |
591 |
|
|
* @param coeffs coefficients |
592 |
|
|
*/ |
593 |
|
✗ |
static void calculate_spline16_coeffs(float t, float *coeffs) |
594 |
|
|
{ |
595 |
|
✗ |
coeffs[0] = ((-1.f / 3.f * t + 0.8f) * t - 7.f / 15.f) * t; |
596 |
|
✗ |
coeffs[1] = ((t - 9.f / 5.f) * t - 0.2f) * t + 1.f; |
597 |
|
✗ |
coeffs[2] = ((6.f / 5.f - t) * t + 0.8f) * t; |
598 |
|
✗ |
coeffs[3] = ((1.f / 3.f * t - 0.2f) * t - 2.f / 15.f) * t; |
599 |
|
✗ |
} |
600 |
|
|
|
601 |
|
|
/** |
602 |
|
|
* Calculate kernel for spline16 interpolation. |
603 |
|
|
* |
604 |
|
|
* @param du horizontal relative coordinate |
605 |
|
|
* @param dv vertical relative coordinate |
606 |
|
|
* @param rmap calculated 4x4 window |
607 |
|
|
* @param u u remap data |
608 |
|
|
* @param v v remap data |
609 |
|
|
* @param ker ker remap data |
610 |
|
|
*/ |
611 |
|
✗ |
static void spline16_kernel(float du, float dv, const XYRemap *rmap, |
612 |
|
|
int16_t *u, int16_t *v, int16_t *ker) |
613 |
|
|
{ |
614 |
|
|
float du_coeffs[4]; |
615 |
|
|
float dv_coeffs[4]; |
616 |
|
|
|
617 |
|
✗ |
calculate_spline16_coeffs(du, du_coeffs); |
618 |
|
✗ |
calculate_spline16_coeffs(dv, dv_coeffs); |
619 |
|
|
|
620 |
|
✗ |
for (int i = 0; i < 4; i++) { |
621 |
|
✗ |
for (int j = 0; j < 4; j++) { |
622 |
|
✗ |
u[i * 4 + j] = rmap->u[i][j]; |
623 |
|
✗ |
v[i * 4 + j] = rmap->v[i][j]; |
624 |
|
✗ |
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f); |
625 |
|
|
} |
626 |
|
|
} |
627 |
|
✗ |
} |
628 |
|
|
|
629 |
|
|
/** |
630 |
|
|
* Calculate 1-dimensional gaussian coefficients. |
631 |
|
|
* |
632 |
|
|
* @param t relative coordinate |
633 |
|
|
* @param coeffs coefficients |
634 |
|
|
*/ |
635 |
|
✗ |
static void calculate_gaussian_coeffs(float t, float *coeffs) |
636 |
|
|
{ |
637 |
|
✗ |
float sum = 0.f; |
638 |
|
|
|
639 |
|
✗ |
for (int i = 0; i < 4; i++) { |
640 |
|
✗ |
const float x = t - (i - 1); |
641 |
|
✗ |
if (x == 0.f) { |
642 |
|
✗ |
coeffs[i] = 1.f; |
643 |
|
|
} else { |
644 |
|
✗ |
coeffs[i] = expf(-2.f * x * x) * expf(-x * x / 2.f); |
645 |
|
|
} |
646 |
|
✗ |
sum += coeffs[i]; |
647 |
|
|
} |
648 |
|
|
|
649 |
|
✗ |
for (int i = 0; i < 4; i++) { |
650 |
|
✗ |
coeffs[i] /= sum; |
651 |
|
|
} |
652 |
|
✗ |
} |
653 |
|
|
|
654 |
|
|
/** |
655 |
|
|
* Calculate kernel for gaussian interpolation. |
656 |
|
|
* |
657 |
|
|
* @param du horizontal relative coordinate |
658 |
|
|
* @param dv vertical relative coordinate |
659 |
|
|
* @param rmap calculated 4x4 window |
660 |
|
|
* @param u u remap data |
661 |
|
|
* @param v v remap data |
662 |
|
|
* @param ker ker remap data |
663 |
|
|
*/ |
664 |
|
✗ |
static void gaussian_kernel(float du, float dv, const XYRemap *rmap, |
665 |
|
|
int16_t *u, int16_t *v, int16_t *ker) |
666 |
|
|
{ |
667 |
|
|
float du_coeffs[4]; |
668 |
|
|
float dv_coeffs[4]; |
669 |
|
|
|
670 |
|
✗ |
calculate_gaussian_coeffs(du, du_coeffs); |
671 |
|
✗ |
calculate_gaussian_coeffs(dv, dv_coeffs); |
672 |
|
|
|
673 |
|
✗ |
for (int i = 0; i < 4; i++) { |
674 |
|
✗ |
for (int j = 0; j < 4; j++) { |
675 |
|
✗ |
u[i * 4 + j] = rmap->u[i][j]; |
676 |
|
✗ |
v[i * 4 + j] = rmap->v[i][j]; |
677 |
|
✗ |
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f); |
678 |
|
|
} |
679 |
|
|
} |
680 |
|
✗ |
} |
681 |
|
|
|
682 |
|
|
/** |
683 |
|
|
* Calculate 1-dimensional cubic_bc_spline coefficients. |
684 |
|
|
* |
685 |
|
|
* @param t relative coordinate |
686 |
|
|
* @param coeffs coefficients |
687 |
|
|
*/ |
688 |
|
✗ |
static void calculate_cubic_bc_coeffs(float t, float *coeffs, |
689 |
|
|
float b, float c) |
690 |
|
|
{ |
691 |
|
✗ |
float sum = 0.f; |
692 |
|
✗ |
float p0 = (6.f - 2.f * b) / 6.f, |
693 |
|
✗ |
p2 = (-18.f + 12.f * b + 6.f * c) / 6.f, |
694 |
|
✗ |
p3 = (12.f - 9.f * b - 6.f * c) / 6.f, |
695 |
|
✗ |
q0 = (8.f * b + 24.f * c) / 6.f, |
696 |
|
✗ |
q1 = (-12.f * b - 48.f * c) / 6.f, |
697 |
|
✗ |
q2 = (6.f * b + 30.f * c) / 6.f, |
698 |
|
✗ |
q3 = (-b - 6.f * c) / 6.f; |
699 |
|
|
|
700 |
|
✗ |
for (int i = 0; i < 4; i++) { |
701 |
|
✗ |
const float x = fabsf(t - i + 1.f); |
702 |
|
✗ |
if (x < 1.f) { |
703 |
|
✗ |
coeffs[i] = (p0 + x * x * (p2 + x * p3)) * |
704 |
|
✗ |
(p0 + x * x * (p2 + x * p3 / 2.f) / 4.f); |
705 |
|
✗ |
} else if (x < 2.f) { |
706 |
|
✗ |
coeffs[i] = (q0 + x * (q1 + x * (q2 + x * q3))) * |
707 |
|
✗ |
(q0 + x * (q1 + x * (q2 + x / 2.f * q3) / 2.f) / 2.f); |
708 |
|
|
} else { |
709 |
|
✗ |
coeffs[i] = 0.f; |
710 |
|
|
} |
711 |
|
✗ |
sum += coeffs[i]; |
712 |
|
|
} |
713 |
|
|
|
714 |
|
✗ |
for (int i = 0; i < 4; i++) { |
715 |
|
✗ |
coeffs[i] /= sum; |
716 |
|
|
} |
717 |
|
✗ |
} |
718 |
|
|
|
719 |
|
|
/** |
720 |
|
|
* Calculate kernel for mitchell interpolation. |
721 |
|
|
* |
722 |
|
|
* @param du horizontal relative coordinate |
723 |
|
|
* @param dv vertical relative coordinate |
724 |
|
|
* @param rmap calculated 4x4 window |
725 |
|
|
* @param u u remap data |
726 |
|
|
* @param v v remap data |
727 |
|
|
* @param ker ker remap data |
728 |
|
|
*/ |
729 |
|
✗ |
static void mitchell_kernel(float du, float dv, const XYRemap *rmap, |
730 |
|
|
int16_t *u, int16_t *v, int16_t *ker) |
731 |
|
|
{ |
732 |
|
|
float du_coeffs[4]; |
733 |
|
|
float dv_coeffs[4]; |
734 |
|
|
|
735 |
|
✗ |
calculate_cubic_bc_coeffs(du, du_coeffs, 1.f / 3.f, 1.f / 3.f); |
736 |
|
✗ |
calculate_cubic_bc_coeffs(dv, dv_coeffs, 1.f / 3.f, 1.f / 3.f); |
737 |
|
|
|
738 |
|
✗ |
for (int i = 0; i < 4; i++) { |
739 |
|
✗ |
for (int j = 0; j < 4; j++) { |
740 |
|
✗ |
u[i * 4 + j] = rmap->u[i][j]; |
741 |
|
✗ |
v[i * 4 + j] = rmap->v[i][j]; |
742 |
|
✗ |
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f); |
743 |
|
|
} |
744 |
|
|
} |
745 |
|
✗ |
} |
746 |
|
|
|
747 |
|
|
/** |
748 |
|
|
* Modulo operation with only positive remainders. |
749 |
|
|
* |
750 |
|
|
* @param a dividend |
751 |
|
|
* @param b divisor |
752 |
|
|
* |
753 |
|
|
* @return positive remainder of (a / b) |
754 |
|
|
*/ |
755 |
|
✗ |
static inline int mod(int a, int b) |
756 |
|
|
{ |
757 |
|
✗ |
const int res = a % b; |
758 |
|
✗ |
if (res < 0) { |
759 |
|
✗ |
return res + b; |
760 |
|
|
} else { |
761 |
|
✗ |
return res; |
762 |
|
|
} |
763 |
|
|
} |
764 |
|
|
|
765 |
|
|
/** |
766 |
|
|
* Reflect y operation. |
767 |
|
|
* |
768 |
|
|
* @param y input vertical position |
769 |
|
|
* @param h input height |
770 |
|
|
*/ |
771 |
|
✗ |
static inline int reflecty(int y, int h) |
772 |
|
|
{ |
773 |
|
✗ |
if (y < 0) { |
774 |
|
✗ |
y = -y; |
775 |
|
✗ |
} else if (y >= h) { |
776 |
|
✗ |
y = 2 * h - 1 - y; |
777 |
|
|
} |
778 |
|
|
|
779 |
|
✗ |
return av_clip(y, 0, h - 1); |
780 |
|
|
} |
781 |
|
|
|
782 |
|
|
/** |
783 |
|
|
* Reflect x operation for equirect. |
784 |
|
|
* |
785 |
|
|
* @param x input horizontal position |
786 |
|
|
* @param y input vertical position |
787 |
|
|
* @param w input width |
788 |
|
|
* @param h input height |
789 |
|
|
*/ |
790 |
|
✗ |
static inline int ereflectx(int x, int y, int w, int h) |
791 |
|
|
{ |
792 |
|
✗ |
if (y < 0 || y >= h) |
793 |
|
✗ |
x += w / 2; |
794 |
|
|
|
795 |
|
✗ |
return mod(x, w); |
796 |
|
|
} |
797 |
|
|
|
798 |
|
|
/** |
799 |
|
|
* Reflect x operation. |
800 |
|
|
* |
801 |
|
|
* @param x input horizontal position |
802 |
|
|
* @param y input vertical position |
803 |
|
|
* @param w input width |
804 |
|
|
* @param h input height |
805 |
|
|
*/ |
806 |
|
✗ |
static inline int reflectx(int x, int y, int w, int h) |
807 |
|
|
{ |
808 |
|
✗ |
if (y < 0 || y >= h) |
809 |
|
✗ |
return w - 1 - x; |
810 |
|
|
|
811 |
|
✗ |
return mod(x, w); |
812 |
|
|
} |
813 |
|
|
|
814 |
|
|
/** |
815 |
|
|
* Convert char to corresponding direction. |
816 |
|
|
* Used for cubemap options. |
817 |
|
|
*/ |
818 |
|
✗ |
static int get_direction(char c) |
819 |
|
|
{ |
820 |
|
✗ |
switch (c) { |
821 |
|
✗ |
case 'r': |
822 |
|
✗ |
return RIGHT; |
823 |
|
✗ |
case 'l': |
824 |
|
✗ |
return LEFT; |
825 |
|
✗ |
case 'u': |
826 |
|
✗ |
return UP; |
827 |
|
✗ |
case 'd': |
828 |
|
✗ |
return DOWN; |
829 |
|
✗ |
case 'f': |
830 |
|
✗ |
return FRONT; |
831 |
|
✗ |
case 'b': |
832 |
|
✗ |
return BACK; |
833 |
|
✗ |
default: |
834 |
|
✗ |
return -1; |
835 |
|
|
} |
836 |
|
|
} |
837 |
|
|
|
838 |
|
|
/** |
839 |
|
|
* Convert char to corresponding rotation angle. |
840 |
|
|
* Used for cubemap options. |
841 |
|
|
*/ |
842 |
|
✗ |
static int get_rotation(char c) |
843 |
|
|
{ |
844 |
|
✗ |
switch (c) { |
845 |
|
✗ |
case '0': |
846 |
|
✗ |
return ROT_0; |
847 |
|
✗ |
case '1': |
848 |
|
✗ |
return ROT_90; |
849 |
|
✗ |
case '2': |
850 |
|
✗ |
return ROT_180; |
851 |
|
✗ |
case '3': |
852 |
|
✗ |
return ROT_270; |
853 |
|
✗ |
default: |
854 |
|
✗ |
return -1; |
855 |
|
|
} |
856 |
|
|
} |
857 |
|
|
|
858 |
|
|
/** |
859 |
|
|
* Convert char to corresponding rotation order. |
860 |
|
|
*/ |
861 |
|
✗ |
static int get_rorder(char c) |
862 |
|
|
{ |
863 |
|
✗ |
switch (c) { |
864 |
|
✗ |
case 'Y': |
865 |
|
|
case 'y': |
866 |
|
✗ |
return YAW; |
867 |
|
✗ |
case 'P': |
868 |
|
|
case 'p': |
869 |
|
✗ |
return PITCH; |
870 |
|
✗ |
case 'R': |
871 |
|
|
case 'r': |
872 |
|
✗ |
return ROLL; |
873 |
|
✗ |
default: |
874 |
|
✗ |
return -1; |
875 |
|
|
} |
876 |
|
|
} |
877 |
|
|
|
878 |
|
|
/** |
879 |
|
|
* Prepare data for processing cubemap input format. |
880 |
|
|
* |
881 |
|
|
* @param ctx filter context |
882 |
|
|
* |
883 |
|
|
* @return error code |
884 |
|
|
*/ |
885 |
|
✗ |
static int prepare_cube_in(AVFilterContext *ctx) |
886 |
|
|
{ |
887 |
|
✗ |
V360Context *s = ctx->priv; |
888 |
|
|
|
889 |
|
✗ |
for (int face = 0; face < NB_FACES; face++) { |
890 |
|
✗ |
const char c = s->in_forder[face]; |
891 |
|
|
int direction; |
892 |
|
|
|
893 |
|
✗ |
if (c == '\0') { |
894 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, |
895 |
|
|
"Incomplete in_forder option. Direction for all 6 faces should be specified.\n"); |
896 |
|
✗ |
return AVERROR(EINVAL); |
897 |
|
|
} |
898 |
|
|
|
899 |
|
✗ |
direction = get_direction(c); |
900 |
|
✗ |
if (direction == -1) { |
901 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, |
902 |
|
|
"Incorrect direction symbol '%c' in in_forder option.\n", c); |
903 |
|
✗ |
return AVERROR(EINVAL); |
904 |
|
|
} |
905 |
|
|
|
906 |
|
✗ |
s->in_cubemap_face_order[direction] = face; |
907 |
|
|
} |
908 |
|
|
|
909 |
|
✗ |
for (int face = 0; face < NB_FACES; face++) { |
910 |
|
✗ |
const char c = s->in_frot[face]; |
911 |
|
|
int rotation; |
912 |
|
|
|
913 |
|
✗ |
if (c == '\0') { |
914 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, |
915 |
|
|
"Incomplete in_frot option. Rotation for all 6 faces should be specified.\n"); |
916 |
|
✗ |
return AVERROR(EINVAL); |
917 |
|
|
} |
918 |
|
|
|
919 |
|
✗ |
rotation = get_rotation(c); |
920 |
|
✗ |
if (rotation == -1) { |
921 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, |
922 |
|
|
"Incorrect rotation symbol '%c' in in_frot option.\n", c); |
923 |
|
✗ |
return AVERROR(EINVAL); |
924 |
|
|
} |
925 |
|
|
|
926 |
|
✗ |
s->in_cubemap_face_rotation[face] = rotation; |
927 |
|
|
} |
928 |
|
|
|
929 |
|
✗ |
return 0; |
930 |
|
|
} |
931 |
|
|
|
932 |
|
|
/** |
933 |
|
|
* Prepare data for processing cubemap output format. |
934 |
|
|
* |
935 |
|
|
* @param ctx filter context |
936 |
|
|
* |
937 |
|
|
* @return error code |
938 |
|
|
*/ |
939 |
|
✗ |
static int prepare_cube_out(AVFilterContext *ctx) |
940 |
|
|
{ |
941 |
|
✗ |
V360Context *s = ctx->priv; |
942 |
|
|
|
943 |
|
✗ |
for (int face = 0; face < NB_FACES; face++) { |
944 |
|
✗ |
const char c = s->out_forder[face]; |
945 |
|
|
int direction; |
946 |
|
|
|
947 |
|
✗ |
if (c == '\0') { |
948 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, |
949 |
|
|
"Incomplete out_forder option. Direction for all 6 faces should be specified.\n"); |
950 |
|
✗ |
return AVERROR(EINVAL); |
951 |
|
|
} |
952 |
|
|
|
953 |
|
✗ |
direction = get_direction(c); |
954 |
|
✗ |
if (direction == -1) { |
955 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, |
956 |
|
|
"Incorrect direction symbol '%c' in out_forder option.\n", c); |
957 |
|
✗ |
return AVERROR(EINVAL); |
958 |
|
|
} |
959 |
|
|
|
960 |
|
✗ |
s->out_cubemap_direction_order[face] = direction; |
961 |
|
|
} |
962 |
|
|
|
963 |
|
✗ |
for (int face = 0; face < NB_FACES; face++) { |
964 |
|
✗ |
const char c = s->out_frot[face]; |
965 |
|
|
int rotation; |
966 |
|
|
|
967 |
|
✗ |
if (c == '\0') { |
968 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, |
969 |
|
|
"Incomplete out_frot option. Rotation for all 6 faces should be specified.\n"); |
970 |
|
✗ |
return AVERROR(EINVAL); |
971 |
|
|
} |
972 |
|
|
|
973 |
|
✗ |
rotation = get_rotation(c); |
974 |
|
✗ |
if (rotation == -1) { |
975 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, |
976 |
|
|
"Incorrect rotation symbol '%c' in out_frot option.\n", c); |
977 |
|
✗ |
return AVERROR(EINVAL); |
978 |
|
|
} |
979 |
|
|
|
980 |
|
✗ |
s->out_cubemap_face_rotation[face] = rotation; |
981 |
|
|
} |
982 |
|
|
|
983 |
|
✗ |
return 0; |
984 |
|
|
} |
985 |
|
|
|
986 |
|
✗ |
static inline void rotate_cube_face(float *uf, float *vf, int rotation) |
987 |
|
|
{ |
988 |
|
|
float tmp; |
989 |
|
|
|
990 |
|
✗ |
switch (rotation) { |
991 |
|
✗ |
case ROT_0: |
992 |
|
✗ |
break; |
993 |
|
✗ |
case ROT_90: |
994 |
|
✗ |
tmp = *uf; |
995 |
|
✗ |
*uf = -*vf; |
996 |
|
✗ |
*vf = tmp; |
997 |
|
✗ |
break; |
998 |
|
✗ |
case ROT_180: |
999 |
|
✗ |
*uf = -*uf; |
1000 |
|
✗ |
*vf = -*vf; |
1001 |
|
✗ |
break; |
1002 |
|
✗ |
case ROT_270: |
1003 |
|
✗ |
tmp = -*uf; |
1004 |
|
✗ |
*uf = *vf; |
1005 |
|
✗ |
*vf = tmp; |
1006 |
|
✗ |
break; |
1007 |
|
✗ |
default: |
1008 |
|
✗ |
av_assert0(0); |
1009 |
|
|
} |
1010 |
|
✗ |
} |
1011 |
|
|
|
1012 |
|
✗ |
static inline void rotate_cube_face_inverse(float *uf, float *vf, int rotation) |
1013 |
|
|
{ |
1014 |
|
|
float tmp; |
1015 |
|
|
|
1016 |
|
✗ |
switch (rotation) { |
1017 |
|
✗ |
case ROT_0: |
1018 |
|
✗ |
break; |
1019 |
|
✗ |
case ROT_90: |
1020 |
|
✗ |
tmp = -*uf; |
1021 |
|
✗ |
*uf = *vf; |
1022 |
|
✗ |
*vf = tmp; |
1023 |
|
✗ |
break; |
1024 |
|
✗ |
case ROT_180: |
1025 |
|
✗ |
*uf = -*uf; |
1026 |
|
✗ |
*vf = -*vf; |
1027 |
|
✗ |
break; |
1028 |
|
✗ |
case ROT_270: |
1029 |
|
✗ |
tmp = *uf; |
1030 |
|
✗ |
*uf = -*vf; |
1031 |
|
✗ |
*vf = tmp; |
1032 |
|
✗ |
break; |
1033 |
|
✗ |
default: |
1034 |
|
✗ |
av_assert0(0); |
1035 |
|
|
} |
1036 |
|
✗ |
} |
1037 |
|
|
|
1038 |
|
|
/** |
1039 |
|
|
* Offset vector. |
1040 |
|
|
* |
1041 |
|
|
* @param vec vector |
1042 |
|
|
*/ |
1043 |
|
✗ |
static void offset_vector(float *vec, float h_offset, float v_offset) |
1044 |
|
|
{ |
1045 |
|
✗ |
vec[0] += h_offset; |
1046 |
|
✗ |
vec[1] += v_offset; |
1047 |
|
✗ |
} |
1048 |
|
|
|
1049 |
|
|
/** |
1050 |
|
|
* Normalize vector. |
1051 |
|
|
* |
1052 |
|
|
* @param vec vector |
1053 |
|
|
*/ |
1054 |
|
✗ |
static void normalize_vector(float *vec) |
1055 |
|
|
{ |
1056 |
|
✗ |
const float norm = sqrtf(vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]); |
1057 |
|
|
|
1058 |
|
✗ |
vec[0] /= norm; |
1059 |
|
✗ |
vec[1] /= norm; |
1060 |
|
✗ |
vec[2] /= norm; |
1061 |
|
✗ |
} |
1062 |
|
|
|
1063 |
|
|
/** |
1064 |
|
|
* Calculate 3D coordinates on sphere for corresponding cubemap position. |
1065 |
|
|
* Common operation for every cubemap. |
1066 |
|
|
* |
1067 |
|
|
* @param s filter private context |
1068 |
|
|
* @param uf horizontal cubemap coordinate [0, 1) |
1069 |
|
|
* @param vf vertical cubemap coordinate [0, 1) |
1070 |
|
|
* @param face face of cubemap |
1071 |
|
|
* @param vec coordinates on sphere |
1072 |
|
|
* @param scalew scale for uf |
1073 |
|
|
* @param scaleh scale for vf |
1074 |
|
|
*/ |
1075 |
|
✗ |
static void cube_to_xyz(const V360Context *s, |
1076 |
|
|
float uf, float vf, int face, |
1077 |
|
|
float *vec, float scalew, float scaleh) |
1078 |
|
|
{ |
1079 |
|
✗ |
const int direction = s->out_cubemap_direction_order[face]; |
1080 |
|
|
float l_x, l_y, l_z; |
1081 |
|
|
|
1082 |
|
✗ |
uf /= scalew; |
1083 |
|
✗ |
vf /= scaleh; |
1084 |
|
|
|
1085 |
|
✗ |
rotate_cube_face_inverse(&uf, &vf, s->out_cubemap_face_rotation[face]); |
1086 |
|
|
|
1087 |
|
✗ |
switch (direction) { |
1088 |
|
✗ |
case RIGHT: |
1089 |
|
✗ |
l_x = 1.f; |
1090 |
|
✗ |
l_y = vf; |
1091 |
|
✗ |
l_z = -uf; |
1092 |
|
✗ |
break; |
1093 |
|
✗ |
case LEFT: |
1094 |
|
✗ |
l_x = -1.f; |
1095 |
|
✗ |
l_y = vf; |
1096 |
|
✗ |
l_z = uf; |
1097 |
|
✗ |
break; |
1098 |
|
✗ |
case UP: |
1099 |
|
✗ |
l_x = uf; |
1100 |
|
✗ |
l_y = -1.f; |
1101 |
|
✗ |
l_z = vf; |
1102 |
|
✗ |
break; |
1103 |
|
✗ |
case DOWN: |
1104 |
|
✗ |
l_x = uf; |
1105 |
|
✗ |
l_y = 1.f; |
1106 |
|
✗ |
l_z = -vf; |
1107 |
|
✗ |
break; |
1108 |
|
✗ |
case FRONT: |
1109 |
|
✗ |
l_x = uf; |
1110 |
|
✗ |
l_y = vf; |
1111 |
|
✗ |
l_z = 1.f; |
1112 |
|
✗ |
break; |
1113 |
|
✗ |
case BACK: |
1114 |
|
✗ |
l_x = -uf; |
1115 |
|
✗ |
l_y = vf; |
1116 |
|
✗ |
l_z = -1.f; |
1117 |
|
✗ |
break; |
1118 |
|
✗ |
default: |
1119 |
|
✗ |
av_assert0(0); |
1120 |
|
|
} |
1121 |
|
|
|
1122 |
|
✗ |
vec[0] = l_x; |
1123 |
|
✗ |
vec[1] = l_y; |
1124 |
|
✗ |
vec[2] = l_z; |
1125 |
|
✗ |
} |
1126 |
|
|
|
1127 |
|
|
/** |
1128 |
|
|
* Calculate cubemap position for corresponding 3D coordinates on sphere. |
1129 |
|
|
* Common operation for every cubemap. |
1130 |
|
|
* |
1131 |
|
|
* @param s filter private context |
1132 |
|
|
* @param vec coordinated on sphere |
1133 |
|
|
* @param uf horizontal cubemap coordinate [0, 1) |
1134 |
|
|
* @param vf vertical cubemap coordinate [0, 1) |
1135 |
|
|
* @param direction direction of view |
1136 |
|
|
*/ |
1137 |
|
✗ |
static void xyz_to_cube(const V360Context *s, |
1138 |
|
|
const float *vec, |
1139 |
|
|
float *uf, float *vf, int *direction) |
1140 |
|
|
{ |
1141 |
|
✗ |
const float phi = atan2f(vec[0], vec[2]); |
1142 |
|
✗ |
const float theta = asinf(vec[1]); |
1143 |
|
|
float phi_norm, theta_threshold; |
1144 |
|
|
int face; |
1145 |
|
|
|
1146 |
|
✗ |
if (phi >= -M_PI_4 && phi < M_PI_4) { |
1147 |
|
✗ |
*direction = FRONT; |
1148 |
|
✗ |
phi_norm = phi; |
1149 |
|
✗ |
} else if (phi >= -(M_PI_2 + M_PI_4) && phi < -M_PI_4) { |
1150 |
|
✗ |
*direction = LEFT; |
1151 |
|
✗ |
phi_norm = phi + M_PI_2; |
1152 |
|
✗ |
} else if (phi >= M_PI_4 && phi < M_PI_2 + M_PI_4) { |
1153 |
|
✗ |
*direction = RIGHT; |
1154 |
|
✗ |
phi_norm = phi - M_PI_2; |
1155 |
|
|
} else { |
1156 |
|
✗ |
*direction = BACK; |
1157 |
|
✗ |
phi_norm = phi + ((phi > 0.f) ? -M_PI : M_PI); |
1158 |
|
|
} |
1159 |
|
|
|
1160 |
|
✗ |
theta_threshold = atanf(cosf(phi_norm)); |
1161 |
|
✗ |
if (theta > theta_threshold) { |
1162 |
|
✗ |
*direction = DOWN; |
1163 |
|
✗ |
} else if (theta < -theta_threshold) { |
1164 |
|
✗ |
*direction = UP; |
1165 |
|
|
} |
1166 |
|
|
|
1167 |
|
✗ |
switch (*direction) { |
1168 |
|
✗ |
case RIGHT: |
1169 |
|
✗ |
*uf = -vec[2] / vec[0]; |
1170 |
|
✗ |
*vf = vec[1] / vec[0]; |
1171 |
|
✗ |
break; |
1172 |
|
✗ |
case LEFT: |
1173 |
|
✗ |
*uf = -vec[2] / vec[0]; |
1174 |
|
✗ |
*vf = -vec[1] / vec[0]; |
1175 |
|
✗ |
break; |
1176 |
|
✗ |
case UP: |
1177 |
|
✗ |
*uf = -vec[0] / vec[1]; |
1178 |
|
✗ |
*vf = -vec[2] / vec[1]; |
1179 |
|
✗ |
break; |
1180 |
|
✗ |
case DOWN: |
1181 |
|
✗ |
*uf = vec[0] / vec[1]; |
1182 |
|
✗ |
*vf = -vec[2] / vec[1]; |
1183 |
|
✗ |
break; |
1184 |
|
✗ |
case FRONT: |
1185 |
|
✗ |
*uf = vec[0] / vec[2]; |
1186 |
|
✗ |
*vf = vec[1] / vec[2]; |
1187 |
|
✗ |
break; |
1188 |
|
✗ |
case BACK: |
1189 |
|
✗ |
*uf = vec[0] / vec[2]; |
1190 |
|
✗ |
*vf = -vec[1] / vec[2]; |
1191 |
|
✗ |
break; |
1192 |
|
✗ |
default: |
1193 |
|
✗ |
av_assert0(0); |
1194 |
|
|
} |
1195 |
|
|
|
1196 |
|
✗ |
face = s->in_cubemap_face_order[*direction]; |
1197 |
|
✗ |
rotate_cube_face(uf, vf, s->in_cubemap_face_rotation[face]); |
1198 |
|
✗ |
} |
1199 |
|
|
|
1200 |
|
|
/** |
1201 |
|
|
* Find position on another cube face in case of overflow/underflow. |
1202 |
|
|
* Used for calculation of interpolation window. |
1203 |
|
|
* |
1204 |
|
|
* @param s filter private context |
1205 |
|
|
* @param uf horizontal cubemap coordinate |
1206 |
|
|
* @param vf vertical cubemap coordinate |
1207 |
|
|
* @param direction direction of view |
1208 |
|
|
* @param new_uf new horizontal cubemap coordinate |
1209 |
|
|
* @param new_vf new vertical cubemap coordinate |
1210 |
|
|
* @param face face position on cubemap |
1211 |
|
|
*/ |
1212 |
|
✗ |
static void process_cube_coordinates(const V360Context *s, |
1213 |
|
|
float uf, float vf, int direction, |
1214 |
|
|
float *new_uf, float *new_vf, int *face) |
1215 |
|
|
{ |
1216 |
|
|
/* |
1217 |
|
|
* Cubemap orientation |
1218 |
|
|
* |
1219 |
|
|
* width |
1220 |
|
|
* <-------> |
1221 |
|
|
* +-------+ |
1222 |
|
|
* | | U |
1223 |
|
|
* | up | h -------> |
1224 |
|
|
* +-------+-------+-------+-------+ ^ e | |
1225 |
|
|
* | | | | | | i V | |
1226 |
|
|
* | left | front | right | back | | g | |
1227 |
|
|
* +-------+-------+-------+-------+ v h v |
1228 |
|
|
* | | t |
1229 |
|
|
* | down | |
1230 |
|
|
* +-------+ |
1231 |
|
|
*/ |
1232 |
|
|
|
1233 |
|
✗ |
*face = s->in_cubemap_face_order[direction]; |
1234 |
|
✗ |
rotate_cube_face_inverse(&uf, &vf, s->in_cubemap_face_rotation[*face]); |
1235 |
|
|
|
1236 |
|
✗ |
if ((uf < -1.f || uf >= 1.f) && (vf < -1.f || vf >= 1.f)) { |
1237 |
|
|
// There are no pixels to use in this case |
1238 |
|
✗ |
*new_uf = uf; |
1239 |
|
✗ |
*new_vf = vf; |
1240 |
|
✗ |
} else if (uf < -1.f) { |
1241 |
|
✗ |
uf += 2.f; |
1242 |
|
✗ |
switch (direction) { |
1243 |
|
✗ |
case RIGHT: |
1244 |
|
✗ |
direction = FRONT; |
1245 |
|
✗ |
*new_uf = uf; |
1246 |
|
✗ |
*new_vf = vf; |
1247 |
|
✗ |
break; |
1248 |
|
✗ |
case LEFT: |
1249 |
|
✗ |
direction = BACK; |
1250 |
|
✗ |
*new_uf = uf; |
1251 |
|
✗ |
*new_vf = vf; |
1252 |
|
✗ |
break; |
1253 |
|
✗ |
case UP: |
1254 |
|
✗ |
direction = LEFT; |
1255 |
|
✗ |
*new_uf = vf; |
1256 |
|
✗ |
*new_vf = -uf; |
1257 |
|
✗ |
break; |
1258 |
|
✗ |
case DOWN: |
1259 |
|
✗ |
direction = LEFT; |
1260 |
|
✗ |
*new_uf = -vf; |
1261 |
|
✗ |
*new_vf = uf; |
1262 |
|
✗ |
break; |
1263 |
|
✗ |
case FRONT: |
1264 |
|
✗ |
direction = LEFT; |
1265 |
|
✗ |
*new_uf = uf; |
1266 |
|
✗ |
*new_vf = vf; |
1267 |
|
✗ |
break; |
1268 |
|
✗ |
case BACK: |
1269 |
|
✗ |
direction = RIGHT; |
1270 |
|
✗ |
*new_uf = uf; |
1271 |
|
✗ |
*new_vf = vf; |
1272 |
|
✗ |
break; |
1273 |
|
✗ |
default: |
1274 |
|
✗ |
av_assert0(0); |
1275 |
|
|
} |
1276 |
|
✗ |
} else if (uf >= 1.f) { |
1277 |
|
✗ |
uf -= 2.f; |
1278 |
|
✗ |
switch (direction) { |
1279 |
|
✗ |
case RIGHT: |
1280 |
|
✗ |
direction = BACK; |
1281 |
|
✗ |
*new_uf = uf; |
1282 |
|
✗ |
*new_vf = vf; |
1283 |
|
✗ |
break; |
1284 |
|
✗ |
case LEFT: |
1285 |
|
✗ |
direction = FRONT; |
1286 |
|
✗ |
*new_uf = uf; |
1287 |
|
✗ |
*new_vf = vf; |
1288 |
|
✗ |
break; |
1289 |
|
✗ |
case UP: |
1290 |
|
✗ |
direction = RIGHT; |
1291 |
|
✗ |
*new_uf = -vf; |
1292 |
|
✗ |
*new_vf = uf; |
1293 |
|
✗ |
break; |
1294 |
|
✗ |
case DOWN: |
1295 |
|
✗ |
direction = RIGHT; |
1296 |
|
✗ |
*new_uf = vf; |
1297 |
|
✗ |
*new_vf = -uf; |
1298 |
|
✗ |
break; |
1299 |
|
✗ |
case FRONT: |
1300 |
|
✗ |
direction = RIGHT; |
1301 |
|
✗ |
*new_uf = uf; |
1302 |
|
✗ |
*new_vf = vf; |
1303 |
|
✗ |
break; |
1304 |
|
✗ |
case BACK: |
1305 |
|
✗ |
direction = LEFT; |
1306 |
|
✗ |
*new_uf = uf; |
1307 |
|
✗ |
*new_vf = vf; |
1308 |
|
✗ |
break; |
1309 |
|
✗ |
default: |
1310 |
|
✗ |
av_assert0(0); |
1311 |
|
|
} |
1312 |
|
✗ |
} else if (vf < -1.f) { |
1313 |
|
✗ |
vf += 2.f; |
1314 |
|
✗ |
switch (direction) { |
1315 |
|
✗ |
case RIGHT: |
1316 |
|
✗ |
direction = UP; |
1317 |
|
✗ |
*new_uf = vf; |
1318 |
|
✗ |
*new_vf = -uf; |
1319 |
|
✗ |
break; |
1320 |
|
✗ |
case LEFT: |
1321 |
|
✗ |
direction = UP; |
1322 |
|
✗ |
*new_uf = -vf; |
1323 |
|
✗ |
*new_vf = uf; |
1324 |
|
✗ |
break; |
1325 |
|
✗ |
case UP: |
1326 |
|
✗ |
direction = BACK; |
1327 |
|
✗ |
*new_uf = -uf; |
1328 |
|
✗ |
*new_vf = -vf; |
1329 |
|
✗ |
break; |
1330 |
|
✗ |
case DOWN: |
1331 |
|
✗ |
direction = FRONT; |
1332 |
|
✗ |
*new_uf = uf; |
1333 |
|
✗ |
*new_vf = vf; |
1334 |
|
✗ |
break; |
1335 |
|
✗ |
case FRONT: |
1336 |
|
✗ |
direction = UP; |
1337 |
|
✗ |
*new_uf = uf; |
1338 |
|
✗ |
*new_vf = vf; |
1339 |
|
✗ |
break; |
1340 |
|
✗ |
case BACK: |
1341 |
|
✗ |
direction = UP; |
1342 |
|
✗ |
*new_uf = -uf; |
1343 |
|
✗ |
*new_vf = -vf; |
1344 |
|
✗ |
break; |
1345 |
|
✗ |
default: |
1346 |
|
✗ |
av_assert0(0); |
1347 |
|
|
} |
1348 |
|
✗ |
} else if (vf >= 1.f) { |
1349 |
|
✗ |
vf -= 2.f; |
1350 |
|
✗ |
switch (direction) { |
1351 |
|
✗ |
case RIGHT: |
1352 |
|
✗ |
direction = DOWN; |
1353 |
|
✗ |
*new_uf = -vf; |
1354 |
|
✗ |
*new_vf = uf; |
1355 |
|
✗ |
break; |
1356 |
|
✗ |
case LEFT: |
1357 |
|
✗ |
direction = DOWN; |
1358 |
|
✗ |
*new_uf = vf; |
1359 |
|
✗ |
*new_vf = -uf; |
1360 |
|
✗ |
break; |
1361 |
|
✗ |
case UP: |
1362 |
|
✗ |
direction = FRONT; |
1363 |
|
✗ |
*new_uf = uf; |
1364 |
|
✗ |
*new_vf = vf; |
1365 |
|
✗ |
break; |
1366 |
|
✗ |
case DOWN: |
1367 |
|
✗ |
direction = BACK; |
1368 |
|
✗ |
*new_uf = -uf; |
1369 |
|
✗ |
*new_vf = -vf; |
1370 |
|
✗ |
break; |
1371 |
|
✗ |
case FRONT: |
1372 |
|
✗ |
direction = DOWN; |
1373 |
|
✗ |
*new_uf = uf; |
1374 |
|
✗ |
*new_vf = vf; |
1375 |
|
✗ |
break; |
1376 |
|
✗ |
case BACK: |
1377 |
|
✗ |
direction = DOWN; |
1378 |
|
✗ |
*new_uf = -uf; |
1379 |
|
✗ |
*new_vf = -vf; |
1380 |
|
✗ |
break; |
1381 |
|
✗ |
default: |
1382 |
|
✗ |
av_assert0(0); |
1383 |
|
|
} |
1384 |
|
|
} else { |
1385 |
|
|
// Inside cube face |
1386 |
|
✗ |
*new_uf = uf; |
1387 |
|
✗ |
*new_vf = vf; |
1388 |
|
|
} |
1389 |
|
|
|
1390 |
|
✗ |
*face = s->in_cubemap_face_order[direction]; |
1391 |
|
✗ |
rotate_cube_face(new_uf, new_vf, s->in_cubemap_face_rotation[*face]); |
1392 |
|
✗ |
} |
1393 |
|
|
|
1394 |
|
✗ |
static av_always_inline float scale(float x, float s) |
1395 |
|
|
{ |
1396 |
|
✗ |
return (0.5f * x + 0.5f) * (s - 1.f); |
1397 |
|
|
} |
1398 |
|
|
|
1399 |
|
✗ |
static av_always_inline float rescale(int x, float s) |
1400 |
|
|
{ |
1401 |
|
✗ |
return (2.f * x + 1.f) / s - 1.f; |
1402 |
|
|
} |
1403 |
|
|
|
1404 |
|
|
/** |
1405 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in cubemap3x2 format. |
1406 |
|
|
* |
1407 |
|
|
* @param s filter private context |
1408 |
|
|
* @param i horizontal position on frame [0, width) |
1409 |
|
|
* @param j vertical position on frame [0, height) |
1410 |
|
|
* @param width frame width |
1411 |
|
|
* @param height frame height |
1412 |
|
|
* @param vec coordinates on sphere |
1413 |
|
|
*/ |
1414 |
|
✗ |
static int cube3x2_to_xyz(const V360Context *s, |
1415 |
|
|
int i, int j, int width, int height, |
1416 |
|
|
float *vec) |
1417 |
|
|
{ |
1418 |
|
✗ |
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 3.f) : 1.f - s->out_pad; |
1419 |
|
✗ |
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 2.f) : 1.f - s->out_pad; |
1420 |
|
|
|
1421 |
|
✗ |
const float ew = width / 3.f; |
1422 |
|
✗ |
const float eh = height / 2.f; |
1423 |
|
|
|
1424 |
|
✗ |
const int u_face = floorf(i / ew); |
1425 |
|
✗ |
const int v_face = floorf(j / eh); |
1426 |
|
✗ |
const int face = u_face + 3 * v_face; |
1427 |
|
|
|
1428 |
|
✗ |
const int u_shift = ceilf(ew * u_face); |
1429 |
|
✗ |
const int v_shift = ceilf(eh * v_face); |
1430 |
|
✗ |
const int ewi = ceilf(ew * (u_face + 1)) - u_shift; |
1431 |
|
✗ |
const int ehi = ceilf(eh * (v_face + 1)) - v_shift; |
1432 |
|
|
|
1433 |
|
✗ |
const float uf = rescale(i - u_shift, ewi); |
1434 |
|
✗ |
const float vf = rescale(j - v_shift, ehi); |
1435 |
|
|
|
1436 |
|
✗ |
cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh); |
1437 |
|
|
|
1438 |
|
✗ |
return 1; |
1439 |
|
|
} |
1440 |
|
|
|
1441 |
|
|
/** |
1442 |
|
|
* Calculate frame position in cubemap3x2 format for corresponding 3D coordinates on sphere. |
1443 |
|
|
* |
1444 |
|
|
* @param s filter private context |
1445 |
|
|
* @param vec coordinates on sphere |
1446 |
|
|
* @param width frame width |
1447 |
|
|
* @param height frame height |
1448 |
|
|
* @param us horizontal coordinates for interpolation window |
1449 |
|
|
* @param vs vertical coordinates for interpolation window |
1450 |
|
|
* @param du horizontal relative coordinate |
1451 |
|
|
* @param dv vertical relative coordinate |
1452 |
|
|
*/ |
1453 |
|
✗ |
static int xyz_to_cube3x2(const V360Context *s, |
1454 |
|
|
const float *vec, int width, int height, |
1455 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
1456 |
|
|
{ |
1457 |
|
✗ |
const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 3.f) : 1.f - s->in_pad; |
1458 |
|
✗ |
const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 2.f) : 1.f - s->in_pad; |
1459 |
|
✗ |
const float ew = width / 3.f; |
1460 |
|
✗ |
const float eh = height / 2.f; |
1461 |
|
|
float uf, vf; |
1462 |
|
|
int ui, vi; |
1463 |
|
|
int ewi, ehi; |
1464 |
|
|
int direction, face; |
1465 |
|
|
int u_face, v_face; |
1466 |
|
|
|
1467 |
|
✗ |
xyz_to_cube(s, vec, &uf, &vf, &direction); |
1468 |
|
|
|
1469 |
|
✗ |
uf *= scalew; |
1470 |
|
✗ |
vf *= scaleh; |
1471 |
|
|
|
1472 |
|
✗ |
face = s->in_cubemap_face_order[direction]; |
1473 |
|
✗ |
u_face = face % 3; |
1474 |
|
✗ |
v_face = face / 3; |
1475 |
|
✗ |
ewi = ceilf(ew * (u_face + 1)) - ceilf(ew * u_face); |
1476 |
|
✗ |
ehi = ceilf(eh * (v_face + 1)) - ceilf(eh * v_face); |
1477 |
|
|
|
1478 |
|
✗ |
uf = 0.5f * ewi * (uf + 1.f) - 0.5f; |
1479 |
|
✗ |
vf = 0.5f * ehi * (vf + 1.f) - 0.5f; |
1480 |
|
|
|
1481 |
|
✗ |
ui = floorf(uf); |
1482 |
|
✗ |
vi = floorf(vf); |
1483 |
|
|
|
1484 |
|
✗ |
*du = uf - ui; |
1485 |
|
✗ |
*dv = vf - vi; |
1486 |
|
|
|
1487 |
|
✗ |
for (int i = 0; i < 4; i++) { |
1488 |
|
✗ |
for (int j = 0; j < 4; j++) { |
1489 |
|
✗ |
int new_ui = ui + j - 1; |
1490 |
|
✗ |
int new_vi = vi + i - 1; |
1491 |
|
|
int u_shift, v_shift; |
1492 |
|
|
int new_ewi, new_ehi; |
1493 |
|
|
|
1494 |
|
✗ |
if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) { |
1495 |
|
✗ |
face = s->in_cubemap_face_order[direction]; |
1496 |
|
|
|
1497 |
|
✗ |
u_face = face % 3; |
1498 |
|
✗ |
v_face = face / 3; |
1499 |
|
✗ |
u_shift = ceilf(ew * u_face); |
1500 |
|
✗ |
v_shift = ceilf(eh * v_face); |
1501 |
|
|
} else { |
1502 |
|
✗ |
uf = 2.f * new_ui / ewi - 1.f; |
1503 |
|
✗ |
vf = 2.f * new_vi / ehi - 1.f; |
1504 |
|
|
|
1505 |
|
✗ |
uf /= scalew; |
1506 |
|
✗ |
vf /= scaleh; |
1507 |
|
|
|
1508 |
|
✗ |
process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face); |
1509 |
|
|
|
1510 |
|
✗ |
uf *= scalew; |
1511 |
|
✗ |
vf *= scaleh; |
1512 |
|
|
|
1513 |
|
✗ |
u_face = face % 3; |
1514 |
|
✗ |
v_face = face / 3; |
1515 |
|
✗ |
u_shift = ceilf(ew * u_face); |
1516 |
|
✗ |
v_shift = ceilf(eh * v_face); |
1517 |
|
✗ |
new_ewi = ceilf(ew * (u_face + 1)) - u_shift; |
1518 |
|
✗ |
new_ehi = ceilf(eh * (v_face + 1)) - v_shift; |
1519 |
|
|
|
1520 |
|
✗ |
new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1); |
1521 |
|
✗ |
new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1); |
1522 |
|
|
} |
1523 |
|
|
|
1524 |
|
✗ |
us[i][j] = u_shift + new_ui; |
1525 |
|
✗ |
vs[i][j] = v_shift + new_vi; |
1526 |
|
|
} |
1527 |
|
|
} |
1528 |
|
|
|
1529 |
|
✗ |
return 1; |
1530 |
|
|
} |
1531 |
|
|
|
1532 |
|
|
/** |
1533 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in cubemap1x6 format. |
1534 |
|
|
* |
1535 |
|
|
* @param s filter private context |
1536 |
|
|
* @param i horizontal position on frame [0, width) |
1537 |
|
|
* @param j vertical position on frame [0, height) |
1538 |
|
|
* @param width frame width |
1539 |
|
|
* @param height frame height |
1540 |
|
|
* @param vec coordinates on sphere |
1541 |
|
|
*/ |
1542 |
|
✗ |
static int cube1x6_to_xyz(const V360Context *s, |
1543 |
|
|
int i, int j, int width, int height, |
1544 |
|
|
float *vec) |
1545 |
|
|
{ |
1546 |
|
✗ |
const float scalew = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / width : 1.f - s->out_pad; |
1547 |
|
✗ |
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 6.f) : 1.f - s->out_pad; |
1548 |
|
|
|
1549 |
|
✗ |
const float ew = width; |
1550 |
|
✗ |
const float eh = height / 6.f; |
1551 |
|
|
|
1552 |
|
✗ |
const int face = floorf(j / eh); |
1553 |
|
|
|
1554 |
|
✗ |
const int v_shift = ceilf(eh * face); |
1555 |
|
✗ |
const int ehi = ceilf(eh * (face + 1)) - v_shift; |
1556 |
|
|
|
1557 |
|
✗ |
const float uf = rescale(i, ew); |
1558 |
|
✗ |
const float vf = rescale(j - v_shift, ehi); |
1559 |
|
|
|
1560 |
|
✗ |
cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh); |
1561 |
|
|
|
1562 |
|
✗ |
return 1; |
1563 |
|
|
} |
1564 |
|
|
|
1565 |
|
|
/** |
1566 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in cubemap6x1 format. |
1567 |
|
|
* |
1568 |
|
|
* @param s filter private context |
1569 |
|
|
* @param i horizontal position on frame [0, width) |
1570 |
|
|
* @param j vertical position on frame [0, height) |
1571 |
|
|
* @param width frame width |
1572 |
|
|
* @param height frame height |
1573 |
|
|
* @param vec coordinates on sphere |
1574 |
|
|
*/ |
1575 |
|
✗ |
static int cube6x1_to_xyz(const V360Context *s, |
1576 |
|
|
int i, int j, int width, int height, |
1577 |
|
|
float *vec) |
1578 |
|
|
{ |
1579 |
|
✗ |
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 6.f) : 1.f - s->out_pad; |
1580 |
|
✗ |
const float scaleh = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / height : 1.f - s->out_pad; |
1581 |
|
|
|
1582 |
|
✗ |
const float ew = width / 6.f; |
1583 |
|
✗ |
const float eh = height; |
1584 |
|
|
|
1585 |
|
✗ |
const int face = floorf(i / ew); |
1586 |
|
|
|
1587 |
|
✗ |
const int u_shift = ceilf(ew * face); |
1588 |
|
✗ |
const int ewi = ceilf(ew * (face + 1)) - u_shift; |
1589 |
|
|
|
1590 |
|
✗ |
const float uf = rescale(i - u_shift, ewi); |
1591 |
|
✗ |
const float vf = rescale(j, eh); |
1592 |
|
|
|
1593 |
|
✗ |
cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh); |
1594 |
|
|
|
1595 |
|
✗ |
return 1; |
1596 |
|
|
} |
1597 |
|
|
|
1598 |
|
|
/** |
1599 |
|
|
* Calculate frame position in cubemap1x6 format for corresponding 3D coordinates on sphere. |
1600 |
|
|
* |
1601 |
|
|
* @param s filter private context |
1602 |
|
|
* @param vec coordinates on sphere |
1603 |
|
|
* @param width frame width |
1604 |
|
|
* @param height frame height |
1605 |
|
|
* @param us horizontal coordinates for interpolation window |
1606 |
|
|
* @param vs vertical coordinates for interpolation window |
1607 |
|
|
* @param du horizontal relative coordinate |
1608 |
|
|
* @param dv vertical relative coordinate |
1609 |
|
|
*/ |
1610 |
|
✗ |
static int xyz_to_cube1x6(const V360Context *s, |
1611 |
|
|
const float *vec, int width, int height, |
1612 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
1613 |
|
|
{ |
1614 |
|
✗ |
const float scalew = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / width : 1.f - s->in_pad; |
1615 |
|
✗ |
const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 6.f) : 1.f - s->in_pad; |
1616 |
|
✗ |
const float eh = height / 6.f; |
1617 |
|
✗ |
const int ewi = width; |
1618 |
|
|
float uf, vf; |
1619 |
|
|
int ui, vi; |
1620 |
|
|
int ehi; |
1621 |
|
|
int direction, face; |
1622 |
|
|
|
1623 |
|
✗ |
xyz_to_cube(s, vec, &uf, &vf, &direction); |
1624 |
|
|
|
1625 |
|
✗ |
uf *= scalew; |
1626 |
|
✗ |
vf *= scaleh; |
1627 |
|
|
|
1628 |
|
✗ |
face = s->in_cubemap_face_order[direction]; |
1629 |
|
✗ |
ehi = ceilf(eh * (face + 1)) - ceilf(eh * face); |
1630 |
|
|
|
1631 |
|
✗ |
uf = 0.5f * ewi * (uf + 1.f) - 0.5f; |
1632 |
|
✗ |
vf = 0.5f * ehi * (vf + 1.f) - 0.5f; |
1633 |
|
|
|
1634 |
|
✗ |
ui = floorf(uf); |
1635 |
|
✗ |
vi = floorf(vf); |
1636 |
|
|
|
1637 |
|
✗ |
*du = uf - ui; |
1638 |
|
✗ |
*dv = vf - vi; |
1639 |
|
|
|
1640 |
|
✗ |
for (int i = 0; i < 4; i++) { |
1641 |
|
✗ |
for (int j = 0; j < 4; j++) { |
1642 |
|
✗ |
int new_ui = ui + j - 1; |
1643 |
|
✗ |
int new_vi = vi + i - 1; |
1644 |
|
|
int v_shift; |
1645 |
|
|
int new_ehi; |
1646 |
|
|
|
1647 |
|
✗ |
if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) { |
1648 |
|
✗ |
face = s->in_cubemap_face_order[direction]; |
1649 |
|
|
|
1650 |
|
✗ |
v_shift = ceilf(eh * face); |
1651 |
|
|
} else { |
1652 |
|
✗ |
uf = 2.f * new_ui / ewi - 1.f; |
1653 |
|
✗ |
vf = 2.f * new_vi / ehi - 1.f; |
1654 |
|
|
|
1655 |
|
✗ |
uf /= scalew; |
1656 |
|
✗ |
vf /= scaleh; |
1657 |
|
|
|
1658 |
|
✗ |
process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face); |
1659 |
|
|
|
1660 |
|
✗ |
uf *= scalew; |
1661 |
|
✗ |
vf *= scaleh; |
1662 |
|
|
|
1663 |
|
✗ |
v_shift = ceilf(eh * face); |
1664 |
|
✗ |
new_ehi = ceilf(eh * (face + 1)) - v_shift; |
1665 |
|
|
|
1666 |
|
✗ |
new_ui = av_clip(lrintf(0.5f * ewi * (uf + 1.f)), 0, ewi - 1); |
1667 |
|
✗ |
new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1); |
1668 |
|
|
} |
1669 |
|
|
|
1670 |
|
✗ |
us[i][j] = new_ui; |
1671 |
|
✗ |
vs[i][j] = v_shift + new_vi; |
1672 |
|
|
} |
1673 |
|
|
} |
1674 |
|
|
|
1675 |
|
✗ |
return 1; |
1676 |
|
|
} |
1677 |
|
|
|
1678 |
|
|
/** |
1679 |
|
|
* Calculate frame position in cubemap6x1 format for corresponding 3D coordinates on sphere. |
1680 |
|
|
* |
1681 |
|
|
* @param s filter private context |
1682 |
|
|
* @param vec coordinates on sphere |
1683 |
|
|
* @param width frame width |
1684 |
|
|
* @param height frame height |
1685 |
|
|
* @param us horizontal coordinates for interpolation window |
1686 |
|
|
* @param vs vertical coordinates for interpolation window |
1687 |
|
|
* @param du horizontal relative coordinate |
1688 |
|
|
* @param dv vertical relative coordinate |
1689 |
|
|
*/ |
1690 |
|
✗ |
static int xyz_to_cube6x1(const V360Context *s, |
1691 |
|
|
const float *vec, int width, int height, |
1692 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
1693 |
|
|
{ |
1694 |
|
✗ |
const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 6.f) : 1.f - s->in_pad; |
1695 |
|
✗ |
const float scaleh = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / height : 1.f - s->in_pad; |
1696 |
|
✗ |
const float ew = width / 6.f; |
1697 |
|
✗ |
const int ehi = height; |
1698 |
|
|
float uf, vf; |
1699 |
|
|
int ui, vi; |
1700 |
|
|
int ewi; |
1701 |
|
|
int direction, face; |
1702 |
|
|
|
1703 |
|
✗ |
xyz_to_cube(s, vec, &uf, &vf, &direction); |
1704 |
|
|
|
1705 |
|
✗ |
uf *= scalew; |
1706 |
|
✗ |
vf *= scaleh; |
1707 |
|
|
|
1708 |
|
✗ |
face = s->in_cubemap_face_order[direction]; |
1709 |
|
✗ |
ewi = ceilf(ew * (face + 1)) - ceilf(ew * face); |
1710 |
|
|
|
1711 |
|
✗ |
uf = 0.5f * ewi * (uf + 1.f) - 0.5f; |
1712 |
|
✗ |
vf = 0.5f * ehi * (vf + 1.f) - 0.5f; |
1713 |
|
|
|
1714 |
|
✗ |
ui = floorf(uf); |
1715 |
|
✗ |
vi = floorf(vf); |
1716 |
|
|
|
1717 |
|
✗ |
*du = uf - ui; |
1718 |
|
✗ |
*dv = vf - vi; |
1719 |
|
|
|
1720 |
|
✗ |
for (int i = 0; i < 4; i++) { |
1721 |
|
✗ |
for (int j = 0; j < 4; j++) { |
1722 |
|
✗ |
int new_ui = ui + j - 1; |
1723 |
|
✗ |
int new_vi = vi + i - 1; |
1724 |
|
|
int u_shift; |
1725 |
|
|
int new_ewi; |
1726 |
|
|
|
1727 |
|
✗ |
if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) { |
1728 |
|
✗ |
face = s->in_cubemap_face_order[direction]; |
1729 |
|
|
|
1730 |
|
✗ |
u_shift = ceilf(ew * face); |
1731 |
|
|
} else { |
1732 |
|
✗ |
uf = 2.f * new_ui / ewi - 1.f; |
1733 |
|
✗ |
vf = 2.f * new_vi / ehi - 1.f; |
1734 |
|
|
|
1735 |
|
✗ |
uf /= scalew; |
1736 |
|
✗ |
vf /= scaleh; |
1737 |
|
|
|
1738 |
|
✗ |
process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face); |
1739 |
|
|
|
1740 |
|
✗ |
uf *= scalew; |
1741 |
|
✗ |
vf *= scaleh; |
1742 |
|
|
|
1743 |
|
✗ |
u_shift = ceilf(ew * face); |
1744 |
|
✗ |
new_ewi = ceilf(ew * (face + 1)) - u_shift; |
1745 |
|
|
|
1746 |
|
✗ |
new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1); |
1747 |
|
✗ |
new_vi = av_clip(lrintf(0.5f * ehi * (vf + 1.f)), 0, ehi - 1); |
1748 |
|
|
} |
1749 |
|
|
|
1750 |
|
✗ |
us[i][j] = u_shift + new_ui; |
1751 |
|
✗ |
vs[i][j] = new_vi; |
1752 |
|
|
} |
1753 |
|
|
} |
1754 |
|
|
|
1755 |
|
✗ |
return 1; |
1756 |
|
|
} |
1757 |
|
|
|
1758 |
|
|
/** |
1759 |
|
|
* Prepare data for processing equirectangular output format. |
1760 |
|
|
* |
1761 |
|
|
* @param ctx filter context |
1762 |
|
|
* |
1763 |
|
|
* @return error code |
1764 |
|
|
*/ |
1765 |
|
✗ |
static int prepare_equirect_out(AVFilterContext *ctx) |
1766 |
|
|
{ |
1767 |
|
✗ |
V360Context *s = ctx->priv; |
1768 |
|
|
|
1769 |
|
✗ |
s->flat_range[0] = s->h_fov * M_PI / 360.f; |
1770 |
|
✗ |
s->flat_range[1] = s->v_fov * M_PI / 360.f; |
1771 |
|
|
|
1772 |
|
✗ |
return 0; |
1773 |
|
|
} |
1774 |
|
|
|
1775 |
|
|
/** |
1776 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in equirectangular format. |
1777 |
|
|
* |
1778 |
|
|
* @param s filter private context |
1779 |
|
|
* @param i horizontal position on frame [0, width) |
1780 |
|
|
* @param j vertical position on frame [0, height) |
1781 |
|
|
* @param width frame width |
1782 |
|
|
* @param height frame height |
1783 |
|
|
* @param vec coordinates on sphere |
1784 |
|
|
*/ |
1785 |
|
✗ |
static int equirect_to_xyz(const V360Context *s, |
1786 |
|
|
int i, int j, int width, int height, |
1787 |
|
|
float *vec) |
1788 |
|
|
{ |
1789 |
|
✗ |
const float phi = rescale(i, width) * s->flat_range[0]; |
1790 |
|
✗ |
const float theta = rescale(j, height) * s->flat_range[1]; |
1791 |
|
|
|
1792 |
|
✗ |
const float sin_phi = sinf(phi); |
1793 |
|
✗ |
const float cos_phi = cosf(phi); |
1794 |
|
✗ |
const float sin_theta = sinf(theta); |
1795 |
|
✗ |
const float cos_theta = cosf(theta); |
1796 |
|
|
|
1797 |
|
✗ |
vec[0] = cos_theta * sin_phi; |
1798 |
|
✗ |
vec[1] = sin_theta; |
1799 |
|
✗ |
vec[2] = cos_theta * cos_phi; |
1800 |
|
|
|
1801 |
|
✗ |
return 1; |
1802 |
|
|
} |
1803 |
|
|
|
1804 |
|
|
/** |
1805 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in half equirectangular format. |
1806 |
|
|
* |
1807 |
|
|
* @param s filter private context |
1808 |
|
|
* @param i horizontal position on frame [0, width) |
1809 |
|
|
* @param j vertical position on frame [0, height) |
1810 |
|
|
* @param width frame width |
1811 |
|
|
* @param height frame height |
1812 |
|
|
* @param vec coordinates on sphere |
1813 |
|
|
*/ |
1814 |
|
✗ |
static int hequirect_to_xyz(const V360Context *s, |
1815 |
|
|
int i, int j, int width, int height, |
1816 |
|
|
float *vec) |
1817 |
|
|
{ |
1818 |
|
✗ |
const float phi = rescale(i, width) * M_PI_2; |
1819 |
|
✗ |
const float theta = rescale(j, height) * M_PI_2; |
1820 |
|
|
|
1821 |
|
✗ |
const float sin_phi = sinf(phi); |
1822 |
|
✗ |
const float cos_phi = cosf(phi); |
1823 |
|
✗ |
const float sin_theta = sinf(theta); |
1824 |
|
✗ |
const float cos_theta = cosf(theta); |
1825 |
|
|
|
1826 |
|
✗ |
vec[0] = cos_theta * sin_phi; |
1827 |
|
✗ |
vec[1] = sin_theta; |
1828 |
|
✗ |
vec[2] = cos_theta * cos_phi; |
1829 |
|
|
|
1830 |
|
✗ |
return 1; |
1831 |
|
|
} |
1832 |
|
|
|
1833 |
|
|
/** |
1834 |
|
|
* Prepare data for processing stereographic output format. |
1835 |
|
|
* |
1836 |
|
|
* @param ctx filter context |
1837 |
|
|
* |
1838 |
|
|
* @return error code |
1839 |
|
|
*/ |
1840 |
|
✗ |
static int prepare_stereographic_out(AVFilterContext *ctx) |
1841 |
|
|
{ |
1842 |
|
✗ |
V360Context *s = ctx->priv; |
1843 |
|
|
|
1844 |
|
✗ |
s->flat_range[0] = tanf(FFMIN(s->h_fov, 359.f) * M_PI / 720.f); |
1845 |
|
✗ |
s->flat_range[1] = tanf(FFMIN(s->v_fov, 359.f) * M_PI / 720.f); |
1846 |
|
|
|
1847 |
|
✗ |
return 0; |
1848 |
|
|
} |
1849 |
|
|
|
1850 |
|
|
/** |
1851 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in stereographic format. |
1852 |
|
|
* |
1853 |
|
|
* @param s filter private context |
1854 |
|
|
* @param i horizontal position on frame [0, width) |
1855 |
|
|
* @param j vertical position on frame [0, height) |
1856 |
|
|
* @param width frame width |
1857 |
|
|
* @param height frame height |
1858 |
|
|
* @param vec coordinates on sphere |
1859 |
|
|
*/ |
1860 |
|
✗ |
static int stereographic_to_xyz(const V360Context *s, |
1861 |
|
|
int i, int j, int width, int height, |
1862 |
|
|
float *vec) |
1863 |
|
|
{ |
1864 |
|
✗ |
const float x = rescale(i, width) * s->flat_range[0]; |
1865 |
|
✗ |
const float y = rescale(j, height) * s->flat_range[1]; |
1866 |
|
✗ |
const float r = hypotf(x, y); |
1867 |
|
✗ |
const float theta = atanf(r) * 2.f; |
1868 |
|
✗ |
const float sin_theta = sinf(theta); |
1869 |
|
|
|
1870 |
|
✗ |
vec[0] = x / r * sin_theta; |
1871 |
|
✗ |
vec[1] = y / r * sin_theta; |
1872 |
|
✗ |
vec[2] = cosf(theta); |
1873 |
|
|
|
1874 |
|
✗ |
return 1; |
1875 |
|
|
} |
1876 |
|
|
|
1877 |
|
|
/** |
1878 |
|
|
* Prepare data for processing stereographic input format. |
1879 |
|
|
* |
1880 |
|
|
* @param ctx filter context |
1881 |
|
|
* |
1882 |
|
|
* @return error code |
1883 |
|
|
*/ |
1884 |
|
✗ |
static int prepare_stereographic_in(AVFilterContext *ctx) |
1885 |
|
|
{ |
1886 |
|
✗ |
V360Context *s = ctx->priv; |
1887 |
|
|
|
1888 |
|
✗ |
s->iflat_range[0] = tanf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f); |
1889 |
|
✗ |
s->iflat_range[1] = tanf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f); |
1890 |
|
|
|
1891 |
|
✗ |
return 0; |
1892 |
|
|
} |
1893 |
|
|
|
1894 |
|
|
/** |
1895 |
|
|
* Calculate frame position in stereographic format for corresponding 3D coordinates on sphere. |
1896 |
|
|
* |
1897 |
|
|
* @param s filter private context |
1898 |
|
|
* @param vec coordinates on sphere |
1899 |
|
|
* @param width frame width |
1900 |
|
|
* @param height frame height |
1901 |
|
|
* @param us horizontal coordinates for interpolation window |
1902 |
|
|
* @param vs vertical coordinates for interpolation window |
1903 |
|
|
* @param du horizontal relative coordinate |
1904 |
|
|
* @param dv vertical relative coordinate |
1905 |
|
|
*/ |
1906 |
|
✗ |
static int xyz_to_stereographic(const V360Context *s, |
1907 |
|
|
const float *vec, int width, int height, |
1908 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
1909 |
|
|
{ |
1910 |
|
✗ |
const float theta = acosf(vec[2]); |
1911 |
|
✗ |
const float r = tanf(theta * 0.5f); |
1912 |
|
✗ |
const float c = r / hypotf(vec[0], vec[1]); |
1913 |
|
✗ |
const float x = vec[0] * c / s->iflat_range[0]; |
1914 |
|
✗ |
const float y = vec[1] * c / s->iflat_range[1]; |
1915 |
|
|
|
1916 |
|
✗ |
const float uf = scale(x, width); |
1917 |
|
✗ |
const float vf = scale(y, height); |
1918 |
|
|
|
1919 |
|
✗ |
const int ui = floorf(uf); |
1920 |
|
✗ |
const int vi = floorf(vf); |
1921 |
|
|
|
1922 |
|
✗ |
const int visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width; |
1923 |
|
|
|
1924 |
|
✗ |
*du = visible ? uf - ui : 0.f; |
1925 |
|
✗ |
*dv = visible ? vf - vi : 0.f; |
1926 |
|
|
|
1927 |
|
✗ |
for (int i = 0; i < 4; i++) { |
1928 |
|
✗ |
for (int j = 0; j < 4; j++) { |
1929 |
|
✗ |
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; |
1930 |
|
✗ |
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; |
1931 |
|
|
} |
1932 |
|
|
} |
1933 |
|
|
|
1934 |
|
✗ |
return visible; |
1935 |
|
|
} |
1936 |
|
|
|
1937 |
|
|
/** |
1938 |
|
|
* Prepare data for processing equisolid output format. |
1939 |
|
|
* |
1940 |
|
|
* @param ctx filter context |
1941 |
|
|
* |
1942 |
|
|
* @return error code |
1943 |
|
|
*/ |
1944 |
|
✗ |
static int prepare_equisolid_out(AVFilterContext *ctx) |
1945 |
|
|
{ |
1946 |
|
✗ |
V360Context *s = ctx->priv; |
1947 |
|
|
|
1948 |
|
✗ |
s->flat_range[0] = sinf(s->h_fov * M_PI / 720.f); |
1949 |
|
✗ |
s->flat_range[1] = sinf(s->v_fov * M_PI / 720.f); |
1950 |
|
|
|
1951 |
|
✗ |
return 0; |
1952 |
|
|
} |
1953 |
|
|
|
1954 |
|
|
/** |
1955 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in equisolid format. |
1956 |
|
|
* |
1957 |
|
|
* @param s filter private context |
1958 |
|
|
* @param i horizontal position on frame [0, width) |
1959 |
|
|
* @param j vertical position on frame [0, height) |
1960 |
|
|
* @param width frame width |
1961 |
|
|
* @param height frame height |
1962 |
|
|
* @param vec coordinates on sphere |
1963 |
|
|
*/ |
1964 |
|
✗ |
static int equisolid_to_xyz(const V360Context *s, |
1965 |
|
|
int i, int j, int width, int height, |
1966 |
|
|
float *vec) |
1967 |
|
|
{ |
1968 |
|
✗ |
const float x = rescale(i, width) * s->flat_range[0]; |
1969 |
|
✗ |
const float y = rescale(j, height) * s->flat_range[1]; |
1970 |
|
✗ |
const float r = hypotf(x, y); |
1971 |
|
✗ |
const float theta = asinf(r) * 2.f; |
1972 |
|
✗ |
const float sin_theta = sinf(theta); |
1973 |
|
|
|
1974 |
|
✗ |
vec[0] = x / r * sin_theta; |
1975 |
|
✗ |
vec[1] = y / r * sin_theta; |
1976 |
|
✗ |
vec[2] = cosf(theta); |
1977 |
|
|
|
1978 |
|
✗ |
return 1; |
1979 |
|
|
} |
1980 |
|
|
|
1981 |
|
|
/** |
1982 |
|
|
* Prepare data for processing equisolid input format. |
1983 |
|
|
* |
1984 |
|
|
* @param ctx filter context |
1985 |
|
|
* |
1986 |
|
|
* @return error code |
1987 |
|
|
*/ |
1988 |
|
✗ |
static int prepare_equisolid_in(AVFilterContext *ctx) |
1989 |
|
|
{ |
1990 |
|
✗ |
V360Context *s = ctx->priv; |
1991 |
|
|
|
1992 |
|
✗ |
s->iflat_range[0] = sinf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f); |
1993 |
|
✗ |
s->iflat_range[1] = sinf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f); |
1994 |
|
|
|
1995 |
|
✗ |
return 0; |
1996 |
|
|
} |
1997 |
|
|
|
1998 |
|
|
/** |
1999 |
|
|
* Calculate frame position in equisolid format for corresponding 3D coordinates on sphere. |
2000 |
|
|
* |
2001 |
|
|
* @param s filter private context |
2002 |
|
|
* @param vec coordinates on sphere |
2003 |
|
|
* @param width frame width |
2004 |
|
|
* @param height frame height |
2005 |
|
|
* @param us horizontal coordinates for interpolation window |
2006 |
|
|
* @param vs vertical coordinates for interpolation window |
2007 |
|
|
* @param du horizontal relative coordinate |
2008 |
|
|
* @param dv vertical relative coordinate |
2009 |
|
|
*/ |
2010 |
|
✗ |
static int xyz_to_equisolid(const V360Context *s, |
2011 |
|
|
const float *vec, int width, int height, |
2012 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
2013 |
|
|
{ |
2014 |
|
✗ |
const float theta = acosf(vec[2]); |
2015 |
|
✗ |
const float r = sinf(theta * 0.5f); |
2016 |
|
✗ |
const float c = r / hypotf(vec[0], vec[1]); |
2017 |
|
✗ |
const float x = vec[0] * c / s->iflat_range[0]; |
2018 |
|
✗ |
const float y = vec[1] * c / s->iflat_range[1]; |
2019 |
|
|
|
2020 |
|
✗ |
const float uf = scale(x, width); |
2021 |
|
✗ |
const float vf = scale(y, height); |
2022 |
|
|
|
2023 |
|
✗ |
const int ui = floorf(uf); |
2024 |
|
✗ |
const int vi = floorf(vf); |
2025 |
|
|
|
2026 |
|
✗ |
const int visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width; |
2027 |
|
|
|
2028 |
|
✗ |
*du = visible ? uf - ui : 0.f; |
2029 |
|
✗ |
*dv = visible ? vf - vi : 0.f; |
2030 |
|
|
|
2031 |
|
✗ |
for (int i = 0; i < 4; i++) { |
2032 |
|
✗ |
for (int j = 0; j < 4; j++) { |
2033 |
|
✗ |
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; |
2034 |
|
✗ |
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; |
2035 |
|
|
} |
2036 |
|
|
} |
2037 |
|
|
|
2038 |
|
✗ |
return visible; |
2039 |
|
|
} |
2040 |
|
|
|
2041 |
|
|
/** |
2042 |
|
|
* Prepare data for processing orthographic output format. |
2043 |
|
|
* |
2044 |
|
|
* @param ctx filter context |
2045 |
|
|
* |
2046 |
|
|
* @return error code |
2047 |
|
|
*/ |
2048 |
|
✗ |
static int prepare_orthographic_out(AVFilterContext *ctx) |
2049 |
|
|
{ |
2050 |
|
✗ |
V360Context *s = ctx->priv; |
2051 |
|
|
|
2052 |
|
✗ |
s->flat_range[0] = sinf(FFMIN(s->h_fov, 180.f) * M_PI / 360.f); |
2053 |
|
✗ |
s->flat_range[1] = sinf(FFMIN(s->v_fov, 180.f) * M_PI / 360.f); |
2054 |
|
|
|
2055 |
|
✗ |
return 0; |
2056 |
|
|
} |
2057 |
|
|
|
2058 |
|
|
/** |
2059 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in orthographic format. |
2060 |
|
|
* |
2061 |
|
|
* @param s filter private context |
2062 |
|
|
* @param i horizontal position on frame [0, width) |
2063 |
|
|
* @param j vertical position on frame [0, height) |
2064 |
|
|
* @param width frame width |
2065 |
|
|
* @param height frame height |
2066 |
|
|
* @param vec coordinates on sphere |
2067 |
|
|
*/ |
2068 |
|
✗ |
static int orthographic_to_xyz(const V360Context *s, |
2069 |
|
|
int i, int j, int width, int height, |
2070 |
|
|
float *vec) |
2071 |
|
|
{ |
2072 |
|
✗ |
const float x = rescale(i, width) * s->flat_range[0]; |
2073 |
|
✗ |
const float y = rescale(j, height) * s->flat_range[1]; |
2074 |
|
✗ |
const float r = hypotf(x, y); |
2075 |
|
✗ |
const float theta = asinf(r); |
2076 |
|
|
|
2077 |
|
✗ |
vec[2] = cosf(theta); |
2078 |
|
✗ |
if (vec[2] > 0) { |
2079 |
|
✗ |
vec[0] = x; |
2080 |
|
✗ |
vec[1] = y; |
2081 |
|
|
|
2082 |
|
✗ |
return 1; |
2083 |
|
|
} else { |
2084 |
|
✗ |
vec[0] = 0.f; |
2085 |
|
✗ |
vec[1] = 0.f; |
2086 |
|
✗ |
vec[2] = 1.f; |
2087 |
|
|
|
2088 |
|
✗ |
return 0; |
2089 |
|
|
} |
2090 |
|
|
} |
2091 |
|
|
|
2092 |
|
|
/** |
2093 |
|
|
* Prepare data for processing orthographic input format. |
2094 |
|
|
* |
2095 |
|
|
* @param ctx filter context |
2096 |
|
|
* |
2097 |
|
|
* @return error code |
2098 |
|
|
*/ |
2099 |
|
✗ |
static int prepare_orthographic_in(AVFilterContext *ctx) |
2100 |
|
|
{ |
2101 |
|
✗ |
V360Context *s = ctx->priv; |
2102 |
|
|
|
2103 |
|
✗ |
s->iflat_range[0] = sinf(FFMIN(s->ih_fov, 180.f) * M_PI / 360.f); |
2104 |
|
✗ |
s->iflat_range[1] = sinf(FFMIN(s->iv_fov, 180.f) * M_PI / 360.f); |
2105 |
|
|
|
2106 |
|
✗ |
return 0; |
2107 |
|
|
} |
2108 |
|
|
|
2109 |
|
|
/** |
2110 |
|
|
* Calculate frame position in orthographic format for corresponding 3D coordinates on sphere. |
2111 |
|
|
* |
2112 |
|
|
* @param s filter private context |
2113 |
|
|
* @param vec coordinates on sphere |
2114 |
|
|
* @param width frame width |
2115 |
|
|
* @param height frame height |
2116 |
|
|
* @param us horizontal coordinates for interpolation window |
2117 |
|
|
* @param vs vertical coordinates for interpolation window |
2118 |
|
|
* @param du horizontal relative coordinate |
2119 |
|
|
* @param dv vertical relative coordinate |
2120 |
|
|
*/ |
2121 |
|
✗ |
static int xyz_to_orthographic(const V360Context *s, |
2122 |
|
|
const float *vec, int width, int height, |
2123 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
2124 |
|
|
{ |
2125 |
|
✗ |
const float theta = acosf(vec[2]); |
2126 |
|
✗ |
const float r = sinf(theta); |
2127 |
|
✗ |
const float c = r / hypotf(vec[0], vec[1]); |
2128 |
|
✗ |
const float x = vec[0] * c / s->iflat_range[0]; |
2129 |
|
✗ |
const float y = vec[1] * c / s->iflat_range[1]; |
2130 |
|
|
|
2131 |
|
✗ |
const float uf = scale(x, width); |
2132 |
|
✗ |
const float vf = scale(y, height); |
2133 |
|
|
|
2134 |
|
✗ |
const int ui = floorf(uf); |
2135 |
|
✗ |
const int vi = floorf(vf); |
2136 |
|
|
|
2137 |
|
✗ |
const int visible = vec[2] >= 0.f && isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width; |
2138 |
|
|
|
2139 |
|
✗ |
*du = visible ? uf - ui : 0.f; |
2140 |
|
✗ |
*dv = visible ? vf - vi : 0.f; |
2141 |
|
|
|
2142 |
|
✗ |
for (int i = 0; i < 4; i++) { |
2143 |
|
✗ |
for (int j = 0; j < 4; j++) { |
2144 |
|
✗ |
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; |
2145 |
|
✗ |
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; |
2146 |
|
|
} |
2147 |
|
|
} |
2148 |
|
|
|
2149 |
|
✗ |
return visible; |
2150 |
|
|
} |
2151 |
|
|
|
2152 |
|
|
/** |
2153 |
|
|
* Prepare data for processing equirectangular input format. |
2154 |
|
|
* |
2155 |
|
|
* @param ctx filter context |
2156 |
|
|
* |
2157 |
|
|
* @return error code |
2158 |
|
|
*/ |
2159 |
|
✗ |
static int prepare_equirect_in(AVFilterContext *ctx) |
2160 |
|
|
{ |
2161 |
|
✗ |
V360Context *s = ctx->priv; |
2162 |
|
|
|
2163 |
|
✗ |
s->iflat_range[0] = s->ih_fov * M_PI / 360.f; |
2164 |
|
✗ |
s->iflat_range[1] = s->iv_fov * M_PI / 360.f; |
2165 |
|
|
|
2166 |
|
✗ |
return 0; |
2167 |
|
|
} |
2168 |
|
|
|
2169 |
|
|
/** |
2170 |
|
|
* Calculate frame position in equirectangular format for corresponding 3D coordinates on sphere. |
2171 |
|
|
* |
2172 |
|
|
* @param s filter private context |
2173 |
|
|
* @param vec coordinates on sphere |
2174 |
|
|
* @param width frame width |
2175 |
|
|
* @param height frame height |
2176 |
|
|
* @param us horizontal coordinates for interpolation window |
2177 |
|
|
* @param vs vertical coordinates for interpolation window |
2178 |
|
|
* @param du horizontal relative coordinate |
2179 |
|
|
* @param dv vertical relative coordinate |
2180 |
|
|
*/ |
2181 |
|
✗ |
static int xyz_to_equirect(const V360Context *s, |
2182 |
|
|
const float *vec, int width, int height, |
2183 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
2184 |
|
|
{ |
2185 |
|
✗ |
const float phi = atan2f(vec[0], vec[2]) / s->iflat_range[0]; |
2186 |
|
✗ |
const float theta = asinf(vec[1]) / s->iflat_range[1]; |
2187 |
|
|
|
2188 |
|
✗ |
const float uf = scale(phi, width); |
2189 |
|
✗ |
const float vf = scale(theta, height); |
2190 |
|
|
|
2191 |
|
✗ |
const int ui = floorf(uf); |
2192 |
|
✗ |
const int vi = floorf(vf); |
2193 |
|
|
int visible; |
2194 |
|
|
|
2195 |
|
✗ |
*du = uf - ui; |
2196 |
|
✗ |
*dv = vf - vi; |
2197 |
|
|
|
2198 |
|
✗ |
visible = vi >= 0 && vi < height && ui >= 0 && ui < width; |
2199 |
|
|
|
2200 |
|
✗ |
for (int i = 0; i < 4; i++) { |
2201 |
|
✗ |
for (int j = 0; j < 4; j++) { |
2202 |
|
✗ |
us[i][j] = ereflectx(ui + j - 1, vi + i - 1, width, height); |
2203 |
|
✗ |
vs[i][j] = reflecty(vi + i - 1, height); |
2204 |
|
|
} |
2205 |
|
|
} |
2206 |
|
|
|
2207 |
|
✗ |
return visible; |
2208 |
|
|
} |
2209 |
|
|
|
2210 |
|
|
/** |
2211 |
|
|
* Calculate frame position in half equirectangular format for corresponding 3D coordinates on sphere. |
2212 |
|
|
* |
2213 |
|
|
* @param s filter private context |
2214 |
|
|
* @param vec coordinates on sphere |
2215 |
|
|
* @param width frame width |
2216 |
|
|
* @param height frame height |
2217 |
|
|
* @param us horizontal coordinates for interpolation window |
2218 |
|
|
* @param vs vertical coordinates for interpolation window |
2219 |
|
|
* @param du horizontal relative coordinate |
2220 |
|
|
* @param dv vertical relative coordinate |
2221 |
|
|
*/ |
2222 |
|
✗ |
static int xyz_to_hequirect(const V360Context *s, |
2223 |
|
|
const float *vec, int width, int height, |
2224 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
2225 |
|
|
{ |
2226 |
|
✗ |
const float phi = atan2f(vec[0], vec[2]) / M_PI_2; |
2227 |
|
✗ |
const float theta = asinf(vec[1]) / M_PI_2; |
2228 |
|
|
|
2229 |
|
✗ |
const float uf = scale(phi, width); |
2230 |
|
✗ |
const float vf = scale(theta, height); |
2231 |
|
|
|
2232 |
|
✗ |
const int ui = floorf(uf); |
2233 |
|
✗ |
const int vi = floorf(vf); |
2234 |
|
|
|
2235 |
|
✗ |
const int visible = phi >= -M_PI_2 && phi <= M_PI_2; |
2236 |
|
|
|
2237 |
|
✗ |
*du = uf - ui; |
2238 |
|
✗ |
*dv = vf - vi; |
2239 |
|
|
|
2240 |
|
✗ |
for (int i = 0; i < 4; i++) { |
2241 |
|
✗ |
for (int j = 0; j < 4; j++) { |
2242 |
|
✗ |
us[i][j] = av_clip(ui + j - 1, 0, width - 1); |
2243 |
|
✗ |
vs[i][j] = av_clip(vi + i - 1, 0, height - 1); |
2244 |
|
|
} |
2245 |
|
|
} |
2246 |
|
|
|
2247 |
|
✗ |
return visible; |
2248 |
|
|
} |
2249 |
|
|
|
2250 |
|
|
/** |
2251 |
|
|
* Prepare data for processing flat input format. |
2252 |
|
|
* |
2253 |
|
|
* @param ctx filter context |
2254 |
|
|
* |
2255 |
|
|
* @return error code |
2256 |
|
|
*/ |
2257 |
|
✗ |
static int prepare_flat_in(AVFilterContext *ctx) |
2258 |
|
|
{ |
2259 |
|
✗ |
V360Context *s = ctx->priv; |
2260 |
|
|
|
2261 |
|
✗ |
s->iflat_range[0] = tanf(0.5f * s->ih_fov * M_PI / 180.f); |
2262 |
|
✗ |
s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f); |
2263 |
|
|
|
2264 |
|
✗ |
return 0; |
2265 |
|
|
} |
2266 |
|
|
|
2267 |
|
|
/** |
2268 |
|
|
* Calculate frame position in flat format for corresponding 3D coordinates on sphere. |
2269 |
|
|
* |
2270 |
|
|
* @param s filter private context |
2271 |
|
|
* @param vec coordinates on sphere |
2272 |
|
|
* @param width frame width |
2273 |
|
|
* @param height frame height |
2274 |
|
|
* @param us horizontal coordinates for interpolation window |
2275 |
|
|
* @param vs vertical coordinates for interpolation window |
2276 |
|
|
* @param du horizontal relative coordinate |
2277 |
|
|
* @param dv vertical relative coordinate |
2278 |
|
|
*/ |
2279 |
|
✗ |
static int xyz_to_flat(const V360Context *s, |
2280 |
|
|
const float *vec, int width, int height, |
2281 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
2282 |
|
|
{ |
2283 |
|
✗ |
const float theta = acosf(vec[2]); |
2284 |
|
✗ |
const float r = tanf(theta); |
2285 |
|
✗ |
const float rr = fabsf(r) < 1e+6f ? r : hypotf(width, height); |
2286 |
|
✗ |
const float zf = vec[2]; |
2287 |
|
✗ |
const float h = hypotf(vec[0], vec[1]); |
2288 |
|
✗ |
const float c = h <= 1e-6f ? 1.f : rr / h; |
2289 |
|
✗ |
float uf = vec[0] * c / s->iflat_range[0]; |
2290 |
|
✗ |
float vf = vec[1] * c / s->iflat_range[1]; |
2291 |
|
|
int visible, ui, vi; |
2292 |
|
|
|
2293 |
|
✗ |
uf = zf >= 0.f ? scale(uf, width) : 0.f; |
2294 |
|
✗ |
vf = zf >= 0.f ? scale(vf, height) : 0.f; |
2295 |
|
|
|
2296 |
|
✗ |
ui = floorf(uf); |
2297 |
|
✗ |
vi = floorf(vf); |
2298 |
|
|
|
2299 |
|
✗ |
visible = vi >= 0 && vi < height && ui >= 0 && ui < width && zf >= 0.f; |
2300 |
|
|
|
2301 |
|
✗ |
*du = uf - ui; |
2302 |
|
✗ |
*dv = vf - vi; |
2303 |
|
|
|
2304 |
|
✗ |
for (int i = 0; i < 4; i++) { |
2305 |
|
✗ |
for (int j = 0; j < 4; j++) { |
2306 |
|
✗ |
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; |
2307 |
|
✗ |
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; |
2308 |
|
|
} |
2309 |
|
|
} |
2310 |
|
|
|
2311 |
|
✗ |
return visible; |
2312 |
|
|
} |
2313 |
|
|
|
2314 |
|
|
/** |
2315 |
|
|
* Calculate frame position in mercator format for corresponding 3D coordinates on sphere. |
2316 |
|
|
* |
2317 |
|
|
* @param s filter private context |
2318 |
|
|
* @param vec coordinates on sphere |
2319 |
|
|
* @param width frame width |
2320 |
|
|
* @param height frame height |
2321 |
|
|
* @param us horizontal coordinates for interpolation window |
2322 |
|
|
* @param vs vertical coordinates for interpolation window |
2323 |
|
|
* @param du horizontal relative coordinate |
2324 |
|
|
* @param dv vertical relative coordinate |
2325 |
|
|
*/ |
2326 |
|
✗ |
static int xyz_to_mercator(const V360Context *s, |
2327 |
|
|
const float *vec, int width, int height, |
2328 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
2329 |
|
|
{ |
2330 |
|
✗ |
const float phi = atan2f(vec[0], vec[2]) / M_PI; |
2331 |
|
✗ |
const float theta = av_clipf(logf((1.f + vec[1]) / (1.f - vec[1])) / (2.f * M_PI), -1.f, 1.f); |
2332 |
|
|
|
2333 |
|
✗ |
const float uf = scale(phi, width); |
2334 |
|
✗ |
const float vf = scale(theta, height); |
2335 |
|
|
|
2336 |
|
✗ |
const int ui = floorf(uf); |
2337 |
|
✗ |
const int vi = floorf(vf); |
2338 |
|
|
|
2339 |
|
✗ |
*du = uf - ui; |
2340 |
|
✗ |
*dv = vf - vi; |
2341 |
|
|
|
2342 |
|
✗ |
for (int i = 0; i < 4; i++) { |
2343 |
|
✗ |
for (int j = 0; j < 4; j++) { |
2344 |
|
✗ |
us[i][j] = av_clip(ui + j - 1, 0, width - 1); |
2345 |
|
✗ |
vs[i][j] = av_clip(vi + i - 1, 0, height - 1); |
2346 |
|
|
} |
2347 |
|
|
} |
2348 |
|
|
|
2349 |
|
✗ |
return 1; |
2350 |
|
|
} |
2351 |
|
|
|
2352 |
|
|
/** |
2353 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in mercator format. |
2354 |
|
|
* |
2355 |
|
|
* @param s filter private context |
2356 |
|
|
* @param i horizontal position on frame [0, width) |
2357 |
|
|
* @param j vertical position on frame [0, height) |
2358 |
|
|
* @param width frame width |
2359 |
|
|
* @param height frame height |
2360 |
|
|
* @param vec coordinates on sphere |
2361 |
|
|
*/ |
2362 |
|
✗ |
static int mercator_to_xyz(const V360Context *s, |
2363 |
|
|
int i, int j, int width, int height, |
2364 |
|
|
float *vec) |
2365 |
|
|
{ |
2366 |
|
✗ |
const float phi = rescale(i, width) * M_PI + M_PI_2; |
2367 |
|
✗ |
const float y = rescale(j, height) * M_PI; |
2368 |
|
✗ |
const float div = expf(2.f * y) + 1.f; |
2369 |
|
|
|
2370 |
|
✗ |
const float sin_phi = sinf(phi); |
2371 |
|
✗ |
const float cos_phi = cosf(phi); |
2372 |
|
✗ |
const float sin_theta = 2.f * expf(y) / div; |
2373 |
|
✗ |
const float cos_theta = (expf(2.f * y) - 1.f) / div; |
2374 |
|
|
|
2375 |
|
✗ |
vec[0] = -sin_theta * cos_phi; |
2376 |
|
✗ |
vec[1] = cos_theta; |
2377 |
|
✗ |
vec[2] = sin_theta * sin_phi; |
2378 |
|
|
|
2379 |
|
✗ |
return 1; |
2380 |
|
|
} |
2381 |
|
|
|
2382 |
|
|
/** |
2383 |
|
|
* Calculate frame position in ball format for corresponding 3D coordinates on sphere. |
2384 |
|
|
* |
2385 |
|
|
* @param s filter private context |
2386 |
|
|
* @param vec coordinates on sphere |
2387 |
|
|
* @param width frame width |
2388 |
|
|
* @param height frame height |
2389 |
|
|
* @param us horizontal coordinates for interpolation window |
2390 |
|
|
* @param vs vertical coordinates for interpolation window |
2391 |
|
|
* @param du horizontal relative coordinate |
2392 |
|
|
* @param dv vertical relative coordinate |
2393 |
|
|
*/ |
2394 |
|
✗ |
static int xyz_to_ball(const V360Context *s, |
2395 |
|
|
const float *vec, int width, int height, |
2396 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
2397 |
|
|
{ |
2398 |
|
✗ |
const float l = hypotf(vec[0], vec[1]); |
2399 |
|
✗ |
const float r = sqrtf(1.f - vec[2]) / M_SQRT2; |
2400 |
|
✗ |
const float d = l > 0.f ? l : 1.f; |
2401 |
|
|
|
2402 |
|
✗ |
const float uf = scale(r * vec[0] / d, width); |
2403 |
|
✗ |
const float vf = scale(r * vec[1] / d, height); |
2404 |
|
|
|
2405 |
|
✗ |
const int ui = floorf(uf); |
2406 |
|
✗ |
const int vi = floorf(vf); |
2407 |
|
|
|
2408 |
|
✗ |
*du = uf - ui; |
2409 |
|
✗ |
*dv = vf - vi; |
2410 |
|
|
|
2411 |
|
✗ |
for (int i = 0; i < 4; i++) { |
2412 |
|
✗ |
for (int j = 0; j < 4; j++) { |
2413 |
|
✗ |
us[i][j] = av_clip(ui + j - 1, 0, width - 1); |
2414 |
|
✗ |
vs[i][j] = av_clip(vi + i - 1, 0, height - 1); |
2415 |
|
|
} |
2416 |
|
|
} |
2417 |
|
|
|
2418 |
|
✗ |
return 1; |
2419 |
|
|
} |
2420 |
|
|
|
2421 |
|
|
/** |
2422 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in ball format. |
2423 |
|
|
* |
2424 |
|
|
* @param s filter private context |
2425 |
|
|
* @param i horizontal position on frame [0, width) |
2426 |
|
|
* @param j vertical position on frame [0, height) |
2427 |
|
|
* @param width frame width |
2428 |
|
|
* @param height frame height |
2429 |
|
|
* @param vec coordinates on sphere |
2430 |
|
|
*/ |
2431 |
|
✗ |
static int ball_to_xyz(const V360Context *s, |
2432 |
|
|
int i, int j, int width, int height, |
2433 |
|
|
float *vec) |
2434 |
|
|
{ |
2435 |
|
✗ |
const float x = rescale(i, width); |
2436 |
|
✗ |
const float y = rescale(j, height); |
2437 |
|
✗ |
const float l = hypotf(x, y); |
2438 |
|
|
|
2439 |
|
✗ |
if (l <= 1.f) { |
2440 |
|
✗ |
const float z = 2.f * l * sqrtf(1.f - l * l); |
2441 |
|
|
|
2442 |
|
✗ |
vec[0] = z * x / (l > 0.f ? l : 1.f); |
2443 |
|
✗ |
vec[1] = z * y / (l > 0.f ? l : 1.f); |
2444 |
|
✗ |
vec[2] = 1.f - 2.f * l * l; |
2445 |
|
|
} else { |
2446 |
|
✗ |
vec[0] = 0.f; |
2447 |
|
✗ |
vec[1] = 1.f; |
2448 |
|
✗ |
vec[2] = 0.f; |
2449 |
|
✗ |
return 0; |
2450 |
|
|
} |
2451 |
|
|
|
2452 |
|
✗ |
return 1; |
2453 |
|
|
} |
2454 |
|
|
|
2455 |
|
|
/** |
2456 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in hammer format. |
2457 |
|
|
* |
2458 |
|
|
* @param s filter private context |
2459 |
|
|
* @param i horizontal position on frame [0, width) |
2460 |
|
|
* @param j vertical position on frame [0, height) |
2461 |
|
|
* @param width frame width |
2462 |
|
|
* @param height frame height |
2463 |
|
|
* @param vec coordinates on sphere |
2464 |
|
|
*/ |
2465 |
|
✗ |
static int hammer_to_xyz(const V360Context *s, |
2466 |
|
|
int i, int j, int width, int height, |
2467 |
|
|
float *vec) |
2468 |
|
|
{ |
2469 |
|
✗ |
const float x = rescale(i, width); |
2470 |
|
✗ |
const float y = rescale(j, height); |
2471 |
|
|
|
2472 |
|
✗ |
const float xx = x * x; |
2473 |
|
✗ |
const float yy = y * y; |
2474 |
|
|
|
2475 |
|
✗ |
const float z = sqrtf(1.f - xx * 0.5f - yy * 0.5f); |
2476 |
|
|
|
2477 |
|
✗ |
const float a = M_SQRT2 * x * z; |
2478 |
|
✗ |
const float b = 2.f * z * z - 1.f; |
2479 |
|
|
|
2480 |
|
✗ |
const float aa = a * a; |
2481 |
|
✗ |
const float bb = b * b; |
2482 |
|
|
|
2483 |
|
✗ |
const float w = sqrtf(1.f - 2.f * yy * z * z); |
2484 |
|
|
|
2485 |
|
✗ |
vec[0] = w * 2.f * a * b / (aa + bb); |
2486 |
|
✗ |
vec[1] = M_SQRT2 * y * z; |
2487 |
|
✗ |
vec[2] = w * (bb - aa) / (aa + bb); |
2488 |
|
|
|
2489 |
|
✗ |
return 1; |
2490 |
|
|
} |
2491 |
|
|
|
2492 |
|
|
/** |
2493 |
|
|
* Calculate frame position in hammer format for corresponding 3D coordinates on sphere. |
2494 |
|
|
* |
2495 |
|
|
* @param s filter private context |
2496 |
|
|
* @param vec coordinates on sphere |
2497 |
|
|
* @param width frame width |
2498 |
|
|
* @param height frame height |
2499 |
|
|
* @param us horizontal coordinates for interpolation window |
2500 |
|
|
* @param vs vertical coordinates for interpolation window |
2501 |
|
|
* @param du horizontal relative coordinate |
2502 |
|
|
* @param dv vertical relative coordinate |
2503 |
|
|
*/ |
2504 |
|
✗ |
static int xyz_to_hammer(const V360Context *s, |
2505 |
|
|
const float *vec, int width, int height, |
2506 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
2507 |
|
|
{ |
2508 |
|
✗ |
const float theta = atan2f(vec[0], vec[2]); |
2509 |
|
|
|
2510 |
|
✗ |
const float z = sqrtf(1.f + sqrtf(1.f - vec[1] * vec[1]) * cosf(theta * 0.5f)); |
2511 |
|
✗ |
const float x = sqrtf(1.f - vec[1] * vec[1]) * sinf(theta * 0.5f) / z; |
2512 |
|
✗ |
const float y = vec[1] / z; |
2513 |
|
|
|
2514 |
|
✗ |
const float uf = (x + 1.f) * width / 2.f; |
2515 |
|
✗ |
const float vf = (y + 1.f) * height / 2.f; |
2516 |
|
|
|
2517 |
|
✗ |
const int ui = floorf(uf); |
2518 |
|
✗ |
const int vi = floorf(vf); |
2519 |
|
|
|
2520 |
|
✗ |
*du = uf - ui; |
2521 |
|
✗ |
*dv = vf - vi; |
2522 |
|
|
|
2523 |
|
✗ |
for (int i = 0; i < 4; i++) { |
2524 |
|
✗ |
for (int j = 0; j < 4; j++) { |
2525 |
|
✗ |
us[i][j] = av_clip(ui + j - 1, 0, width - 1); |
2526 |
|
✗ |
vs[i][j] = av_clip(vi + i - 1, 0, height - 1); |
2527 |
|
|
} |
2528 |
|
|
} |
2529 |
|
|
|
2530 |
|
✗ |
return 1; |
2531 |
|
|
} |
2532 |
|
|
|
2533 |
|
|
/** |
2534 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in sinusoidal format. |
2535 |
|
|
* |
2536 |
|
|
* @param s filter private context |
2537 |
|
|
* @param i horizontal position on frame [0, width) |
2538 |
|
|
* @param j vertical position on frame [0, height) |
2539 |
|
|
* @param width frame width |
2540 |
|
|
* @param height frame height |
2541 |
|
|
* @param vec coordinates on sphere |
2542 |
|
|
*/ |
2543 |
|
✗ |
static int sinusoidal_to_xyz(const V360Context *s, |
2544 |
|
|
int i, int j, int width, int height, |
2545 |
|
|
float *vec) |
2546 |
|
|
{ |
2547 |
|
✗ |
const float theta = rescale(j, height) * M_PI_2; |
2548 |
|
✗ |
const float phi = rescale(i, width) * M_PI / cosf(theta); |
2549 |
|
|
|
2550 |
|
✗ |
const float sin_phi = sinf(phi); |
2551 |
|
✗ |
const float cos_phi = cosf(phi); |
2552 |
|
✗ |
const float sin_theta = sinf(theta); |
2553 |
|
✗ |
const float cos_theta = cosf(theta); |
2554 |
|
|
|
2555 |
|
✗ |
vec[0] = cos_theta * sin_phi; |
2556 |
|
✗ |
vec[1] = sin_theta; |
2557 |
|
✗ |
vec[2] = cos_theta * cos_phi; |
2558 |
|
|
|
2559 |
|
✗ |
return 1; |
2560 |
|
|
} |
2561 |
|
|
|
2562 |
|
|
/** |
2563 |
|
|
* Calculate frame position in sinusoidal format for corresponding 3D coordinates on sphere. |
2564 |
|
|
* |
2565 |
|
|
* @param s filter private context |
2566 |
|
|
* @param vec coordinates on sphere |
2567 |
|
|
* @param width frame width |
2568 |
|
|
* @param height frame height |
2569 |
|
|
* @param us horizontal coordinates for interpolation window |
2570 |
|
|
* @param vs vertical coordinates for interpolation window |
2571 |
|
|
* @param du horizontal relative coordinate |
2572 |
|
|
* @param dv vertical relative coordinate |
2573 |
|
|
*/ |
2574 |
|
✗ |
static int xyz_to_sinusoidal(const V360Context *s, |
2575 |
|
|
const float *vec, int width, int height, |
2576 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
2577 |
|
|
{ |
2578 |
|
✗ |
const float theta = asinf(vec[1]); |
2579 |
|
✗ |
const float phi = atan2f(vec[0], vec[2]) * cosf(theta); |
2580 |
|
|
|
2581 |
|
✗ |
const float uf = scale(phi / M_PI, width); |
2582 |
|
✗ |
const float vf = scale(theta / M_PI_2, height); |
2583 |
|
|
|
2584 |
|
✗ |
const int ui = floorf(uf); |
2585 |
|
✗ |
const int vi = floorf(vf); |
2586 |
|
|
|
2587 |
|
✗ |
*du = uf - ui; |
2588 |
|
✗ |
*dv = vf - vi; |
2589 |
|
|
|
2590 |
|
✗ |
for (int i = 0; i < 4; i++) { |
2591 |
|
✗ |
for (int j = 0; j < 4; j++) { |
2592 |
|
✗ |
us[i][j] = av_clip(ui + j - 1, 0, width - 1); |
2593 |
|
✗ |
vs[i][j] = av_clip(vi + i - 1, 0, height - 1); |
2594 |
|
|
} |
2595 |
|
|
} |
2596 |
|
|
|
2597 |
|
✗ |
return 1; |
2598 |
|
|
} |
2599 |
|
|
|
2600 |
|
|
/** |
2601 |
|
|
* Prepare data for processing equi-angular cubemap input format. |
2602 |
|
|
* |
2603 |
|
|
* @param ctx filter context |
2604 |
|
|
* |
2605 |
|
|
* @return error code |
2606 |
|
|
*/ |
2607 |
|
✗ |
static int prepare_eac_in(AVFilterContext *ctx) |
2608 |
|
|
{ |
2609 |
|
✗ |
V360Context *s = ctx->priv; |
2610 |
|
|
|
2611 |
|
✗ |
s->in_cubemap_face_order[RIGHT] = TOP_RIGHT; |
2612 |
|
✗ |
s->in_cubemap_face_order[LEFT] = TOP_LEFT; |
2613 |
|
✗ |
s->in_cubemap_face_order[UP] = BOTTOM_RIGHT; |
2614 |
|
✗ |
s->in_cubemap_face_order[DOWN] = BOTTOM_LEFT; |
2615 |
|
✗ |
s->in_cubemap_face_order[FRONT] = TOP_MIDDLE; |
2616 |
|
✗ |
s->in_cubemap_face_order[BACK] = BOTTOM_MIDDLE; |
2617 |
|
|
|
2618 |
|
✗ |
s->in_cubemap_face_rotation[TOP_LEFT] = ROT_0; |
2619 |
|
✗ |
s->in_cubemap_face_rotation[TOP_MIDDLE] = ROT_0; |
2620 |
|
✗ |
s->in_cubemap_face_rotation[TOP_RIGHT] = ROT_0; |
2621 |
|
✗ |
s->in_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270; |
2622 |
|
✗ |
s->in_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90; |
2623 |
|
✗ |
s->in_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270; |
2624 |
|
|
|
2625 |
|
✗ |
return 0; |
2626 |
|
|
} |
2627 |
|
|
|
2628 |
|
|
/** |
2629 |
|
|
* Prepare data for processing equi-angular cubemap output format. |
2630 |
|
|
* |
2631 |
|
|
* @param ctx filter context |
2632 |
|
|
* |
2633 |
|
|
* @return error code |
2634 |
|
|
*/ |
2635 |
|
✗ |
static int prepare_eac_out(AVFilterContext *ctx) |
2636 |
|
|
{ |
2637 |
|
✗ |
V360Context *s = ctx->priv; |
2638 |
|
|
|
2639 |
|
✗ |
s->out_cubemap_direction_order[TOP_LEFT] = LEFT; |
2640 |
|
✗ |
s->out_cubemap_direction_order[TOP_MIDDLE] = FRONT; |
2641 |
|
✗ |
s->out_cubemap_direction_order[TOP_RIGHT] = RIGHT; |
2642 |
|
✗ |
s->out_cubemap_direction_order[BOTTOM_LEFT] = DOWN; |
2643 |
|
✗ |
s->out_cubemap_direction_order[BOTTOM_MIDDLE] = BACK; |
2644 |
|
✗ |
s->out_cubemap_direction_order[BOTTOM_RIGHT] = UP; |
2645 |
|
|
|
2646 |
|
✗ |
s->out_cubemap_face_rotation[TOP_LEFT] = ROT_0; |
2647 |
|
✗ |
s->out_cubemap_face_rotation[TOP_MIDDLE] = ROT_0; |
2648 |
|
✗ |
s->out_cubemap_face_rotation[TOP_RIGHT] = ROT_0; |
2649 |
|
✗ |
s->out_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270; |
2650 |
|
✗ |
s->out_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90; |
2651 |
|
✗ |
s->out_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270; |
2652 |
|
|
|
2653 |
|
✗ |
return 0; |
2654 |
|
|
} |
2655 |
|
|
|
2656 |
|
|
/** |
2657 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in equi-angular cubemap format. |
2658 |
|
|
* |
2659 |
|
|
* @param s filter private context |
2660 |
|
|
* @param i horizontal position on frame [0, width) |
2661 |
|
|
* @param j vertical position on frame [0, height) |
2662 |
|
|
* @param width frame width |
2663 |
|
|
* @param height frame height |
2664 |
|
|
* @param vec coordinates on sphere |
2665 |
|
|
*/ |
2666 |
|
✗ |
static int eac_to_xyz(const V360Context *s, |
2667 |
|
|
int i, int j, int width, int height, |
2668 |
|
|
float *vec) |
2669 |
|
|
{ |
2670 |
|
✗ |
const float pixel_pad = 2; |
2671 |
|
✗ |
const float u_pad = pixel_pad / width; |
2672 |
|
✗ |
const float v_pad = pixel_pad / height; |
2673 |
|
|
|
2674 |
|
|
int u_face, v_face, face; |
2675 |
|
|
|
2676 |
|
|
float l_x, l_y, l_z; |
2677 |
|
|
|
2678 |
|
✗ |
float uf = (i + 0.5f) / width; |
2679 |
|
✗ |
float vf = (j + 0.5f) / height; |
2680 |
|
|
|
2681 |
|
|
// EAC has 2-pixel padding on faces except between faces on the same row |
2682 |
|
|
// Padding pixels seems not to be stretched with tangent as regular pixels |
2683 |
|
|
// Formulas below approximate original padding as close as I could get experimentally |
2684 |
|
|
|
2685 |
|
|
// Horizontal padding |
2686 |
|
✗ |
uf = 3.f * (uf - u_pad) / (1.f - 2.f * u_pad); |
2687 |
|
✗ |
if (uf < 0.f) { |
2688 |
|
✗ |
u_face = 0; |
2689 |
|
✗ |
uf -= 0.5f; |
2690 |
|
✗ |
} else if (uf >= 3.f) { |
2691 |
|
✗ |
u_face = 2; |
2692 |
|
✗ |
uf -= 2.5f; |
2693 |
|
|
} else { |
2694 |
|
✗ |
u_face = floorf(uf); |
2695 |
|
✗ |
uf = fmodf(uf, 1.f) - 0.5f; |
2696 |
|
|
} |
2697 |
|
|
|
2698 |
|
|
// Vertical padding |
2699 |
|
✗ |
v_face = floorf(vf * 2.f); |
2700 |
|
✗ |
vf = (vf - v_pad - 0.5f * v_face) / (0.5f - 2.f * v_pad) - 0.5f; |
2701 |
|
|
|
2702 |
|
✗ |
if (uf >= -0.5f && uf < 0.5f) { |
2703 |
|
✗ |
uf = tanf(M_PI_2 * uf); |
2704 |
|
|
} else { |
2705 |
|
✗ |
uf = 2.f * uf; |
2706 |
|
|
} |
2707 |
|
✗ |
if (vf >= -0.5f && vf < 0.5f) { |
2708 |
|
✗ |
vf = tanf(M_PI_2 * vf); |
2709 |
|
|
} else { |
2710 |
|
✗ |
vf = 2.f * vf; |
2711 |
|
|
} |
2712 |
|
|
|
2713 |
|
✗ |
face = u_face + 3 * v_face; |
2714 |
|
|
|
2715 |
|
✗ |
switch (face) { |
2716 |
|
✗ |
case TOP_LEFT: |
2717 |
|
✗ |
l_x = -1.f; |
2718 |
|
✗ |
l_y = vf; |
2719 |
|
✗ |
l_z = uf; |
2720 |
|
✗ |
break; |
2721 |
|
✗ |
case TOP_MIDDLE: |
2722 |
|
✗ |
l_x = uf; |
2723 |
|
✗ |
l_y = vf; |
2724 |
|
✗ |
l_z = 1.f; |
2725 |
|
✗ |
break; |
2726 |
|
✗ |
case TOP_RIGHT: |
2727 |
|
✗ |
l_x = 1.f; |
2728 |
|
✗ |
l_y = vf; |
2729 |
|
✗ |
l_z = -uf; |
2730 |
|
✗ |
break; |
2731 |
|
✗ |
case BOTTOM_LEFT: |
2732 |
|
✗ |
l_x = -vf; |
2733 |
|
✗ |
l_y = 1.f; |
2734 |
|
✗ |
l_z = -uf; |
2735 |
|
✗ |
break; |
2736 |
|
✗ |
case BOTTOM_MIDDLE: |
2737 |
|
✗ |
l_x = -vf; |
2738 |
|
✗ |
l_y = -uf; |
2739 |
|
✗ |
l_z = -1.f; |
2740 |
|
✗ |
break; |
2741 |
|
✗ |
case BOTTOM_RIGHT: |
2742 |
|
✗ |
l_x = -vf; |
2743 |
|
✗ |
l_y = -1.f; |
2744 |
|
✗ |
l_z = uf; |
2745 |
|
✗ |
break; |
2746 |
|
✗ |
default: |
2747 |
|
✗ |
av_assert0(0); |
2748 |
|
|
} |
2749 |
|
|
|
2750 |
|
✗ |
vec[0] = l_x; |
2751 |
|
✗ |
vec[1] = l_y; |
2752 |
|
✗ |
vec[2] = l_z; |
2753 |
|
|
|
2754 |
|
✗ |
return 1; |
2755 |
|
|
} |
2756 |
|
|
|
2757 |
|
|
/** |
2758 |
|
|
* Calculate frame position in equi-angular cubemap format for corresponding 3D coordinates on sphere. |
2759 |
|
|
* |
2760 |
|
|
* @param s filter private context |
2761 |
|
|
* @param vec coordinates on sphere |
2762 |
|
|
* @param width frame width |
2763 |
|
|
* @param height frame height |
2764 |
|
|
* @param us horizontal coordinates for interpolation window |
2765 |
|
|
* @param vs vertical coordinates for interpolation window |
2766 |
|
|
* @param du horizontal relative coordinate |
2767 |
|
|
* @param dv vertical relative coordinate |
2768 |
|
|
*/ |
2769 |
|
✗ |
static int xyz_to_eac(const V360Context *s, |
2770 |
|
|
const float *vec, int width, int height, |
2771 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
2772 |
|
|
{ |
2773 |
|
✗ |
const float pixel_pad = 2; |
2774 |
|
✗ |
const float u_pad = pixel_pad / width; |
2775 |
|
✗ |
const float v_pad = pixel_pad / height; |
2776 |
|
|
|
2777 |
|
|
float uf, vf; |
2778 |
|
|
int ui, vi; |
2779 |
|
|
int direction, face; |
2780 |
|
|
int u_face, v_face; |
2781 |
|
|
|
2782 |
|
✗ |
xyz_to_cube(s, vec, &uf, &vf, &direction); |
2783 |
|
|
|
2784 |
|
✗ |
face = s->in_cubemap_face_order[direction]; |
2785 |
|
✗ |
u_face = face % 3; |
2786 |
|
✗ |
v_face = face / 3; |
2787 |
|
|
|
2788 |
|
✗ |
uf = M_2_PI * atanf(uf) + 0.5f; |
2789 |
|
✗ |
vf = M_2_PI * atanf(vf) + 0.5f; |
2790 |
|
|
|
2791 |
|
|
// These formulas are inversed from eac_to_xyz ones |
2792 |
|
✗ |
uf = (uf + u_face) * (1.f - 2.f * u_pad) / 3.f + u_pad; |
2793 |
|
✗ |
vf = vf * (0.5f - 2.f * v_pad) + v_pad + 0.5f * v_face; |
2794 |
|
|
|
2795 |
|
✗ |
uf *= width; |
2796 |
|
✗ |
vf *= height; |
2797 |
|
|
|
2798 |
|
✗ |
uf -= 0.5f; |
2799 |
|
✗ |
vf -= 0.5f; |
2800 |
|
|
|
2801 |
|
✗ |
ui = floorf(uf); |
2802 |
|
✗ |
vi = floorf(vf); |
2803 |
|
|
|
2804 |
|
✗ |
*du = uf - ui; |
2805 |
|
✗ |
*dv = vf - vi; |
2806 |
|
|
|
2807 |
|
✗ |
for (int i = 0; i < 4; i++) { |
2808 |
|
✗ |
for (int j = 0; j < 4; j++) { |
2809 |
|
✗ |
us[i][j] = av_clip(ui + j - 1, 0, width - 1); |
2810 |
|
✗ |
vs[i][j] = av_clip(vi + i - 1, 0, height - 1); |
2811 |
|
|
} |
2812 |
|
|
} |
2813 |
|
|
|
2814 |
|
✗ |
return 1; |
2815 |
|
|
} |
2816 |
|
|
|
2817 |
|
|
/** |
2818 |
|
|
* Prepare data for processing flat output format. |
2819 |
|
|
* |
2820 |
|
|
* @param ctx filter context |
2821 |
|
|
* |
2822 |
|
|
* @return error code |
2823 |
|
|
*/ |
2824 |
|
✗ |
static int prepare_flat_out(AVFilterContext *ctx) |
2825 |
|
|
{ |
2826 |
|
✗ |
V360Context *s = ctx->priv; |
2827 |
|
|
|
2828 |
|
✗ |
s->flat_range[0] = tanf(0.5f * s->h_fov * M_PI / 180.f); |
2829 |
|
✗ |
s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f); |
2830 |
|
|
|
2831 |
|
✗ |
return 0; |
2832 |
|
|
} |
2833 |
|
|
|
2834 |
|
|
/** |
2835 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in flat format. |
2836 |
|
|
* |
2837 |
|
|
* @param s filter private context |
2838 |
|
|
* @param i horizontal position on frame [0, width) |
2839 |
|
|
* @param j vertical position on frame [0, height) |
2840 |
|
|
* @param width frame width |
2841 |
|
|
* @param height frame height |
2842 |
|
|
* @param vec coordinates on sphere |
2843 |
|
|
*/ |
2844 |
|
✗ |
static int flat_to_xyz(const V360Context *s, |
2845 |
|
|
int i, int j, int width, int height, |
2846 |
|
|
float *vec) |
2847 |
|
|
{ |
2848 |
|
✗ |
const float l_x = s->flat_range[0] * rescale(i, width); |
2849 |
|
✗ |
const float l_y = s->flat_range[1] * rescale(j, height); |
2850 |
|
|
|
2851 |
|
✗ |
vec[0] = l_x; |
2852 |
|
✗ |
vec[1] = l_y; |
2853 |
|
✗ |
vec[2] = 1.f; |
2854 |
|
|
|
2855 |
|
✗ |
return 1; |
2856 |
|
|
} |
2857 |
|
|
|
2858 |
|
|
/** |
2859 |
|
|
* Prepare data for processing fisheye output format. |
2860 |
|
|
* |
2861 |
|
|
* @param ctx filter context |
2862 |
|
|
* |
2863 |
|
|
* @return error code |
2864 |
|
|
*/ |
2865 |
|
✗ |
static int prepare_fisheye_out(AVFilterContext *ctx) |
2866 |
|
|
{ |
2867 |
|
✗ |
V360Context *s = ctx->priv; |
2868 |
|
|
|
2869 |
|
✗ |
s->flat_range[0] = s->h_fov / 180.f; |
2870 |
|
✗ |
s->flat_range[1] = s->v_fov / 180.f; |
2871 |
|
|
|
2872 |
|
✗ |
return 0; |
2873 |
|
|
} |
2874 |
|
|
|
2875 |
|
|
/** |
2876 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in fisheye format. |
2877 |
|
|
* |
2878 |
|
|
* @param s filter private context |
2879 |
|
|
* @param i horizontal position on frame [0, width) |
2880 |
|
|
* @param j vertical position on frame [0, height) |
2881 |
|
|
* @param width frame width |
2882 |
|
|
* @param height frame height |
2883 |
|
|
* @param vec coordinates on sphere |
2884 |
|
|
*/ |
2885 |
|
✗ |
static int fisheye_to_xyz(const V360Context *s, |
2886 |
|
|
int i, int j, int width, int height, |
2887 |
|
|
float *vec) |
2888 |
|
|
{ |
2889 |
|
✗ |
const float uf = s->flat_range[0] * rescale(i, width); |
2890 |
|
✗ |
const float vf = s->flat_range[1] * rescale(j, height); |
2891 |
|
|
|
2892 |
|
✗ |
const float phi = atan2f(vf, uf); |
2893 |
|
✗ |
const float theta = M_PI_2 * (1.f - hypotf(uf, vf)); |
2894 |
|
|
|
2895 |
|
✗ |
const float sin_phi = sinf(phi); |
2896 |
|
✗ |
const float cos_phi = cosf(phi); |
2897 |
|
✗ |
const float sin_theta = sinf(theta); |
2898 |
|
✗ |
const float cos_theta = cosf(theta); |
2899 |
|
|
|
2900 |
|
✗ |
vec[0] = cos_theta * cos_phi; |
2901 |
|
✗ |
vec[1] = cos_theta * sin_phi; |
2902 |
|
✗ |
vec[2] = sin_theta; |
2903 |
|
|
|
2904 |
|
✗ |
return 1; |
2905 |
|
|
} |
2906 |
|
|
|
2907 |
|
|
/** |
2908 |
|
|
* Prepare data for processing fisheye input format. |
2909 |
|
|
* |
2910 |
|
|
* @param ctx filter context |
2911 |
|
|
* |
2912 |
|
|
* @return error code |
2913 |
|
|
*/ |
2914 |
|
✗ |
static int prepare_fisheye_in(AVFilterContext *ctx) |
2915 |
|
|
{ |
2916 |
|
✗ |
V360Context *s = ctx->priv; |
2917 |
|
|
|
2918 |
|
✗ |
s->iflat_range[0] = s->ih_fov / 180.f; |
2919 |
|
✗ |
s->iflat_range[1] = s->iv_fov / 180.f; |
2920 |
|
|
|
2921 |
|
✗ |
return 0; |
2922 |
|
|
} |
2923 |
|
|
|
2924 |
|
|
/** |
2925 |
|
|
* Calculate frame position in fisheye format for corresponding 3D coordinates on sphere. |
2926 |
|
|
* |
2927 |
|
|
* @param s filter private context |
2928 |
|
|
* @param vec coordinates on sphere |
2929 |
|
|
* @param width frame width |
2930 |
|
|
* @param height frame height |
2931 |
|
|
* @param us horizontal coordinates for interpolation window |
2932 |
|
|
* @param vs vertical coordinates for interpolation window |
2933 |
|
|
* @param du horizontal relative coordinate |
2934 |
|
|
* @param dv vertical relative coordinate |
2935 |
|
|
*/ |
2936 |
|
✗ |
static int xyz_to_fisheye(const V360Context *s, |
2937 |
|
|
const float *vec, int width, int height, |
2938 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
2939 |
|
|
{ |
2940 |
|
✗ |
const float h = hypotf(vec[0], vec[1]); |
2941 |
|
✗ |
const float lh = h > 0.f ? h : 1.f; |
2942 |
|
✗ |
const float phi = atan2f(h, vec[2]) / M_PI; |
2943 |
|
|
|
2944 |
|
✗ |
float uf = vec[0] / lh * phi / s->iflat_range[0]; |
2945 |
|
✗ |
float vf = vec[1] / lh * phi / s->iflat_range[1]; |
2946 |
|
|
|
2947 |
|
✗ |
const int visible = -0.5f < uf && uf < 0.5f && -0.5f < vf && vf < 0.5f; |
2948 |
|
|
int ui, vi; |
2949 |
|
|
|
2950 |
|
✗ |
uf = scale(uf * 2.f, width); |
2951 |
|
✗ |
vf = scale(vf * 2.f, height); |
2952 |
|
|
|
2953 |
|
✗ |
ui = floorf(uf); |
2954 |
|
✗ |
vi = floorf(vf); |
2955 |
|
|
|
2956 |
|
✗ |
*du = visible ? uf - ui : 0.f; |
2957 |
|
✗ |
*dv = visible ? vf - vi : 0.f; |
2958 |
|
|
|
2959 |
|
✗ |
for (int i = 0; i < 4; i++) { |
2960 |
|
✗ |
for (int j = 0; j < 4; j++) { |
2961 |
|
✗ |
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; |
2962 |
|
✗ |
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; |
2963 |
|
|
} |
2964 |
|
|
} |
2965 |
|
|
|
2966 |
|
✗ |
return visible; |
2967 |
|
|
} |
2968 |
|
|
|
2969 |
|
|
/** |
2970 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in pannini format. |
2971 |
|
|
* |
2972 |
|
|
* @param s filter private context |
2973 |
|
|
* @param i horizontal position on frame [0, width) |
2974 |
|
|
* @param j vertical position on frame [0, height) |
2975 |
|
|
* @param width frame width |
2976 |
|
|
* @param height frame height |
2977 |
|
|
* @param vec coordinates on sphere |
2978 |
|
|
*/ |
2979 |
|
✗ |
static int pannini_to_xyz(const V360Context *s, |
2980 |
|
|
int i, int j, int width, int height, |
2981 |
|
|
float *vec) |
2982 |
|
|
{ |
2983 |
|
✗ |
const float uf = rescale(i, width); |
2984 |
|
✗ |
const float vf = rescale(j, height); |
2985 |
|
|
|
2986 |
|
✗ |
const float d = s->h_fov; |
2987 |
|
✗ |
const float k = uf * uf / ((d + 1.f) * (d + 1.f)); |
2988 |
|
✗ |
const float dscr = k * k * d * d - (k + 1.f) * (k * d * d - 1.f); |
2989 |
|
✗ |
const float clon = (-k * d + sqrtf(dscr)) / (k + 1.f); |
2990 |
|
✗ |
const float S = (d + 1.f) / (d + clon); |
2991 |
|
✗ |
const float lon = atan2f(uf, S * clon); |
2992 |
|
✗ |
const float lat = atan2f(vf, S); |
2993 |
|
|
|
2994 |
|
✗ |
vec[0] = sinf(lon) * cosf(lat); |
2995 |
|
✗ |
vec[1] = sinf(lat); |
2996 |
|
✗ |
vec[2] = cosf(lon) * cosf(lat); |
2997 |
|
|
|
2998 |
|
✗ |
return 1; |
2999 |
|
|
} |
3000 |
|
|
|
3001 |
|
|
/** |
3002 |
|
|
* Calculate frame position in pannini format for corresponding 3D coordinates on sphere. |
3003 |
|
|
* |
3004 |
|
|
* @param s filter private context |
3005 |
|
|
* @param vec coordinates on sphere |
3006 |
|
|
* @param width frame width |
3007 |
|
|
* @param height frame height |
3008 |
|
|
* @param us horizontal coordinates for interpolation window |
3009 |
|
|
* @param vs vertical coordinates for interpolation window |
3010 |
|
|
* @param du horizontal relative coordinate |
3011 |
|
|
* @param dv vertical relative coordinate |
3012 |
|
|
*/ |
3013 |
|
✗ |
static int xyz_to_pannini(const V360Context *s, |
3014 |
|
|
const float *vec, int width, int height, |
3015 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
3016 |
|
|
{ |
3017 |
|
✗ |
const float phi = atan2f(vec[0], vec[2]); |
3018 |
|
✗ |
const float theta = asinf(vec[1]); |
3019 |
|
|
|
3020 |
|
✗ |
const float d = s->ih_fov; |
3021 |
|
✗ |
const float S = (d + 1.f) / (d + cosf(phi)); |
3022 |
|
|
|
3023 |
|
✗ |
const float x = S * sinf(phi); |
3024 |
|
✗ |
const float y = S * tanf(theta); |
3025 |
|
|
|
3026 |
|
✗ |
const float uf = scale(x, width); |
3027 |
|
✗ |
const float vf = scale(y, height); |
3028 |
|
|
|
3029 |
|
✗ |
const int ui = floorf(uf); |
3030 |
|
✗ |
const int vi = floorf(vf); |
3031 |
|
|
|
3032 |
|
✗ |
const int visible = vi >= 0 && vi < height && ui >= 0 && ui < width && vec[2] >= 0.f; |
3033 |
|
|
|
3034 |
|
✗ |
*du = uf - ui; |
3035 |
|
✗ |
*dv = vf - vi; |
3036 |
|
|
|
3037 |
|
✗ |
for (int i = 0; i < 4; i++) { |
3038 |
|
✗ |
for (int j = 0; j < 4; j++) { |
3039 |
|
✗ |
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; |
3040 |
|
✗ |
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; |
3041 |
|
|
} |
3042 |
|
|
} |
3043 |
|
|
|
3044 |
|
✗ |
return visible; |
3045 |
|
|
} |
3046 |
|
|
|
3047 |
|
|
/** |
3048 |
|
|
* Prepare data for processing cylindrical output format. |
3049 |
|
|
* |
3050 |
|
|
* @param ctx filter context |
3051 |
|
|
* |
3052 |
|
|
* @return error code |
3053 |
|
|
*/ |
3054 |
|
✗ |
static int prepare_cylindrical_out(AVFilterContext *ctx) |
3055 |
|
|
{ |
3056 |
|
✗ |
V360Context *s = ctx->priv; |
3057 |
|
|
|
3058 |
|
✗ |
s->flat_range[0] = M_PI * s->h_fov / 360.f; |
3059 |
|
✗ |
s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f); |
3060 |
|
|
|
3061 |
|
✗ |
return 0; |
3062 |
|
|
} |
3063 |
|
|
|
3064 |
|
|
/** |
3065 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in cylindrical format. |
3066 |
|
|
* |
3067 |
|
|
* @param s filter private context |
3068 |
|
|
* @param i horizontal position on frame [0, width) |
3069 |
|
|
* @param j vertical position on frame [0, height) |
3070 |
|
|
* @param width frame width |
3071 |
|
|
* @param height frame height |
3072 |
|
|
* @param vec coordinates on sphere |
3073 |
|
|
*/ |
3074 |
|
✗ |
static int cylindrical_to_xyz(const V360Context *s, |
3075 |
|
|
int i, int j, int width, int height, |
3076 |
|
|
float *vec) |
3077 |
|
|
{ |
3078 |
|
✗ |
const float uf = s->flat_range[0] * rescale(i, width); |
3079 |
|
✗ |
const float vf = s->flat_range[1] * rescale(j, height); |
3080 |
|
|
|
3081 |
|
✗ |
const float phi = uf; |
3082 |
|
✗ |
const float theta = atanf(vf); |
3083 |
|
|
|
3084 |
|
✗ |
const float sin_phi = sinf(phi); |
3085 |
|
✗ |
const float cos_phi = cosf(phi); |
3086 |
|
✗ |
const float sin_theta = sinf(theta); |
3087 |
|
✗ |
const float cos_theta = cosf(theta); |
3088 |
|
|
|
3089 |
|
✗ |
vec[0] = cos_theta * sin_phi; |
3090 |
|
✗ |
vec[1] = sin_theta; |
3091 |
|
✗ |
vec[2] = cos_theta * cos_phi; |
3092 |
|
|
|
3093 |
|
✗ |
return 1; |
3094 |
|
|
} |
3095 |
|
|
|
3096 |
|
|
/** |
3097 |
|
|
* Prepare data for processing cylindrical input format. |
3098 |
|
|
* |
3099 |
|
|
* @param ctx filter context |
3100 |
|
|
* |
3101 |
|
|
* @return error code |
3102 |
|
|
*/ |
3103 |
|
✗ |
static int prepare_cylindrical_in(AVFilterContext *ctx) |
3104 |
|
|
{ |
3105 |
|
✗ |
V360Context *s = ctx->priv; |
3106 |
|
|
|
3107 |
|
✗ |
s->iflat_range[0] = M_PI * s->ih_fov / 360.f; |
3108 |
|
✗ |
s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f); |
3109 |
|
|
|
3110 |
|
✗ |
return 0; |
3111 |
|
|
} |
3112 |
|
|
|
3113 |
|
|
/** |
3114 |
|
|
* Calculate frame position in cylindrical format for corresponding 3D coordinates on sphere. |
3115 |
|
|
* |
3116 |
|
|
* @param s filter private context |
3117 |
|
|
* @param vec coordinates on sphere |
3118 |
|
|
* @param width frame width |
3119 |
|
|
* @param height frame height |
3120 |
|
|
* @param us horizontal coordinates for interpolation window |
3121 |
|
|
* @param vs vertical coordinates for interpolation window |
3122 |
|
|
* @param du horizontal relative coordinate |
3123 |
|
|
* @param dv vertical relative coordinate |
3124 |
|
|
*/ |
3125 |
|
✗ |
static int xyz_to_cylindrical(const V360Context *s, |
3126 |
|
|
const float *vec, int width, int height, |
3127 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
3128 |
|
|
{ |
3129 |
|
✗ |
const float phi = atan2f(vec[0], vec[2]) / s->iflat_range[0]; |
3130 |
|
✗ |
const float theta = asinf(vec[1]); |
3131 |
|
|
|
3132 |
|
✗ |
const float uf = scale(phi, width); |
3133 |
|
✗ |
const float vf = scale(tanf(theta) / s->iflat_range[1], height); |
3134 |
|
|
|
3135 |
|
✗ |
const int ui = floorf(uf); |
3136 |
|
✗ |
const int vi = floorf(vf); |
3137 |
|
|
|
3138 |
|
✗ |
const int visible = vi >= 0 && vi < height && ui >= 0 && ui < width && |
3139 |
|
✗ |
theta <= M_PI * s->iv_fov / 180.f && |
3140 |
|
✗ |
theta >= -M_PI * s->iv_fov / 180.f; |
3141 |
|
|
|
3142 |
|
✗ |
*du = uf - ui; |
3143 |
|
✗ |
*dv = vf - vi; |
3144 |
|
|
|
3145 |
|
✗ |
for (int i = 0; i < 4; i++) { |
3146 |
|
✗ |
for (int j = 0; j < 4; j++) { |
3147 |
|
✗ |
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; |
3148 |
|
✗ |
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; |
3149 |
|
|
} |
3150 |
|
|
} |
3151 |
|
|
|
3152 |
|
✗ |
return visible; |
3153 |
|
|
} |
3154 |
|
|
|
3155 |
|
|
/** |
3156 |
|
|
* Prepare data for processing cylindrical equal area output format. |
3157 |
|
|
* |
3158 |
|
|
* @param ctx filter context |
3159 |
|
|
* |
3160 |
|
|
* @return error code |
3161 |
|
|
*/ |
3162 |
|
✗ |
static int prepare_cylindricalea_out(AVFilterContext *ctx) |
3163 |
|
|
{ |
3164 |
|
✗ |
V360Context *s = ctx->priv; |
3165 |
|
|
|
3166 |
|
✗ |
s->flat_range[0] = s->h_fov * M_PI / 360.f; |
3167 |
|
✗ |
s->flat_range[1] = s->v_fov / 180.f; |
3168 |
|
|
|
3169 |
|
✗ |
return 0; |
3170 |
|
|
} |
3171 |
|
|
|
3172 |
|
|
/** |
3173 |
|
|
* Prepare data for processing cylindrical equal area input format. |
3174 |
|
|
* |
3175 |
|
|
* @param ctx filter context |
3176 |
|
|
* |
3177 |
|
|
* @return error code |
3178 |
|
|
*/ |
3179 |
|
✗ |
static int prepare_cylindricalea_in(AVFilterContext *ctx) |
3180 |
|
|
{ |
3181 |
|
✗ |
V360Context *s = ctx->priv; |
3182 |
|
|
|
3183 |
|
✗ |
s->iflat_range[0] = M_PI * s->ih_fov / 360.f; |
3184 |
|
✗ |
s->iflat_range[1] = s->iv_fov / 180.f; |
3185 |
|
|
|
3186 |
|
✗ |
return 0; |
3187 |
|
|
} |
3188 |
|
|
|
3189 |
|
|
/** |
3190 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in cylindrical equal area format. |
3191 |
|
|
* |
3192 |
|
|
* @param s filter private context |
3193 |
|
|
* @param i horizontal position on frame [0, width) |
3194 |
|
|
* @param j vertical position on frame [0, height) |
3195 |
|
|
* @param width frame width |
3196 |
|
|
* @param height frame height |
3197 |
|
|
* @param vec coordinates on sphere |
3198 |
|
|
*/ |
3199 |
|
✗ |
static int cylindricalea_to_xyz(const V360Context *s, |
3200 |
|
|
int i, int j, int width, int height, |
3201 |
|
|
float *vec) |
3202 |
|
|
{ |
3203 |
|
✗ |
const float uf = s->flat_range[0] * rescale(i, width); |
3204 |
|
✗ |
const float vf = s->flat_range[1] * rescale(j, height); |
3205 |
|
|
|
3206 |
|
✗ |
const float phi = uf; |
3207 |
|
✗ |
const float theta = asinf(vf); |
3208 |
|
|
|
3209 |
|
✗ |
const float sin_phi = sinf(phi); |
3210 |
|
✗ |
const float cos_phi = cosf(phi); |
3211 |
|
✗ |
const float sin_theta = sinf(theta); |
3212 |
|
✗ |
const float cos_theta = cosf(theta); |
3213 |
|
|
|
3214 |
|
✗ |
vec[0] = cos_theta * sin_phi; |
3215 |
|
✗ |
vec[1] = sin_theta; |
3216 |
|
✗ |
vec[2] = cos_theta * cos_phi; |
3217 |
|
|
|
3218 |
|
✗ |
return 1; |
3219 |
|
|
} |
3220 |
|
|
|
3221 |
|
|
/** |
3222 |
|
|
* Calculate frame position in cylindrical equal area format for corresponding 3D coordinates on sphere. |
3223 |
|
|
* |
3224 |
|
|
* @param s filter private context |
3225 |
|
|
* @param vec coordinates on sphere |
3226 |
|
|
* @param width frame width |
3227 |
|
|
* @param height frame height |
3228 |
|
|
* @param us horizontal coordinates for interpolation window |
3229 |
|
|
* @param vs vertical coordinates for interpolation window |
3230 |
|
|
* @param du horizontal relative coordinate |
3231 |
|
|
* @param dv vertical relative coordinate |
3232 |
|
|
*/ |
3233 |
|
✗ |
static int xyz_to_cylindricalea(const V360Context *s, |
3234 |
|
|
const float *vec, int width, int height, |
3235 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
3236 |
|
|
{ |
3237 |
|
✗ |
const float phi = atan2f(vec[0], vec[2]) / s->iflat_range[0]; |
3238 |
|
✗ |
const float theta = asinf(vec[1]); |
3239 |
|
|
|
3240 |
|
✗ |
const float uf = scale(phi, width); |
3241 |
|
✗ |
const float vf = scale(sinf(theta) / s->iflat_range[1], height); |
3242 |
|
|
|
3243 |
|
✗ |
const int ui = floorf(uf); |
3244 |
|
✗ |
const int vi = floorf(vf); |
3245 |
|
|
|
3246 |
|
✗ |
const int visible = vi >= 0 && vi < height && ui >= 0 && ui < width && |
3247 |
|
✗ |
theta <= M_PI * s->iv_fov / 180.f && |
3248 |
|
✗ |
theta >= -M_PI * s->iv_fov / 180.f; |
3249 |
|
|
|
3250 |
|
✗ |
*du = uf - ui; |
3251 |
|
✗ |
*dv = vf - vi; |
3252 |
|
|
|
3253 |
|
✗ |
for (int i = 0; i < 4; i++) { |
3254 |
|
✗ |
for (int j = 0; j < 4; j++) { |
3255 |
|
✗ |
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; |
3256 |
|
✗ |
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; |
3257 |
|
|
} |
3258 |
|
|
} |
3259 |
|
|
|
3260 |
|
✗ |
return visible; |
3261 |
|
|
} |
3262 |
|
|
|
3263 |
|
|
/** |
3264 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in perspective format. |
3265 |
|
|
* |
3266 |
|
|
* @param s filter private context |
3267 |
|
|
* @param i horizontal position on frame [0, width) |
3268 |
|
|
* @param j vertical position on frame [0, height) |
3269 |
|
|
* @param width frame width |
3270 |
|
|
* @param height frame height |
3271 |
|
|
* @param vec coordinates on sphere |
3272 |
|
|
*/ |
3273 |
|
✗ |
static int perspective_to_xyz(const V360Context *s, |
3274 |
|
|
int i, int j, int width, int height, |
3275 |
|
|
float *vec) |
3276 |
|
|
{ |
3277 |
|
✗ |
const float uf = rescale(i, width); |
3278 |
|
✗ |
const float vf = rescale(j, height); |
3279 |
|
✗ |
const float rh = hypotf(uf, vf); |
3280 |
|
✗ |
const float sinzz = 1.f - rh * rh; |
3281 |
|
✗ |
const float h = 1.f + s->v_fov; |
3282 |
|
✗ |
const float sinz = (h - sqrtf(sinzz)) / (h / rh + rh / h); |
3283 |
|
✗ |
const float sinz2 = sinz * sinz; |
3284 |
|
|
|
3285 |
|
✗ |
if (sinz2 <= 1.f) { |
3286 |
|
✗ |
const float cosz = sqrtf(1.f - sinz2); |
3287 |
|
|
|
3288 |
|
✗ |
const float theta = asinf(cosz); |
3289 |
|
✗ |
const float phi = atan2f(uf, vf); |
3290 |
|
|
|
3291 |
|
✗ |
const float sin_phi = sinf(phi); |
3292 |
|
✗ |
const float cos_phi = cosf(phi); |
3293 |
|
✗ |
const float sin_theta = sinf(theta); |
3294 |
|
✗ |
const float cos_theta = cosf(theta); |
3295 |
|
|
|
3296 |
|
✗ |
vec[0] = cos_theta * sin_phi; |
3297 |
|
✗ |
vec[1] = cos_theta * cos_phi; |
3298 |
|
✗ |
vec[2] = sin_theta; |
3299 |
|
|
} else { |
3300 |
|
✗ |
vec[0] = 0.f; |
3301 |
|
✗ |
vec[1] = 1.f; |
3302 |
|
✗ |
vec[2] = 0.f; |
3303 |
|
✗ |
return 0; |
3304 |
|
|
} |
3305 |
|
|
|
3306 |
|
✗ |
return 1; |
3307 |
|
|
} |
3308 |
|
|
|
3309 |
|
|
/** |
3310 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in tetrahedron format. |
3311 |
|
|
* |
3312 |
|
|
* @param s filter private context |
3313 |
|
|
* @param i horizontal position on frame [0, width) |
3314 |
|
|
* @param j vertical position on frame [0, height) |
3315 |
|
|
* @param width frame width |
3316 |
|
|
* @param height frame height |
3317 |
|
|
* @param vec coordinates on sphere |
3318 |
|
|
*/ |
3319 |
|
✗ |
static int tetrahedron_to_xyz(const V360Context *s, |
3320 |
|
|
int i, int j, int width, int height, |
3321 |
|
|
float *vec) |
3322 |
|
|
{ |
3323 |
|
✗ |
const float uf = ((float)i + 0.5f) / width; |
3324 |
|
✗ |
const float vf = ((float)j + 0.5f) / height; |
3325 |
|
|
|
3326 |
|
✗ |
vec[0] = uf < 0.5f ? uf * 4.f - 1.f : 3.f - uf * 4.f; |
3327 |
|
✗ |
vec[1] = 1.f - vf * 2.f; |
3328 |
|
✗ |
vec[2] = 2.f * fabsf(1.f - fabsf(1.f - uf * 2.f + vf)) - 1.f; |
3329 |
|
|
|
3330 |
|
✗ |
return 1; |
3331 |
|
|
} |
3332 |
|
|
|
3333 |
|
|
/** |
3334 |
|
|
* Calculate frame position in tetrahedron format for corresponding 3D coordinates on sphere. |
3335 |
|
|
* |
3336 |
|
|
* @param s filter private context |
3337 |
|
|
* @param vec coordinates on sphere |
3338 |
|
|
* @param width frame width |
3339 |
|
|
* @param height frame height |
3340 |
|
|
* @param us horizontal coordinates for interpolation window |
3341 |
|
|
* @param vs vertical coordinates for interpolation window |
3342 |
|
|
* @param du horizontal relative coordinate |
3343 |
|
|
* @param dv vertical relative coordinate |
3344 |
|
|
*/ |
3345 |
|
✗ |
static int xyz_to_tetrahedron(const V360Context *s, |
3346 |
|
|
const float *vec, int width, int height, |
3347 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
3348 |
|
|
{ |
3349 |
|
✗ |
const float d0 = vec[0] * 1.f + vec[1] * 1.f + vec[2] *-1.f; |
3350 |
|
✗ |
const float d1 = vec[0] *-1.f + vec[1] *-1.f + vec[2] *-1.f; |
3351 |
|
✗ |
const float d2 = vec[0] * 1.f + vec[1] *-1.f + vec[2] * 1.f; |
3352 |
|
✗ |
const float d3 = vec[0] *-1.f + vec[1] * 1.f + vec[2] * 1.f; |
3353 |
|
✗ |
const float d = FFMAX(d0, FFMAX3(d1, d2, d3)); |
3354 |
|
|
|
3355 |
|
|
float uf, vf, x, y, z; |
3356 |
|
|
int ui, vi; |
3357 |
|
|
|
3358 |
|
✗ |
x = vec[0] / d; |
3359 |
|
✗ |
y = vec[1] / d; |
3360 |
|
✗ |
z = -vec[2] / d; |
3361 |
|
|
|
3362 |
|
✗ |
vf = 0.5f - y * 0.5f; |
3363 |
|
|
|
3364 |
|
✗ |
if ((x + y >= 0.f && y + z >= 0.f && -z - x <= 0.f) || |
3365 |
|
✗ |
(x + y <= 0.f && -y + z >= 0.f && z - x >= 0.f)) { |
3366 |
|
✗ |
uf = 0.25f * x + 0.25f; |
3367 |
|
|
} else { |
3368 |
|
✗ |
uf = 0.75f - 0.25f * x; |
3369 |
|
|
} |
3370 |
|
|
|
3371 |
|
✗ |
uf *= width; |
3372 |
|
✗ |
vf *= height; |
3373 |
|
|
|
3374 |
|
✗ |
ui = floorf(uf); |
3375 |
|
✗ |
vi = floorf(vf); |
3376 |
|
|
|
3377 |
|
✗ |
*du = uf - ui; |
3378 |
|
✗ |
*dv = vf - vi; |
3379 |
|
|
|
3380 |
|
✗ |
for (int i = 0; i < 4; i++) { |
3381 |
|
✗ |
for (int j = 0; j < 4; j++) { |
3382 |
|
✗ |
us[i][j] = reflectx(ui + j - 1, vi + i - 1, width, height); |
3383 |
|
✗ |
vs[i][j] = reflecty(vi + i - 1, height); |
3384 |
|
|
} |
3385 |
|
|
} |
3386 |
|
|
|
3387 |
|
✗ |
return 1; |
3388 |
|
|
} |
3389 |
|
|
|
3390 |
|
|
/** |
3391 |
|
|
* Prepare data for processing double fisheye input format. |
3392 |
|
|
* |
3393 |
|
|
* @param ctx filter context |
3394 |
|
|
* |
3395 |
|
|
* @return error code |
3396 |
|
|
*/ |
3397 |
|
✗ |
static int prepare_dfisheye_in(AVFilterContext *ctx) |
3398 |
|
|
{ |
3399 |
|
✗ |
V360Context *s = ctx->priv; |
3400 |
|
|
|
3401 |
|
✗ |
s->iflat_range[0] = s->ih_fov / 360.f; |
3402 |
|
✗ |
s->iflat_range[1] = s->iv_fov / 360.f; |
3403 |
|
|
|
3404 |
|
✗ |
return 0; |
3405 |
|
|
} |
3406 |
|
|
|
3407 |
|
|
/** |
3408 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in dual fisheye format. |
3409 |
|
|
* |
3410 |
|
|
* @param s filter private context |
3411 |
|
|
* @param i horizontal position on frame [0, width) |
3412 |
|
|
* @param j vertical position on frame [0, height) |
3413 |
|
|
* @param width frame width |
3414 |
|
|
* @param height frame height |
3415 |
|
|
* @param vec coordinates on sphere |
3416 |
|
|
*/ |
3417 |
|
✗ |
static int dfisheye_to_xyz(const V360Context *s, |
3418 |
|
|
int i, int j, int width, int height, |
3419 |
|
|
float *vec) |
3420 |
|
|
{ |
3421 |
|
✗ |
const float ew = width * 0.5f; |
3422 |
|
✗ |
const float eh = height; |
3423 |
|
|
|
3424 |
|
✗ |
const int ei = i >= ew ? i - ew : i; |
3425 |
|
✗ |
const float m = i >= ew ? 1.f : -1.f; |
3426 |
|
|
|
3427 |
|
✗ |
const float uf = s->flat_range[0] * rescale(ei, ew); |
3428 |
|
✗ |
const float vf = s->flat_range[1] * rescale(j, eh); |
3429 |
|
|
|
3430 |
|
✗ |
const float h = hypotf(uf, vf); |
3431 |
|
✗ |
const float lh = h > 0.f ? h : 1.f; |
3432 |
|
✗ |
const float theta = m * M_PI_2 * (1.f - h); |
3433 |
|
|
|
3434 |
|
✗ |
const float sin_theta = sinf(theta); |
3435 |
|
✗ |
const float cos_theta = cosf(theta); |
3436 |
|
|
|
3437 |
|
✗ |
vec[0] = cos_theta * m * uf / lh; |
3438 |
|
✗ |
vec[1] = cos_theta * vf / lh; |
3439 |
|
✗ |
vec[2] = sin_theta; |
3440 |
|
|
|
3441 |
|
✗ |
return 1; |
3442 |
|
|
} |
3443 |
|
|
|
3444 |
|
|
/** |
3445 |
|
|
* Calculate frame position in dual fisheye format for corresponding 3D coordinates on sphere. |
3446 |
|
|
* |
3447 |
|
|
* @param s filter private context |
3448 |
|
|
* @param vec coordinates on sphere |
3449 |
|
|
* @param width frame width |
3450 |
|
|
* @param height frame height |
3451 |
|
|
* @param us horizontal coordinates for interpolation window |
3452 |
|
|
* @param vs vertical coordinates for interpolation window |
3453 |
|
|
* @param du horizontal relative coordinate |
3454 |
|
|
* @param dv vertical relative coordinate |
3455 |
|
|
*/ |
3456 |
|
✗ |
static int xyz_to_dfisheye(const V360Context *s, |
3457 |
|
|
const float *vec, int width, int height, |
3458 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
3459 |
|
|
{ |
3460 |
|
✗ |
const float ew = width * 0.5f; |
3461 |
|
✗ |
const float eh = height; |
3462 |
|
|
|
3463 |
|
✗ |
const float h = hypotf(vec[0], vec[1]); |
3464 |
|
✗ |
const float lh = h > 0.f ? h : 1.f; |
3465 |
|
✗ |
const float theta = acosf(fabsf(vec[2])) / M_PI; |
3466 |
|
|
|
3467 |
|
✗ |
float uf = scale(theta * (vec[0] / lh) / s->iflat_range[0], ew); |
3468 |
|
✗ |
float vf = scale(theta * (vec[1] / lh) / s->iflat_range[1], eh); |
3469 |
|
|
|
3470 |
|
|
int ui, vi; |
3471 |
|
|
int u_shift; |
3472 |
|
|
|
3473 |
|
✗ |
if (vec[2] >= 0.f) { |
3474 |
|
✗ |
u_shift = ceilf(ew); |
3475 |
|
|
} else { |
3476 |
|
✗ |
u_shift = 0; |
3477 |
|
✗ |
uf = ew - uf - 1.f; |
3478 |
|
|
} |
3479 |
|
|
|
3480 |
|
✗ |
ui = floorf(uf); |
3481 |
|
✗ |
vi = floorf(vf); |
3482 |
|
|
|
3483 |
|
✗ |
*du = uf - ui; |
3484 |
|
✗ |
*dv = vf - vi; |
3485 |
|
|
|
3486 |
|
✗ |
for (int i = 0; i < 4; i++) { |
3487 |
|
✗ |
for (int j = 0; j < 4; j++) { |
3488 |
|
✗ |
us[i][j] = u_shift + av_clip(ui + j - 1, 0, ew - 1); |
3489 |
|
✗ |
vs[i][j] = av_clip( vi + i - 1, 0, height - 1); |
3490 |
|
|
} |
3491 |
|
|
} |
3492 |
|
|
|
3493 |
|
✗ |
return 1; |
3494 |
|
|
} |
3495 |
|
|
|
3496 |
|
|
/** |
3497 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in barrel facebook's format. |
3498 |
|
|
* |
3499 |
|
|
* @param s filter private context |
3500 |
|
|
* @param i horizontal position on frame [0, width) |
3501 |
|
|
* @param j vertical position on frame [0, height) |
3502 |
|
|
* @param width frame width |
3503 |
|
|
* @param height frame height |
3504 |
|
|
* @param vec coordinates on sphere |
3505 |
|
|
*/ |
3506 |
|
✗ |
static int barrel_to_xyz(const V360Context *s, |
3507 |
|
|
int i, int j, int width, int height, |
3508 |
|
|
float *vec) |
3509 |
|
|
{ |
3510 |
|
✗ |
const float scale = 0.99f; |
3511 |
|
|
float l_x, l_y, l_z; |
3512 |
|
|
|
3513 |
|
✗ |
if (i < 4 * width / 5) { |
3514 |
|
✗ |
const float theta_range = M_PI_4; |
3515 |
|
|
|
3516 |
|
✗ |
const int ew = 4 * width / 5; |
3517 |
|
✗ |
const int eh = height; |
3518 |
|
|
|
3519 |
|
✗ |
const float phi = rescale(i, ew) * M_PI / scale; |
3520 |
|
✗ |
const float theta = rescale(j, eh) * theta_range / scale; |
3521 |
|
|
|
3522 |
|
✗ |
const float sin_phi = sinf(phi); |
3523 |
|
✗ |
const float cos_phi = cosf(phi); |
3524 |
|
✗ |
const float sin_theta = sinf(theta); |
3525 |
|
✗ |
const float cos_theta = cosf(theta); |
3526 |
|
|
|
3527 |
|
✗ |
l_x = cos_theta * sin_phi; |
3528 |
|
✗ |
l_y = sin_theta; |
3529 |
|
✗ |
l_z = cos_theta * cos_phi; |
3530 |
|
|
} else { |
3531 |
|
✗ |
const int ew = width / 5; |
3532 |
|
✗ |
const int eh = height / 2; |
3533 |
|
|
|
3534 |
|
|
float uf, vf; |
3535 |
|
|
|
3536 |
|
✗ |
if (j < eh) { // UP |
3537 |
|
✗ |
uf = rescale(i - 4 * ew, ew); |
3538 |
|
✗ |
vf = rescale(j, eh); |
3539 |
|
|
|
3540 |
|
✗ |
uf /= scale; |
3541 |
|
✗ |
vf /= scale; |
3542 |
|
|
|
3543 |
|
✗ |
l_x = uf; |
3544 |
|
✗ |
l_y = -1.f; |
3545 |
|
✗ |
l_z = vf; |
3546 |
|
|
} else { // DOWN |
3547 |
|
✗ |
uf = rescale(i - 4 * ew, ew); |
3548 |
|
✗ |
vf = rescale(j - eh, eh); |
3549 |
|
|
|
3550 |
|
✗ |
uf /= scale; |
3551 |
|
✗ |
vf /= scale; |
3552 |
|
|
|
3553 |
|
✗ |
l_x = uf; |
3554 |
|
✗ |
l_y = 1.f; |
3555 |
|
✗ |
l_z = -vf; |
3556 |
|
|
} |
3557 |
|
|
} |
3558 |
|
|
|
3559 |
|
✗ |
vec[0] = l_x; |
3560 |
|
✗ |
vec[1] = l_y; |
3561 |
|
✗ |
vec[2] = l_z; |
3562 |
|
|
|
3563 |
|
✗ |
return 1; |
3564 |
|
|
} |
3565 |
|
|
|
3566 |
|
|
/** |
3567 |
|
|
* Calculate frame position in barrel facebook's format for corresponding 3D coordinates on sphere. |
3568 |
|
|
* |
3569 |
|
|
* @param s filter private context |
3570 |
|
|
* @param vec coordinates on sphere |
3571 |
|
|
* @param width frame width |
3572 |
|
|
* @param height frame height |
3573 |
|
|
* @param us horizontal coordinates for interpolation window |
3574 |
|
|
* @param vs vertical coordinates for interpolation window |
3575 |
|
|
* @param du horizontal relative coordinate |
3576 |
|
|
* @param dv vertical relative coordinate |
3577 |
|
|
*/ |
3578 |
|
✗ |
static int xyz_to_barrel(const V360Context *s, |
3579 |
|
|
const float *vec, int width, int height, |
3580 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
3581 |
|
|
{ |
3582 |
|
✗ |
const float scale = 0.99f; |
3583 |
|
|
|
3584 |
|
✗ |
const float phi = atan2f(vec[0], vec[2]); |
3585 |
|
✗ |
const float theta = asinf(vec[1]); |
3586 |
|
✗ |
const float theta_range = M_PI_4; |
3587 |
|
|
|
3588 |
|
|
int ew, eh; |
3589 |
|
|
int u_shift, v_shift; |
3590 |
|
|
float uf, vf; |
3591 |
|
|
int ui, vi; |
3592 |
|
|
|
3593 |
|
✗ |
if (theta > -theta_range && theta < theta_range) { |
3594 |
|
✗ |
ew = 4 * width / 5; |
3595 |
|
✗ |
eh = height; |
3596 |
|
|
|
3597 |
|
✗ |
u_shift = 0; |
3598 |
|
✗ |
v_shift = 0; |
3599 |
|
|
|
3600 |
|
✗ |
uf = (phi / M_PI * scale + 1.f) * ew / 2.f; |
3601 |
|
✗ |
vf = (theta / theta_range * scale + 1.f) * eh / 2.f; |
3602 |
|
|
} else { |
3603 |
|
✗ |
ew = width / 5; |
3604 |
|
✗ |
eh = height / 2; |
3605 |
|
|
|
3606 |
|
✗ |
u_shift = 4 * ew; |
3607 |
|
|
|
3608 |
|
✗ |
if (theta < 0.f) { // UP |
3609 |
|
✗ |
uf = -vec[0] / vec[1]; |
3610 |
|
✗ |
vf = -vec[2] / vec[1]; |
3611 |
|
✗ |
v_shift = 0; |
3612 |
|
|
} else { // DOWN |
3613 |
|
✗ |
uf = vec[0] / vec[1]; |
3614 |
|
✗ |
vf = -vec[2] / vec[1]; |
3615 |
|
✗ |
v_shift = eh; |
3616 |
|
|
} |
3617 |
|
|
|
3618 |
|
✗ |
uf = 0.5f * ew * (uf * scale + 1.f); |
3619 |
|
✗ |
vf = 0.5f * eh * (vf * scale + 1.f); |
3620 |
|
|
} |
3621 |
|
|
|
3622 |
|
✗ |
ui = floorf(uf); |
3623 |
|
✗ |
vi = floorf(vf); |
3624 |
|
|
|
3625 |
|
✗ |
*du = uf - ui; |
3626 |
|
✗ |
*dv = vf - vi; |
3627 |
|
|
|
3628 |
|
✗ |
for (int i = 0; i < 4; i++) { |
3629 |
|
✗ |
for (int j = 0; j < 4; j++) { |
3630 |
|
✗ |
us[i][j] = u_shift + av_clip(ui + j - 1, 0, ew - 1); |
3631 |
|
✗ |
vs[i][j] = v_shift + av_clip(vi + i - 1, 0, eh - 1); |
3632 |
|
|
} |
3633 |
|
|
} |
3634 |
|
|
|
3635 |
|
✗ |
return 1; |
3636 |
|
|
} |
3637 |
|
|
|
3638 |
|
|
/** |
3639 |
|
|
* Calculate frame position in barrel split facebook's format for corresponding 3D coordinates on sphere. |
3640 |
|
|
* |
3641 |
|
|
* @param s filter private context |
3642 |
|
|
* @param vec coordinates on sphere |
3643 |
|
|
* @param width frame width |
3644 |
|
|
* @param height frame height |
3645 |
|
|
* @param us horizontal coordinates for interpolation window |
3646 |
|
|
* @param vs vertical coordinates for interpolation window |
3647 |
|
|
* @param du horizontal relative coordinate |
3648 |
|
|
* @param dv vertical relative coordinate |
3649 |
|
|
*/ |
3650 |
|
✗ |
static int xyz_to_barrelsplit(const V360Context *s, |
3651 |
|
|
const float *vec, int width, int height, |
3652 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
3653 |
|
|
{ |
3654 |
|
✗ |
const float phi = atan2f(vec[0], vec[2]); |
3655 |
|
✗ |
const float theta = asinf(vec[1]); |
3656 |
|
|
|
3657 |
|
✗ |
const float theta_range = M_PI_4; |
3658 |
|
|
|
3659 |
|
|
int ew, eh; |
3660 |
|
|
int u_shift, v_shift; |
3661 |
|
|
float uf, vf; |
3662 |
|
|
int ui, vi; |
3663 |
|
|
|
3664 |
|
✗ |
if (theta >= -theta_range && theta <= theta_range) { |
3665 |
|
✗ |
const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width * 2.f / 3.f) : 1.f - s->in_pad; |
3666 |
|
✗ |
const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 2.f) : 1.f - s->in_pad; |
3667 |
|
|
|
3668 |
|
✗ |
ew = width / 3 * 2; |
3669 |
|
✗ |
eh = height / 2; |
3670 |
|
|
|
3671 |
|
✗ |
u_shift = 0; |
3672 |
|
✗ |
v_shift = phi >= M_PI_2 || phi < -M_PI_2 ? eh : 0; |
3673 |
|
|
|
3674 |
|
✗ |
uf = fmodf(phi, M_PI_2) / M_PI_2; |
3675 |
|
✗ |
vf = theta / M_PI_4; |
3676 |
|
|
|
3677 |
|
✗ |
if (v_shift) |
3678 |
|
✗ |
uf = uf >= 0.f ? fmodf(uf - 1.f, 1.f) : fmodf(uf + 1.f, 1.f); |
3679 |
|
|
|
3680 |
|
✗ |
uf = (uf * scalew + 1.f) * width / 3.f; |
3681 |
|
✗ |
vf = (vf * scaleh + 1.f) * height / 4.f; |
3682 |
|
|
} else { |
3683 |
|
✗ |
const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 3.f) : 1.f - s->in_pad; |
3684 |
|
✗ |
const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 4.f) : 1.f - s->in_pad; |
3685 |
|
|
|
3686 |
|
✗ |
ew = width / 3; |
3687 |
|
✗ |
eh = height / 4; |
3688 |
|
|
|
3689 |
|
✗ |
u_shift = 2 * ew; |
3690 |
|
|
|
3691 |
|
✗ |
uf = vec[0] / vec[1] * scalew; |
3692 |
|
✗ |
vf = vec[2] / vec[1] * scaleh; |
3693 |
|
|
|
3694 |
|
✗ |
if (theta <= 0.f && theta >= -M_PI_2 && |
3695 |
|
✗ |
phi <= M_PI_2 && phi >= -M_PI_2) { |
3696 |
|
|
// front top |
3697 |
|
✗ |
uf *= -1.0f; |
3698 |
|
✗ |
vf = -(vf + 1.f) * scaleh + 1.f; |
3699 |
|
✗ |
v_shift = 0; |
3700 |
|
✗ |
} else if (theta >= 0.f && theta <= M_PI_2 && |
3701 |
|
✗ |
phi <= M_PI_2 && phi >= -M_PI_2) { |
3702 |
|
|
// front bottom |
3703 |
|
✗ |
vf = -(vf - 1.f) * scaleh; |
3704 |
|
✗ |
v_shift = height * 0.25f; |
3705 |
|
✗ |
} else if (theta <= 0.f && theta >= -M_PI_2) { |
3706 |
|
|
// back top |
3707 |
|
✗ |
vf = (vf - 1.f) * scaleh + 1.f; |
3708 |
|
✗ |
v_shift = height * 0.5f; |
3709 |
|
|
} else { |
3710 |
|
|
// back bottom |
3711 |
|
✗ |
uf *= -1.0f; |
3712 |
|
✗ |
vf = (vf + 1.f) * scaleh; |
3713 |
|
✗ |
v_shift = height * 0.75f; |
3714 |
|
|
} |
3715 |
|
|
|
3716 |
|
✗ |
uf = 0.5f * width / 3.f * (uf + 1.f); |
3717 |
|
✗ |
vf *= height * 0.25f; |
3718 |
|
|
} |
3719 |
|
|
|
3720 |
|
✗ |
ui = floorf(uf); |
3721 |
|
✗ |
vi = floorf(vf); |
3722 |
|
|
|
3723 |
|
✗ |
*du = uf - ui; |
3724 |
|
✗ |
*dv = vf - vi; |
3725 |
|
|
|
3726 |
|
✗ |
for (int i = 0; i < 4; i++) { |
3727 |
|
✗ |
for (int j = 0; j < 4; j++) { |
3728 |
|
✗ |
us[i][j] = u_shift + av_clip(ui + j - 1, 0, ew - 1); |
3729 |
|
✗ |
vs[i][j] = v_shift + av_clip(vi + i - 1, 0, eh - 1); |
3730 |
|
|
} |
3731 |
|
|
} |
3732 |
|
|
|
3733 |
|
✗ |
return 1; |
3734 |
|
|
} |
3735 |
|
|
|
3736 |
|
|
/** |
3737 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in barrel split facebook's format. |
3738 |
|
|
* |
3739 |
|
|
* @param s filter private context |
3740 |
|
|
* @param i horizontal position on frame [0, width) |
3741 |
|
|
* @param j vertical position on frame [0, height) |
3742 |
|
|
* @param width frame width |
3743 |
|
|
* @param height frame height |
3744 |
|
|
* @param vec coordinates on sphere |
3745 |
|
|
*/ |
3746 |
|
✗ |
static int barrelsplit_to_xyz(const V360Context *s, |
3747 |
|
|
int i, int j, int width, int height, |
3748 |
|
|
float *vec) |
3749 |
|
|
{ |
3750 |
|
✗ |
const float x = (i + 0.5f) / width; |
3751 |
|
✗ |
const float y = (j + 0.5f) / height; |
3752 |
|
|
float l_x, l_y, l_z; |
3753 |
|
|
int ret; |
3754 |
|
|
|
3755 |
|
✗ |
if (x < 2.f / 3.f) { |
3756 |
|
✗ |
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width * 2.f / 3.f) : 1.f - s->out_pad; |
3757 |
|
✗ |
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 2.f) : 1.f - s->out_pad; |
3758 |
|
|
|
3759 |
|
✗ |
const float back = floorf(y * 2.f); |
3760 |
|
|
|
3761 |
|
✗ |
const float phi = ((3.f / 2.f * x - 0.5f) / scalew - back) * M_PI; |
3762 |
|
✗ |
const float theta = (y - 0.25f - 0.5f * back) / scaleh * M_PI; |
3763 |
|
|
|
3764 |
|
✗ |
const float sin_phi = sinf(phi); |
3765 |
|
✗ |
const float cos_phi = cosf(phi); |
3766 |
|
✗ |
const float sin_theta = sinf(theta); |
3767 |
|
✗ |
const float cos_theta = cosf(theta); |
3768 |
|
|
|
3769 |
|
✗ |
l_x = cos_theta * sin_phi; |
3770 |
|
✗ |
l_y = sin_theta; |
3771 |
|
✗ |
l_z = cos_theta * cos_phi; |
3772 |
|
|
|
3773 |
|
✗ |
ret = 1; |
3774 |
|
|
} else { |
3775 |
|
✗ |
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 3.f) : 1.f - s->out_pad; |
3776 |
|
✗ |
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 4.f) : 1.f - s->out_pad; |
3777 |
|
|
|
3778 |
|
✗ |
const float facef = floorf(y * 4.f); |
3779 |
|
✗ |
const int face = facef; |
3780 |
|
✗ |
const float dir_vert = (face == 1 || face == 3) ? 1.0f : -1.0f; |
3781 |
|
|
float uf, vf; |
3782 |
|
|
|
3783 |
|
✗ |
uf = x * 3.f - 2.f; |
3784 |
|
|
|
3785 |
|
✗ |
switch (face) { |
3786 |
|
✗ |
case 0: // front top |
3787 |
|
|
case 1: // front bottom |
3788 |
|
✗ |
uf = 1.f - uf; |
3789 |
|
✗ |
vf = (0.5f - 2.f * y) / scaleh + facef; |
3790 |
|
✗ |
break; |
3791 |
|
✗ |
case 2: // back top |
3792 |
|
|
case 3: // back bottom |
3793 |
|
✗ |
vf = (y * 2.f - 1.5f) / scaleh + 3.f - facef; |
3794 |
|
✗ |
break; |
3795 |
|
✗ |
default: |
3796 |
|
✗ |
av_assert0(0); |
3797 |
|
|
} |
3798 |
|
✗ |
l_x = (0.5f - uf) / scalew; |
3799 |
|
✗ |
l_y = 0.5f * dir_vert; |
3800 |
|
✗ |
l_z = (vf - 0.5f) * dir_vert / scaleh; |
3801 |
|
✗ |
ret = (l_x * l_x * scalew * scalew + l_z * l_z * scaleh * scaleh) < 0.5f * 0.5f; |
3802 |
|
|
} |
3803 |
|
|
|
3804 |
|
✗ |
vec[0] = l_x; |
3805 |
|
✗ |
vec[1] = l_y; |
3806 |
|
✗ |
vec[2] = l_z; |
3807 |
|
|
|
3808 |
|
✗ |
return ret; |
3809 |
|
|
} |
3810 |
|
|
|
3811 |
|
|
/** |
3812 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in tspyramid format. |
3813 |
|
|
* |
3814 |
|
|
* @param s filter private context |
3815 |
|
|
* @param i horizontal position on frame [0, width) |
3816 |
|
|
* @param j vertical position on frame [0, height) |
3817 |
|
|
* @param width frame width |
3818 |
|
|
* @param height frame height |
3819 |
|
|
* @param vec coordinates on sphere |
3820 |
|
|
*/ |
3821 |
|
✗ |
static int tspyramid_to_xyz(const V360Context *s, |
3822 |
|
|
int i, int j, int width, int height, |
3823 |
|
|
float *vec) |
3824 |
|
|
{ |
3825 |
|
✗ |
const float x = (i + 0.5f) / width; |
3826 |
|
✗ |
const float y = (j + 0.5f) / height; |
3827 |
|
|
|
3828 |
|
✗ |
if (x < 0.5f) { |
3829 |
|
✗ |
vec[0] = x * 4.f - 1.f; |
3830 |
|
✗ |
vec[1] = (y * 2.f - 1.f); |
3831 |
|
✗ |
vec[2] = 1.f; |
3832 |
|
✗ |
} else if (x >= 0.6875f && x < 0.8125f && |
3833 |
|
✗ |
y >= 0.375f && y < 0.625f) { |
3834 |
|
✗ |
vec[0] = -(x - 0.6875f) * 16.f + 1.f; |
3835 |
|
✗ |
vec[1] = (y - 0.375f) * 8.f - 1.f; |
3836 |
|
✗ |
vec[2] = -1.f; |
3837 |
|
✗ |
} else if (0.5f <= x && x < 0.6875f && |
3838 |
|
✗ |
((0.f <= y && y < 0.375f && y >= 2.f * (x - 0.5f)) || |
3839 |
|
✗ |
(0.375f <= y && y < 0.625f) || |
3840 |
|
✗ |
(0.625f <= y && y < 1.f && y <= 2.f * (1.f - x)))) { |
3841 |
|
✗ |
vec[0] = 1.f; |
3842 |
|
✗ |
vec[1] = 2.f * (y - 2.f * x + 1.f) / (3.f - 4.f * x) - 1.f; |
3843 |
|
✗ |
vec[2] = -2.f * (x - 0.5f) / 0.1875f + 1.f; |
3844 |
|
✗ |
} else if (0.8125f <= x && x < 1.f && |
3845 |
|
✗ |
((0.f <= y && y < 0.375f && x >= (1.f - y / 2.f)) || |
3846 |
|
✗ |
(0.375f <= y && y < 0.625f) || |
3847 |
|
✗ |
(0.625f <= y && y < 1.f && y <= (2.f * x - 1.f)))) { |
3848 |
|
✗ |
vec[0] = -1.f; |
3849 |
|
✗ |
vec[1] = 2.f * (y + 2.f * x - 2.f) / (4.f * x - 3.f) - 1.f; |
3850 |
|
✗ |
vec[2] = 2.f * (x - 0.8125f) / 0.1875f - 1.f; |
3851 |
|
✗ |
} else if (0.f <= y && y < 0.375f && |
3852 |
|
✗ |
((0.5f <= x && x < 0.8125f && y < 2.f * (x - 0.5f)) || |
3853 |
|
✗ |
(0.6875f <= x && x < 0.8125f) || |
3854 |
|
✗ |
(0.8125f <= x && x < 1.f && x < (1.f - y / 2.f)))) { |
3855 |
|
✗ |
vec[0] = 2.f * (1.f - x - 0.5f * y) / (0.5f - y) - 1.f; |
3856 |
|
✗ |
vec[1] = -1.f; |
3857 |
|
✗ |
vec[2] = 2.f * (0.375f - y) / 0.375f - 1.f; |
3858 |
|
|
} else { |
3859 |
|
✗ |
vec[0] = 2.f * (0.5f - x + 0.5f * y) / (y - 0.5f) - 1.f; |
3860 |
|
✗ |
vec[1] = 1.f; |
3861 |
|
✗ |
vec[2] = -2.f * (1.f - y) / 0.375f + 1.f; |
3862 |
|
|
} |
3863 |
|
|
|
3864 |
|
✗ |
return 1; |
3865 |
|
|
} |
3866 |
|
|
|
3867 |
|
|
/** |
3868 |
|
|
* Calculate frame position in tspyramid format for corresponding 3D coordinates on sphere. |
3869 |
|
|
* |
3870 |
|
|
* @param s filter private context |
3871 |
|
|
* @param vec coordinates on sphere |
3872 |
|
|
* @param width frame width |
3873 |
|
|
* @param height frame height |
3874 |
|
|
* @param us horizontal coordinates for interpolation window |
3875 |
|
|
* @param vs vertical coordinates for interpolation window |
3876 |
|
|
* @param du horizontal relative coordinate |
3877 |
|
|
* @param dv vertical relative coordinate |
3878 |
|
|
*/ |
3879 |
|
✗ |
static int xyz_to_tspyramid(const V360Context *s, |
3880 |
|
|
const float *vec, int width, int height, |
3881 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
3882 |
|
|
{ |
3883 |
|
|
float uf, vf; |
3884 |
|
|
int ui, vi; |
3885 |
|
|
int face; |
3886 |
|
|
|
3887 |
|
✗ |
xyz_to_cube(s, vec, &uf, &vf, &face); |
3888 |
|
|
|
3889 |
|
✗ |
uf = (uf + 1.f) * 0.5f; |
3890 |
|
✗ |
vf = (vf + 1.f) * 0.5f; |
3891 |
|
|
|
3892 |
|
✗ |
switch (face) { |
3893 |
|
✗ |
case UP: |
3894 |
|
✗ |
uf = 0.1875f * vf - 0.375f * uf * vf - 0.125f * uf + 0.8125f; |
3895 |
|
✗ |
vf = 0.375f - 0.375f * vf; |
3896 |
|
✗ |
break; |
3897 |
|
✗ |
case FRONT: |
3898 |
|
✗ |
uf = 0.5f * uf; |
3899 |
|
✗ |
break; |
3900 |
|
✗ |
case DOWN: |
3901 |
|
✗ |
uf = 1.f - 0.1875f * vf - 0.5f * uf + 0.375f * uf * vf; |
3902 |
|
✗ |
vf = 1.f - 0.375f * vf; |
3903 |
|
✗ |
break; |
3904 |
|
✗ |
case LEFT: |
3905 |
|
✗ |
vf = 0.25f * vf + 0.75f * uf * vf - 0.375f * uf + 0.375f; |
3906 |
|
✗ |
uf = 0.1875f * uf + 0.8125f; |
3907 |
|
✗ |
break; |
3908 |
|
✗ |
case RIGHT: |
3909 |
|
✗ |
vf = 0.375f * uf - 0.75f * uf * vf + vf; |
3910 |
|
✗ |
uf = 0.1875f * uf + 0.5f; |
3911 |
|
✗ |
break; |
3912 |
|
✗ |
case BACK: |
3913 |
|
✗ |
uf = 0.125f * uf + 0.6875f; |
3914 |
|
✗ |
vf = 0.25f * vf + 0.375f; |
3915 |
|
✗ |
break; |
3916 |
|
|
} |
3917 |
|
|
|
3918 |
|
✗ |
uf *= width; |
3919 |
|
✗ |
vf *= height; |
3920 |
|
|
|
3921 |
|
✗ |
ui = floorf(uf); |
3922 |
|
✗ |
vi = floorf(vf); |
3923 |
|
|
|
3924 |
|
✗ |
*du = uf - ui; |
3925 |
|
✗ |
*dv = vf - vi; |
3926 |
|
|
|
3927 |
|
✗ |
for (int i = 0; i < 4; i++) { |
3928 |
|
✗ |
for (int j = 0; j < 4; j++) { |
3929 |
|
✗ |
us[i][j] = reflectx(ui + j - 1, vi + i - 1, width, height); |
3930 |
|
✗ |
vs[i][j] = reflecty(vi + i - 1, height); |
3931 |
|
|
} |
3932 |
|
|
} |
3933 |
|
|
|
3934 |
|
✗ |
return 1; |
3935 |
|
|
} |
3936 |
|
|
|
3937 |
|
|
/** |
3938 |
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in octahedron format. |
3939 |
|
|
* |
3940 |
|
|
* @param s filter private context |
3941 |
|
|
* @param i horizontal position on frame [0, width) |
3942 |
|
|
* @param j vertical position on frame [0, height) |
3943 |
|
|
* @param width frame width |
3944 |
|
|
* @param height frame height |
3945 |
|
|
* @param vec coordinates on sphere |
3946 |
|
|
*/ |
3947 |
|
✗ |
static int octahedron_to_xyz(const V360Context *s, |
3948 |
|
|
int i, int j, int width, int height, |
3949 |
|
|
float *vec) |
3950 |
|
|
{ |
3951 |
|
✗ |
const float x = rescale(i, width); |
3952 |
|
✗ |
const float y = rescale(j, height); |
3953 |
|
✗ |
const float ax = fabsf(x); |
3954 |
|
✗ |
const float ay = fabsf(y); |
3955 |
|
|
|
3956 |
|
✗ |
vec[2] = 1.f - (ax + ay); |
3957 |
|
✗ |
if (ax + ay > 1.f) { |
3958 |
|
✗ |
vec[0] = (1.f - ay) * FFSIGN(x); |
3959 |
|
✗ |
vec[1] = (1.f - ax) * FFSIGN(y); |
3960 |
|
|
} else { |
3961 |
|
✗ |
vec[0] = x; |
3962 |
|
✗ |
vec[1] = y; |
3963 |
|
|
} |
3964 |
|
|
|
3965 |
|
✗ |
return 1; |
3966 |
|
|
} |
3967 |
|
|
|
3968 |
|
|
/** |
3969 |
|
|
* Calculate frame position in octahedron format for corresponding 3D coordinates on sphere. |
3970 |
|
|
* |
3971 |
|
|
* @param s filter private context |
3972 |
|
|
* @param vec coordinates on sphere |
3973 |
|
|
* @param width frame width |
3974 |
|
|
* @param height frame height |
3975 |
|
|
* @param us horizontal coordinates for interpolation window |
3976 |
|
|
* @param vs vertical coordinates for interpolation window |
3977 |
|
|
* @param du horizontal relative coordinate |
3978 |
|
|
* @param dv vertical relative coordinate |
3979 |
|
|
*/ |
3980 |
|
✗ |
static int xyz_to_octahedron(const V360Context *s, |
3981 |
|
|
const float *vec, int width, int height, |
3982 |
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
3983 |
|
|
{ |
3984 |
|
|
float uf, vf, zf; |
3985 |
|
|
int ui, vi; |
3986 |
|
✗ |
float div = fabsf(vec[0]) + fabsf(vec[1]) + fabsf(vec[2]); |
3987 |
|
|
|
3988 |
|
✗ |
uf = vec[0] / div; |
3989 |
|
✗ |
vf = vec[1] / div; |
3990 |
|
✗ |
zf = vec[2]; |
3991 |
|
|
|
3992 |
|
✗ |
if (zf < 0.f) { |
3993 |
|
✗ |
zf = vf; |
3994 |
|
✗ |
vf = (1.f - fabsf(uf)) * FFSIGN(zf); |
3995 |
|
✗ |
uf = (1.f - fabsf(zf)) * FFSIGN(uf); |
3996 |
|
|
} |
3997 |
|
|
|
3998 |
|
✗ |
uf = scale(uf, width); |
3999 |
|
✗ |
vf = scale(vf, height); |
4000 |
|
|
|
4001 |
|
✗ |
ui = floorf(uf); |
4002 |
|
✗ |
vi = floorf(vf); |
4003 |
|
|
|
4004 |
|
✗ |
*du = uf - ui; |
4005 |
|
✗ |
*dv = vf - vi; |
4006 |
|
|
|
4007 |
|
✗ |
for (int i = 0; i < 4; i++) { |
4008 |
|
✗ |
for (int j = 0; j < 4; j++) { |
4009 |
|
✗ |
us[i][j] = av_clip(ui + j - 1, 0, width - 1); |
4010 |
|
✗ |
vs[i][j] = av_clip(vi + i - 1, 0, height - 1); |
4011 |
|
|
} |
4012 |
|
|
} |
4013 |
|
|
|
4014 |
|
✗ |
return 1; |
4015 |
|
|
} |
4016 |
|
|
|
4017 |
|
✗ |
static void multiply_quaternion(float c[4], const float a[4], const float b[4]) |
4018 |
|
|
{ |
4019 |
|
✗ |
c[0] = a[0] * b[0] - a[1] * b[1] - a[2] * b[2] - a[3] * b[3]; |
4020 |
|
✗ |
c[1] = a[1] * b[0] + a[0] * b[1] + a[2] * b[3] - a[3] * b[2]; |
4021 |
|
✗ |
c[2] = a[2] * b[0] + a[0] * b[2] + a[3] * b[1] - a[1] * b[3]; |
4022 |
|
✗ |
c[3] = a[3] * b[0] + a[0] * b[3] + a[1] * b[2] - a[2] * b[1]; |
4023 |
|
✗ |
} |
4024 |
|
|
|
4025 |
|
✗ |
static void conjugate_quaternion(float d[4], const float q[4]) |
4026 |
|
|
{ |
4027 |
|
✗ |
d[0] = q[0]; |
4028 |
|
✗ |
d[1] = -q[1]; |
4029 |
|
✗ |
d[2] = -q[2]; |
4030 |
|
✗ |
d[3] = -q[3]; |
4031 |
|
✗ |
} |
4032 |
|
|
|
4033 |
|
|
/** |
4034 |
|
|
* Calculate rotation quaternion for yaw/pitch/roll angles. |
4035 |
|
|
*/ |
4036 |
|
✗ |
static inline void calculate_rotation(float yaw, float pitch, float roll, |
4037 |
|
|
float rot_quaternion[2][4], |
4038 |
|
|
const int rotation_order[3]) |
4039 |
|
|
{ |
4040 |
|
✗ |
const float yaw_rad = yaw * M_PI / 180.f; |
4041 |
|
✗ |
const float pitch_rad = pitch * M_PI / 180.f; |
4042 |
|
✗ |
const float roll_rad = roll * M_PI / 180.f; |
4043 |
|
|
|
4044 |
|
✗ |
const float sin_yaw = sinf(yaw_rad * 0.5f); |
4045 |
|
✗ |
const float cos_yaw = cosf(yaw_rad * 0.5f); |
4046 |
|
✗ |
const float sin_pitch = sinf(pitch_rad * 0.5f); |
4047 |
|
✗ |
const float cos_pitch = cosf(pitch_rad * 0.5f); |
4048 |
|
✗ |
const float sin_roll = sinf(roll_rad * 0.5f); |
4049 |
|
✗ |
const float cos_roll = cosf(roll_rad * 0.5f); |
4050 |
|
|
|
4051 |
|
|
float m[3][4]; |
4052 |
|
|
float tmp[2][4]; |
4053 |
|
|
|
4054 |
|
✗ |
m[0][0] = cos_yaw; m[0][1] = 0.f; m[0][2] = sin_yaw; m[0][3] = 0.f; |
4055 |
|
✗ |
m[1][0] = cos_pitch; m[1][1] = sin_pitch; m[1][2] = 0.f; m[1][3] = 0.f; |
4056 |
|
✗ |
m[2][0] = cos_roll; m[2][1] = 0.f; m[2][2] = 0.f; m[2][3] = sin_roll; |
4057 |
|
|
|
4058 |
|
✗ |
multiply_quaternion(tmp[0], rot_quaternion[0], m[rotation_order[0]]); |
4059 |
|
✗ |
multiply_quaternion(tmp[1], tmp[0], m[rotation_order[1]]); |
4060 |
|
✗ |
multiply_quaternion(rot_quaternion[0], tmp[1], m[rotation_order[2]]); |
4061 |
|
|
|
4062 |
|
✗ |
conjugate_quaternion(rot_quaternion[1], rot_quaternion[0]); |
4063 |
|
✗ |
} |
4064 |
|
|
|
4065 |
|
|
/** |
4066 |
|
|
* Rotate vector with given rotation quaternion. |
4067 |
|
|
* |
4068 |
|
|
* @param rot_quaternion rotation quaternion |
4069 |
|
|
* @param vec vector |
4070 |
|
|
*/ |
4071 |
|
✗ |
static inline void rotate(const float rot_quaternion[2][4], |
4072 |
|
|
float *vec) |
4073 |
|
|
{ |
4074 |
|
|
float qv[4], temp[4], rqv[4]; |
4075 |
|
|
|
4076 |
|
✗ |
qv[0] = 0.f; |
4077 |
|
✗ |
qv[1] = vec[0]; |
4078 |
|
✗ |
qv[2] = vec[1]; |
4079 |
|
✗ |
qv[3] = vec[2]; |
4080 |
|
|
|
4081 |
|
✗ |
multiply_quaternion(temp, rot_quaternion[0], qv); |
4082 |
|
✗ |
multiply_quaternion(rqv, temp, rot_quaternion[1]); |
4083 |
|
|
|
4084 |
|
✗ |
vec[0] = rqv[1]; |
4085 |
|
✗ |
vec[1] = rqv[2]; |
4086 |
|
✗ |
vec[2] = rqv[3]; |
4087 |
|
✗ |
} |
4088 |
|
|
|
4089 |
|
✗ |
static inline void set_mirror_modifier(int h_flip, int v_flip, int d_flip, |
4090 |
|
|
float *modifier) |
4091 |
|
|
{ |
4092 |
|
✗ |
modifier[0] = h_flip ? -1.f : 1.f; |
4093 |
|
✗ |
modifier[1] = v_flip ? -1.f : 1.f; |
4094 |
|
✗ |
modifier[2] = d_flip ? -1.f : 1.f; |
4095 |
|
✗ |
} |
4096 |
|
|
|
4097 |
|
✗ |
static inline void mirror(const float *modifier, float *vec) |
4098 |
|
|
{ |
4099 |
|
✗ |
vec[0] *= modifier[0]; |
4100 |
|
✗ |
vec[1] *= modifier[1]; |
4101 |
|
✗ |
vec[2] *= modifier[2]; |
4102 |
|
✗ |
} |
4103 |
|
|
|
4104 |
|
✗ |
static inline void input_flip(int16_t u[4][4], int16_t v[4][4], int w, int h, int hflip, int vflip) |
4105 |
|
|
{ |
4106 |
|
✗ |
if (hflip) { |
4107 |
|
✗ |
for (int i = 0; i < 4; i++) { |
4108 |
|
✗ |
for (int j = 0; j < 4; j++) |
4109 |
|
✗ |
u[i][j] = w - 1 - u[i][j]; |
4110 |
|
|
} |
4111 |
|
|
} |
4112 |
|
|
|
4113 |
|
✗ |
if (vflip) { |
4114 |
|
✗ |
for (int i = 0; i < 4; i++) { |
4115 |
|
✗ |
for (int j = 0; j < 4; j++) |
4116 |
|
✗ |
v[i][j] = h - 1 - v[i][j]; |
4117 |
|
|
} |
4118 |
|
|
} |
4119 |
|
✗ |
} |
4120 |
|
|
|
4121 |
|
✗ |
static int allocate_plane(V360Context *s, int sizeof_uv, int sizeof_ker, int sizeof_mask, int p) |
4122 |
|
|
{ |
4123 |
|
✗ |
const int pr_height = s->pr_height[p]; |
4124 |
|
|
|
4125 |
|
✗ |
for (int n = 0; n < s->nb_threads; n++) { |
4126 |
|
✗ |
SliceXYRemap *r = &s->slice_remap[n]; |
4127 |
|
✗ |
const int slice_start = (pr_height * n ) / s->nb_threads; |
4128 |
|
✗ |
const int slice_end = (pr_height * (n + 1)) / s->nb_threads; |
4129 |
|
✗ |
const int height = slice_end - slice_start; |
4130 |
|
|
|
4131 |
|
✗ |
if (!r->u[p]) |
4132 |
|
✗ |
r->u[p] = av_calloc(s->uv_linesize[p] * height, sizeof_uv); |
4133 |
|
✗ |
if (!r->v[p]) |
4134 |
|
✗ |
r->v[p] = av_calloc(s->uv_linesize[p] * height, sizeof_uv); |
4135 |
|
✗ |
if (!r->u[p] || !r->v[p]) |
4136 |
|
✗ |
return AVERROR(ENOMEM); |
4137 |
|
✗ |
if (sizeof_ker) { |
4138 |
|
✗ |
if (!r->ker[p]) |
4139 |
|
✗ |
r->ker[p] = av_calloc(s->uv_linesize[p] * height, sizeof_ker); |
4140 |
|
✗ |
if (!r->ker[p]) |
4141 |
|
✗ |
return AVERROR(ENOMEM); |
4142 |
|
|
} |
4143 |
|
|
|
4144 |
|
✗ |
if (sizeof_mask && !p) { |
4145 |
|
✗ |
if (!r->mask) |
4146 |
|
✗ |
r->mask = av_calloc(s->pr_width[p] * height, sizeof_mask); |
4147 |
|
✗ |
if (!r->mask) |
4148 |
|
✗ |
return AVERROR(ENOMEM); |
4149 |
|
|
} |
4150 |
|
|
} |
4151 |
|
|
|
4152 |
|
✗ |
return 0; |
4153 |
|
|
} |
4154 |
|
|
|
4155 |
|
✗ |
static void fov_from_dfov(int format, float d_fov, float w, float h, float *h_fov, float *v_fov) |
4156 |
|
|
{ |
4157 |
|
✗ |
switch (format) { |
4158 |
|
✗ |
case EQUIRECTANGULAR: |
4159 |
|
✗ |
*h_fov = d_fov; |
4160 |
|
✗ |
*v_fov = d_fov * 0.5f; |
4161 |
|
✗ |
break; |
4162 |
|
✗ |
case ORTHOGRAPHIC: |
4163 |
|
|
{ |
4164 |
|
✗ |
const float d = 0.5f * hypotf(w, h); |
4165 |
|
✗ |
const float l = sinf(d_fov * M_PI / 360.f) / d; |
4166 |
|
|
|
4167 |
|
✗ |
*h_fov = asinf(w * 0.5f * l) * 360.f / M_PI; |
4168 |
|
✗ |
*v_fov = asinf(h * 0.5f * l) * 360.f / M_PI; |
4169 |
|
|
|
4170 |
|
✗ |
if (d_fov > 180.f) { |
4171 |
|
✗ |
*h_fov = 180.f - *h_fov; |
4172 |
|
✗ |
*v_fov = 180.f - *v_fov; |
4173 |
|
|
} |
4174 |
|
|
} |
4175 |
|
✗ |
break; |
4176 |
|
✗ |
case EQUISOLID: |
4177 |
|
|
{ |
4178 |
|
✗ |
const float d = 0.5f * hypotf(w, h); |
4179 |
|
✗ |
const float l = d / (sinf(d_fov * M_PI / 720.f)); |
4180 |
|
|
|
4181 |
|
✗ |
*h_fov = 2.f * asinf(w * 0.5f / l) * 360.f / M_PI; |
4182 |
|
✗ |
*v_fov = 2.f * asinf(h * 0.5f / l) * 360.f / M_PI; |
4183 |
|
|
} |
4184 |
|
✗ |
break; |
4185 |
|
✗ |
case STEREOGRAPHIC: |
4186 |
|
|
{ |
4187 |
|
✗ |
const float d = 0.5f * hypotf(w, h); |
4188 |
|
✗ |
const float l = d / (tanf(d_fov * M_PI / 720.f)); |
4189 |
|
|
|
4190 |
|
✗ |
*h_fov = 2.f * atan2f(w * 0.5f, l) * 360.f / M_PI; |
4191 |
|
✗ |
*v_fov = 2.f * atan2f(h * 0.5f, l) * 360.f / M_PI; |
4192 |
|
|
} |
4193 |
|
✗ |
break; |
4194 |
|
✗ |
case DUAL_FISHEYE: |
4195 |
|
|
{ |
4196 |
|
✗ |
const float d = hypotf(w * 0.5f, h); |
4197 |
|
|
|
4198 |
|
✗ |
*h_fov = 0.5f * w / d * d_fov; |
4199 |
|
✗ |
*v_fov = h / d * d_fov; |
4200 |
|
|
} |
4201 |
|
✗ |
break; |
4202 |
|
✗ |
case FISHEYE: |
4203 |
|
|
{ |
4204 |
|
✗ |
const float d = hypotf(w, h); |
4205 |
|
|
|
4206 |
|
✗ |
*h_fov = w / d * d_fov; |
4207 |
|
✗ |
*v_fov = h / d * d_fov; |
4208 |
|
|
} |
4209 |
|
✗ |
break; |
4210 |
|
✗ |
case FLAT: |
4211 |
|
|
default: |
4212 |
|
|
{ |
4213 |
|
✗ |
const float da = tanf(0.5f * FFMIN(d_fov, 359.f) * M_PI / 180.f); |
4214 |
|
✗ |
const float d = hypotf(w, h); |
4215 |
|
|
|
4216 |
|
✗ |
*h_fov = atan2f(da * w, d) * 360.f / M_PI; |
4217 |
|
✗ |
*v_fov = atan2f(da * h, d) * 360.f / M_PI; |
4218 |
|
|
|
4219 |
|
✗ |
if (*h_fov < 0.f) |
4220 |
|
✗ |
*h_fov += 360.f; |
4221 |
|
✗ |
if (*v_fov < 0.f) |
4222 |
|
✗ |
*v_fov += 360.f; |
4223 |
|
|
} |
4224 |
|
✗ |
break; |
4225 |
|
|
} |
4226 |
|
✗ |
} |
4227 |
|
|
|
4228 |
|
✗ |
static void set_dimensions(int *outw, int *outh, int w, int h, const AVPixFmtDescriptor *desc) |
4229 |
|
|
{ |
4230 |
|
✗ |
outw[1] = outw[2] = AV_CEIL_RSHIFT(w, desc->log2_chroma_w); |
4231 |
|
✗ |
outw[0] = outw[3] = w; |
4232 |
|
✗ |
outh[1] = outh[2] = AV_CEIL_RSHIFT(h, desc->log2_chroma_h); |
4233 |
|
✗ |
outh[0] = outh[3] = h; |
4234 |
|
✗ |
} |
4235 |
|
|
|
4236 |
|
|
// Calculate remap data |
4237 |
|
✗ |
static int v360_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
4238 |
|
|
{ |
4239 |
|
✗ |
V360Context *s = ctx->priv; |
4240 |
|
✗ |
SliceXYRemap *r = &s->slice_remap[jobnr]; |
4241 |
|
|
|
4242 |
|
✗ |
for (int p = 0; p < s->nb_allocated; p++) { |
4243 |
|
✗ |
const int max_value = s->max_value; |
4244 |
|
✗ |
const int width = s->pr_width[p]; |
4245 |
|
✗ |
const int uv_linesize = s->uv_linesize[p]; |
4246 |
|
✗ |
const int height = s->pr_height[p]; |
4247 |
|
✗ |
const int in_width = s->inplanewidth[p]; |
4248 |
|
✗ |
const int in_height = s->inplaneheight[p]; |
4249 |
|
✗ |
const int slice_start = (height * jobnr ) / nb_jobs; |
4250 |
|
✗ |
const int slice_end = (height * (jobnr + 1)) / nb_jobs; |
4251 |
|
✗ |
const int elements = s->elements; |
4252 |
|
|
float du, dv; |
4253 |
|
|
float vec[3]; |
4254 |
|
|
XYRemap rmap; |
4255 |
|
|
|
4256 |
|
✗ |
for (int j = slice_start; j < slice_end; j++) { |
4257 |
|
✗ |
for (int i = 0; i < width; i++) { |
4258 |
|
✗ |
int16_t *u = r->u[p] + ((j - slice_start) * uv_linesize + i) * elements; |
4259 |
|
✗ |
int16_t *v = r->v[p] + ((j - slice_start) * uv_linesize + i) * elements; |
4260 |
|
✗ |
int16_t *ker = r->ker[p] + ((j - slice_start) * uv_linesize + i) * elements; |
4261 |
|
✗ |
uint8_t *mask8 = p ? NULL : r->mask + ((j - slice_start) * s->pr_width[0] + i); |
4262 |
|
✗ |
uint16_t *mask16 = p ? NULL : (uint16_t *)r->mask + ((j - slice_start) * s->pr_width[0] + i); |
4263 |
|
|
int in_mask, out_mask; |
4264 |
|
|
|
4265 |
|
✗ |
if (s->out_transpose) |
4266 |
|
✗ |
out_mask = s->out_transform(s, j, i, height, width, vec); |
4267 |
|
|
else |
4268 |
|
✗ |
out_mask = s->out_transform(s, i, j, width, height, vec); |
4269 |
|
✗ |
offset_vector(vec, s->h_offset, s->v_offset); |
4270 |
|
✗ |
normalize_vector(vec); |
4271 |
|
|
av_assert1(!isnan(vec[0]) && !isnan(vec[1]) && !isnan(vec[2])); |
4272 |
|
✗ |
rotate(s->rot_quaternion, vec); |
4273 |
|
|
av_assert1(!isnan(vec[0]) && !isnan(vec[1]) && !isnan(vec[2])); |
4274 |
|
✗ |
normalize_vector(vec); |
4275 |
|
✗ |
mirror(s->output_mirror_modifier, vec); |
4276 |
|
✗ |
if (s->in_transpose) |
4277 |
|
✗ |
in_mask = s->in_transform(s, vec, in_height, in_width, rmap.v, rmap.u, &du, &dv); |
4278 |
|
|
else |
4279 |
|
✗ |
in_mask = s->in_transform(s, vec, in_width, in_height, rmap.u, rmap.v, &du, &dv); |
4280 |
|
✗ |
input_flip(rmap.u, rmap.v, in_width, in_height, s->ih_flip, s->iv_flip); |
4281 |
|
|
av_assert1(!isnan(du) && !isnan(dv)); |
4282 |
|
✗ |
s->calculate_kernel(du, dv, &rmap, u, v, ker); |
4283 |
|
|
|
4284 |
|
✗ |
if (!p && r->mask) { |
4285 |
|
✗ |
if (s->mask_size == 1) { |
4286 |
|
✗ |
mask8[0] = 255 * (out_mask & in_mask); |
4287 |
|
|
} else { |
4288 |
|
✗ |
mask16[0] = max_value * (out_mask & in_mask); |
4289 |
|
|
} |
4290 |
|
|
} |
4291 |
|
|
} |
4292 |
|
|
} |
4293 |
|
|
} |
4294 |
|
|
|
4295 |
|
✗ |
return 0; |
4296 |
|
|
} |
4297 |
|
|
|
4298 |
|
✗ |
static int config_output(AVFilterLink *outlink) |
4299 |
|
|
{ |
4300 |
|
✗ |
AVFilterContext *ctx = outlink->src; |
4301 |
|
✗ |
AVFilterLink *inlink = ctx->inputs[0]; |
4302 |
|
✗ |
V360Context *s = ctx->priv; |
4303 |
|
✗ |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); |
4304 |
|
✗ |
const int depth = desc->comp[0].depth; |
4305 |
|
✗ |
const int sizeof_mask = s->mask_size = (depth + 7) >> 3; |
4306 |
|
✗ |
float default_h_fov = 360.f; |
4307 |
|
✗ |
float default_v_fov = 180.f; |
4308 |
|
✗ |
float default_ih_fov = 360.f; |
4309 |
|
✗ |
float default_iv_fov = 180.f; |
4310 |
|
|
int sizeof_uv; |
4311 |
|
|
int sizeof_ker; |
4312 |
|
|
int err; |
4313 |
|
|
int h, w; |
4314 |
|
|
int in_offset_h, in_offset_w; |
4315 |
|
|
int out_offset_h, out_offset_w; |
4316 |
|
|
float hf, wf; |
4317 |
|
|
int (*prepare_out)(AVFilterContext *ctx); |
4318 |
|
|
int have_alpha; |
4319 |
|
|
|
4320 |
|
✗ |
s->max_value = (1 << depth) - 1; |
4321 |
|
|
|
4322 |
|
✗ |
switch (s->interp) { |
4323 |
|
✗ |
case NEAREST: |
4324 |
|
✗ |
s->calculate_kernel = nearest_kernel; |
4325 |
|
✗ |
s->remap_slice = depth <= 8 ? remap1_8bit_slice : remap1_16bit_slice; |
4326 |
|
✗ |
s->elements = 1; |
4327 |
|
✗ |
sizeof_uv = sizeof(int16_t) * s->elements; |
4328 |
|
✗ |
sizeof_ker = 0; |
4329 |
|
✗ |
break; |
4330 |
|
✗ |
case BILINEAR: |
4331 |
|
✗ |
s->calculate_kernel = bilinear_kernel; |
4332 |
|
✗ |
s->remap_slice = depth <= 8 ? remap2_8bit_slice : remap2_16bit_slice; |
4333 |
|
✗ |
s->elements = 2 * 2; |
4334 |
|
✗ |
sizeof_uv = sizeof(int16_t) * s->elements; |
4335 |
|
✗ |
sizeof_ker = sizeof(int16_t) * s->elements; |
4336 |
|
✗ |
break; |
4337 |
|
✗ |
case LAGRANGE9: |
4338 |
|
✗ |
s->calculate_kernel = lagrange_kernel; |
4339 |
|
✗ |
s->remap_slice = depth <= 8 ? remap3_8bit_slice : remap3_16bit_slice; |
4340 |
|
✗ |
s->elements = 3 * 3; |
4341 |
|
✗ |
sizeof_uv = sizeof(int16_t) * s->elements; |
4342 |
|
✗ |
sizeof_ker = sizeof(int16_t) * s->elements; |
4343 |
|
✗ |
break; |
4344 |
|
✗ |
case BICUBIC: |
4345 |
|
✗ |
s->calculate_kernel = bicubic_kernel; |
4346 |
|
✗ |
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice; |
4347 |
|
✗ |
s->elements = 4 * 4; |
4348 |
|
✗ |
sizeof_uv = sizeof(int16_t) * s->elements; |
4349 |
|
✗ |
sizeof_ker = sizeof(int16_t) * s->elements; |
4350 |
|
✗ |
break; |
4351 |
|
✗ |
case LANCZOS: |
4352 |
|
✗ |
s->calculate_kernel = lanczos_kernel; |
4353 |
|
✗ |
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice; |
4354 |
|
✗ |
s->elements = 4 * 4; |
4355 |
|
✗ |
sizeof_uv = sizeof(int16_t) * s->elements; |
4356 |
|
✗ |
sizeof_ker = sizeof(int16_t) * s->elements; |
4357 |
|
✗ |
break; |
4358 |
|
✗ |
case SPLINE16: |
4359 |
|
✗ |
s->calculate_kernel = spline16_kernel; |
4360 |
|
✗ |
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice; |
4361 |
|
✗ |
s->elements = 4 * 4; |
4362 |
|
✗ |
sizeof_uv = sizeof(int16_t) * s->elements; |
4363 |
|
✗ |
sizeof_ker = sizeof(int16_t) * s->elements; |
4364 |
|
✗ |
break; |
4365 |
|
✗ |
case GAUSSIAN: |
4366 |
|
✗ |
s->calculate_kernel = gaussian_kernel; |
4367 |
|
✗ |
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice; |
4368 |
|
✗ |
s->elements = 4 * 4; |
4369 |
|
✗ |
sizeof_uv = sizeof(int16_t) * s->elements; |
4370 |
|
✗ |
sizeof_ker = sizeof(int16_t) * s->elements; |
4371 |
|
✗ |
break; |
4372 |
|
✗ |
case MITCHELL: |
4373 |
|
✗ |
s->calculate_kernel = mitchell_kernel; |
4374 |
|
✗ |
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice; |
4375 |
|
✗ |
s->elements = 4 * 4; |
4376 |
|
✗ |
sizeof_uv = sizeof(int16_t) * s->elements; |
4377 |
|
✗ |
sizeof_ker = sizeof(int16_t) * s->elements; |
4378 |
|
✗ |
break; |
4379 |
|
✗ |
default: |
4380 |
|
✗ |
av_assert0(0); |
4381 |
|
|
} |
4382 |
|
|
|
4383 |
|
✗ |
ff_v360_init(s, depth); |
4384 |
|
|
|
4385 |
|
✗ |
for (int order = 0; order < NB_RORDERS; order++) { |
4386 |
|
✗ |
const char c = s->rorder[order]; |
4387 |
|
|
int rorder; |
4388 |
|
|
|
4389 |
|
✗ |
if (c == '\0') { |
4390 |
|
✗ |
av_log(ctx, AV_LOG_WARNING, |
4391 |
|
|
"Incomplete rorder option. Direction for all 3 rotation orders should be specified. Switching to default rorder.\n"); |
4392 |
|
✗ |
s->rotation_order[0] = YAW; |
4393 |
|
✗ |
s->rotation_order[1] = PITCH; |
4394 |
|
✗ |
s->rotation_order[2] = ROLL; |
4395 |
|
✗ |
break; |
4396 |
|
|
} |
4397 |
|
|
|
4398 |
|
✗ |
rorder = get_rorder(c); |
4399 |
|
✗ |
if (rorder == -1) { |
4400 |
|
✗ |
av_log(ctx, AV_LOG_WARNING, |
4401 |
|
|
"Incorrect rotation order symbol '%c' in rorder option. Switching to default rorder.\n", c); |
4402 |
|
✗ |
s->rotation_order[0] = YAW; |
4403 |
|
✗ |
s->rotation_order[1] = PITCH; |
4404 |
|
✗ |
s->rotation_order[2] = ROLL; |
4405 |
|
✗ |
break; |
4406 |
|
|
} |
4407 |
|
|
|
4408 |
|
✗ |
s->rotation_order[order] = rorder; |
4409 |
|
|
} |
4410 |
|
|
|
4411 |
|
✗ |
switch (s->in_stereo) { |
4412 |
|
✗ |
case STEREO_2D: |
4413 |
|
✗ |
w = inlink->w; |
4414 |
|
✗ |
h = inlink->h; |
4415 |
|
✗ |
in_offset_w = in_offset_h = 0; |
4416 |
|
✗ |
break; |
4417 |
|
✗ |
case STEREO_SBS: |
4418 |
|
✗ |
w = inlink->w / 2; |
4419 |
|
✗ |
h = inlink->h; |
4420 |
|
✗ |
in_offset_w = w; |
4421 |
|
✗ |
in_offset_h = 0; |
4422 |
|
✗ |
break; |
4423 |
|
✗ |
case STEREO_TB: |
4424 |
|
✗ |
w = inlink->w; |
4425 |
|
✗ |
h = inlink->h / 2; |
4426 |
|
✗ |
in_offset_w = 0; |
4427 |
|
✗ |
in_offset_h = h; |
4428 |
|
✗ |
break; |
4429 |
|
✗ |
default: |
4430 |
|
✗ |
av_assert0(0); |
4431 |
|
|
} |
4432 |
|
|
|
4433 |
|
✗ |
set_dimensions(s->inplanewidth, s->inplaneheight, w, h, desc); |
4434 |
|
✗ |
set_dimensions(s->in_offset_w, s->in_offset_h, in_offset_w, in_offset_h, desc); |
4435 |
|
|
|
4436 |
|
✗ |
s->in_width = s->inplanewidth[0]; |
4437 |
|
✗ |
s->in_height = s->inplaneheight[0]; |
4438 |
|
|
|
4439 |
|
✗ |
switch (s->in) { |
4440 |
|
✗ |
case CYLINDRICAL: |
4441 |
|
|
case FLAT: |
4442 |
|
✗ |
default_ih_fov = 90.f; |
4443 |
|
✗ |
default_iv_fov = 45.f; |
4444 |
|
✗ |
break; |
4445 |
|
✗ |
case EQUISOLID: |
4446 |
|
|
case ORTHOGRAPHIC: |
4447 |
|
|
case STEREOGRAPHIC: |
4448 |
|
|
case DUAL_FISHEYE: |
4449 |
|
|
case FISHEYE: |
4450 |
|
✗ |
default_ih_fov = 180.f; |
4451 |
|
✗ |
default_iv_fov = 180.f; |
4452 |
|
✗ |
default: |
4453 |
|
✗ |
break; |
4454 |
|
|
} |
4455 |
|
|
|
4456 |
|
✗ |
if (s->ih_fov == 0.f) |
4457 |
|
✗ |
s->ih_fov = default_ih_fov; |
4458 |
|
|
|
4459 |
|
✗ |
if (s->iv_fov == 0.f) |
4460 |
|
✗ |
s->iv_fov = default_iv_fov; |
4461 |
|
|
|
4462 |
|
✗ |
if (s->id_fov > 0.f) |
4463 |
|
✗ |
fov_from_dfov(s->in, s->id_fov, w, h, &s->ih_fov, &s->iv_fov); |
4464 |
|
|
|
4465 |
|
✗ |
if (s->in_transpose) |
4466 |
|
✗ |
FFSWAP(int, s->in_width, s->in_height); |
4467 |
|
|
|
4468 |
|
✗ |
switch (s->in) { |
4469 |
|
✗ |
case EQUIRECTANGULAR: |
4470 |
|
✗ |
s->in_transform = xyz_to_equirect; |
4471 |
|
✗ |
err = prepare_equirect_in(ctx); |
4472 |
|
✗ |
wf = w; |
4473 |
|
✗ |
hf = h; |
4474 |
|
✗ |
break; |
4475 |
|
✗ |
case CUBEMAP_3_2: |
4476 |
|
✗ |
s->in_transform = xyz_to_cube3x2; |
4477 |
|
✗ |
err = prepare_cube_in(ctx); |
4478 |
|
✗ |
wf = w / 3.f * 4.f; |
4479 |
|
✗ |
hf = h; |
4480 |
|
✗ |
break; |
4481 |
|
✗ |
case CUBEMAP_1_6: |
4482 |
|
✗ |
s->in_transform = xyz_to_cube1x6; |
4483 |
|
✗ |
err = prepare_cube_in(ctx); |
4484 |
|
✗ |
wf = w * 4.f; |
4485 |
|
✗ |
hf = h / 3.f; |
4486 |
|
✗ |
break; |
4487 |
|
✗ |
case CUBEMAP_6_1: |
4488 |
|
✗ |
s->in_transform = xyz_to_cube6x1; |
4489 |
|
✗ |
err = prepare_cube_in(ctx); |
4490 |
|
✗ |
wf = w / 3.f * 2.f; |
4491 |
|
✗ |
hf = h * 2.f; |
4492 |
|
✗ |
break; |
4493 |
|
✗ |
case EQUIANGULAR: |
4494 |
|
✗ |
s->in_transform = xyz_to_eac; |
4495 |
|
✗ |
err = prepare_eac_in(ctx); |
4496 |
|
✗ |
wf = w; |
4497 |
|
✗ |
hf = h / 9.f * 8.f; |
4498 |
|
✗ |
break; |
4499 |
|
✗ |
case FLAT: |
4500 |
|
✗ |
s->in_transform = xyz_to_flat; |
4501 |
|
✗ |
err = prepare_flat_in(ctx); |
4502 |
|
✗ |
wf = w; |
4503 |
|
✗ |
hf = h; |
4504 |
|
✗ |
break; |
4505 |
|
✗ |
case PERSPECTIVE: |
4506 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, "Supplied format is not accepted as input.\n"); |
4507 |
|
✗ |
return AVERROR(EINVAL); |
4508 |
|
✗ |
case DUAL_FISHEYE: |
4509 |
|
✗ |
s->in_transform = xyz_to_dfisheye; |
4510 |
|
✗ |
err = prepare_dfisheye_in(ctx); |
4511 |
|
✗ |
wf = w; |
4512 |
|
✗ |
hf = h; |
4513 |
|
✗ |
break; |
4514 |
|
✗ |
case BARREL: |
4515 |
|
✗ |
s->in_transform = xyz_to_barrel; |
4516 |
|
✗ |
err = 0; |
4517 |
|
✗ |
wf = w / 5.f * 4.f; |
4518 |
|
✗ |
hf = h; |
4519 |
|
✗ |
break; |
4520 |
|
✗ |
case STEREOGRAPHIC: |
4521 |
|
✗ |
s->in_transform = xyz_to_stereographic; |
4522 |
|
✗ |
err = prepare_stereographic_in(ctx); |
4523 |
|
✗ |
wf = w; |
4524 |
|
✗ |
hf = h / 2.f; |
4525 |
|
✗ |
break; |
4526 |
|
✗ |
case MERCATOR: |
4527 |
|
✗ |
s->in_transform = xyz_to_mercator; |
4528 |
|
✗ |
err = 0; |
4529 |
|
✗ |
wf = w; |
4530 |
|
✗ |
hf = h / 2.f; |
4531 |
|
✗ |
break; |
4532 |
|
✗ |
case BALL: |
4533 |
|
✗ |
s->in_transform = xyz_to_ball; |
4534 |
|
✗ |
err = 0; |
4535 |
|
✗ |
wf = w; |
4536 |
|
✗ |
hf = h / 2.f; |
4537 |
|
✗ |
break; |
4538 |
|
✗ |
case HAMMER: |
4539 |
|
✗ |
s->in_transform = xyz_to_hammer; |
4540 |
|
✗ |
err = 0; |
4541 |
|
✗ |
wf = w; |
4542 |
|
✗ |
hf = h; |
4543 |
|
✗ |
break; |
4544 |
|
✗ |
case SINUSOIDAL: |
4545 |
|
✗ |
s->in_transform = xyz_to_sinusoidal; |
4546 |
|
✗ |
err = 0; |
4547 |
|
✗ |
wf = w; |
4548 |
|
✗ |
hf = h; |
4549 |
|
✗ |
break; |
4550 |
|
✗ |
case FISHEYE: |
4551 |
|
✗ |
s->in_transform = xyz_to_fisheye; |
4552 |
|
✗ |
err = prepare_fisheye_in(ctx); |
4553 |
|
✗ |
wf = w * 2; |
4554 |
|
✗ |
hf = h; |
4555 |
|
✗ |
break; |
4556 |
|
✗ |
case PANNINI: |
4557 |
|
✗ |
s->in_transform = xyz_to_pannini; |
4558 |
|
✗ |
err = 0; |
4559 |
|
✗ |
wf = w; |
4560 |
|
✗ |
hf = h; |
4561 |
|
✗ |
break; |
4562 |
|
✗ |
case CYLINDRICAL: |
4563 |
|
✗ |
s->in_transform = xyz_to_cylindrical; |
4564 |
|
✗ |
err = prepare_cylindrical_in(ctx); |
4565 |
|
✗ |
wf = w; |
4566 |
|
✗ |
hf = h * 2.f; |
4567 |
|
✗ |
break; |
4568 |
|
✗ |
case CYLINDRICALEA: |
4569 |
|
✗ |
s->in_transform = xyz_to_cylindricalea; |
4570 |
|
✗ |
err = prepare_cylindricalea_in(ctx); |
4571 |
|
✗ |
wf = w; |
4572 |
|
✗ |
hf = h; |
4573 |
|
✗ |
break; |
4574 |
|
✗ |
case TETRAHEDRON: |
4575 |
|
✗ |
s->in_transform = xyz_to_tetrahedron; |
4576 |
|
✗ |
err = 0; |
4577 |
|
✗ |
wf = w; |
4578 |
|
✗ |
hf = h; |
4579 |
|
✗ |
break; |
4580 |
|
✗ |
case BARREL_SPLIT: |
4581 |
|
✗ |
s->in_transform = xyz_to_barrelsplit; |
4582 |
|
✗ |
err = 0; |
4583 |
|
✗ |
wf = w * 4.f / 3.f; |
4584 |
|
✗ |
hf = h; |
4585 |
|
✗ |
break; |
4586 |
|
✗ |
case TSPYRAMID: |
4587 |
|
✗ |
s->in_transform = xyz_to_tspyramid; |
4588 |
|
✗ |
err = 0; |
4589 |
|
✗ |
wf = w; |
4590 |
|
✗ |
hf = h; |
4591 |
|
✗ |
break; |
4592 |
|
✗ |
case HEQUIRECTANGULAR: |
4593 |
|
✗ |
s->in_transform = xyz_to_hequirect; |
4594 |
|
✗ |
err = 0; |
4595 |
|
✗ |
wf = w * 2.f; |
4596 |
|
✗ |
hf = h; |
4597 |
|
✗ |
break; |
4598 |
|
✗ |
case EQUISOLID: |
4599 |
|
✗ |
s->in_transform = xyz_to_equisolid; |
4600 |
|
✗ |
err = prepare_equisolid_in(ctx); |
4601 |
|
✗ |
wf = w; |
4602 |
|
✗ |
hf = h / 2.f; |
4603 |
|
✗ |
break; |
4604 |
|
✗ |
case ORTHOGRAPHIC: |
4605 |
|
✗ |
s->in_transform = xyz_to_orthographic; |
4606 |
|
✗ |
err = prepare_orthographic_in(ctx); |
4607 |
|
✗ |
wf = w; |
4608 |
|
✗ |
hf = h / 2.f; |
4609 |
|
✗ |
break; |
4610 |
|
✗ |
case OCTAHEDRON: |
4611 |
|
✗ |
s->in_transform = xyz_to_octahedron; |
4612 |
|
✗ |
err = 0; |
4613 |
|
✗ |
wf = w; |
4614 |
|
✗ |
hf = h / 2.f; |
4615 |
|
✗ |
break; |
4616 |
|
✗ |
default: |
4617 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, "Specified input format is not handled.\n"); |
4618 |
|
✗ |
return AVERROR_BUG; |
4619 |
|
|
} |
4620 |
|
|
|
4621 |
|
✗ |
if (err != 0) { |
4622 |
|
✗ |
return err; |
4623 |
|
|
} |
4624 |
|
|
|
4625 |
|
✗ |
switch (s->out) { |
4626 |
|
✗ |
case EQUIRECTANGULAR: |
4627 |
|
✗ |
s->out_transform = equirect_to_xyz; |
4628 |
|
✗ |
prepare_out = prepare_equirect_out; |
4629 |
|
✗ |
w = lrintf(wf); |
4630 |
|
✗ |
h = lrintf(hf); |
4631 |
|
✗ |
break; |
4632 |
|
✗ |
case CUBEMAP_3_2: |
4633 |
|
✗ |
s->out_transform = cube3x2_to_xyz; |
4634 |
|
✗ |
prepare_out = prepare_cube_out; |
4635 |
|
✗ |
w = lrintf(wf / 4.f * 3.f); |
4636 |
|
✗ |
h = lrintf(hf); |
4637 |
|
✗ |
break; |
4638 |
|
✗ |
case CUBEMAP_1_6: |
4639 |
|
✗ |
s->out_transform = cube1x6_to_xyz; |
4640 |
|
✗ |
prepare_out = prepare_cube_out; |
4641 |
|
✗ |
w = lrintf(wf / 4.f); |
4642 |
|
✗ |
h = lrintf(hf * 3.f); |
4643 |
|
✗ |
break; |
4644 |
|
✗ |
case CUBEMAP_6_1: |
4645 |
|
✗ |
s->out_transform = cube6x1_to_xyz; |
4646 |
|
✗ |
prepare_out = prepare_cube_out; |
4647 |
|
✗ |
w = lrintf(wf / 2.f * 3.f); |
4648 |
|
✗ |
h = lrintf(hf / 2.f); |
4649 |
|
✗ |
break; |
4650 |
|
✗ |
case EQUIANGULAR: |
4651 |
|
✗ |
s->out_transform = eac_to_xyz; |
4652 |
|
✗ |
prepare_out = prepare_eac_out; |
4653 |
|
✗ |
w = lrintf(wf); |
4654 |
|
✗ |
h = lrintf(hf / 8.f * 9.f); |
4655 |
|
✗ |
break; |
4656 |
|
✗ |
case FLAT: |
4657 |
|
✗ |
s->out_transform = flat_to_xyz; |
4658 |
|
✗ |
prepare_out = prepare_flat_out; |
4659 |
|
✗ |
w = lrintf(wf); |
4660 |
|
✗ |
h = lrintf(hf); |
4661 |
|
✗ |
break; |
4662 |
|
✗ |
case DUAL_FISHEYE: |
4663 |
|
✗ |
s->out_transform = dfisheye_to_xyz; |
4664 |
|
✗ |
prepare_out = prepare_fisheye_out; |
4665 |
|
✗ |
w = lrintf(wf); |
4666 |
|
✗ |
h = lrintf(hf); |
4667 |
|
✗ |
break; |
4668 |
|
✗ |
case BARREL: |
4669 |
|
✗ |
s->out_transform = barrel_to_xyz; |
4670 |
|
✗ |
prepare_out = NULL; |
4671 |
|
✗ |
w = lrintf(wf / 4.f * 5.f); |
4672 |
|
✗ |
h = lrintf(hf); |
4673 |
|
✗ |
break; |
4674 |
|
✗ |
case STEREOGRAPHIC: |
4675 |
|
✗ |
s->out_transform = stereographic_to_xyz; |
4676 |
|
✗ |
prepare_out = prepare_stereographic_out; |
4677 |
|
✗ |
w = lrintf(wf); |
4678 |
|
✗ |
h = lrintf(hf * 2.f); |
4679 |
|
✗ |
break; |
4680 |
|
✗ |
case MERCATOR: |
4681 |
|
✗ |
s->out_transform = mercator_to_xyz; |
4682 |
|
✗ |
prepare_out = NULL; |
4683 |
|
✗ |
w = lrintf(wf); |
4684 |
|
✗ |
h = lrintf(hf * 2.f); |
4685 |
|
✗ |
break; |
4686 |
|
✗ |
case BALL: |
4687 |
|
✗ |
s->out_transform = ball_to_xyz; |
4688 |
|
✗ |
prepare_out = NULL; |
4689 |
|
✗ |
w = lrintf(wf); |
4690 |
|
✗ |
h = lrintf(hf * 2.f); |
4691 |
|
✗ |
break; |
4692 |
|
✗ |
case HAMMER: |
4693 |
|
✗ |
s->out_transform = hammer_to_xyz; |
4694 |
|
✗ |
prepare_out = NULL; |
4695 |
|
✗ |
w = lrintf(wf); |
4696 |
|
✗ |
h = lrintf(hf); |
4697 |
|
✗ |
break; |
4698 |
|
✗ |
case SINUSOIDAL: |
4699 |
|
✗ |
s->out_transform = sinusoidal_to_xyz; |
4700 |
|
✗ |
prepare_out = NULL; |
4701 |
|
✗ |
w = lrintf(wf); |
4702 |
|
✗ |
h = lrintf(hf); |
4703 |
|
✗ |
break; |
4704 |
|
✗ |
case FISHEYE: |
4705 |
|
✗ |
s->out_transform = fisheye_to_xyz; |
4706 |
|
✗ |
prepare_out = prepare_fisheye_out; |
4707 |
|
✗ |
w = lrintf(wf * 0.5f); |
4708 |
|
✗ |
h = lrintf(hf); |
4709 |
|
✗ |
break; |
4710 |
|
✗ |
case PANNINI: |
4711 |
|
✗ |
s->out_transform = pannini_to_xyz; |
4712 |
|
✗ |
prepare_out = NULL; |
4713 |
|
✗ |
w = lrintf(wf); |
4714 |
|
✗ |
h = lrintf(hf); |
4715 |
|
✗ |
break; |
4716 |
|
✗ |
case CYLINDRICAL: |
4717 |
|
✗ |
s->out_transform = cylindrical_to_xyz; |
4718 |
|
✗ |
prepare_out = prepare_cylindrical_out; |
4719 |
|
✗ |
w = lrintf(wf); |
4720 |
|
✗ |
h = lrintf(hf * 0.5f); |
4721 |
|
✗ |
break; |
4722 |
|
✗ |
case CYLINDRICALEA: |
4723 |
|
✗ |
s->out_transform = cylindricalea_to_xyz; |
4724 |
|
✗ |
prepare_out = prepare_cylindricalea_out; |
4725 |
|
✗ |
w = lrintf(wf); |
4726 |
|
✗ |
h = lrintf(hf); |
4727 |
|
✗ |
break; |
4728 |
|
✗ |
case PERSPECTIVE: |
4729 |
|
✗ |
s->out_transform = perspective_to_xyz; |
4730 |
|
✗ |
prepare_out = NULL; |
4731 |
|
✗ |
w = lrintf(wf / 2.f); |
4732 |
|
✗ |
h = lrintf(hf); |
4733 |
|
✗ |
break; |
4734 |
|
✗ |
case TETRAHEDRON: |
4735 |
|
✗ |
s->out_transform = tetrahedron_to_xyz; |
4736 |
|
✗ |
prepare_out = NULL; |
4737 |
|
✗ |
w = lrintf(wf); |
4738 |
|
✗ |
h = lrintf(hf); |
4739 |
|
✗ |
break; |
4740 |
|
✗ |
case BARREL_SPLIT: |
4741 |
|
✗ |
s->out_transform = barrelsplit_to_xyz; |
4742 |
|
✗ |
prepare_out = NULL; |
4743 |
|
✗ |
w = lrintf(wf / 4.f * 3.f); |
4744 |
|
✗ |
h = lrintf(hf); |
4745 |
|
✗ |
break; |
4746 |
|
✗ |
case TSPYRAMID: |
4747 |
|
✗ |
s->out_transform = tspyramid_to_xyz; |
4748 |
|
✗ |
prepare_out = NULL; |
4749 |
|
✗ |
w = lrintf(wf); |
4750 |
|
✗ |
h = lrintf(hf); |
4751 |
|
✗ |
break; |
4752 |
|
✗ |
case HEQUIRECTANGULAR: |
4753 |
|
✗ |
s->out_transform = hequirect_to_xyz; |
4754 |
|
✗ |
prepare_out = NULL; |
4755 |
|
✗ |
w = lrintf(wf / 2.f); |
4756 |
|
✗ |
h = lrintf(hf); |
4757 |
|
✗ |
break; |
4758 |
|
✗ |
case EQUISOLID: |
4759 |
|
✗ |
s->out_transform = equisolid_to_xyz; |
4760 |
|
✗ |
prepare_out = prepare_equisolid_out; |
4761 |
|
✗ |
w = lrintf(wf); |
4762 |
|
✗ |
h = lrintf(hf * 2.f); |
4763 |
|
✗ |
break; |
4764 |
|
✗ |
case ORTHOGRAPHIC: |
4765 |
|
✗ |
s->out_transform = orthographic_to_xyz; |
4766 |
|
✗ |
prepare_out = prepare_orthographic_out; |
4767 |
|
✗ |
w = lrintf(wf); |
4768 |
|
✗ |
h = lrintf(hf * 2.f); |
4769 |
|
✗ |
break; |
4770 |
|
✗ |
case OCTAHEDRON: |
4771 |
|
✗ |
s->out_transform = octahedron_to_xyz; |
4772 |
|
✗ |
prepare_out = NULL; |
4773 |
|
✗ |
w = lrintf(wf); |
4774 |
|
✗ |
h = lrintf(hf * 2.f); |
4775 |
|
✗ |
break; |
4776 |
|
✗ |
default: |
4777 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, "Specified output format is not handled.\n"); |
4778 |
|
✗ |
return AVERROR_BUG; |
4779 |
|
|
} |
4780 |
|
|
|
4781 |
|
|
// Override resolution with user values if specified |
4782 |
|
✗ |
if (s->width > 0 && s->height <= 0 && s->h_fov > 0.f && s->v_fov > 0.f && |
4783 |
|
✗ |
s->out == FLAT && s->d_fov == 0.f) { |
4784 |
|
✗ |
w = s->width; |
4785 |
|
✗ |
h = w / tanf(s->h_fov * M_PI / 360.f) * tanf(s->v_fov * M_PI / 360.f); |
4786 |
|
✗ |
} else if (s->width <= 0 && s->height > 0 && s->h_fov > 0.f && s->v_fov > 0.f && |
4787 |
|
✗ |
s->out == FLAT && s->d_fov == 0.f) { |
4788 |
|
✗ |
h = s->height; |
4789 |
|
✗ |
w = h / tanf(s->v_fov * M_PI / 360.f) * tanf(s->h_fov * M_PI / 360.f); |
4790 |
|
✗ |
} else if (s->width > 0 && s->height > 0) { |
4791 |
|
✗ |
w = s->width; |
4792 |
|
✗ |
h = s->height; |
4793 |
|
✗ |
} else if (s->width > 0 || s->height > 0) { |
4794 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, "Both width and height values should be specified.\n"); |
4795 |
|
✗ |
return AVERROR(EINVAL); |
4796 |
|
|
} else { |
4797 |
|
✗ |
if (s->out_transpose) |
4798 |
|
✗ |
FFSWAP(int, w, h); |
4799 |
|
|
|
4800 |
|
✗ |
if (s->in_transpose) |
4801 |
|
✗ |
FFSWAP(int, w, h); |
4802 |
|
|
} |
4803 |
|
|
|
4804 |
|
✗ |
s->width = w; |
4805 |
|
✗ |
s->height = h; |
4806 |
|
|
|
4807 |
|
✗ |
switch (s->out) { |
4808 |
|
✗ |
case CYLINDRICAL: |
4809 |
|
|
case FLAT: |
4810 |
|
✗ |
default_h_fov = 90.f; |
4811 |
|
✗ |
default_v_fov = 45.f; |
4812 |
|
✗ |
break; |
4813 |
|
✗ |
case EQUISOLID: |
4814 |
|
|
case ORTHOGRAPHIC: |
4815 |
|
|
case STEREOGRAPHIC: |
4816 |
|
|
case DUAL_FISHEYE: |
4817 |
|
|
case FISHEYE: |
4818 |
|
✗ |
default_h_fov = 180.f; |
4819 |
|
✗ |
default_v_fov = 180.f; |
4820 |
|
✗ |
break; |
4821 |
|
✗ |
default: |
4822 |
|
✗ |
break; |
4823 |
|
|
} |
4824 |
|
|
|
4825 |
|
✗ |
if (s->h_fov == 0.f) |
4826 |
|
✗ |
s->h_fov = default_h_fov; |
4827 |
|
|
|
4828 |
|
✗ |
if (s->v_fov == 0.f) |
4829 |
|
✗ |
s->v_fov = default_v_fov; |
4830 |
|
|
|
4831 |
|
✗ |
if (s->d_fov > 0.f) |
4832 |
|
✗ |
fov_from_dfov(s->out, s->d_fov, w, h, &s->h_fov, &s->v_fov); |
4833 |
|
|
|
4834 |
|
✗ |
if (prepare_out) { |
4835 |
|
✗ |
err = prepare_out(ctx); |
4836 |
|
✗ |
if (err != 0) |
4837 |
|
✗ |
return err; |
4838 |
|
|
} |
4839 |
|
|
|
4840 |
|
✗ |
set_dimensions(s->pr_width, s->pr_height, w, h, desc); |
4841 |
|
|
|
4842 |
|
✗ |
switch (s->out_stereo) { |
4843 |
|
✗ |
case STEREO_2D: |
4844 |
|
✗ |
out_offset_w = out_offset_h = 0; |
4845 |
|
✗ |
break; |
4846 |
|
✗ |
case STEREO_SBS: |
4847 |
|
✗ |
out_offset_w = w; |
4848 |
|
✗ |
out_offset_h = 0; |
4849 |
|
✗ |
w *= 2; |
4850 |
|
✗ |
break; |
4851 |
|
✗ |
case STEREO_TB: |
4852 |
|
✗ |
out_offset_w = 0; |
4853 |
|
✗ |
out_offset_h = h; |
4854 |
|
✗ |
h *= 2; |
4855 |
|
✗ |
break; |
4856 |
|
✗ |
default: |
4857 |
|
✗ |
av_assert0(0); |
4858 |
|
|
} |
4859 |
|
|
|
4860 |
|
✗ |
set_dimensions(s->out_offset_w, s->out_offset_h, out_offset_w, out_offset_h, desc); |
4861 |
|
✗ |
set_dimensions(s->planewidth, s->planeheight, w, h, desc); |
4862 |
|
|
|
4863 |
|
✗ |
for (int i = 0; i < 4; i++) |
4864 |
|
✗ |
s->uv_linesize[i] = FFALIGN(s->pr_width[i], 8); |
4865 |
|
|
|
4866 |
|
✗ |
outlink->h = h; |
4867 |
|
✗ |
outlink->w = w; |
4868 |
|
|
|
4869 |
|
✗ |
s->nb_threads = FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)); |
4870 |
|
✗ |
s->nb_planes = av_pix_fmt_count_planes(inlink->format); |
4871 |
|
✗ |
have_alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA); |
4872 |
|
|
|
4873 |
|
✗ |
if (desc->log2_chroma_h == desc->log2_chroma_w && desc->log2_chroma_h == 0) { |
4874 |
|
✗ |
s->nb_allocated = 1; |
4875 |
|
✗ |
s->map[0] = s->map[1] = s->map[2] = s->map[3] = 0; |
4876 |
|
|
} else { |
4877 |
|
✗ |
s->nb_allocated = 2; |
4878 |
|
✗ |
s->map[0] = s->map[3] = 0; |
4879 |
|
✗ |
s->map[1] = s->map[2] = 1; |
4880 |
|
|
} |
4881 |
|
|
|
4882 |
|
✗ |
if (!s->slice_remap) |
4883 |
|
✗ |
s->slice_remap = av_calloc(s->nb_threads, sizeof(*s->slice_remap)); |
4884 |
|
✗ |
if (!s->slice_remap) |
4885 |
|
✗ |
return AVERROR(ENOMEM); |
4886 |
|
|
|
4887 |
|
✗ |
for (int i = 0; i < s->nb_allocated; i++) { |
4888 |
|
✗ |
err = allocate_plane(s, sizeof_uv, sizeof_ker, sizeof_mask * have_alpha * s->alpha, i); |
4889 |
|
✗ |
if (err < 0) |
4890 |
|
✗ |
return err; |
4891 |
|
|
} |
4892 |
|
|
|
4893 |
|
✗ |
calculate_rotation(s->yaw, s->pitch, s->roll, |
4894 |
|
✗ |
s->rot_quaternion, s->rotation_order); |
4895 |
|
|
|
4896 |
|
✗ |
set_mirror_modifier(s->h_flip, s->v_flip, s->d_flip, s->output_mirror_modifier); |
4897 |
|
|
|
4898 |
|
✗ |
ff_filter_execute(ctx, v360_slice, NULL, NULL, s->nb_threads); |
4899 |
|
|
|
4900 |
|
✗ |
return 0; |
4901 |
|
|
} |
4902 |
|
|
|
4903 |
|
✗ |
static int filter_frame(AVFilterLink *inlink, AVFrame *in) |
4904 |
|
|
{ |
4905 |
|
✗ |
AVFilterContext *ctx = inlink->dst; |
4906 |
|
✗ |
AVFilterLink *outlink = ctx->outputs[0]; |
4907 |
|
✗ |
V360Context *s = ctx->priv; |
4908 |
|
|
AVFrame *out; |
4909 |
|
|
ThreadData td; |
4910 |
|
|
|
4911 |
|
✗ |
out = ff_get_video_buffer(outlink, outlink->w, outlink->h); |
4912 |
|
✗ |
if (!out) { |
4913 |
|
✗ |
av_frame_free(&in); |
4914 |
|
✗ |
return AVERROR(ENOMEM); |
4915 |
|
|
} |
4916 |
|
✗ |
av_frame_copy_props(out, in); |
4917 |
|
|
|
4918 |
|
✗ |
td.in = in; |
4919 |
|
✗ |
td.out = out; |
4920 |
|
|
|
4921 |
|
✗ |
ff_filter_execute(ctx, s->remap_slice, &td, NULL, s->nb_threads); |
4922 |
|
|
|
4923 |
|
✗ |
av_frame_free(&in); |
4924 |
|
✗ |
return ff_filter_frame(outlink, out); |
4925 |
|
|
} |
4926 |
|
|
|
4927 |
|
✗ |
static void reset_rot(V360Context *s) |
4928 |
|
|
{ |
4929 |
|
✗ |
s->rot_quaternion[0][0] = 1.f; |
4930 |
|
✗ |
s->rot_quaternion[0][1] = s->rot_quaternion[0][2] = s->rot_quaternion[0][3] = 0.f; |
4931 |
|
✗ |
} |
4932 |
|
|
|
4933 |
|
✗ |
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, |
4934 |
|
|
char *res, int res_len, int flags) |
4935 |
|
|
{ |
4936 |
|
✗ |
V360Context *s = ctx->priv; |
4937 |
|
|
int ret; |
4938 |
|
|
|
4939 |
|
✗ |
if (s->reset_rot <= 0) |
4940 |
|
✗ |
s->yaw = s->pitch = s->roll = 0.f; |
4941 |
|
✗ |
if (s->reset_rot < 0) |
4942 |
|
✗ |
s->reset_rot = 0; |
4943 |
|
|
|
4944 |
|
✗ |
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); |
4945 |
|
✗ |
if (ret < 0) |
4946 |
|
✗ |
return ret; |
4947 |
|
|
|
4948 |
|
✗ |
if (s->reset_rot) |
4949 |
|
✗ |
reset_rot(s); |
4950 |
|
|
|
4951 |
|
✗ |
return config_output(ctx->outputs[0]); |
4952 |
|
|
} |
4953 |
|
|
|
4954 |
|
✗ |
static av_cold int init(AVFilterContext *ctx) |
4955 |
|
|
{ |
4956 |
|
✗ |
V360Context *s = ctx->priv; |
4957 |
|
|
|
4958 |
|
✗ |
reset_rot(s); |
4959 |
|
|
|
4960 |
|
✗ |
return 0; |
4961 |
|
|
} |
4962 |
|
|
|
4963 |
|
✗ |
static av_cold void uninit(AVFilterContext *ctx) |
4964 |
|
|
{ |
4965 |
|
✗ |
V360Context *s = ctx->priv; |
4966 |
|
|
|
4967 |
|
✗ |
for (int n = 0; n < s->nb_threads && s->slice_remap; n++) { |
4968 |
|
✗ |
SliceXYRemap *r = &s->slice_remap[n]; |
4969 |
|
|
|
4970 |
|
✗ |
for (int p = 0; p < s->nb_allocated; p++) { |
4971 |
|
✗ |
av_freep(&r->u[p]); |
4972 |
|
✗ |
av_freep(&r->v[p]); |
4973 |
|
✗ |
av_freep(&r->ker[p]); |
4974 |
|
|
} |
4975 |
|
|
|
4976 |
|
✗ |
av_freep(&r->mask); |
4977 |
|
|
} |
4978 |
|
|
|
4979 |
|
✗ |
av_freep(&s->slice_remap); |
4980 |
|
✗ |
} |
4981 |
|
|
|
4982 |
|
|
static const AVFilterPad inputs[] = { |
4983 |
|
|
{ |
4984 |
|
|
.name = "default", |
4985 |
|
|
.type = AVMEDIA_TYPE_VIDEO, |
4986 |
|
|
.filter_frame = filter_frame, |
4987 |
|
|
}, |
4988 |
|
|
}; |
4989 |
|
|
|
4990 |
|
|
static const AVFilterPad outputs[] = { |
4991 |
|
|
{ |
4992 |
|
|
.name = "default", |
4993 |
|
|
.type = AVMEDIA_TYPE_VIDEO, |
4994 |
|
|
.config_props = config_output, |
4995 |
|
|
}, |
4996 |
|
|
}; |
4997 |
|
|
|
4998 |
|
|
const AVFilter ff_vf_v360 = { |
4999 |
|
|
.name = "v360", |
5000 |
|
|
.description = NULL_IF_CONFIG_SMALL("Convert 360 projection of video."), |
5001 |
|
|
.priv_size = sizeof(V360Context), |
5002 |
|
|
.init = init, |
5003 |
|
|
.uninit = uninit, |
5004 |
|
|
FILTER_INPUTS(inputs), |
5005 |
|
|
FILTER_OUTPUTS(outputs), |
5006 |
|
|
FILTER_QUERY_FUNC2(query_formats), |
5007 |
|
|
.priv_class = &v360_class, |
5008 |
|
|
.flags = AVFILTER_FLAG_SLICE_THREADS, |
5009 |
|
|
.process_command = process_command, |
5010 |
|
|
}; |
5011 |
|
|
|