Line |
Branch |
Exec |
Source |
1 |
|
|
/* |
2 |
|
|
* Copyright (c) 2005 Robert Edele <yartrebo@earthlink.net> |
3 |
|
|
* Copyright (c) 2012 Stefano Sabatini |
4 |
|
|
* |
5 |
|
|
* This file is part of FFmpeg. |
6 |
|
|
* |
7 |
|
|
* FFmpeg is free software; you can redistribute it and/or |
8 |
|
|
* modify it under the terms of the GNU Lesser General Public |
9 |
|
|
* License as published by the Free Software Foundation; either |
10 |
|
|
* version 2.1 of the License, or (at your option) any later version. |
11 |
|
|
* |
12 |
|
|
* FFmpeg is distributed in the hope that it will be useful, |
13 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
15 |
|
|
* Lesser General Public License for more details. |
16 |
|
|
* |
17 |
|
|
* You should have received a copy of the GNU Lesser General Public |
18 |
|
|
* License along with FFmpeg; if not, write to the Free Software |
19 |
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
20 |
|
|
*/ |
21 |
|
|
|
22 |
|
|
/** |
23 |
|
|
* @file |
24 |
|
|
* Advanced blur-based logo removing filter |
25 |
|
|
* |
26 |
|
|
* This filter loads an image mask file showing where a logo is and |
27 |
|
|
* uses a blur transform to remove the logo. |
28 |
|
|
* |
29 |
|
|
* Based on the libmpcodecs remove-logo filter by Robert Edele. |
30 |
|
|
*/ |
31 |
|
|
|
32 |
|
|
/** |
33 |
|
|
* This code implements a filter to remove annoying TV logos and other annoying |
34 |
|
|
* images placed onto a video stream. It works by filling in the pixels that |
35 |
|
|
* comprise the logo with neighboring pixels. The transform is very loosely |
36 |
|
|
* based on a gaussian blur, but it is different enough to merit its own |
37 |
|
|
* paragraph later on. It is a major improvement on the old delogo filter as it |
38 |
|
|
* both uses a better blurring algorithm and uses a bitmap to use an arbitrary |
39 |
|
|
* and generally much tighter fitting shape than a rectangle. |
40 |
|
|
* |
41 |
|
|
* The logo removal algorithm has two key points. The first is that it |
42 |
|
|
* distinguishes between pixels in the logo and those not in the logo by using |
43 |
|
|
* the passed-in bitmap. Pixels not in the logo are copied over directly without |
44 |
|
|
* being modified and they also serve as source pixels for the logo |
45 |
|
|
* fill-in. Pixels inside the logo have the mask applied. |
46 |
|
|
* |
47 |
|
|
* At init-time the bitmap is reprocessed internally, and the distance to the |
48 |
|
|
* nearest edge of the logo (Manhattan distance), along with a little extra to |
49 |
|
|
* remove rough edges, is stored in each pixel. This is done using an in-place |
50 |
|
|
* erosion algorithm, and incrementing each pixel that survives any given |
51 |
|
|
* erosion. Once every pixel is eroded, the maximum value is recorded, and a |
52 |
|
|
* set of masks from size 0 to this size are generaged. The masks are circular |
53 |
|
|
* binary masks, where each pixel within a radius N (where N is the size of the |
54 |
|
|
* mask) is a 1, and all other pixels are a 0. Although a gaussian mask would be |
55 |
|
|
* more mathematically accurate, a binary mask works better in practice because |
56 |
|
|
* we generally do not use the central pixels in the mask (because they are in |
57 |
|
|
* the logo region), and thus a gaussian mask will cause too little blur and |
58 |
|
|
* thus a very unstable image. |
59 |
|
|
* |
60 |
|
|
* The mask is applied in a special way. Namely, only pixels in the mask that |
61 |
|
|
* line up to pixels outside the logo are used. The dynamic mask size means that |
62 |
|
|
* the mask is just big enough so that the edges touch pixels outside the logo, |
63 |
|
|
* so the blurring is kept to a minimum and at least the first boundary |
64 |
|
|
* condition is met (that the image function itself is continuous), even if the |
65 |
|
|
* second boundary condition (that the derivative of the image function is |
66 |
|
|
* continuous) is not met. A masking algorithm that does preserve the second |
67 |
|
|
* boundary coundition (perhaps something based on a highly-modified bi-cubic |
68 |
|
|
* algorithm) should offer even better results on paper, but the noise in a |
69 |
|
|
* typical TV signal should make anything based on derivatives hopelessly noisy. |
70 |
|
|
*/ |
71 |
|
|
|
72 |
|
|
#include "libavutil/imgutils.h" |
73 |
|
|
#include "libavutil/mem.h" |
74 |
|
|
#include "libavutil/opt.h" |
75 |
|
|
#include "avfilter.h" |
76 |
|
|
#include "filters.h" |
77 |
|
|
#include "video.h" |
78 |
|
|
#include "bbox.h" |
79 |
|
|
#include "lavfutils.h" |
80 |
|
|
#include "lswsutils.h" |
81 |
|
|
|
82 |
|
|
typedef struct RemovelogoContext { |
83 |
|
|
const AVClass *class; |
84 |
|
|
char *filename; |
85 |
|
|
/* Stores our collection of masks. The first is for an array of |
86 |
|
|
the second for the y axis, and the third for the x axis. */ |
87 |
|
|
int ***mask; |
88 |
|
|
int max_mask_size; |
89 |
|
|
int mask_w, mask_h; |
90 |
|
|
|
91 |
|
|
uint8_t *full_mask_data; |
92 |
|
|
FFBoundingBox full_mask_bbox; |
93 |
|
|
uint8_t *half_mask_data; |
94 |
|
|
FFBoundingBox half_mask_bbox; |
95 |
|
|
} RemovelogoContext; |
96 |
|
|
|
97 |
|
|
#define OFFSET(x) offsetof(RemovelogoContext, x) |
98 |
|
|
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM |
99 |
|
|
static const AVOption removelogo_options[] = { |
100 |
|
|
{ "filename", "set bitmap filename", OFFSET(filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, |
101 |
|
|
{ "f", "set bitmap filename", OFFSET(filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, |
102 |
|
|
{ NULL } |
103 |
|
|
}; |
104 |
|
|
|
105 |
|
|
AVFILTER_DEFINE_CLASS(removelogo); |
106 |
|
|
|
107 |
|
|
/** |
108 |
|
|
* Choose a slightly larger mask size to improve performance. |
109 |
|
|
* |
110 |
|
|
* This function maps the absolute minimum mask size needed to the |
111 |
|
|
* mask size we'll actually use. f(x) = x (the smallest that will |
112 |
|
|
* work) will produce the sharpest results, but will be quite |
113 |
|
|
* jittery. f(x) = 1.25x (what I'm using) is a good tradeoff in my |
114 |
|
|
* opinion. This will calculate only at init-time, so you can put a |
115 |
|
|
* long expression here without effecting performance. |
116 |
|
|
*/ |
117 |
|
|
#define apply_mask_fudge_factor(x) (((x) >> 2) + (x)) |
118 |
|
|
|
119 |
|
|
/** |
120 |
|
|
* Pre-process an image to give distance information. |
121 |
|
|
* |
122 |
|
|
* This function takes a bitmap image and converts it in place into a |
123 |
|
|
* distance image. A distance image is zero for pixels outside of the |
124 |
|
|
* logo and is the Manhattan distance (|dx| + |dy|) from the logo edge |
125 |
|
|
* for pixels inside of the logo. This will overestimate the distance, |
126 |
|
|
* but that is safe, and is far easier to implement than a proper |
127 |
|
|
* pythagorean distance since I'm using a modified erosion algorithm |
128 |
|
|
* to compute the distances. |
129 |
|
|
* |
130 |
|
|
* @param mask image which will be converted from a greyscale image |
131 |
|
|
* into a distance image. |
132 |
|
|
*/ |
133 |
|
✗ |
static void convert_mask_to_strength_mask(uint8_t *data, int linesize, |
134 |
|
|
int w, int h, int min_val, |
135 |
|
|
int *max_mask_size) |
136 |
|
|
{ |
137 |
|
|
int x, y; |
138 |
|
|
|
139 |
|
|
/* How many times we've gone through the loop. Used in the |
140 |
|
|
in-place erosion algorithm and to get us max_mask_size later on. */ |
141 |
|
✗ |
int current_pass = 0; |
142 |
|
|
|
143 |
|
|
/* set all non-zero values to 1 */ |
144 |
|
✗ |
for (y = 0; y < h; y++) |
145 |
|
✗ |
for (x = 0; x < w; x++) |
146 |
|
✗ |
data[y*linesize + x] = data[y*linesize + x] > min_val; |
147 |
|
|
|
148 |
|
|
/* For each pass, if a pixel is itself the same value as the |
149 |
|
|
current pass, and its four neighbors are too, then it is |
150 |
|
|
incremented. If no pixels are incremented by the end of the |
151 |
|
|
pass, then we go again. Edge pixels are counted as always |
152 |
|
|
excluded (this should be true anyway for any sane mask, but if |
153 |
|
|
it isn't this will ensure that we eventually exit). */ |
154 |
|
✗ |
while (1) { |
155 |
|
|
/* If this doesn't get set by the end of this pass, then we're done. */ |
156 |
|
✗ |
int has_anything_changed = 0; |
157 |
|
✗ |
uint8_t *current_pixel0 = data + 1 + linesize, *current_pixel; |
158 |
|
✗ |
current_pass++; |
159 |
|
|
|
160 |
|
✗ |
for (y = 1; y < h-1; y++) { |
161 |
|
✗ |
current_pixel = current_pixel0; |
162 |
|
✗ |
for (x = 1; x < w-1; x++) { |
163 |
|
|
/* Apply the in-place erosion transform. It is based |
164 |
|
|
on the following two premises: |
165 |
|
|
1 - Any pixel that fails 1 erosion will fail all |
166 |
|
|
future erosions. |
167 |
|
|
|
168 |
|
|
2 - Only pixels having survived all erosions up to |
169 |
|
|
the present will be >= to current_pass. |
170 |
|
|
It doesn't matter if it survived the current pass, |
171 |
|
|
failed it, or hasn't been tested yet. By using >= |
172 |
|
|
instead of ==, we allow the algorithm to work in |
173 |
|
|
place. */ |
174 |
|
✗ |
if ( *current_pixel >= current_pass && |
175 |
|
✗ |
*(current_pixel + 1) >= current_pass && |
176 |
|
✗ |
*(current_pixel - 1) >= current_pass && |
177 |
|
✗ |
*(current_pixel + linesize) >= current_pass && |
178 |
|
✗ |
*(current_pixel - linesize) >= current_pass) { |
179 |
|
|
/* Increment the value since it still has not been |
180 |
|
|
* eroded, as evidenced by the if statement that |
181 |
|
|
* just evaluated to true. */ |
182 |
|
✗ |
(*current_pixel)++; |
183 |
|
✗ |
has_anything_changed = 1; |
184 |
|
|
} |
185 |
|
✗ |
current_pixel++; |
186 |
|
|
} |
187 |
|
✗ |
current_pixel0 += linesize; |
188 |
|
|
} |
189 |
|
✗ |
if (!has_anything_changed) |
190 |
|
✗ |
break; |
191 |
|
|
} |
192 |
|
|
|
193 |
|
|
/* Apply the fudge factor, which will increase the size of the |
194 |
|
|
* mask a little to reduce jitter at the cost of more blur. */ |
195 |
|
✗ |
for (y = 1; y < h - 1; y++) |
196 |
|
✗ |
for (x = 1; x < w - 1; x++) |
197 |
|
✗ |
data[(y * linesize) + x] = apply_mask_fudge_factor(data[(y * linesize) + x]); |
198 |
|
|
|
199 |
|
|
/* As a side-effect, we now know the maximum mask size, which |
200 |
|
|
* we'll use to generate our masks. */ |
201 |
|
|
/* Apply the fudge factor to this number too, since we must ensure |
202 |
|
|
* that enough masks are generated. */ |
203 |
|
✗ |
*max_mask_size = apply_mask_fudge_factor(current_pass + 1); |
204 |
|
✗ |
} |
205 |
|
|
|
206 |
|
✗ |
static int load_mask(uint8_t **mask, int *w, int *h, |
207 |
|
|
const char *filename, void *log_ctx) |
208 |
|
|
{ |
209 |
|
|
int ret; |
210 |
|
|
enum AVPixelFormat pix_fmt; |
211 |
|
|
uint8_t *src_data[4], *gray_data[4]; |
212 |
|
|
int src_linesize[4], gray_linesize[4]; |
213 |
|
|
|
214 |
|
|
/* load image from file */ |
215 |
|
✗ |
if ((ret = ff_load_image(src_data, src_linesize, w, h, &pix_fmt, filename, log_ctx)) < 0) |
216 |
|
✗ |
return ret; |
217 |
|
|
|
218 |
|
|
/* convert the image to GRAY8 */ |
219 |
|
✗ |
if ((ret = ff_scale_image(gray_data, gray_linesize, *w, *h, AV_PIX_FMT_GRAY8, |
220 |
|
|
src_data, src_linesize, *w, *h, pix_fmt, |
221 |
|
|
log_ctx)) < 0) |
222 |
|
✗ |
goto end; |
223 |
|
|
|
224 |
|
|
/* copy mask to a newly allocated array */ |
225 |
|
✗ |
*mask = av_malloc(*w * *h); |
226 |
|
✗ |
if (!*mask) |
227 |
|
✗ |
ret = AVERROR(ENOMEM); |
228 |
|
✗ |
av_image_copy_plane(*mask, *w, gray_data[0], gray_linesize[0], *w, *h); |
229 |
|
|
|
230 |
|
✗ |
end: |
231 |
|
✗ |
av_freep(&src_data[0]); |
232 |
|
✗ |
av_freep(&gray_data[0]); |
233 |
|
✗ |
return ret; |
234 |
|
|
} |
235 |
|
|
|
236 |
|
|
/** |
237 |
|
|
* Generate a scaled down image with half width, height, and intensity. |
238 |
|
|
* |
239 |
|
|
* This function not only scales down an image, but halves the value |
240 |
|
|
* in each pixel too. The purpose of this is to produce a chroma |
241 |
|
|
* filter image out of a luma filter image. The pixel values store the |
242 |
|
|
* distance to the edge of the logo and halving the dimensions halves |
243 |
|
|
* the distance. This function rounds up, because a downwards rounding |
244 |
|
|
* error could cause the filter to fail, but an upwards rounding error |
245 |
|
|
* will only cause a minor amount of excess blur in the chroma planes. |
246 |
|
|
*/ |
247 |
|
✗ |
static void generate_half_size_image(const uint8_t *src_data, int src_linesize, |
248 |
|
|
uint8_t *dst_data, int dst_linesize, |
249 |
|
|
int src_w, int src_h, |
250 |
|
|
int *max_mask_size) |
251 |
|
|
{ |
252 |
|
|
int x, y; |
253 |
|
|
|
254 |
|
|
/* Copy over the image data, using the average of 4 pixels for to |
255 |
|
|
* calculate each downsampled pixel. */ |
256 |
|
✗ |
for (y = 0; y < src_h/2; y++) { |
257 |
|
✗ |
for (x = 0; x < src_w/2; x++) { |
258 |
|
|
/* Set the pixel if there exists a non-zero value in the |
259 |
|
|
* source pixels, else clear it. */ |
260 |
|
✗ |
dst_data[(y * dst_linesize) + x] = |
261 |
|
✗ |
src_data[((y << 1) * src_linesize) + (x << 1)] || |
262 |
|
✗ |
src_data[((y << 1) * src_linesize) + (x << 1) + 1] || |
263 |
|
✗ |
src_data[(((y << 1) + 1) * src_linesize) + (x << 1)] || |
264 |
|
✗ |
src_data[(((y << 1) + 1) * src_linesize) + (x << 1) + 1]; |
265 |
|
✗ |
dst_data[(y * dst_linesize) + x] = FFMIN(1, dst_data[(y * dst_linesize) + x]); |
266 |
|
|
} |
267 |
|
|
} |
268 |
|
|
|
269 |
|
✗ |
convert_mask_to_strength_mask(dst_data, dst_linesize, |
270 |
|
|
src_w/2, src_h/2, 0, max_mask_size); |
271 |
|
✗ |
} |
272 |
|
|
|
273 |
|
✗ |
static av_cold int init(AVFilterContext *ctx) |
274 |
|
|
{ |
275 |
|
✗ |
RemovelogoContext *s = ctx->priv; |
276 |
|
|
int ***mask; |
277 |
|
✗ |
int ret = 0; |
278 |
|
|
int a, b, c, w, h; |
279 |
|
|
int full_max_mask_size, half_max_mask_size; |
280 |
|
|
|
281 |
|
✗ |
if (!s->filename) { |
282 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, "The bitmap file name is mandatory\n"); |
283 |
|
✗ |
return AVERROR(EINVAL); |
284 |
|
|
} |
285 |
|
|
|
286 |
|
|
/* Load our mask image. */ |
287 |
|
✗ |
if ((ret = load_mask(&s->full_mask_data, &w, &h, s->filename, ctx)) < 0) |
288 |
|
✗ |
return ret; |
289 |
|
✗ |
s->mask_w = w; |
290 |
|
✗ |
s->mask_h = h; |
291 |
|
|
|
292 |
|
✗ |
convert_mask_to_strength_mask(s->full_mask_data, w, w, h, |
293 |
|
|
16, &full_max_mask_size); |
294 |
|
|
|
295 |
|
|
/* Create the scaled down mask image for the chroma planes. */ |
296 |
|
✗ |
if (!(s->half_mask_data = av_mallocz(w/2 * h/2))) |
297 |
|
✗ |
return AVERROR(ENOMEM); |
298 |
|
✗ |
generate_half_size_image(s->full_mask_data, w, |
299 |
|
|
s->half_mask_data, w/2, |
300 |
|
|
w, h, &half_max_mask_size); |
301 |
|
|
|
302 |
|
✗ |
s->max_mask_size = FFMAX(full_max_mask_size, half_max_mask_size); |
303 |
|
|
|
304 |
|
|
/* Create a circular mask for each size up to max_mask_size. When |
305 |
|
|
the filter is applied, the mask size is determined on a pixel |
306 |
|
|
by pixel basis, with pixels nearer the edge of the logo getting |
307 |
|
|
smaller mask sizes. */ |
308 |
|
✗ |
mask = (int ***)av_malloc_array(s->max_mask_size + 1, sizeof(int **)); |
309 |
|
✗ |
if (!mask) |
310 |
|
✗ |
return AVERROR(ENOMEM); |
311 |
|
|
|
312 |
|
✗ |
for (a = 0; a <= s->max_mask_size; a++) { |
313 |
|
✗ |
mask[a] = (int **)av_malloc_array((a * 2) + 1, sizeof(int *)); |
314 |
|
✗ |
if (!mask[a]) { |
315 |
|
✗ |
av_free(mask); |
316 |
|
✗ |
return AVERROR(ENOMEM); |
317 |
|
|
} |
318 |
|
✗ |
for (b = -a; b <= a; b++) { |
319 |
|
✗ |
mask[a][b + a] = (int *)av_malloc_array((a * 2) + 1, sizeof(int)); |
320 |
|
✗ |
if (!mask[a][b + a]) { |
321 |
|
✗ |
av_free(mask); |
322 |
|
✗ |
return AVERROR(ENOMEM); |
323 |
|
|
} |
324 |
|
✗ |
for (c = -a; c <= a; c++) { |
325 |
|
✗ |
if ((b * b) + (c * c) <= (a * a)) /* Circular 0/1 mask. */ |
326 |
|
✗ |
mask[a][b + a][c + a] = 1; |
327 |
|
|
else |
328 |
|
✗ |
mask[a][b + a][c + a] = 0; |
329 |
|
|
} |
330 |
|
|
} |
331 |
|
|
} |
332 |
|
✗ |
s->mask = mask; |
333 |
|
|
|
334 |
|
|
/* Calculate our bounding rectangles, which determine in what |
335 |
|
|
* region the logo resides for faster processing. */ |
336 |
|
✗ |
ff_calculate_bounding_box(&s->full_mask_bbox, s->full_mask_data, w, w, h, 0, 8); |
337 |
|
✗ |
ff_calculate_bounding_box(&s->half_mask_bbox, s->half_mask_data, w/2, w/2, h/2, 0, 8); |
338 |
|
|
|
339 |
|
|
#define SHOW_LOGO_INFO(mask_type) \ |
340 |
|
|
av_log(ctx, AV_LOG_VERBOSE, #mask_type " x1:%d x2:%d y1:%d y2:%d max_mask_size:%d\n", \ |
341 |
|
|
s->mask_type##_mask_bbox.x1, s->mask_type##_mask_bbox.x2, \ |
342 |
|
|
s->mask_type##_mask_bbox.y1, s->mask_type##_mask_bbox.y2, \ |
343 |
|
|
mask_type##_max_mask_size); |
344 |
|
✗ |
SHOW_LOGO_INFO(full); |
345 |
|
✗ |
SHOW_LOGO_INFO(half); |
346 |
|
|
|
347 |
|
✗ |
return 0; |
348 |
|
|
} |
349 |
|
|
|
350 |
|
✗ |
static int config_props_input(AVFilterLink *inlink) |
351 |
|
|
{ |
352 |
|
✗ |
AVFilterContext *ctx = inlink->dst; |
353 |
|
✗ |
RemovelogoContext *s = ctx->priv; |
354 |
|
|
|
355 |
|
✗ |
if (inlink->w != s->mask_w || inlink->h != s->mask_h) { |
356 |
|
✗ |
av_log(ctx, AV_LOG_INFO, |
357 |
|
|
"Mask image size %dx%d does not match with the input video size %dx%d\n", |
358 |
|
|
s->mask_w, s->mask_h, inlink->w, inlink->h); |
359 |
|
✗ |
return AVERROR(EINVAL); |
360 |
|
|
} |
361 |
|
|
|
362 |
|
✗ |
return 0; |
363 |
|
|
} |
364 |
|
|
|
365 |
|
|
/** |
366 |
|
|
* Blur image. |
367 |
|
|
* |
368 |
|
|
* It takes a pixel that is inside the mask and blurs it. It does so |
369 |
|
|
* by finding the average of all the pixels within the mask and |
370 |
|
|
* outside of the mask. |
371 |
|
|
* |
372 |
|
|
* @param mask_data the mask plane to use for averaging |
373 |
|
|
* @param image_data the image plane to blur |
374 |
|
|
* @param w width of the image |
375 |
|
|
* @param h height of the image |
376 |
|
|
* @param x x-coordinate of the pixel to blur |
377 |
|
|
* @param y y-coordinate of the pixel to blur |
378 |
|
|
*/ |
379 |
|
✗ |
static unsigned int blur_pixel(int ***mask, |
380 |
|
|
const uint8_t *mask_data, int mask_linesize, |
381 |
|
|
uint8_t *image_data, int image_linesize, |
382 |
|
|
int w, int h, int x, int y) |
383 |
|
|
{ |
384 |
|
|
/* Mask size tells how large a circle to use. The radius is about |
385 |
|
|
* (slightly larger than) mask size. */ |
386 |
|
|
int mask_size; |
387 |
|
|
int start_posx, start_posy, end_posx, end_posy; |
388 |
|
|
int i, j; |
389 |
|
✗ |
unsigned int accumulator = 0, divisor = 0; |
390 |
|
|
/* What pixel we are reading out of the circular blur mask. */ |
391 |
|
|
const uint8_t *image_read_position; |
392 |
|
|
/* What pixel we are reading out of the filter image. */ |
393 |
|
|
const uint8_t *mask_read_position; |
394 |
|
|
|
395 |
|
|
/* Prepare our bounding rectangle and clip it if need be. */ |
396 |
|
✗ |
mask_size = mask_data[y * mask_linesize + x]; |
397 |
|
✗ |
start_posx = FFMAX(0, x - mask_size); |
398 |
|
✗ |
start_posy = FFMAX(0, y - mask_size); |
399 |
|
✗ |
end_posx = FFMIN(w - 1, x + mask_size); |
400 |
|
✗ |
end_posy = FFMIN(h - 1, y + mask_size); |
401 |
|
|
|
402 |
|
✗ |
image_read_position = image_data + image_linesize * start_posy + start_posx; |
403 |
|
✗ |
mask_read_position = mask_data + mask_linesize * start_posy + start_posx; |
404 |
|
|
|
405 |
|
✗ |
for (j = start_posy; j <= end_posy; j++) { |
406 |
|
✗ |
for (i = start_posx; i <= end_posx; i++) { |
407 |
|
|
/* Check if this pixel is in the mask or not. Only use the |
408 |
|
|
* pixel if it is not. */ |
409 |
|
✗ |
if (!(*mask_read_position) && mask[mask_size][i - start_posx][j - start_posy]) { |
410 |
|
✗ |
accumulator += *image_read_position; |
411 |
|
✗ |
divisor++; |
412 |
|
|
} |
413 |
|
|
|
414 |
|
✗ |
image_read_position++; |
415 |
|
✗ |
mask_read_position++; |
416 |
|
|
} |
417 |
|
|
|
418 |
|
✗ |
image_read_position += (image_linesize - ((end_posx + 1) - start_posx)); |
419 |
|
✗ |
mask_read_position += (mask_linesize - ((end_posx + 1) - start_posx)); |
420 |
|
|
} |
421 |
|
|
|
422 |
|
|
/* If divisor is 0, it means that not a single pixel is outside of |
423 |
|
|
the logo, so we have no data. Else we need to normalise the |
424 |
|
|
data using the divisor. */ |
425 |
|
✗ |
return divisor == 0 ? 255: |
426 |
|
✗ |
(accumulator + (divisor / 2)) / divisor; /* divide, taking into account average rounding error */ |
427 |
|
|
} |
428 |
|
|
|
429 |
|
|
/** |
430 |
|
|
* Blur image plane using a mask. |
431 |
|
|
* |
432 |
|
|
* @param source The image to have it's logo removed. |
433 |
|
|
* @param destination Where the output image will be stored. |
434 |
|
|
* @param source_stride How far apart (in memory) two consecutive lines are. |
435 |
|
|
* @param destination Same as source_stride, but for the destination image. |
436 |
|
|
* @param width Width of the image. This is the same for source and destination. |
437 |
|
|
* @param height Height of the image. This is the same for source and destination. |
438 |
|
|
* @param is_image_direct If the image is direct, then source and destination are |
439 |
|
|
* the same and we can save a lot of time by not copying pixels that |
440 |
|
|
* haven't changed. |
441 |
|
|
* @param filter The image that stores the distance to the edge of the logo for |
442 |
|
|
* each pixel. |
443 |
|
|
* @param logo_start_x smallest x-coordinate that contains at least 1 logo pixel. |
444 |
|
|
* @param logo_start_y smallest y-coordinate that contains at least 1 logo pixel. |
445 |
|
|
* @param logo_end_x largest x-coordinate that contains at least 1 logo pixel. |
446 |
|
|
* @param logo_end_y largest y-coordinate that contains at least 1 logo pixel. |
447 |
|
|
* |
448 |
|
|
* This function processes an entire plane. Pixels outside of the logo are copied |
449 |
|
|
* to the output without change, and pixels inside the logo have the de-blurring |
450 |
|
|
* function applied. |
451 |
|
|
*/ |
452 |
|
✗ |
static void blur_image(int ***mask, |
453 |
|
|
const uint8_t *src_data, int src_linesize, |
454 |
|
|
uint8_t *dst_data, int dst_linesize, |
455 |
|
|
const uint8_t *mask_data, int mask_linesize, |
456 |
|
|
int w, int h, int direct, |
457 |
|
|
FFBoundingBox *bbox) |
458 |
|
|
{ |
459 |
|
|
int x, y; |
460 |
|
|
uint8_t *dst_line; |
461 |
|
|
const uint8_t *src_line; |
462 |
|
|
|
463 |
|
✗ |
if (!direct) |
464 |
|
✗ |
av_image_copy_plane(dst_data, dst_linesize, src_data, src_linesize, w, h); |
465 |
|
|
|
466 |
|
✗ |
for (y = bbox->y1; y <= bbox->y2; y++) { |
467 |
|
✗ |
src_line = src_data + src_linesize * y; |
468 |
|
✗ |
dst_line = dst_data + dst_linesize * y; |
469 |
|
|
|
470 |
|
✗ |
for (x = bbox->x1; x <= bbox->x2; x++) { |
471 |
|
✗ |
if (mask_data[y * mask_linesize + x]) { |
472 |
|
|
/* Only process if we are in the mask. */ |
473 |
|
✗ |
dst_line[x] = blur_pixel(mask, |
474 |
|
|
mask_data, mask_linesize, |
475 |
|
|
dst_data, dst_linesize, |
476 |
|
|
w, h, x, y); |
477 |
|
|
} else { |
478 |
|
|
/* Else just copy the data. */ |
479 |
|
✗ |
if (!direct) |
480 |
|
✗ |
dst_line[x] = src_line[x]; |
481 |
|
|
} |
482 |
|
|
} |
483 |
|
|
} |
484 |
|
✗ |
} |
485 |
|
|
|
486 |
|
✗ |
static int filter_frame(AVFilterLink *inlink, AVFrame *inpicref) |
487 |
|
|
{ |
488 |
|
✗ |
RemovelogoContext *s = inlink->dst->priv; |
489 |
|
✗ |
AVFilterLink *outlink = inlink->dst->outputs[0]; |
490 |
|
|
AVFrame *outpicref; |
491 |
|
✗ |
int direct = 0; |
492 |
|
|
|
493 |
|
✗ |
if (av_frame_is_writable(inpicref)) { |
494 |
|
✗ |
direct = 1; |
495 |
|
✗ |
outpicref = inpicref; |
496 |
|
|
} else { |
497 |
|
✗ |
outpicref = ff_get_video_buffer(outlink, outlink->w, outlink->h); |
498 |
|
✗ |
if (!outpicref) { |
499 |
|
✗ |
av_frame_free(&inpicref); |
500 |
|
✗ |
return AVERROR(ENOMEM); |
501 |
|
|
} |
502 |
|
✗ |
av_frame_copy_props(outpicref, inpicref); |
503 |
|
|
} |
504 |
|
|
|
505 |
|
✗ |
blur_image(s->mask, |
506 |
|
✗ |
inpicref ->data[0], inpicref ->linesize[0], |
507 |
|
|
outpicref->data[0], outpicref->linesize[0], |
508 |
|
✗ |
s->full_mask_data, inlink->w, |
509 |
|
|
inlink->w, inlink->h, direct, &s->full_mask_bbox); |
510 |
|
✗ |
blur_image(s->mask, |
511 |
|
✗ |
inpicref ->data[1], inpicref ->linesize[1], |
512 |
|
|
outpicref->data[1], outpicref->linesize[1], |
513 |
|
✗ |
s->half_mask_data, inlink->w/2, |
514 |
|
✗ |
inlink->w/2, inlink->h/2, direct, &s->half_mask_bbox); |
515 |
|
✗ |
blur_image(s->mask, |
516 |
|
✗ |
inpicref ->data[2], inpicref ->linesize[2], |
517 |
|
|
outpicref->data[2], outpicref->linesize[2], |
518 |
|
✗ |
s->half_mask_data, inlink->w/2, |
519 |
|
✗ |
inlink->w/2, inlink->h/2, direct, &s->half_mask_bbox); |
520 |
|
|
|
521 |
|
✗ |
if (!direct) |
522 |
|
✗ |
av_frame_free(&inpicref); |
523 |
|
|
|
524 |
|
✗ |
return ff_filter_frame(outlink, outpicref); |
525 |
|
|
} |
526 |
|
|
|
527 |
|
✗ |
static av_cold void uninit(AVFilterContext *ctx) |
528 |
|
|
{ |
529 |
|
✗ |
RemovelogoContext *s = ctx->priv; |
530 |
|
|
int a, b; |
531 |
|
|
|
532 |
|
✗ |
av_freep(&s->full_mask_data); |
533 |
|
✗ |
av_freep(&s->half_mask_data); |
534 |
|
|
|
535 |
|
✗ |
if (s->mask) { |
536 |
|
|
/* Loop through each mask. */ |
537 |
|
✗ |
for (a = 0; a <= s->max_mask_size; a++) { |
538 |
|
|
/* Loop through each scanline in a mask. */ |
539 |
|
✗ |
for (b = -a; b <= a; b++) { |
540 |
|
✗ |
av_freep(&s->mask[a][b + a]); /* Free a scanline. */ |
541 |
|
|
} |
542 |
|
✗ |
av_freep(&s->mask[a]); |
543 |
|
|
} |
544 |
|
|
/* Free the array of pointers pointing to the masks. */ |
545 |
|
✗ |
av_freep(&s->mask); |
546 |
|
|
} |
547 |
|
✗ |
} |
548 |
|
|
|
549 |
|
|
static const AVFilterPad removelogo_inputs[] = { |
550 |
|
|
{ |
551 |
|
|
.name = "default", |
552 |
|
|
.type = AVMEDIA_TYPE_VIDEO, |
553 |
|
|
.config_props = config_props_input, |
554 |
|
|
.filter_frame = filter_frame, |
555 |
|
|
}, |
556 |
|
|
}; |
557 |
|
|
|
558 |
|
|
const AVFilter ff_vf_removelogo = { |
559 |
|
|
.name = "removelogo", |
560 |
|
|
.description = NULL_IF_CONFIG_SMALL("Remove a TV logo based on a mask image."), |
561 |
|
|
.priv_size = sizeof(RemovelogoContext), |
562 |
|
|
.init = init, |
563 |
|
|
.uninit = uninit, |
564 |
|
|
FILTER_INPUTS(removelogo_inputs), |
565 |
|
|
FILTER_OUTPUTS(ff_video_default_filterpad), |
566 |
|
|
FILTER_SINGLE_PIXFMT(AV_PIX_FMT_YUV420P), |
567 |
|
|
.priv_class = &removelogo_class, |
568 |
|
|
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, |
569 |
|
|
}; |
570 |
|
|
|