FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavfilter/vf_remap.c
Date: 2025-01-20 09:27:23
Exec Total Coverage
Lines: 0 111 0.0%
Functions: 0 10 0.0%
Branches: 0 76 0.0%

Line Branch Exec Source
1 /*
2 * Copyright (c) 2016 Floris Sluiter
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file
23 * Pixel remap filter
24 * This filter copies pixel by pixel a source frame to a target frame.
25 * It remaps the pixels to a new x,y destination based on two files ymap/xmap.
26 * Map files are passed as a parameter and are in PGM format (P2 or P5),
27 * where the values are y(rows)/x(cols) coordinates of the source_frame.
28 * The *target* frame dimension is based on mapfile dimensions: specified in the
29 * header of the mapfile and reflected in the number of datavalues.
30 * Dimensions of ymap and xmap must be equal. Datavalues must be positive or zero.
31 * Any datavalue in the ymap or xmap which value is higher
32 * then the *source* frame height or width is silently ignored, leaving a
33 * blank/chromakey pixel. This can safely be used as a feature to create overlays.
34 *
35 * Algorithm digest:
36 * Target_frame[y][x] = Source_frame[ ymap[y][x] ][ [xmap[y][x] ];
37 */
38
39 #include "libavutil/colorspace.h"
40 #include "libavutil/imgutils.h"
41 #include "libavutil/pixdesc.h"
42 #include "libavutil/opt.h"
43 #include "avfilter.h"
44 #include "drawutils.h"
45 #include "filters.h"
46 #include "formats.h"
47 #include "framesync.h"
48 #include "video.h"
49
50 typedef struct RemapContext {
51 const AVClass *class;
52 int format;
53
54 int nb_planes;
55 int nb_components;
56 int step;
57 uint8_t fill_rgba[4];
58 int fill_color[4];
59
60 FFFrameSync fs;
61
62 int (*remap_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
63 } RemapContext;
64
65 #define OFFSET(x) offsetof(RemapContext, x)
66 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
67
68 static const AVOption remap_options[] = {
69 { "format", "set output format", OFFSET(format), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, .unit = "format" },
70 { "color", "", 0, AV_OPT_TYPE_CONST, {.i64=0}, .flags = FLAGS, .unit = "format" },
71 { "gray", "", 0, AV_OPT_TYPE_CONST, {.i64=1}, .flags = FLAGS, .unit = "format" },
72 { "fill", "set the color of the unmapped pixels", OFFSET(fill_rgba), AV_OPT_TYPE_COLOR, {.str="black"}, .flags = FLAGS },
73 { NULL }
74 };
75
76 AVFILTER_DEFINE_CLASS(remap);
77
78 typedef struct ThreadData {
79 AVFrame *in, *xin, *yin, *out;
80 int nb_planes;
81 int nb_components;
82 int step;
83 } ThreadData;
84
85 static int query_formats(const AVFilterContext *ctx,
86 AVFilterFormatsConfig **cfg_in,
87 AVFilterFormatsConfig **cfg_out)
88 {
89 const RemapContext *s = ctx->priv;
90 static const enum AVPixelFormat pix_fmts[] = {
91 AV_PIX_FMT_YUVA444P,
92 AV_PIX_FMT_YUV444P,
93 AV_PIX_FMT_YUVJ444P,
94 AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
95 AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA,
96 AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
97 AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12,
98 AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
99 AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
100 AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
101 AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
102 AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
103 AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48,
104 AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
105 AV_PIX_FMT_NONE
106 };
107 static const enum AVPixelFormat gray_pix_fmts[] = {
108 AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
109 AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
110 AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
111 AV_PIX_FMT_NONE
112 };
113 static const enum AVPixelFormat map_fmts[] = {
114 AV_PIX_FMT_GRAY16,
115 AV_PIX_FMT_NONE
116 };
117 AVFilterFormats *pix_formats = NULL, *map_formats = NULL;
118 int ret;
119
120 pix_formats = ff_make_format_list(s->format ? gray_pix_fmts : pix_fmts);
121 if ((ret = ff_formats_ref(pix_formats, &cfg_in[0]->formats)) < 0 ||
122 (ret = ff_formats_ref(pix_formats, &cfg_out[0]->formats)) < 0)
123 return ret;
124
125 map_formats = ff_make_format_list(map_fmts);
126 if ((ret = ff_formats_ref(map_formats, &cfg_in[1]->formats)) < 0)
127 return ret;
128 return ff_formats_ref(map_formats, &cfg_in[2]->formats);
129 }
130
131 /**
132 * remap_planar algorithm expects planes of same size
133 * pixels are copied from source to target using :
134 * Target_frame[y][x] = Source_frame[ ymap[y][x] ][ [xmap[y][x] ];
135 */
136 #define DEFINE_REMAP_PLANAR_FUNC(name, bits, div) \
137 static int remap_planar##bits##_##name##_slice(AVFilterContext *ctx, void *arg, \
138 int jobnr, int nb_jobs) \
139 { \
140 RemapContext *s = ctx->priv; \
141 const ThreadData *td = arg; \
142 const AVFrame *in = td->in; \
143 const AVFrame *xin = td->xin; \
144 const AVFrame *yin = td->yin; \
145 const AVFrame *out = td->out; \
146 const int slice_start = (out->height * jobnr ) / nb_jobs; \
147 const int slice_end = (out->height * (jobnr+1)) / nb_jobs; \
148 const int xlinesize = xin->linesize[0] / 2; \
149 const int ylinesize = yin->linesize[0] / 2; \
150 int x , y, plane; \
151 \
152 for (plane = 0; plane < td->nb_planes ; plane++) { \
153 const int dlinesize = out->linesize[plane] / div; \
154 const uint##bits##_t *src = (const uint##bits##_t *)in->data[plane]; \
155 uint##bits##_t *dst = (uint##bits##_t *)out->data[plane] + slice_start * dlinesize; \
156 const int slinesize = in->linesize[plane] / div; \
157 const uint16_t *xmap = (const uint16_t *)xin->data[0] + slice_start * xlinesize; \
158 const uint16_t *ymap = (const uint16_t *)yin->data[0] + slice_start * ylinesize; \
159 const int color = s->fill_color[plane]; \
160 \
161 for (y = slice_start; y < slice_end; y++) { \
162 for (x = 0; x < out->width; x++) { \
163 if (ymap[x] < in->height && xmap[x] < in->width) { \
164 dst[x] = src[ymap[x] * slinesize + xmap[x]]; \
165 } else { \
166 dst[x] = color; \
167 } \
168 } \
169 dst += dlinesize; \
170 xmap += xlinesize; \
171 ymap += ylinesize; \
172 } \
173 } \
174 \
175 return 0; \
176 }
177
178 DEFINE_REMAP_PLANAR_FUNC(nearest, 8, 1)
179 DEFINE_REMAP_PLANAR_FUNC(nearest, 16, 2)
180
181 /**
182 * remap_packed algorithm expects pixels with both padded bits (step) and
183 * number of components correctly set.
184 * pixels are copied from source to target using :
185 * Target_frame[y][x] = Source_frame[ ymap[y][x] ][ [xmap[y][x] ];
186 */
187 #define DEFINE_REMAP_PACKED_FUNC(name, bits, div) \
188 static int remap_packed##bits##_##name##_slice(AVFilterContext *ctx, void *arg, \
189 int jobnr, int nb_jobs) \
190 { \
191 RemapContext *s = ctx->priv; \
192 const ThreadData *td = arg; \
193 const AVFrame *in = td->in; \
194 const AVFrame *xin = td->xin; \
195 const AVFrame *yin = td->yin; \
196 const AVFrame *out = td->out; \
197 const int slice_start = (out->height * jobnr ) / nb_jobs; \
198 const int slice_end = (out->height * (jobnr+1)) / nb_jobs; \
199 const int dlinesize = out->linesize[0] / div; \
200 const int slinesize = in->linesize[0] / div; \
201 const int xlinesize = xin->linesize[0] / 2; \
202 const int ylinesize = yin->linesize[0] / 2; \
203 const uint##bits##_t *src = (const uint##bits##_t *)in->data[0]; \
204 uint##bits##_t *dst = (uint##bits##_t *)out->data[0] + slice_start * dlinesize; \
205 const uint16_t *xmap = (const uint16_t *)xin->data[0] + slice_start * xlinesize; \
206 const uint16_t *ymap = (const uint16_t *)yin->data[0] + slice_start * ylinesize; \
207 const int step = td->step / div; \
208 int c, x, y; \
209 \
210 for (y = slice_start; y < slice_end; y++) { \
211 for (x = 0; x < out->width; x++) { \
212 for (c = 0; c < td->nb_components; c++) { \
213 if (ymap[x] < in->height && xmap[x] < in->width) { \
214 dst[x * step + c] = src[ymap[x] * slinesize + xmap[x] * step + c]; \
215 } else { \
216 dst[x * step + c] = s->fill_color[c]; \
217 } \
218 } \
219 } \
220 dst += dlinesize; \
221 xmap += xlinesize; \
222 ymap += ylinesize; \
223 } \
224 \
225 return 0; \
226 }
227
228 DEFINE_REMAP_PACKED_FUNC(nearest, 8, 1)
229 DEFINE_REMAP_PACKED_FUNC(nearest, 16, 2)
230
231 static int config_input(AVFilterLink *inlink)
232 {
233 AVFilterContext *ctx = inlink->dst;
234 RemapContext *s = ctx->priv;
235 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
236 int depth = desc->comp[0].depth;
237 int is_rgb = !!(desc->flags & AV_PIX_FMT_FLAG_RGB);
238 int factor = 1 << (depth - 8);
239 uint8_t rgba_map[4];
240
241 ff_fill_rgba_map(rgba_map, inlink->format);
242 s->nb_planes = av_pix_fmt_count_planes(inlink->format);
243 s->nb_components = desc->nb_components;
244
245 if (is_rgb) {
246 s->fill_color[rgba_map[0]] = s->fill_rgba[0] * factor;
247 s->fill_color[rgba_map[1]] = s->fill_rgba[1] * factor;
248 s->fill_color[rgba_map[2]] = s->fill_rgba[2] * factor;
249 s->fill_color[rgba_map[3]] = s->fill_rgba[3] * factor;
250 } else {
251 s->fill_color[0] = RGB_TO_Y_BT709(s->fill_rgba[0], s->fill_rgba[1], s->fill_rgba[2]) * factor;
252 s->fill_color[1] = RGB_TO_U_BT709(s->fill_rgba[0], s->fill_rgba[1], s->fill_rgba[2], 0) * factor;
253 s->fill_color[2] = RGB_TO_V_BT709(s->fill_rgba[0], s->fill_rgba[1], s->fill_rgba[2], 0) * factor;
254 s->fill_color[3] = s->fill_rgba[3] * factor;
255 }
256
257 if (depth == 8) {
258 if (s->nb_planes > 1 || s->nb_components == 1) {
259 s->remap_slice = remap_planar8_nearest_slice;
260 } else {
261 s->remap_slice = remap_packed8_nearest_slice;
262 }
263 } else {
264 if (s->nb_planes > 1 || s->nb_components == 1) {
265 s->remap_slice = remap_planar16_nearest_slice;
266 } else {
267 s->remap_slice = remap_packed16_nearest_slice;
268 }
269 }
270
271 s->step = av_get_padded_bits_per_pixel(desc) >> 3;
272 return 0;
273 }
274
275 static int process_frame(FFFrameSync *fs)
276 {
277 AVFilterContext *ctx = fs->parent;
278 RemapContext *s = fs->opaque;
279 AVFilterLink *outlink = ctx->outputs[0];
280 AVFrame *out, *in, *xpic, *ypic;
281 int ret;
282
283 if ((ret = ff_framesync_get_frame(&s->fs, 0, &in, 0)) < 0 ||
284 (ret = ff_framesync_get_frame(&s->fs, 1, &xpic, 0)) < 0 ||
285 (ret = ff_framesync_get_frame(&s->fs, 2, &ypic, 0)) < 0)
286 return ret;
287
288 {
289 ThreadData td;
290
291 out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
292 if (!out)
293 return AVERROR(ENOMEM);
294 av_frame_copy_props(out, in);
295
296 td.in = in;
297 td.xin = xpic;
298 td.yin = ypic;
299 td.out = out;
300 td.nb_planes = s->nb_planes;
301 td.nb_components = s->nb_components;
302 td.step = s->step;
303 ff_filter_execute(ctx, s->remap_slice, &td, NULL,
304 FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
305 }
306 out->pts = av_rescale_q(s->fs.pts, s->fs.time_base, outlink->time_base);
307
308 return ff_filter_frame(outlink, out);
309 }
310
311 static int config_output(AVFilterLink *outlink)
312 {
313 AVFilterContext *ctx = outlink->src;
314 RemapContext *s = ctx->priv;
315 AVFilterLink *srclink = ctx->inputs[0];
316 AVFilterLink *xlink = ctx->inputs[1];
317 AVFilterLink *ylink = ctx->inputs[2];
318 FilterLink *il = ff_filter_link(srclink);
319 FilterLink *ol = ff_filter_link(outlink);
320 FFFrameSyncIn *in;
321 int ret;
322
323 if (xlink->w != ylink->w || xlink->h != ylink->h) {
324 av_log(ctx, AV_LOG_ERROR, "Second input link %s parameters "
325 "(size %dx%d) do not match the corresponding "
326 "third input link %s parameters (%dx%d)\n",
327 ctx->input_pads[1].name, xlink->w, xlink->h,
328 ctx->input_pads[2].name, ylink->w, ylink->h);
329 return AVERROR(EINVAL);
330 }
331
332 outlink->w = xlink->w;
333 outlink->h = xlink->h;
334 outlink->sample_aspect_ratio = srclink->sample_aspect_ratio;
335 ol->frame_rate = il->frame_rate;
336
337 ret = ff_framesync_init(&s->fs, ctx, 3);
338 if (ret < 0)
339 return ret;
340
341 in = s->fs.in;
342 in[0].time_base = srclink->time_base;
343 in[1].time_base = xlink->time_base;
344 in[2].time_base = ylink->time_base;
345 in[0].sync = 2;
346 in[0].before = EXT_STOP;
347 in[0].after = EXT_STOP;
348 in[1].sync = 1;
349 in[1].before = EXT_NULL;
350 in[1].after = EXT_INFINITY;
351 in[2].sync = 1;
352 in[2].before = EXT_NULL;
353 in[2].after = EXT_INFINITY;
354 s->fs.opaque = s;
355 s->fs.on_event = process_frame;
356
357 ret = ff_framesync_configure(&s->fs);
358 outlink->time_base = s->fs.time_base;
359
360 return ret;
361 }
362
363 static int activate(AVFilterContext *ctx)
364 {
365 RemapContext *s = ctx->priv;
366 return ff_framesync_activate(&s->fs);
367 }
368
369 static av_cold void uninit(AVFilterContext *ctx)
370 {
371 RemapContext *s = ctx->priv;
372
373 ff_framesync_uninit(&s->fs);
374 }
375
376 static const AVFilterPad remap_inputs[] = {
377 {
378 .name = "source",
379 .type = AVMEDIA_TYPE_VIDEO,
380 .config_props = config_input,
381 },
382 {
383 .name = "xmap",
384 .type = AVMEDIA_TYPE_VIDEO,
385 },
386 {
387 .name = "ymap",
388 .type = AVMEDIA_TYPE_VIDEO,
389 },
390 };
391
392 static const AVFilterPad remap_outputs[] = {
393 {
394 .name = "default",
395 .type = AVMEDIA_TYPE_VIDEO,
396 .config_props = config_output,
397 },
398 };
399
400 const FFFilter ff_vf_remap = {
401 .p.name = "remap",
402 .p.description = NULL_IF_CONFIG_SMALL("Remap pixels."),
403 .p.priv_class = &remap_class,
404 .p.flags = AVFILTER_FLAG_SLICE_THREADS,
405 .priv_size = sizeof(RemapContext),
406 .uninit = uninit,
407 .activate = activate,
408 FILTER_INPUTS(remap_inputs),
409 FILTER_OUTPUTS(remap_outputs),
410 FILTER_QUERY_FUNC2(query_formats),
411 };
412