FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavfilter/vf_remap.c
Date: 2024-04-19 07:31:02
Exec Total Coverage
Lines: 0 109 0.0%
Functions: 0 10 0.0%
Branches: 0 76 0.0%

Line Branch Exec Source
1 /*
2 * Copyright (c) 2016 Floris Sluiter
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file
23 * Pixel remap filter
24 * This filter copies pixel by pixel a source frame to a target frame.
25 * It remaps the pixels to a new x,y destination based on two files ymap/xmap.
26 * Map files are passed as a parameter and are in PGM format (P2 or P5),
27 * where the values are y(rows)/x(cols) coordinates of the source_frame.
28 * The *target* frame dimension is based on mapfile dimensions: specified in the
29 * header of the mapfile and reflected in the number of datavalues.
30 * Dimensions of ymap and xmap must be equal. Datavalues must be positive or zero.
31 * Any datavalue in the ymap or xmap which value is higher
32 * then the *source* frame height or width is silently ignored, leaving a
33 * blank/chromakey pixel. This can safely be used as a feature to create overlays.
34 *
35 * Algorithm digest:
36 * Target_frame[y][x] = Source_frame[ ymap[y][x] ][ [xmap[y][x] ];
37 */
38
39 #include "libavutil/colorspace.h"
40 #include "libavutil/imgutils.h"
41 #include "libavutil/pixdesc.h"
42 #include "libavutil/opt.h"
43 #include "avfilter.h"
44 #include "drawutils.h"
45 #include "formats.h"
46 #include "framesync.h"
47 #include "internal.h"
48 #include "video.h"
49
50 typedef struct RemapContext {
51 const AVClass *class;
52 int format;
53
54 int nb_planes;
55 int nb_components;
56 int step;
57 uint8_t fill_rgba[4];
58 int fill_color[4];
59
60 FFFrameSync fs;
61
62 int (*remap_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
63 } RemapContext;
64
65 #define OFFSET(x) offsetof(RemapContext, x)
66 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
67
68 static const AVOption remap_options[] = {
69 { "format", "set output format", OFFSET(format), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, .unit = "format" },
70 { "color", "", 0, AV_OPT_TYPE_CONST, {.i64=0}, .flags = FLAGS, .unit = "format" },
71 { "gray", "", 0, AV_OPT_TYPE_CONST, {.i64=1}, .flags = FLAGS, .unit = "format" },
72 { "fill", "set the color of the unmapped pixels", OFFSET(fill_rgba), AV_OPT_TYPE_COLOR, {.str="black"}, .flags = FLAGS },
73 { NULL }
74 };
75
76 AVFILTER_DEFINE_CLASS(remap);
77
78 typedef struct ThreadData {
79 AVFrame *in, *xin, *yin, *out;
80 int nb_planes;
81 int nb_components;
82 int step;
83 } ThreadData;
84
85 static int query_formats(AVFilterContext *ctx)
86 {
87 RemapContext *s = ctx->priv;
88 static const enum AVPixelFormat pix_fmts[] = {
89 AV_PIX_FMT_YUVA444P,
90 AV_PIX_FMT_YUV444P,
91 AV_PIX_FMT_YUVJ444P,
92 AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
93 AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA,
94 AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
95 AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12,
96 AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
97 AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
98 AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
99 AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
100 AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
101 AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48,
102 AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
103 AV_PIX_FMT_NONE
104 };
105 static const enum AVPixelFormat gray_pix_fmts[] = {
106 AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
107 AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
108 AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
109 AV_PIX_FMT_NONE
110 };
111 static const enum AVPixelFormat map_fmts[] = {
112 AV_PIX_FMT_GRAY16,
113 AV_PIX_FMT_NONE
114 };
115 AVFilterFormats *pix_formats = NULL, *map_formats = NULL;
116 int ret;
117
118 pix_formats = ff_make_format_list(s->format ? gray_pix_fmts : pix_fmts);
119 if ((ret = ff_formats_ref(pix_formats, &ctx->inputs[0]->outcfg.formats)) < 0 ||
120 (ret = ff_formats_ref(pix_formats, &ctx->outputs[0]->incfg.formats)) < 0)
121 return ret;
122
123 map_formats = ff_make_format_list(map_fmts);
124 if ((ret = ff_formats_ref(map_formats, &ctx->inputs[1]->outcfg.formats)) < 0)
125 return ret;
126 return ff_formats_ref(map_formats, &ctx->inputs[2]->outcfg.formats);
127 }
128
129 /**
130 * remap_planar algorithm expects planes of same size
131 * pixels are copied from source to target using :
132 * Target_frame[y][x] = Source_frame[ ymap[y][x] ][ [xmap[y][x] ];
133 */
134 #define DEFINE_REMAP_PLANAR_FUNC(name, bits, div) \
135 static int remap_planar##bits##_##name##_slice(AVFilterContext *ctx, void *arg, \
136 int jobnr, int nb_jobs) \
137 { \
138 RemapContext *s = ctx->priv; \
139 const ThreadData *td = arg; \
140 const AVFrame *in = td->in; \
141 const AVFrame *xin = td->xin; \
142 const AVFrame *yin = td->yin; \
143 const AVFrame *out = td->out; \
144 const int slice_start = (out->height * jobnr ) / nb_jobs; \
145 const int slice_end = (out->height * (jobnr+1)) / nb_jobs; \
146 const int xlinesize = xin->linesize[0] / 2; \
147 const int ylinesize = yin->linesize[0] / 2; \
148 int x , y, plane; \
149 \
150 for (plane = 0; plane < td->nb_planes ; plane++) { \
151 const int dlinesize = out->linesize[plane] / div; \
152 const uint##bits##_t *src = (const uint##bits##_t *)in->data[plane]; \
153 uint##bits##_t *dst = (uint##bits##_t *)out->data[plane] + slice_start * dlinesize; \
154 const int slinesize = in->linesize[plane] / div; \
155 const uint16_t *xmap = (const uint16_t *)xin->data[0] + slice_start * xlinesize; \
156 const uint16_t *ymap = (const uint16_t *)yin->data[0] + slice_start * ylinesize; \
157 const int color = s->fill_color[plane]; \
158 \
159 for (y = slice_start; y < slice_end; y++) { \
160 for (x = 0; x < out->width; x++) { \
161 if (ymap[x] < in->height && xmap[x] < in->width) { \
162 dst[x] = src[ymap[x] * slinesize + xmap[x]]; \
163 } else { \
164 dst[x] = color; \
165 } \
166 } \
167 dst += dlinesize; \
168 xmap += xlinesize; \
169 ymap += ylinesize; \
170 } \
171 } \
172 \
173 return 0; \
174 }
175
176 DEFINE_REMAP_PLANAR_FUNC(nearest, 8, 1)
177 DEFINE_REMAP_PLANAR_FUNC(nearest, 16, 2)
178
179 /**
180 * remap_packed algorithm expects pixels with both padded bits (step) and
181 * number of components correctly set.
182 * pixels are copied from source to target using :
183 * Target_frame[y][x] = Source_frame[ ymap[y][x] ][ [xmap[y][x] ];
184 */
185 #define DEFINE_REMAP_PACKED_FUNC(name, bits, div) \
186 static int remap_packed##bits##_##name##_slice(AVFilterContext *ctx, void *arg, \
187 int jobnr, int nb_jobs) \
188 { \
189 RemapContext *s = ctx->priv; \
190 const ThreadData *td = arg; \
191 const AVFrame *in = td->in; \
192 const AVFrame *xin = td->xin; \
193 const AVFrame *yin = td->yin; \
194 const AVFrame *out = td->out; \
195 const int slice_start = (out->height * jobnr ) / nb_jobs; \
196 const int slice_end = (out->height * (jobnr+1)) / nb_jobs; \
197 const int dlinesize = out->linesize[0] / div; \
198 const int slinesize = in->linesize[0] / div; \
199 const int xlinesize = xin->linesize[0] / 2; \
200 const int ylinesize = yin->linesize[0] / 2; \
201 const uint##bits##_t *src = (const uint##bits##_t *)in->data[0]; \
202 uint##bits##_t *dst = (uint##bits##_t *)out->data[0] + slice_start * dlinesize; \
203 const uint16_t *xmap = (const uint16_t *)xin->data[0] + slice_start * xlinesize; \
204 const uint16_t *ymap = (const uint16_t *)yin->data[0] + slice_start * ylinesize; \
205 const int step = td->step / div; \
206 int c, x, y; \
207 \
208 for (y = slice_start; y < slice_end; y++) { \
209 for (x = 0; x < out->width; x++) { \
210 for (c = 0; c < td->nb_components; c++) { \
211 if (ymap[x] < in->height && xmap[x] < in->width) { \
212 dst[x * step + c] = src[ymap[x] * slinesize + xmap[x] * step + c]; \
213 } else { \
214 dst[x * step + c] = s->fill_color[c]; \
215 } \
216 } \
217 } \
218 dst += dlinesize; \
219 xmap += xlinesize; \
220 ymap += ylinesize; \
221 } \
222 \
223 return 0; \
224 }
225
226 DEFINE_REMAP_PACKED_FUNC(nearest, 8, 1)
227 DEFINE_REMAP_PACKED_FUNC(nearest, 16, 2)
228
229 static int config_input(AVFilterLink *inlink)
230 {
231 AVFilterContext *ctx = inlink->dst;
232 RemapContext *s = ctx->priv;
233 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
234 int depth = desc->comp[0].depth;
235 int is_rgb = !!(desc->flags & AV_PIX_FMT_FLAG_RGB);
236 int factor = 1 << (depth - 8);
237 uint8_t rgba_map[4];
238
239 ff_fill_rgba_map(rgba_map, inlink->format);
240 s->nb_planes = av_pix_fmt_count_planes(inlink->format);
241 s->nb_components = desc->nb_components;
242
243 if (is_rgb) {
244 s->fill_color[rgba_map[0]] = s->fill_rgba[0] * factor;
245 s->fill_color[rgba_map[1]] = s->fill_rgba[1] * factor;
246 s->fill_color[rgba_map[2]] = s->fill_rgba[2] * factor;
247 s->fill_color[rgba_map[3]] = s->fill_rgba[3] * factor;
248 } else {
249 s->fill_color[0] = RGB_TO_Y_BT709(s->fill_rgba[0], s->fill_rgba[1], s->fill_rgba[2]) * factor;
250 s->fill_color[1] = RGB_TO_U_BT709(s->fill_rgba[0], s->fill_rgba[1], s->fill_rgba[2], 0) * factor;
251 s->fill_color[2] = RGB_TO_V_BT709(s->fill_rgba[0], s->fill_rgba[1], s->fill_rgba[2], 0) * factor;
252 s->fill_color[3] = s->fill_rgba[3] * factor;
253 }
254
255 if (depth == 8) {
256 if (s->nb_planes > 1 || s->nb_components == 1) {
257 s->remap_slice = remap_planar8_nearest_slice;
258 } else {
259 s->remap_slice = remap_packed8_nearest_slice;
260 }
261 } else {
262 if (s->nb_planes > 1 || s->nb_components == 1) {
263 s->remap_slice = remap_planar16_nearest_slice;
264 } else {
265 s->remap_slice = remap_packed16_nearest_slice;
266 }
267 }
268
269 s->step = av_get_padded_bits_per_pixel(desc) >> 3;
270 return 0;
271 }
272
273 static int process_frame(FFFrameSync *fs)
274 {
275 AVFilterContext *ctx = fs->parent;
276 RemapContext *s = fs->opaque;
277 AVFilterLink *outlink = ctx->outputs[0];
278 AVFrame *out, *in, *xpic, *ypic;
279 int ret;
280
281 if ((ret = ff_framesync_get_frame(&s->fs, 0, &in, 0)) < 0 ||
282 (ret = ff_framesync_get_frame(&s->fs, 1, &xpic, 0)) < 0 ||
283 (ret = ff_framesync_get_frame(&s->fs, 2, &ypic, 0)) < 0)
284 return ret;
285
286 {
287 ThreadData td;
288
289 out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
290 if (!out)
291 return AVERROR(ENOMEM);
292 av_frame_copy_props(out, in);
293
294 td.in = in;
295 td.xin = xpic;
296 td.yin = ypic;
297 td.out = out;
298 td.nb_planes = s->nb_planes;
299 td.nb_components = s->nb_components;
300 td.step = s->step;
301 ff_filter_execute(ctx, s->remap_slice, &td, NULL,
302 FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
303 }
304 out->pts = av_rescale_q(s->fs.pts, s->fs.time_base, outlink->time_base);
305
306 return ff_filter_frame(outlink, out);
307 }
308
309 static int config_output(AVFilterLink *outlink)
310 {
311 AVFilterContext *ctx = outlink->src;
312 RemapContext *s = ctx->priv;
313 AVFilterLink *srclink = ctx->inputs[0];
314 AVFilterLink *xlink = ctx->inputs[1];
315 AVFilterLink *ylink = ctx->inputs[2];
316 FFFrameSyncIn *in;
317 int ret;
318
319 if (xlink->w != ylink->w || xlink->h != ylink->h) {
320 av_log(ctx, AV_LOG_ERROR, "Second input link %s parameters "
321 "(size %dx%d) do not match the corresponding "
322 "third input link %s parameters (%dx%d)\n",
323 ctx->input_pads[1].name, xlink->w, xlink->h,
324 ctx->input_pads[2].name, ylink->w, ylink->h);
325 return AVERROR(EINVAL);
326 }
327
328 outlink->w = xlink->w;
329 outlink->h = xlink->h;
330 outlink->sample_aspect_ratio = srclink->sample_aspect_ratio;
331 outlink->frame_rate = srclink->frame_rate;
332
333 ret = ff_framesync_init(&s->fs, ctx, 3);
334 if (ret < 0)
335 return ret;
336
337 in = s->fs.in;
338 in[0].time_base = srclink->time_base;
339 in[1].time_base = xlink->time_base;
340 in[2].time_base = ylink->time_base;
341 in[0].sync = 2;
342 in[0].before = EXT_STOP;
343 in[0].after = EXT_STOP;
344 in[1].sync = 1;
345 in[1].before = EXT_NULL;
346 in[1].after = EXT_INFINITY;
347 in[2].sync = 1;
348 in[2].before = EXT_NULL;
349 in[2].after = EXT_INFINITY;
350 s->fs.opaque = s;
351 s->fs.on_event = process_frame;
352
353 ret = ff_framesync_configure(&s->fs);
354 outlink->time_base = s->fs.time_base;
355
356 return ret;
357 }
358
359 static int activate(AVFilterContext *ctx)
360 {
361 RemapContext *s = ctx->priv;
362 return ff_framesync_activate(&s->fs);
363 }
364
365 static av_cold void uninit(AVFilterContext *ctx)
366 {
367 RemapContext *s = ctx->priv;
368
369 ff_framesync_uninit(&s->fs);
370 }
371
372 static const AVFilterPad remap_inputs[] = {
373 {
374 .name = "source",
375 .type = AVMEDIA_TYPE_VIDEO,
376 .config_props = config_input,
377 },
378 {
379 .name = "xmap",
380 .type = AVMEDIA_TYPE_VIDEO,
381 },
382 {
383 .name = "ymap",
384 .type = AVMEDIA_TYPE_VIDEO,
385 },
386 };
387
388 static const AVFilterPad remap_outputs[] = {
389 {
390 .name = "default",
391 .type = AVMEDIA_TYPE_VIDEO,
392 .config_props = config_output,
393 },
394 };
395
396 const AVFilter ff_vf_remap = {
397 .name = "remap",
398 .description = NULL_IF_CONFIG_SMALL("Remap pixels."),
399 .priv_size = sizeof(RemapContext),
400 .uninit = uninit,
401 .activate = activate,
402 FILTER_INPUTS(remap_inputs),
403 FILTER_OUTPUTS(remap_outputs),
404 FILTER_QUERY_FUNC(query_formats),
405 .priv_class = &remap_class,
406 .flags = AVFILTER_FLAG_SLICE_THREADS,
407 };
408