Line |
Branch |
Exec |
Source |
1 |
|
|
/* |
2 |
|
|
* Copyright (C) 2010-2011 Kevin Stone |
3 |
|
|
* Copyright (C) 2016 Paul B Mahol |
4 |
|
|
* |
5 |
|
|
* This file is part of FFmpeg. |
6 |
|
|
* |
7 |
|
|
* FFmpeg is free software; you can redistribute it and/or modify |
8 |
|
|
* it under the terms of the GNU General Public License as published by |
9 |
|
|
* the Free Software Foundation; either version 2 of the License, or |
10 |
|
|
* (at your option) any later version. |
11 |
|
|
* |
12 |
|
|
* FFmpeg is distributed in the hope that it will be useful, |
13 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 |
|
|
* GNU General Public License for more details. |
16 |
|
|
* |
17 |
|
|
* You should have received a copy of the GNU General Public License along |
18 |
|
|
* with FFmpeg; if not, write to the Free Software Foundation, Inc., |
19 |
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
20 |
|
|
*/ |
21 |
|
|
|
22 |
|
|
#include <float.h> |
23 |
|
|
|
24 |
|
|
#include "libavutil/common.h" |
25 |
|
|
#include "libavutil/file_open.h" |
26 |
|
|
#include "libavutil/float_dsp.h" |
27 |
|
|
#include "libavutil/imgutils.h" |
28 |
|
|
#include "libavutil/mem.h" |
29 |
|
|
#include "libavutil/mem_internal.h" |
30 |
|
|
#include "libavutil/opt.h" |
31 |
|
|
#include "libavutil/pixdesc.h" |
32 |
|
|
#include "avfilter.h" |
33 |
|
|
#include "filters.h" |
34 |
|
|
#include "video.h" |
35 |
|
|
|
36 |
|
|
static const size_t NNEDI_WEIGHTS_SIZE = 13574928; |
37 |
|
|
static const uint8_t NNEDI_XDIM[] = { 8, 16, 32, 48, 8, 16, 32 }; |
38 |
|
|
static const uint8_t NNEDI_YDIM[] = { 6, 6, 6, 6, 4, 4, 4 }; |
39 |
|
|
static const uint16_t NNEDI_NNS[] = { 16, 32, 64, 128, 256 }; |
40 |
|
|
|
41 |
|
|
typedef struct PrescreenerCoefficients { |
42 |
|
|
DECLARE_ALIGNED(32, float, kernel_l0)[4][16 * 4]; |
43 |
|
|
DECLARE_ALIGNED(32, float, bias_l0)[4]; |
44 |
|
|
|
45 |
|
|
DECLARE_ALIGNED(32, float, kernel_l1)[4][4]; |
46 |
|
|
DECLARE_ALIGNED(32, float, bias_l1)[4]; |
47 |
|
|
|
48 |
|
|
DECLARE_ALIGNED(32, float, kernel_l2)[4][8]; |
49 |
|
|
DECLARE_ALIGNED(32, float, bias_l2)[4]; |
50 |
|
|
} PrescreenerCoefficients; |
51 |
|
|
|
52 |
|
|
typedef struct PredictorCoefficients { |
53 |
|
|
int xdim, ydim, nns, nsize; |
54 |
|
|
float *data; |
55 |
|
|
float *softmax_q1; |
56 |
|
|
float *elliott_q1; |
57 |
|
|
float *softmax_bias_q1; |
58 |
|
|
float *elliott_bias_q1; |
59 |
|
|
float *softmax_q2; |
60 |
|
|
float *elliott_q2; |
61 |
|
|
float *softmax_bias_q2; |
62 |
|
|
float *elliott_bias_q2; |
63 |
|
|
} PredictorCoefficients; |
64 |
|
|
|
65 |
|
|
typedef struct NNEDIContext { |
66 |
|
|
const AVClass *class; |
67 |
|
|
|
68 |
|
|
char *weights_file; |
69 |
|
|
|
70 |
|
|
AVFrame *prev; |
71 |
|
|
int eof; |
72 |
|
|
int64_t pts; |
73 |
|
|
|
74 |
|
|
AVFloatDSPContext *fdsp; |
75 |
|
|
int depth; |
76 |
|
|
int nb_planes; |
77 |
|
|
int nb_threads; |
78 |
|
|
int linesize[4]; |
79 |
|
|
int planewidth[4]; |
80 |
|
|
int planeheight[4]; |
81 |
|
|
int field_n; |
82 |
|
|
|
83 |
|
|
PrescreenerCoefficients prescreener[4]; |
84 |
|
|
PredictorCoefficients coeffs[2][5][7]; |
85 |
|
|
|
86 |
|
|
float half; |
87 |
|
|
float in_scale; |
88 |
|
|
float out_scale; |
89 |
|
|
|
90 |
|
|
// Parameters |
91 |
|
|
int deint; |
92 |
|
|
int field; |
93 |
|
|
int process_plane; |
94 |
|
|
int nsize; |
95 |
|
|
int nnsparam; |
96 |
|
|
int qual; |
97 |
|
|
int etype; |
98 |
|
|
int pscrn; |
99 |
|
|
|
100 |
|
|
int input_size; |
101 |
|
|
uint8_t **prescreen_buf; |
102 |
|
|
float **input_buf; |
103 |
|
|
float **output_buf; |
104 |
|
|
|
105 |
|
|
void (*read)(const uint8_t *src, float *dst, |
106 |
|
|
int src_stride, int dst_stride, |
107 |
|
|
int width, int height, float scale); |
108 |
|
|
void (*write)(const float *src, uint8_t *dst, |
109 |
|
|
int src_stride, int dst_stride, |
110 |
|
|
int width, int height, int depth, float scale); |
111 |
|
|
void (*prescreen[2])(AVFilterContext *ctx, |
112 |
|
|
const void *src, ptrdiff_t src_stride, |
113 |
|
|
uint8_t *prescreen, int N, |
114 |
|
|
const PrescreenerCoefficients *const coeffs); |
115 |
|
|
} NNEDIContext; |
116 |
|
|
|
117 |
|
|
#define OFFSET(x) offsetof(NNEDIContext, x) |
118 |
|
|
#define RFLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM |
119 |
|
|
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM |
120 |
|
|
|
121 |
|
|
static const AVOption nnedi_options[] = { |
122 |
|
|
{"weights", "set weights file", OFFSET(weights_file), AV_OPT_TYPE_STRING, {.str="nnedi3_weights.bin"}, 0, 0, FLAGS }, |
123 |
|
|
{"deint", "set which frames to deinterlace", OFFSET(deint), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, RFLAGS, .unit = "deint" }, |
124 |
|
|
{"all", "deinterlace all frames", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, .unit = "deint" }, |
125 |
|
|
{"interlaced", "only deinterlace frames marked as interlaced", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, .unit = "deint" }, |
126 |
|
|
{"field", "set mode of operation", OFFSET(field), AV_OPT_TYPE_INT, {.i64=-1}, -2, 3, RFLAGS, .unit = "field" }, |
127 |
|
|
{"af", "use frame flags, both fields", 0, AV_OPT_TYPE_CONST, {.i64=-2}, 0, 0, RFLAGS, .unit = "field" }, |
128 |
|
|
{"a", "use frame flags, single field", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, RFLAGS, .unit = "field" }, |
129 |
|
|
{"t", "use top field only", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, .unit = "field" }, |
130 |
|
|
{"b", "use bottom field only", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, .unit = "field" }, |
131 |
|
|
{"tf", "use both fields, top first", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, RFLAGS, .unit = "field" }, |
132 |
|
|
{"bf", "use both fields, bottom first", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, RFLAGS, .unit = "field" }, |
133 |
|
|
{"planes", "set which planes to process", OFFSET(process_plane), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, RFLAGS }, |
134 |
|
|
{"nsize", "set size of local neighborhood around each pixel, used by the predictor neural network", OFFSET(nsize), AV_OPT_TYPE_INT, {.i64=6}, 0, 6, RFLAGS, .unit = "nsize" }, |
135 |
|
|
{"s8x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, .unit = "nsize" }, |
136 |
|
|
{"s16x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, .unit = "nsize" }, |
137 |
|
|
{"s32x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, RFLAGS, .unit = "nsize" }, |
138 |
|
|
{"s48x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, RFLAGS, .unit = "nsize" }, |
139 |
|
|
{"s8x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, RFLAGS, .unit = "nsize" }, |
140 |
|
|
{"s16x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=5}, 0, 0, RFLAGS, .unit = "nsize" }, |
141 |
|
|
{"s32x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=6}, 0, 0, RFLAGS, .unit = "nsize" }, |
142 |
|
|
{"nns", "set number of neurons in predictor neural network", OFFSET(nnsparam), AV_OPT_TYPE_INT, {.i64=1}, 0, 4, RFLAGS, .unit = "nns" }, |
143 |
|
|
{"n16", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, .unit = "nns" }, |
144 |
|
|
{"n32", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, .unit = "nns" }, |
145 |
|
|
{"n64", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, RFLAGS, .unit = "nns" }, |
146 |
|
|
{"n128", NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, RFLAGS, .unit = "nns" }, |
147 |
|
|
{"n256", NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, RFLAGS, .unit = "nns" }, |
148 |
|
|
{"qual", "set quality", OFFSET(qual), AV_OPT_TYPE_INT, {.i64=1}, 1, 2, RFLAGS, .unit = "qual" }, |
149 |
|
|
{"fast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, .unit = "qual" }, |
150 |
|
|
{"slow", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, RFLAGS, .unit = "qual" }, |
151 |
|
|
{"etype", "set which set of weights to use in the predictor", OFFSET(etype), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, RFLAGS, .unit = "etype" }, |
152 |
|
|
{"a", "weights trained to minimize absolute error", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, .unit = "etype" }, |
153 |
|
|
{"abs","weights trained to minimize absolute error", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, .unit = "etype" }, |
154 |
|
|
{"s", "weights trained to minimize squared error", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, .unit = "etype" }, |
155 |
|
|
{"mse","weights trained to minimize squared error", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, .unit = "etype" }, |
156 |
|
|
{"pscrn", "set prescreening", OFFSET(pscrn), AV_OPT_TYPE_INT, {.i64=2}, 0, 4, RFLAGS, .unit = "pscrn" }, |
157 |
|
|
{"none", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, .unit = "pscrn" }, |
158 |
|
|
{"original", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, .unit = "pscrn" }, |
159 |
|
|
{"new", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, RFLAGS, .unit = "pscrn" }, |
160 |
|
|
{"new2", NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, RFLAGS, .unit = "pscrn" }, |
161 |
|
|
{"new3", NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, RFLAGS, .unit = "pscrn" }, |
162 |
|
|
{ NULL } |
163 |
|
|
}; |
164 |
|
|
|
165 |
|
|
AVFILTER_DEFINE_CLASS(nnedi); |
166 |
|
|
|
167 |
|
✗ |
static int config_output(AVFilterLink *outlink) |
168 |
|
|
{ |
169 |
|
✗ |
AVFilterContext *ctx = outlink->src; |
170 |
|
✗ |
const NNEDIContext *const s = ctx->priv; |
171 |
|
|
|
172 |
|
✗ |
outlink->time_base = av_mul_q(ctx->inputs[0]->time_base, (AVRational){1, 2}); |
173 |
|
✗ |
outlink->w = ctx->inputs[0]->w; |
174 |
|
✗ |
outlink->h = ctx->inputs[0]->h; |
175 |
|
|
|
176 |
|
✗ |
if (s->field == -2 || s->field > 1) { |
177 |
|
✗ |
FilterLink *il = ff_filter_link(ctx->inputs[0]); |
178 |
|
✗ |
FilterLink *ol = ff_filter_link(outlink); |
179 |
|
✗ |
ol->frame_rate = av_mul_q(il->frame_rate, (AVRational){2, 1}); |
180 |
|
|
} |
181 |
|
|
|
182 |
|
✗ |
return 0; |
183 |
|
|
} |
184 |
|
|
|
185 |
|
|
static const enum AVPixelFormat pix_fmts[] = { |
186 |
|
|
AV_PIX_FMT_GRAY8, |
187 |
|
|
AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, |
188 |
|
|
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, |
189 |
|
|
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, |
190 |
|
|
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P, |
191 |
|
|
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, |
192 |
|
|
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, |
193 |
|
|
AV_PIX_FMT_YUVJ411P, |
194 |
|
|
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, |
195 |
|
|
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, |
196 |
|
|
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9, |
197 |
|
|
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, |
198 |
|
|
AV_PIX_FMT_YUV440P10, |
199 |
|
|
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, |
200 |
|
|
AV_PIX_FMT_YUV440P12, |
201 |
|
|
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14, |
202 |
|
|
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, |
203 |
|
|
AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, |
204 |
|
|
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16, |
205 |
|
|
AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16, |
206 |
|
|
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16, |
207 |
|
|
AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, |
208 |
|
|
AV_PIX_FMT_NONE |
209 |
|
|
}; |
210 |
|
|
|
211 |
|
✗ |
static float dot_dsp(const NNEDIContext *const s, const float *kernel, const float *input, |
212 |
|
|
int n, float scale, float bias) |
213 |
|
|
{ |
214 |
|
|
float sum, y; |
215 |
|
|
|
216 |
|
✗ |
sum = s->fdsp->scalarproduct_float(kernel, input, n); |
217 |
|
|
|
218 |
|
✗ |
y = sum * scale + bias + 1e-20f; |
219 |
|
|
|
220 |
|
✗ |
return y; |
221 |
|
|
} |
222 |
|
|
|
223 |
|
✗ |
static float elliott(float x) |
224 |
|
|
{ |
225 |
|
✗ |
return x / (1.0f + fabsf(x)); |
226 |
|
|
} |
227 |
|
|
|
228 |
|
✗ |
static void transform_elliott(float *input, int size) |
229 |
|
|
{ |
230 |
|
✗ |
for (int i = 0; i < size; i++) |
231 |
|
✗ |
input[i] = elliott(input[i]); |
232 |
|
✗ |
} |
233 |
|
|
|
234 |
|
✗ |
static void process_old(AVFilterContext *ctx, |
235 |
|
|
const void *src, ptrdiff_t src_stride, |
236 |
|
|
uint8_t *prescreen, int N, |
237 |
|
|
const PrescreenerCoefficients *const m_data) |
238 |
|
|
{ |
239 |
|
✗ |
NNEDIContext *s = ctx->priv; |
240 |
|
✗ |
const float *src_p = src; |
241 |
|
|
|
242 |
|
|
// Adjust source pointer to point to top-left of filter window. |
243 |
|
✗ |
const float *window = src_p - 2 * src_stride - 5; |
244 |
|
|
|
245 |
|
✗ |
for (int j = 0; j < N; j++) { |
246 |
|
✗ |
LOCAL_ALIGNED_32(float, input, [48]); |
247 |
|
|
float state[12]; |
248 |
|
|
|
249 |
|
✗ |
for (int i = 0; i < 4; i++) |
250 |
|
✗ |
memcpy(input + i * 12, window + i * src_stride + j, 12 * sizeof(float)); |
251 |
|
|
|
252 |
|
|
// Layer 0. |
253 |
|
✗ |
for (int n = 0; n < 4; n++) |
254 |
|
✗ |
state[n] = dot_dsp(s, m_data->kernel_l0[n], input, 48, 1.0f, m_data->bias_l0[n]); |
255 |
|
✗ |
transform_elliott(state + 1, 3); |
256 |
|
|
|
257 |
|
|
// Layer 1. |
258 |
|
✗ |
for (int n = 0; n < 4; n++) |
259 |
|
✗ |
state[n + 4] = dot_dsp(s, m_data->kernel_l1[n], state, 4, 1.0f, m_data->bias_l1[n]); |
260 |
|
✗ |
transform_elliott(state + 4, 3); |
261 |
|
|
|
262 |
|
|
// Layer 2. |
263 |
|
✗ |
for (int n = 0; n < 4; n++) |
264 |
|
✗ |
state[n + 8] = dot_dsp(s, m_data->kernel_l2[n], state, 8, 1.0f, m_data->bias_l2[n]); |
265 |
|
|
|
266 |
|
✗ |
prescreen[j] = FFMAX(state[10], state[11]) <= FFMAX(state[8], state[9]) ? 255 : 0; |
267 |
|
|
} |
268 |
|
✗ |
} |
269 |
|
|
|
270 |
|
✗ |
static void process_new(AVFilterContext *ctx, |
271 |
|
|
const void *src, ptrdiff_t src_stride, |
272 |
|
|
uint8_t *prescreen, int N, |
273 |
|
|
const PrescreenerCoefficients *const m_data) |
274 |
|
|
{ |
275 |
|
✗ |
NNEDIContext *s = ctx->priv; |
276 |
|
✗ |
const float *src_p = src; |
277 |
|
|
|
278 |
|
|
// Adjust source pointer to point to top-left of filter window. |
279 |
|
✗ |
const float *window = src_p - 2 * src_stride - 6; |
280 |
|
|
|
281 |
|
✗ |
for (int j = 0; j < N; j += 4) { |
282 |
|
✗ |
LOCAL_ALIGNED_32(float, input, [64]); |
283 |
|
|
float state[8]; |
284 |
|
|
|
285 |
|
✗ |
for (int i = 0; i < 4; i++) |
286 |
|
✗ |
memcpy(input + i * 16, window + i * src_stride + j, 16 * sizeof(float)); |
287 |
|
|
|
288 |
|
✗ |
for (int n = 0; n < 4; n++) |
289 |
|
✗ |
state[n] = dot_dsp(s, m_data->kernel_l0[n], input, 64, 1.0f, m_data->bias_l0[n]); |
290 |
|
✗ |
transform_elliott(state, 4); |
291 |
|
|
|
292 |
|
✗ |
for (int n = 0; n < 4; n++) |
293 |
|
✗ |
state[n + 4] = dot_dsp(s, m_data->kernel_l1[n], state, 4, 1.0f, m_data->bias_l1[n]); |
294 |
|
|
|
295 |
|
✗ |
for (int n = 0; n < 4; n++) |
296 |
|
✗ |
prescreen[j + n] = state[n + 4] > 0.f; |
297 |
|
|
} |
298 |
|
✗ |
} |
299 |
|
|
|
300 |
|
✗ |
static int filter_offset(int nn, const PredictorCoefficients *const model) |
301 |
|
|
{ |
302 |
|
✗ |
return nn * model->nsize; |
303 |
|
|
} |
304 |
|
|
|
305 |
|
✗ |
static const float *softmax_q1_filter(int nn, |
306 |
|
|
const PredictorCoefficients *const model) |
307 |
|
|
{ |
308 |
|
✗ |
return model->softmax_q1 + filter_offset(nn, model); |
309 |
|
|
} |
310 |
|
|
|
311 |
|
✗ |
static const float *elliott_q1_filter(int nn, |
312 |
|
|
const PredictorCoefficients *const model) |
313 |
|
|
{ |
314 |
|
✗ |
return model->elliott_q1 + filter_offset(nn, model); |
315 |
|
|
} |
316 |
|
|
|
317 |
|
✗ |
static const float *softmax_q2_filter(int nn, |
318 |
|
|
const PredictorCoefficients *const model) |
319 |
|
|
{ |
320 |
|
✗ |
return model->softmax_q2 + filter_offset(nn, model); |
321 |
|
|
} |
322 |
|
|
|
323 |
|
✗ |
static const float *elliott_q2_filter(int nn, |
324 |
|
|
const PredictorCoefficients *const model) |
325 |
|
|
{ |
326 |
|
✗ |
return model->elliott_q2 + filter_offset(nn, model); |
327 |
|
|
} |
328 |
|
|
|
329 |
|
✗ |
static void gather_input(const float *src, ptrdiff_t src_stride, |
330 |
|
|
float *buf, float mstd[4], |
331 |
|
|
const PredictorCoefficients *const model) |
332 |
|
|
{ |
333 |
|
✗ |
const float scale = 1.f / model->nsize; |
334 |
|
✗ |
float sum = 0.f; |
335 |
|
✗ |
float sum_sq = 0.f; |
336 |
|
|
float tmp; |
337 |
|
|
|
338 |
|
✗ |
for (int i = 0; i < model->ydim; i++) { |
339 |
|
✗ |
memcpy(buf, src, model->xdim * sizeof(float)); |
340 |
|
|
|
341 |
|
✗ |
for (int j = 0; j < model->xdim; j++) { |
342 |
|
✗ |
const float val = src[j]; |
343 |
|
|
|
344 |
|
✗ |
sum += val; |
345 |
|
✗ |
sum_sq += val * val; |
346 |
|
|
} |
347 |
|
|
|
348 |
|
✗ |
src += src_stride; |
349 |
|
✗ |
buf += model->xdim; |
350 |
|
|
} |
351 |
|
|
|
352 |
|
✗ |
mstd[0] = sum * scale; |
353 |
|
✗ |
mstd[3] = 0.f; |
354 |
|
|
|
355 |
|
✗ |
tmp = sum_sq * scale - mstd[0] * mstd[0]; |
356 |
|
✗ |
if (tmp < FLT_EPSILON) { |
357 |
|
✗ |
mstd[1] = 0.0f; |
358 |
|
✗ |
mstd[2] = 0.0f; |
359 |
|
|
} else { |
360 |
|
✗ |
mstd[1] = sqrtf(tmp); |
361 |
|
✗ |
mstd[2] = 1.0f / mstd[1]; |
362 |
|
|
} |
363 |
|
✗ |
} |
364 |
|
|
|
365 |
|
✗ |
static float softmax_exp(float x) |
366 |
|
|
{ |
367 |
|
✗ |
return expf(av_clipf(x, -80.f, 80.f)); |
368 |
|
|
} |
369 |
|
|
|
370 |
|
✗ |
static void transform_softmax_exp(float *input, int size) |
371 |
|
|
{ |
372 |
|
✗ |
for (int i = 0; i < size; i++) |
373 |
|
✗ |
input[i] = softmax_exp(input[i]); |
374 |
|
✗ |
} |
375 |
|
|
|
376 |
|
✗ |
static void wae5(const float *softmax, const float *el, |
377 |
|
|
int n, float mstd[4]) |
378 |
|
|
{ |
379 |
|
✗ |
float vsum = 0.0f, wsum = 0.0f; |
380 |
|
|
|
381 |
|
✗ |
for (int i = 0; i < n; i++) { |
382 |
|
✗ |
vsum += softmax[i] * elliott(el[i]); |
383 |
|
✗ |
wsum += softmax[i]; |
384 |
|
|
} |
385 |
|
|
|
386 |
|
✗ |
if (wsum > 1e-10f) |
387 |
|
✗ |
mstd[3] += (5.0f * vsum) / wsum * mstd[1] + mstd[0]; |
388 |
|
|
else |
389 |
|
✗ |
mstd[3] += mstd[0]; |
390 |
|
✗ |
} |
391 |
|
|
|
392 |
|
✗ |
static void predictor(AVFilterContext *ctx, |
393 |
|
|
const void *src, ptrdiff_t src_stride, void *dst, |
394 |
|
|
const uint8_t *prescreen, int N, |
395 |
|
|
const PredictorCoefficients *const model, int use_q2) |
396 |
|
|
{ |
397 |
|
✗ |
const NNEDIContext *const s = ctx->priv; |
398 |
|
✗ |
const float *src_p = src; |
399 |
|
✗ |
float *dst_p = dst; |
400 |
|
|
|
401 |
|
|
// Adjust source pointer to point to top-left of filter window. |
402 |
|
✗ |
const float *window = src_p - (model->ydim / 2) * src_stride - (model->xdim / 2 - 1); |
403 |
|
✗ |
const int filter_size = model->nsize; |
404 |
|
✗ |
const int nns = model->nns; |
405 |
|
|
|
406 |
|
✗ |
for (int i = 0; i < N; i++) { |
407 |
|
✗ |
LOCAL_ALIGNED_32(float, input, [48 * 6]); |
408 |
|
|
float activation[256 * 2]; |
409 |
|
|
float mstd[4]; |
410 |
|
|
float scale; |
411 |
|
|
|
412 |
|
✗ |
if (prescreen[i]) |
413 |
|
✗ |
continue; |
414 |
|
|
|
415 |
|
✗ |
gather_input(window + i, src_stride, input, mstd, model); |
416 |
|
✗ |
scale = mstd[2]; |
417 |
|
|
|
418 |
|
✗ |
for (int nn = 0; nn < nns; nn++) |
419 |
|
✗ |
activation[nn] = dot_dsp(s, softmax_q1_filter(nn, model), input, filter_size, scale, model->softmax_bias_q1[nn]); |
420 |
|
|
|
421 |
|
✗ |
for (int nn = 0; nn < nns; nn++) |
422 |
|
✗ |
activation[nns + nn] = dot_dsp(s, elliott_q1_filter(nn, model), input, filter_size, scale, model->elliott_bias_q1[nn]); |
423 |
|
|
|
424 |
|
✗ |
transform_softmax_exp(activation, nns); |
425 |
|
✗ |
wae5(activation, activation + nns, nns, mstd); |
426 |
|
|
|
427 |
|
✗ |
if (use_q2) { |
428 |
|
✗ |
for (int nn = 0; nn < nns; nn++) |
429 |
|
✗ |
activation[nn] = dot_dsp(s, softmax_q2_filter(nn, model), input, filter_size, scale, model->softmax_bias_q2[nn]); |
430 |
|
|
|
431 |
|
✗ |
for (int nn = 0; nn < nns; nn++) |
432 |
|
✗ |
activation[nns + nn] = dot_dsp(s, elliott_q2_filter(nn, model), input, filter_size, scale, model->elliott_bias_q2[nn]); |
433 |
|
|
|
434 |
|
✗ |
transform_softmax_exp(activation, nns); |
435 |
|
✗ |
wae5(activation, activation + nns, nns, mstd); |
436 |
|
|
} |
437 |
|
|
|
438 |
|
✗ |
dst_p[i] = mstd[3] * (use_q2 ? 0.5f : 1.f); |
439 |
|
|
} |
440 |
|
✗ |
} |
441 |
|
|
|
442 |
|
✗ |
static void read_bytes(const uint8_t *src, float *dst, |
443 |
|
|
int src_stride, int dst_stride, |
444 |
|
|
int width, int height, float scale) |
445 |
|
|
{ |
446 |
|
✗ |
for (int y = 0; y < height; y++) { |
447 |
|
✗ |
for (int x = 0; x < 32; x++) |
448 |
|
✗ |
dst[-x - 1] = src[x]; |
449 |
|
|
|
450 |
|
✗ |
for (int x = 0; x < width; x++) |
451 |
|
✗ |
dst[x] = src[x]; |
452 |
|
|
|
453 |
|
✗ |
for (int x = 0; x < 32; x++) |
454 |
|
✗ |
dst[width + x] = src[width - x - 1]; |
455 |
|
|
|
456 |
|
✗ |
dst += dst_stride; |
457 |
|
✗ |
src += src_stride; |
458 |
|
|
} |
459 |
|
✗ |
} |
460 |
|
|
|
461 |
|
✗ |
static void read_words(const uint8_t *srcp, float *dst, |
462 |
|
|
int src_stride, int dst_stride, |
463 |
|
|
int width, int height, float scale) |
464 |
|
|
{ |
465 |
|
✗ |
const uint16_t *src = (const uint16_t *)srcp; |
466 |
|
|
|
467 |
|
✗ |
src_stride /= 2; |
468 |
|
|
|
469 |
|
✗ |
for (int y = 0; y < height; y++) { |
470 |
|
✗ |
for (int x = 0; x < 32; x++) |
471 |
|
✗ |
dst[-x - 1] = src[x] * scale; |
472 |
|
|
|
473 |
|
✗ |
for (int x = 0; x < width; x++) |
474 |
|
✗ |
dst[x] = src[x] * scale; |
475 |
|
|
|
476 |
|
✗ |
for (int x = 0; x < 32; x++) |
477 |
|
✗ |
dst[width + x] = src[width - x - 1] * scale; |
478 |
|
|
|
479 |
|
✗ |
dst += dst_stride; |
480 |
|
✗ |
src += src_stride; |
481 |
|
|
} |
482 |
|
✗ |
} |
483 |
|
|
|
484 |
|
✗ |
static void write_bytes(const float *src, uint8_t *dst, |
485 |
|
|
int src_stride, int dst_stride, |
486 |
|
|
int width, int height, int depth, |
487 |
|
|
float scale) |
488 |
|
|
{ |
489 |
|
✗ |
for (int y = 0; y < height; y++) { |
490 |
|
✗ |
for (int x = 0; x < width; x++) |
491 |
|
✗ |
dst[x] = av_clip_uint8(src[x]); |
492 |
|
|
|
493 |
|
✗ |
dst += dst_stride; |
494 |
|
✗ |
src += src_stride; |
495 |
|
|
} |
496 |
|
✗ |
} |
497 |
|
|
|
498 |
|
✗ |
static void write_words(const float *src, uint8_t *dstp, |
499 |
|
|
int src_stride, int dst_stride, |
500 |
|
|
int width, int height, int depth, |
501 |
|
|
float scale) |
502 |
|
|
{ |
503 |
|
✗ |
uint16_t *dst = (uint16_t *)dstp; |
504 |
|
|
|
505 |
|
✗ |
dst_stride /= 2; |
506 |
|
|
|
507 |
|
✗ |
for (int y = 0; y < height; y++) { |
508 |
|
✗ |
for (int x = 0; x < width; x++) |
509 |
|
✗ |
dst[x] = av_clip_uintp2_c(src[x] * scale, depth); |
510 |
|
|
|
511 |
|
✗ |
dst += dst_stride; |
512 |
|
✗ |
src += src_stride; |
513 |
|
|
} |
514 |
|
✗ |
} |
515 |
|
|
|
516 |
|
✗ |
static void interpolation(const void *src, ptrdiff_t src_stride, |
517 |
|
|
void *dst, const uint8_t *prescreen, int n) |
518 |
|
|
{ |
519 |
|
✗ |
const float *src_p = src; |
520 |
|
✗ |
float *dst_p = dst; |
521 |
|
✗ |
const float *window = src_p - 2 * src_stride; |
522 |
|
|
|
523 |
|
✗ |
for (int i = 0; i < n; i++) { |
524 |
|
✗ |
float accum = 0.0f; |
525 |
|
|
|
526 |
|
✗ |
if (!prescreen[i]) |
527 |
|
✗ |
continue; |
528 |
|
|
|
529 |
|
✗ |
accum += (-3.0f / 32.0f) * window[0 * src_stride + i]; |
530 |
|
✗ |
accum += (19.0f / 32.0f) * window[1 * src_stride + i]; |
531 |
|
✗ |
accum += (19.0f / 32.0f) * window[2 * src_stride + i]; |
532 |
|
✗ |
accum += (-3.0f / 32.0f) * window[3 * src_stride + i]; |
533 |
|
|
|
534 |
|
✗ |
dst_p[i] = accum; |
535 |
|
|
} |
536 |
|
✗ |
} |
537 |
|
|
|
538 |
|
✗ |
static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
539 |
|
|
{ |
540 |
|
✗ |
const NNEDIContext *const s = ctx->priv; |
541 |
|
✗ |
AVFrame *out = arg; |
542 |
|
✗ |
AVFrame *in = s->prev; |
543 |
|
✗ |
const float in_scale = s->in_scale; |
544 |
|
✗ |
const float out_scale = s->out_scale; |
545 |
|
✗ |
const int depth = s->depth; |
546 |
|
✗ |
const int interlaced = !!(in->flags & AV_FRAME_FLAG_INTERLACED); |
547 |
|
✗ |
const int tff = s->field_n == (s->field < 0 ? interlaced ? (in->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST) : 1 : |
548 |
|
✗ |
(s->field & 1) ^ 1); |
549 |
|
|
|
550 |
|
|
|
551 |
|
✗ |
for (int p = 0; p < s->nb_planes; p++) { |
552 |
|
✗ |
const int height = s->planeheight[p]; |
553 |
|
✗ |
const int width = s->planewidth[p]; |
554 |
|
✗ |
const int slice_start = 2 * ((height / 2 * jobnr) / nb_jobs); |
555 |
|
✗ |
const int slice_end = 2 * ((height / 2 * (jobnr+1)) / nb_jobs); |
556 |
|
✗ |
const uint8_t *src_data = in->data[p]; |
557 |
|
✗ |
uint8_t *dst_data = out->data[p]; |
558 |
|
✗ |
uint8_t *dst = out->data[p] + slice_start * out->linesize[p]; |
559 |
|
✗ |
const int src_linesize = in->linesize[p]; |
560 |
|
✗ |
const int dst_linesize = out->linesize[p]; |
561 |
|
✗ |
uint8_t *prescreen_buf = s->prescreen_buf[jobnr]; |
562 |
|
✗ |
float *srcbuf = s->input_buf[jobnr]; |
563 |
|
✗ |
const int srcbuf_stride = width + 64; |
564 |
|
✗ |
float *dstbuf = s->output_buf[jobnr]; |
565 |
|
✗ |
const int dstbuf_stride = width; |
566 |
|
✗ |
const int slice_height = (slice_end - slice_start) / 2; |
567 |
|
✗ |
const int last_slice = slice_end == height; |
568 |
|
|
const uint8_t *in_line; |
569 |
|
|
uint8_t *out_line; |
570 |
|
|
int y_out; |
571 |
|
|
|
572 |
|
✗ |
if (!(s->process_plane & (1 << p))) { |
573 |
|
✗ |
av_image_copy_plane(dst, out->linesize[p], |
574 |
|
✗ |
in->data[p] + slice_start * in->linesize[p], |
575 |
|
|
in->linesize[p], |
576 |
|
✗ |
s->linesize[p], slice_end - slice_start); |
577 |
|
✗ |
continue; |
578 |
|
|
} |
579 |
|
|
|
580 |
|
✗ |
y_out = slice_start + (tff ^ (slice_start & 1)); |
581 |
|
✗ |
in_line = src_data + (y_out * src_linesize); |
582 |
|
✗ |
out_line = dst_data + (y_out * dst_linesize); |
583 |
|
|
|
584 |
|
✗ |
while (y_out < slice_end) { |
585 |
|
✗ |
memcpy(out_line, in_line, s->linesize[p]); |
586 |
|
✗ |
y_out += 2; |
587 |
|
✗ |
in_line += src_linesize * 2; |
588 |
|
✗ |
out_line += dst_linesize * 2; |
589 |
|
|
} |
590 |
|
|
|
591 |
|
✗ |
y_out = slice_start + ((!tff) ^ (slice_start & 1)); |
592 |
|
|
|
593 |
|
✗ |
s->read(src_data + FFMAX(y_out - 5, tff) * src_linesize, |
594 |
|
|
srcbuf + 32, |
595 |
|
|
src_linesize * 2, srcbuf_stride, |
596 |
|
|
width, 1, in_scale); |
597 |
|
✗ |
srcbuf += srcbuf_stride; |
598 |
|
|
|
599 |
|
✗ |
s->read(src_data + FFMAX(y_out - 3, tff) * src_linesize, |
600 |
|
|
srcbuf + 32, |
601 |
|
|
src_linesize * 2, srcbuf_stride, |
602 |
|
|
width, 1, in_scale); |
603 |
|
✗ |
srcbuf += srcbuf_stride; |
604 |
|
|
|
605 |
|
✗ |
s->read(src_data + FFMAX(y_out - 1, tff) * src_linesize, |
606 |
|
|
srcbuf + 32, |
607 |
|
|
src_linesize * 2, srcbuf_stride, |
608 |
|
|
width, 1, in_scale); |
609 |
|
✗ |
srcbuf += srcbuf_stride; |
610 |
|
|
|
611 |
|
✗ |
in_line = src_data + FFMIN(y_out + 1, height - 1 - !tff) * src_linesize; |
612 |
|
✗ |
out_line = dst_data + (y_out * dst_linesize); |
613 |
|
|
|
614 |
|
✗ |
s->read(in_line, srcbuf + 32, src_linesize * 2, srcbuf_stride, |
615 |
|
|
width, slice_height - last_slice, in_scale); |
616 |
|
|
|
617 |
|
✗ |
y_out += (slice_height - last_slice) * 2; |
618 |
|
|
|
619 |
|
✗ |
s->read(src_data + FFMIN(y_out + 1, height - 1 - !tff) * src_linesize, |
620 |
|
✗ |
srcbuf + 32 + srcbuf_stride * (slice_height - last_slice), |
621 |
|
|
src_linesize * 2, srcbuf_stride, |
622 |
|
|
width, 1, in_scale); |
623 |
|
|
|
624 |
|
✗ |
s->read(src_data + FFMIN(y_out + 3, height - 1 - !tff) * src_linesize, |
625 |
|
✗ |
srcbuf + 32 + srcbuf_stride * (slice_height + 1 - last_slice), |
626 |
|
|
src_linesize * 2, srcbuf_stride, |
627 |
|
|
width, 1, in_scale); |
628 |
|
|
|
629 |
|
✗ |
s->read(src_data + FFMIN(y_out + 5, height - 1 - !tff) * src_linesize, |
630 |
|
✗ |
srcbuf + 32 + srcbuf_stride * (slice_height + 2 - last_slice), |
631 |
|
|
src_linesize * 2, srcbuf_stride, |
632 |
|
|
width, 1, in_scale); |
633 |
|
|
|
634 |
|
✗ |
for (int y = 0; y < slice_end - slice_start; y += 2) { |
635 |
|
✗ |
if (s->pscrn > 0) |
636 |
|
✗ |
s->prescreen[s->pscrn > 1](ctx, srcbuf + (y / 2) * srcbuf_stride + 32, |
637 |
|
|
srcbuf_stride, prescreen_buf, width, |
638 |
|
✗ |
&s->prescreener[s->pscrn - 1]); |
639 |
|
|
|
640 |
|
✗ |
predictor(ctx, |
641 |
|
✗ |
srcbuf + (y / 2) * srcbuf_stride + 32, |
642 |
|
|
srcbuf_stride, |
643 |
|
✗ |
dstbuf + (y / 2) * dstbuf_stride, |
644 |
|
|
prescreen_buf, width, |
645 |
|
✗ |
&s->coeffs[s->etype][s->nnsparam][s->nsize], s->qual == 2); |
646 |
|
|
|
647 |
|
✗ |
if (s->pscrn > 0) |
648 |
|
✗ |
interpolation(srcbuf + (y / 2) * srcbuf_stride + 32, |
649 |
|
|
srcbuf_stride, |
650 |
|
✗ |
dstbuf + (y / 2) * dstbuf_stride, |
651 |
|
|
prescreen_buf, width); |
652 |
|
|
} |
653 |
|
|
|
654 |
|
✗ |
s->write(dstbuf, out_line, dstbuf_stride, dst_linesize * 2, |
655 |
|
|
width, slice_height, depth, out_scale); |
656 |
|
|
} |
657 |
|
|
|
658 |
|
✗ |
return 0; |
659 |
|
|
} |
660 |
|
|
|
661 |
|
✗ |
static int get_frame(AVFilterContext *ctx, int is_second) |
662 |
|
|
{ |
663 |
|
✗ |
NNEDIContext *s = ctx->priv; |
664 |
|
✗ |
AVFilterLink *outlink = ctx->outputs[0]; |
665 |
|
|
AVFrame *dst; |
666 |
|
|
|
667 |
|
✗ |
dst = ff_get_video_buffer(outlink, outlink->w, outlink->h); |
668 |
|
✗ |
if (!dst) |
669 |
|
✗ |
return AVERROR(ENOMEM); |
670 |
|
✗ |
av_frame_copy_props(dst, s->prev); |
671 |
|
|
#if FF_API_INTERLACED_FRAME |
672 |
|
|
FF_DISABLE_DEPRECATION_WARNINGS |
673 |
|
✗ |
dst->interlaced_frame = 0; |
674 |
|
|
FF_ENABLE_DEPRECATION_WARNINGS |
675 |
|
|
#endif |
676 |
|
✗ |
dst->flags &= ~AV_FRAME_FLAG_INTERLACED; |
677 |
|
✗ |
dst->pts = s->pts; |
678 |
|
|
|
679 |
|
✗ |
ff_filter_execute(ctx, filter_slice, dst, NULL, |
680 |
|
✗ |
FFMIN(s->planeheight[1] / 2, s->nb_threads)); |
681 |
|
|
|
682 |
|
✗ |
if (s->field == -2 || s->field > 1) |
683 |
|
✗ |
s->field_n = !s->field_n; |
684 |
|
|
|
685 |
|
✗ |
return ff_filter_frame(outlink, dst); |
686 |
|
|
} |
687 |
|
|
|
688 |
|
✗ |
static int filter_frame(AVFilterLink *inlink, AVFrame *in) |
689 |
|
|
{ |
690 |
|
✗ |
AVFilterContext *ctx = inlink->dst; |
691 |
|
✗ |
NNEDIContext *s = ctx->priv; |
692 |
|
|
int ret; |
693 |
|
|
|
694 |
|
✗ |
if (!s->prev) { |
695 |
|
✗ |
s->prev = in; |
696 |
|
✗ |
return 0; |
697 |
|
|
} |
698 |
|
|
|
699 |
|
✗ |
if ((s->deint && !(s->prev->flags & AV_FRAME_FLAG_INTERLACED)) || ctx->is_disabled) { |
700 |
|
✗ |
s->prev->pts *= 2; |
701 |
|
✗ |
ret = ff_filter_frame(ctx->outputs[0], s->prev); |
702 |
|
✗ |
s->prev = in; |
703 |
|
✗ |
return ret; |
704 |
|
|
} |
705 |
|
|
|
706 |
|
✗ |
s->pts = s->prev->pts * 2; |
707 |
|
✗ |
ret = get_frame(ctx, 0); |
708 |
|
✗ |
if (ret < 0 || (s->field > -2 && s->field < 2)) { |
709 |
|
✗ |
av_frame_free(&s->prev); |
710 |
|
✗ |
s->prev = in; |
711 |
|
✗ |
return ret; |
712 |
|
|
} |
713 |
|
|
|
714 |
|
✗ |
s->pts = s->prev->pts + in->pts; |
715 |
|
✗ |
ret = get_frame(ctx, 1); |
716 |
|
✗ |
av_frame_free(&s->prev); |
717 |
|
✗ |
s->prev = in; |
718 |
|
✗ |
return ret; |
719 |
|
|
} |
720 |
|
|
|
721 |
|
✗ |
static int request_frame(AVFilterLink *link) |
722 |
|
|
{ |
723 |
|
✗ |
AVFilterContext *ctx = link->src; |
724 |
|
✗ |
NNEDIContext *s = ctx->priv; |
725 |
|
|
int ret; |
726 |
|
|
|
727 |
|
✗ |
if (s->eof) |
728 |
|
✗ |
return AVERROR_EOF; |
729 |
|
|
|
730 |
|
✗ |
ret = ff_request_frame(ctx->inputs[0]); |
731 |
|
|
|
732 |
|
✗ |
if (ret == AVERROR_EOF && s->prev) { |
733 |
|
✗ |
AVFrame *next = av_frame_clone(s->prev); |
734 |
|
✗ |
FilterLink *l = ff_filter_link(ctx->outputs[0]); |
735 |
|
|
|
736 |
|
✗ |
if (!next) |
737 |
|
✗ |
return AVERROR(ENOMEM); |
738 |
|
|
|
739 |
|
✗ |
next->pts = s->prev->pts + av_rescale_q(1, av_inv_q(l->frame_rate), |
740 |
|
✗ |
ctx->outputs[0]->time_base); |
741 |
|
✗ |
s->eof = 1; |
742 |
|
|
|
743 |
|
✗ |
ret = filter_frame(ctx->inputs[0], next); |
744 |
|
✗ |
} else if (ret < 0) { |
745 |
|
✗ |
return ret; |
746 |
|
|
} |
747 |
|
|
|
748 |
|
✗ |
return ret; |
749 |
|
|
} |
750 |
|
|
|
751 |
|
✗ |
static void copy_weights(float *dst, int n, const float **data) |
752 |
|
|
{ |
753 |
|
✗ |
memcpy(dst, *data, n * sizeof(float)); |
754 |
|
✗ |
*data += n; |
755 |
|
✗ |
} |
756 |
|
|
|
757 |
|
✗ |
static float *allocate(float **ptr, int size) |
758 |
|
|
{ |
759 |
|
✗ |
float *ret = *ptr; |
760 |
|
|
|
761 |
|
✗ |
*ptr += size; |
762 |
|
|
|
763 |
|
✗ |
return ret; |
764 |
|
|
} |
765 |
|
|
|
766 |
|
✗ |
static int allocate_model(PredictorCoefficients *coeffs, int xdim, int ydim, int nns) |
767 |
|
|
{ |
768 |
|
✗ |
int filter_size = nns * xdim * ydim; |
769 |
|
✗ |
int bias_size = nns; |
770 |
|
|
float *data; |
771 |
|
|
|
772 |
|
✗ |
data = av_calloc(filter_size + bias_size, 4 * sizeof(float)); |
773 |
|
✗ |
if (!data) |
774 |
|
✗ |
return AVERROR(ENOMEM); |
775 |
|
|
|
776 |
|
✗ |
coeffs->data = data; |
777 |
|
✗ |
coeffs->xdim = xdim; |
778 |
|
✗ |
coeffs->ydim = ydim; |
779 |
|
✗ |
coeffs->nsize = xdim * ydim; |
780 |
|
✗ |
coeffs->nns = nns; |
781 |
|
|
|
782 |
|
✗ |
coeffs->softmax_q1 = allocate(&data, filter_size); |
783 |
|
✗ |
coeffs->elliott_q1 = allocate(&data, filter_size); |
784 |
|
✗ |
coeffs->softmax_bias_q1 = allocate(&data, bias_size); |
785 |
|
✗ |
coeffs->elliott_bias_q1 = allocate(&data, bias_size); |
786 |
|
|
|
787 |
|
✗ |
coeffs->softmax_q2 = allocate(&data, filter_size); |
788 |
|
✗ |
coeffs->elliott_q2 = allocate(&data, filter_size); |
789 |
|
✗ |
coeffs->softmax_bias_q2 = allocate(&data, bias_size); |
790 |
|
✗ |
coeffs->elliott_bias_q2 = allocate(&data, bias_size); |
791 |
|
|
|
792 |
|
✗ |
return 0; |
793 |
|
|
} |
794 |
|
|
|
795 |
|
✗ |
static int read_weights(AVFilterContext *ctx, const float *bdata) |
796 |
|
|
{ |
797 |
|
✗ |
NNEDIContext *s = ctx->priv; |
798 |
|
|
int ret; |
799 |
|
|
|
800 |
|
✗ |
copy_weights(&s->prescreener[0].kernel_l0[0][0], 4 * 48, &bdata); |
801 |
|
✗ |
copy_weights(s->prescreener[0].bias_l0, 4, &bdata); |
802 |
|
|
|
803 |
|
✗ |
copy_weights(&s->prescreener[0].kernel_l1[0][0], 4 * 4, &bdata); |
804 |
|
✗ |
copy_weights(s->prescreener[0].bias_l1, 4, &bdata); |
805 |
|
|
|
806 |
|
✗ |
copy_weights(&s->prescreener[0].kernel_l2[0][0], 4 * 8, &bdata); |
807 |
|
✗ |
copy_weights(s->prescreener[0].bias_l2, 4, &bdata); |
808 |
|
|
|
809 |
|
✗ |
for (int i = 0; i < 3; i++) { |
810 |
|
✗ |
PrescreenerCoefficients *data = &s->prescreener[i + 1]; |
811 |
|
|
float kernel_l0_shuffled[4 * 64]; |
812 |
|
|
float kernel_l1_shuffled[4 * 4]; |
813 |
|
|
|
814 |
|
✗ |
copy_weights(kernel_l0_shuffled, 4 * 64, &bdata); |
815 |
|
✗ |
copy_weights(data->bias_l0, 4, &bdata); |
816 |
|
|
|
817 |
|
✗ |
copy_weights(kernel_l1_shuffled, 4 * 4, &bdata); |
818 |
|
✗ |
copy_weights(data->bias_l1, 4, &bdata); |
819 |
|
|
|
820 |
|
✗ |
for (int n = 0; n < 4; n++) { |
821 |
|
✗ |
for (int k = 0; k < 64; k++) |
822 |
|
✗ |
data->kernel_l0[n][k] = kernel_l0_shuffled[(k / 8) * 32 + n * 8 + k % 8]; |
823 |
|
✗ |
for (int k = 0; k < 4; k++) |
824 |
|
✗ |
data->kernel_l1[n][k] = kernel_l1_shuffled[k * 4 + n]; |
825 |
|
|
} |
826 |
|
|
} |
827 |
|
|
|
828 |
|
✗ |
for (int m = 0; m < 2; m++) { |
829 |
|
|
// Grouping by neuron count. |
830 |
|
✗ |
for (int i = 0; i < 5; i++) { |
831 |
|
✗ |
const int nns = NNEDI_NNS[i]; |
832 |
|
|
|
833 |
|
|
// Grouping by window size. |
834 |
|
✗ |
for (int j = 0; j < 7; j++) { |
835 |
|
✗ |
PredictorCoefficients *model = &s->coeffs[m][i][j]; |
836 |
|
✗ |
const int xdim = NNEDI_XDIM[j]; |
837 |
|
✗ |
const int ydim = NNEDI_YDIM[j]; |
838 |
|
✗ |
const int filter_size = xdim * ydim; |
839 |
|
|
|
840 |
|
✗ |
ret = allocate_model(model, xdim, ydim, nns); |
841 |
|
✗ |
if (ret < 0) |
842 |
|
✗ |
return ret; |
843 |
|
|
|
844 |
|
|
// Quality 1 model. NNS[i] * (XDIM[j] * YDIM[j]) * 2 coefficients. |
845 |
|
✗ |
copy_weights(model->softmax_q1, nns * filter_size, &bdata); |
846 |
|
✗ |
copy_weights(model->elliott_q1, nns * filter_size, &bdata); |
847 |
|
|
|
848 |
|
|
// Quality 1 model bias. NNS[i] * 2 coefficients. |
849 |
|
✗ |
copy_weights(model->softmax_bias_q1, nns, &bdata); |
850 |
|
✗ |
copy_weights(model->elliott_bias_q1, nns, &bdata); |
851 |
|
|
|
852 |
|
|
// Quality 2 model. NNS[i] * (XDIM[j] * YDIM[j]) * 2 coefficients. |
853 |
|
✗ |
copy_weights(model->softmax_q2, nns * filter_size, &bdata); |
854 |
|
✗ |
copy_weights(model->elliott_q2, nns * filter_size, &bdata); |
855 |
|
|
|
856 |
|
|
// Quality 2 model bias. NNS[i] * 2 coefficients. |
857 |
|
✗ |
copy_weights(model->softmax_bias_q2, nns, &bdata); |
858 |
|
✗ |
copy_weights(model->elliott_bias_q2, nns, &bdata); |
859 |
|
|
} |
860 |
|
|
} |
861 |
|
|
} |
862 |
|
|
|
863 |
|
✗ |
return 0; |
864 |
|
|
} |
865 |
|
|
|
866 |
|
✗ |
static float mean(const float *input, int size) |
867 |
|
|
{ |
868 |
|
✗ |
float sum = 0.f; |
869 |
|
|
|
870 |
|
✗ |
for (int i = 0; i < size; i++) |
871 |
|
✗ |
sum += input[i]; |
872 |
|
|
|
873 |
|
✗ |
return sum / size; |
874 |
|
|
} |
875 |
|
|
|
876 |
|
✗ |
static void transform(float *input, int size, float mean, float half) |
877 |
|
|
{ |
878 |
|
✗ |
for (int i = 0; i < size; i++) |
879 |
|
✗ |
input[i] = (input[i] - mean) / half; |
880 |
|
✗ |
} |
881 |
|
|
|
882 |
|
✗ |
static void subtract_mean_old(PrescreenerCoefficients *coeffs, float half) |
883 |
|
|
{ |
884 |
|
✗ |
for (int n = 0; n < 4; n++) { |
885 |
|
✗ |
float m = mean(coeffs->kernel_l0[n], 48); |
886 |
|
|
|
887 |
|
✗ |
transform(coeffs->kernel_l0[n], 48, m, half); |
888 |
|
|
} |
889 |
|
✗ |
} |
890 |
|
|
|
891 |
|
✗ |
static void subtract_mean_new(PrescreenerCoefficients *coeffs, float half) |
892 |
|
|
{ |
893 |
|
✗ |
for (int n = 0; n < 4; n++) { |
894 |
|
✗ |
float m = mean(coeffs->kernel_l0[n], 64); |
895 |
|
|
|
896 |
|
✗ |
transform(coeffs->kernel_l0[n], 64, m, half); |
897 |
|
|
} |
898 |
|
✗ |
} |
899 |
|
|
|
900 |
|
✗ |
static void subtract_mean_predictor(PredictorCoefficients *model) |
901 |
|
|
{ |
902 |
|
✗ |
const int filter_size = model->nsize; |
903 |
|
✗ |
const int nns = model->nns; |
904 |
|
✗ |
const float scale = 1.f / nns; |
905 |
|
|
|
906 |
|
|
double softmax_means[256]; // Average of individual softmax filters. |
907 |
|
|
double elliott_means[256]; // Average of individual elliott filters. |
908 |
|
✗ |
double mean_filter[48 * 6] = { 0 }; // Pointwise average of all softmax filters. |
909 |
|
|
double mean_bias; |
910 |
|
|
|
911 |
|
|
// Quality 1. |
912 |
|
✗ |
for (int nn = 0; nn < nns; nn++) { |
913 |
|
✗ |
softmax_means[nn] = mean(model->softmax_q1 + nn * filter_size, filter_size); |
914 |
|
✗ |
elliott_means[nn] = mean(model->elliott_q1 + nn * filter_size, filter_size); |
915 |
|
|
|
916 |
|
✗ |
for (int k = 0; k < filter_size; k++) |
917 |
|
✗ |
mean_filter[k] += model->softmax_q1[nn * filter_size + k] - softmax_means[nn]; |
918 |
|
|
} |
919 |
|
|
|
920 |
|
✗ |
for (int k = 0; k < filter_size; k++) |
921 |
|
✗ |
mean_filter[k] *= scale; |
922 |
|
|
|
923 |
|
✗ |
mean_bias = mean(model->softmax_bias_q1, nns); |
924 |
|
|
|
925 |
|
✗ |
for (int nn = 0; nn < nns; nn++) { |
926 |
|
✗ |
for (int k = 0; k < filter_size; k++) { |
927 |
|
✗ |
model->softmax_q1[nn * filter_size + k] -= softmax_means[nn] + mean_filter[k]; |
928 |
|
✗ |
model->elliott_q1[nn * filter_size + k] -= elliott_means[nn]; |
929 |
|
|
} |
930 |
|
✗ |
model->softmax_bias_q1[nn] -= mean_bias; |
931 |
|
|
} |
932 |
|
|
|
933 |
|
|
// Quality 2. |
934 |
|
✗ |
memset(mean_filter, 0, sizeof(mean_filter)); |
935 |
|
|
|
936 |
|
✗ |
for (int nn = 0; nn < nns; nn++) { |
937 |
|
✗ |
softmax_means[nn] = mean(model->softmax_q2 + nn * filter_size, filter_size); |
938 |
|
✗ |
elliott_means[nn] = mean(model->elliott_q2 + nn * filter_size, filter_size); |
939 |
|
|
|
940 |
|
✗ |
for (int k = 0; k < filter_size; k++) { |
941 |
|
✗ |
mean_filter[k] += model->softmax_q2[nn * filter_size + k] - softmax_means[nn]; |
942 |
|
|
} |
943 |
|
|
} |
944 |
|
|
|
945 |
|
✗ |
for (int k = 0; k < filter_size; k++) |
946 |
|
✗ |
mean_filter[k] *= scale; |
947 |
|
|
|
948 |
|
✗ |
mean_bias = mean(model->softmax_bias_q2, nns); |
949 |
|
|
|
950 |
|
✗ |
for (int nn = 0; nn < nns; nn++) { |
951 |
|
✗ |
for (int k = 0; k < filter_size; k++) { |
952 |
|
✗ |
model->softmax_q2[nn * filter_size + k] -= softmax_means[nn] + mean_filter[k]; |
953 |
|
✗ |
model->elliott_q2[nn * filter_size + k] -= elliott_means[nn]; |
954 |
|
|
} |
955 |
|
|
|
956 |
|
✗ |
model->softmax_bias_q2[nn] -= mean_bias; |
957 |
|
|
} |
958 |
|
✗ |
} |
959 |
|
|
|
960 |
|
✗ |
static av_cold int init(AVFilterContext *ctx) |
961 |
|
|
{ |
962 |
|
✗ |
NNEDIContext *s = ctx->priv; |
963 |
|
✗ |
FILE *weights_file = NULL; |
964 |
|
|
int64_t weights_size; |
965 |
|
|
float *bdata; |
966 |
|
|
size_t bytes_read; |
967 |
|
✗ |
int ret = 0; |
968 |
|
|
|
969 |
|
✗ |
weights_file = avpriv_fopen_utf8(s->weights_file, "rb"); |
970 |
|
✗ |
if (!weights_file) { |
971 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, "No weights file provided, aborting!\n"); |
972 |
|
✗ |
return AVERROR(EINVAL); |
973 |
|
|
} |
974 |
|
|
|
975 |
|
✗ |
if (fseek(weights_file, 0, SEEK_END)) { |
976 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, "Couldn't seek to the end of weights file.\n"); |
977 |
|
✗ |
fclose(weights_file); |
978 |
|
✗ |
return AVERROR(EINVAL); |
979 |
|
|
} |
980 |
|
|
|
981 |
|
✗ |
weights_size = ftell(weights_file); |
982 |
|
|
|
983 |
|
✗ |
if (weights_size == -1) { |
984 |
|
✗ |
fclose(weights_file); |
985 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, "Couldn't get size of weights file.\n"); |
986 |
|
✗ |
return AVERROR(EINVAL); |
987 |
|
✗ |
} else if (weights_size != NNEDI_WEIGHTS_SIZE) { |
988 |
|
✗ |
fclose(weights_file); |
989 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, "Unexpected weights file size.\n"); |
990 |
|
✗ |
return AVERROR(EINVAL); |
991 |
|
|
} |
992 |
|
|
|
993 |
|
✗ |
if (fseek(weights_file, 0, SEEK_SET)) { |
994 |
|
✗ |
fclose(weights_file); |
995 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, "Couldn't seek to the start of weights file.\n"); |
996 |
|
✗ |
return AVERROR(EINVAL); |
997 |
|
|
} |
998 |
|
|
|
999 |
|
✗ |
bdata = av_malloc(NNEDI_WEIGHTS_SIZE); |
1000 |
|
✗ |
if (!bdata) { |
1001 |
|
✗ |
fclose(weights_file); |
1002 |
|
✗ |
return AVERROR(ENOMEM); |
1003 |
|
|
} |
1004 |
|
|
|
1005 |
|
✗ |
bytes_read = fread(bdata, 1, NNEDI_WEIGHTS_SIZE, weights_file); |
1006 |
|
✗ |
if (bytes_read != NNEDI_WEIGHTS_SIZE) { |
1007 |
|
✗ |
fclose(weights_file); |
1008 |
|
✗ |
ret = AVERROR_INVALIDDATA; |
1009 |
|
✗ |
av_log(ctx, AV_LOG_ERROR, "Couldn't read weights file.\n"); |
1010 |
|
✗ |
goto fail; |
1011 |
|
|
} |
1012 |
|
|
|
1013 |
|
✗ |
fclose(weights_file); |
1014 |
|
|
|
1015 |
|
✗ |
s->fdsp = avpriv_float_dsp_alloc(0); |
1016 |
|
✗ |
if (!s->fdsp) { |
1017 |
|
✗ |
ret = AVERROR(ENOMEM); |
1018 |
|
✗ |
goto fail; |
1019 |
|
|
} |
1020 |
|
|
|
1021 |
|
✗ |
ret = read_weights(ctx, bdata); |
1022 |
|
✗ |
if (ret < 0) |
1023 |
|
✗ |
goto fail; |
1024 |
|
|
|
1025 |
|
✗ |
fail: |
1026 |
|
✗ |
av_free(bdata); |
1027 |
|
✗ |
return ret; |
1028 |
|
|
} |
1029 |
|
|
|
1030 |
|
✗ |
static int config_input(AVFilterLink *inlink) |
1031 |
|
|
{ |
1032 |
|
✗ |
AVFilterContext *ctx = inlink->dst; |
1033 |
|
✗ |
NNEDIContext *s = ctx->priv; |
1034 |
|
✗ |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); |
1035 |
|
|
int ret; |
1036 |
|
|
|
1037 |
|
✗ |
s->depth = desc->comp[0].depth; |
1038 |
|
✗ |
s->nb_threads = ff_filter_get_nb_threads(ctx); |
1039 |
|
✗ |
s->nb_planes = av_pix_fmt_count_planes(inlink->format); |
1040 |
|
✗ |
if ((ret = av_image_fill_linesizes(s->linesize, inlink->format, inlink->w)) < 0) |
1041 |
|
✗ |
return ret; |
1042 |
|
|
|
1043 |
|
✗ |
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); |
1044 |
|
✗ |
s->planewidth[0] = s->planewidth[3] = inlink->w; |
1045 |
|
✗ |
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); |
1046 |
|
✗ |
s->planeheight[0] = s->planeheight[3] = inlink->h; |
1047 |
|
|
|
1048 |
|
✗ |
s->half = ((1 << 8) - 1) / 2.f; |
1049 |
|
✗ |
s->out_scale = 1 << (s->depth - 8); |
1050 |
|
✗ |
s->in_scale = 1.f / s->out_scale; |
1051 |
|
|
|
1052 |
|
✗ |
switch (s->depth) { |
1053 |
|
✗ |
case 8: |
1054 |
|
✗ |
s->read = read_bytes; |
1055 |
|
✗ |
s->write = write_bytes; |
1056 |
|
✗ |
break; |
1057 |
|
✗ |
default: |
1058 |
|
✗ |
s->read = read_words; |
1059 |
|
✗ |
s->write = write_words; |
1060 |
|
✗ |
break; |
1061 |
|
|
} |
1062 |
|
|
|
1063 |
|
✗ |
subtract_mean_old(&s->prescreener[0], s->half); |
1064 |
|
✗ |
subtract_mean_new(&s->prescreener[1], s->half); |
1065 |
|
✗ |
subtract_mean_new(&s->prescreener[2], s->half); |
1066 |
|
✗ |
subtract_mean_new(&s->prescreener[3], s->half); |
1067 |
|
|
|
1068 |
|
✗ |
s->prescreen[0] = process_old; |
1069 |
|
✗ |
s->prescreen[1] = process_new; |
1070 |
|
|
|
1071 |
|
✗ |
for (int i = 0; i < 2; i++) { |
1072 |
|
✗ |
for (int j = 0; j < 5; j++) { |
1073 |
|
✗ |
for (int k = 0; k < 7; k++) |
1074 |
|
✗ |
subtract_mean_predictor(&s->coeffs[i][j][k]); |
1075 |
|
|
} |
1076 |
|
|
} |
1077 |
|
|
|
1078 |
|
✗ |
s->input_size = (s->planewidth[0] + 64) * (s->planeheight[0] + 6); |
1079 |
|
✗ |
s->input_buf = av_calloc(s->nb_threads, sizeof(*s->input_buf)); |
1080 |
|
✗ |
if (!s->input_buf) |
1081 |
|
✗ |
return AVERROR(ENOMEM); |
1082 |
|
|
|
1083 |
|
✗ |
for (int i = 0; i < s->nb_threads; i++) { |
1084 |
|
✗ |
s->input_buf[i] = av_calloc(s->input_size, sizeof(**s->input_buf)); |
1085 |
|
✗ |
if (!s->input_buf[i]) |
1086 |
|
✗ |
return AVERROR(ENOMEM); |
1087 |
|
|
} |
1088 |
|
|
|
1089 |
|
✗ |
s->output_buf = av_calloc(s->nb_threads, sizeof(*s->output_buf)); |
1090 |
|
✗ |
if (!s->output_buf) |
1091 |
|
✗ |
return AVERROR(ENOMEM); |
1092 |
|
|
|
1093 |
|
✗ |
for (int i = 0; i < s->nb_threads; i++) { |
1094 |
|
✗ |
s->output_buf[i] = av_calloc(s->input_size, sizeof(**s->output_buf)); |
1095 |
|
✗ |
if (!s->output_buf[i]) |
1096 |
|
✗ |
return AVERROR(ENOMEM); |
1097 |
|
|
} |
1098 |
|
|
|
1099 |
|
✗ |
s->prescreen_buf = av_calloc(s->nb_threads, sizeof(*s->prescreen_buf)); |
1100 |
|
✗ |
if (!s->prescreen_buf) |
1101 |
|
✗ |
return AVERROR(ENOMEM); |
1102 |
|
|
|
1103 |
|
✗ |
for (int i = 0; i < s->nb_threads; i++) { |
1104 |
|
✗ |
s->prescreen_buf[i] = av_calloc(s->planewidth[0], sizeof(**s->prescreen_buf)); |
1105 |
|
✗ |
if (!s->prescreen_buf[i]) |
1106 |
|
✗ |
return AVERROR(ENOMEM); |
1107 |
|
|
} |
1108 |
|
|
|
1109 |
|
✗ |
return 0; |
1110 |
|
|
} |
1111 |
|
|
|
1112 |
|
✗ |
static av_cold void uninit(AVFilterContext *ctx) |
1113 |
|
|
{ |
1114 |
|
✗ |
NNEDIContext *s = ctx->priv; |
1115 |
|
|
|
1116 |
|
✗ |
for (int i = 0; i < s->nb_threads && s->prescreen_buf; i++) |
1117 |
|
✗ |
av_freep(&s->prescreen_buf[i]); |
1118 |
|
|
|
1119 |
|
✗ |
av_freep(&s->prescreen_buf); |
1120 |
|
|
|
1121 |
|
✗ |
for (int i = 0; i < s->nb_threads && s->input_buf; i++) |
1122 |
|
✗ |
av_freep(&s->input_buf[i]); |
1123 |
|
|
|
1124 |
|
✗ |
av_freep(&s->input_buf); |
1125 |
|
|
|
1126 |
|
✗ |
for (int i = 0; i < s->nb_threads && s->output_buf; i++) |
1127 |
|
✗ |
av_freep(&s->output_buf[i]); |
1128 |
|
|
|
1129 |
|
✗ |
av_freep(&s->output_buf); |
1130 |
|
✗ |
av_freep(&s->fdsp); |
1131 |
|
|
|
1132 |
|
✗ |
for (int i = 0; i < 2; i++) { |
1133 |
|
✗ |
for (int j = 0; j < 5; j++) { |
1134 |
|
✗ |
for (int k = 0; k < 7; k++) { |
1135 |
|
✗ |
av_freep(&s->coeffs[i][j][k].data); |
1136 |
|
|
} |
1137 |
|
|
} |
1138 |
|
|
} |
1139 |
|
|
|
1140 |
|
✗ |
av_frame_free(&s->prev); |
1141 |
|
✗ |
} |
1142 |
|
|
|
1143 |
|
|
static const AVFilterPad inputs[] = { |
1144 |
|
|
{ |
1145 |
|
|
.name = "default", |
1146 |
|
|
.type = AVMEDIA_TYPE_VIDEO, |
1147 |
|
|
.filter_frame = filter_frame, |
1148 |
|
|
.config_props = config_input, |
1149 |
|
|
}, |
1150 |
|
|
}; |
1151 |
|
|
|
1152 |
|
|
static const AVFilterPad outputs[] = { |
1153 |
|
|
{ |
1154 |
|
|
.name = "default", |
1155 |
|
|
.type = AVMEDIA_TYPE_VIDEO, |
1156 |
|
|
.config_props = config_output, |
1157 |
|
|
.request_frame = request_frame, |
1158 |
|
|
}, |
1159 |
|
|
}; |
1160 |
|
|
|
1161 |
|
|
const FFFilter ff_vf_nnedi = { |
1162 |
|
|
.p.name = "nnedi", |
1163 |
|
|
.p.description = NULL_IF_CONFIG_SMALL("Apply neural network edge directed interpolation intra-only deinterlacer."), |
1164 |
|
|
.p.priv_class = &nnedi_class, |
1165 |
|
|
.p.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, |
1166 |
|
|
.priv_size = sizeof(NNEDIContext), |
1167 |
|
|
.init = init, |
1168 |
|
|
.uninit = uninit, |
1169 |
|
|
FILTER_INPUTS(inputs), |
1170 |
|
|
FILTER_OUTPUTS(outputs), |
1171 |
|
|
FILTER_PIXFMTS_ARRAY(pix_fmts), |
1172 |
|
|
.process_command = ff_filter_process_command, |
1173 |
|
|
}; |
1174 |
|
|
|