FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavfilter/vf_fftdnoiz.c
Date: 2024-04-25 05:10:44
Exec Total Coverage
Lines: 0 386 0.0%
Functions: 0 14 0.0%
Branches: 0 187 0.0%

Line Branch Exec Source
1 /*
2 * This file is part of FFmpeg.
3 *
4 * FFmpeg is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
8 *
9 * FFmpeg is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with FFmpeg; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18
19 #include <float.h>
20
21 #include "libavutil/common.h"
22 #include "libavutil/imgutils.h"
23 #include "libavutil/mem.h"
24 #include "libavutil/opt.h"
25 #include "libavutil/pixdesc.h"
26 #include "libavutil/tx.h"
27 #include "internal.h"
28 #include "video.h"
29 #include "window_func.h"
30
31 #define MAX_BLOCK 256
32 #define MAX_THREADS 32
33
34 enum BufferTypes {
35 CURRENT,
36 PREV,
37 NEXT,
38 BSIZE
39 };
40
41 typedef struct PlaneContext {
42 int planewidth, planeheight;
43 int nox, noy;
44 int b;
45 int o;
46 float n;
47
48 float *buffer[MAX_THREADS][BSIZE];
49 AVComplexFloat *hdata[MAX_THREADS], *vdata[MAX_THREADS];
50 AVComplexFloat *hdata_out[MAX_THREADS], *vdata_out[MAX_THREADS];
51 int data_linesize;
52 int buffer_linesize;
53 } PlaneContext;
54
55 typedef struct FFTdnoizContext {
56 const AVClass *class;
57
58 float sigma;
59 float amount;
60 int block_size;
61 float overlap;
62 int method;
63 int window;
64 int nb_prev;
65 int nb_next;
66 int planesf;
67
68 AVFrame *prev, *cur, *next;
69
70 int depth;
71 int nb_planes;
72 int nb_threads;
73 PlaneContext planes[4];
74 float win[MAX_BLOCK][MAX_BLOCK];
75
76 AVTXContext *fft[MAX_THREADS], *ifft[MAX_THREADS];
77 AVTXContext *fft_r[MAX_THREADS], *ifft_r[MAX_THREADS];
78
79 av_tx_fn tx_fn, itx_fn;
80 av_tx_fn tx_r_fn, itx_r_fn;
81
82 void (*import_row)(AVComplexFloat *dst, uint8_t *src, int rw, float scale, float *win, int off);
83 void (*export_row)(AVComplexFloat *src, uint8_t *dst, int rw, int depth, float *win);
84 } FFTdnoizContext;
85
86 #define OFFSET(x) offsetof(FFTdnoizContext, x)
87 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
88 #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
89 static const AVOption fftdnoiz_options[] = {
90 { "sigma", "set denoise strength",
91 OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 100, .flags = TFLAGS },
92 { "amount", "set amount of denoising",
93 OFFSET(amount), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0.01, 1, .flags = TFLAGS },
94 { "block", "set block size",
95 OFFSET(block_size), AV_OPT_TYPE_INT, {.i64=32}, 8, MAX_BLOCK, .flags = FLAGS },
96 { "overlap", "set block overlap",
97 OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=0.5}, 0.2, 0.8, .flags = FLAGS },
98 { "method", "set method of denoising",
99 OFFSET(method), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = TFLAGS, .unit = "method" },
100 { "wiener", "wiener method",
101 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, .flags = TFLAGS, .unit = "method" },
102 { "hard", "hard thresholding",
103 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, .flags = TFLAGS, .unit = "method" },
104 { "prev", "set number of previous frames for temporal denoising",
105 OFFSET(nb_prev), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = FLAGS },
106 { "next", "set number of next frames for temporal denoising",
107 OFFSET(nb_next), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = FLAGS },
108 { "planes", "set planes to filter",
109 OFFSET(planesf), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, .flags = TFLAGS },
110 WIN_FUNC_OPTION("window", OFFSET(window), FLAGS, WFUNC_HANNING),
111 { NULL }
112 };
113
114 AVFILTER_DEFINE_CLASS(fftdnoiz);
115
116 static const enum AVPixelFormat pix_fmts[] = {
117 AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
118 AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
119 AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
120 AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
121 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
122 AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
123 AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
124 AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
125 AV_PIX_FMT_YUVJ411P,
126 AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
127 AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
128 AV_PIX_FMT_YUV440P10,
129 AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
130 AV_PIX_FMT_YUV440P12,
131 AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
132 AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
133 AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
134 AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
135 AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
136 AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
137 AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
138 AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
139 AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
140 AV_PIX_FMT_NONE
141 };
142
143 typedef struct ThreadData {
144 float *src, *dst;
145 } ThreadData;
146
147 static void import_row8(AVComplexFloat *dst, uint8_t *src, int rw,
148 float scale, float *win, int off)
149 {
150 for (int j = 0; j < rw; j++) {
151 const int i = abs(j + off);
152 dst[j].re = src[i] * scale * win[j];
153 dst[j].im = 0.f;
154 }
155 }
156
157 static void export_row8(AVComplexFloat *src, uint8_t *dst, int rw, int depth, float *win)
158 {
159 for (int j = 0; j < rw; j++)
160 dst[j] = av_clip_uint8(lrintf(src[j].re / win[j]));
161 }
162
163 static void import_row16(AVComplexFloat *dst, uint8_t *srcp, int rw,
164 float scale, float *win, int off)
165 {
166 uint16_t *src = (uint16_t *)srcp;
167
168 for (int j = 0; j < rw; j++) {
169 const int i = abs(j + off);
170 dst[j].re = src[i] * scale * win[j];
171 dst[j].im = 0;
172 }
173 }
174
175 static void export_row16(AVComplexFloat *src, uint8_t *dstp, int rw, int depth, float *win)
176 {
177 uint16_t *dst = (uint16_t *)dstp;
178
179 for (int j = 0; j < rw; j++)
180 dst[j] = av_clip_uintp2_c(lrintf(src[j].re / win[j]), depth);
181 }
182
183 static int config_input(AVFilterLink *inlink)
184 {
185 AVFilterContext *ctx = inlink->dst;
186 const AVPixFmtDescriptor *desc;
187 FFTdnoizContext *s = ctx->priv;
188 float lut[MAX_BLOCK + 1];
189 float overlap;
190 int i;
191
192 desc = av_pix_fmt_desc_get(inlink->format);
193 s->depth = desc->comp[0].depth;
194
195 if (s->depth <= 8) {
196 s->import_row = import_row8;
197 s->export_row = export_row8;
198 } else {
199 s->import_row = import_row16;
200 s->export_row = export_row16;
201 }
202
203 s->planes[1].planewidth = s->planes[2].planewidth = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
204 s->planes[0].planewidth = s->planes[3].planewidth = inlink->w;
205 s->planes[1].planeheight = s->planes[2].planeheight = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
206 s->planes[0].planeheight = s->planes[3].planeheight = inlink->h;
207
208 s->nb_planes = av_pix_fmt_count_planes(inlink->format);
209 s->nb_threads = FFMIN(ff_filter_get_nb_threads(ctx), MAX_THREADS);
210
211 for (int i = 0; i < s->nb_threads; i++) {
212 float scale = 1.f, iscale = 1.f;
213 int ret;
214
215 if ((ret = av_tx_init(&s->fft[i], &s->tx_fn, AV_TX_FLOAT_FFT,
216 0, s->block_size, &scale, 0)) < 0 ||
217 (ret = av_tx_init(&s->ifft[i], &s->itx_fn, AV_TX_FLOAT_FFT,
218 1, s->block_size, &iscale, 0)) < 0 ||
219 (ret = av_tx_init(&s->fft_r[i], &s->tx_r_fn, AV_TX_FLOAT_FFT,
220 0, 1 + s->nb_prev + s->nb_next, &scale, 0)) < 0 ||
221 (ret = av_tx_init(&s->ifft_r[i], &s->itx_r_fn, AV_TX_FLOAT_FFT,
222 1, 1 + s->nb_prev + s->nb_next, &iscale, 0)) < 0)
223 return ret;
224 }
225
226 for (i = 0; i < s->nb_planes; i++) {
227 PlaneContext *p = &s->planes[i];
228 int size;
229
230 p->b = s->block_size;
231 p->n = 1.f / (p->b * p->b);
232 p->o = lrintf(p->b * s->overlap);
233 size = p->b - p->o;
234 p->nox = (p->planewidth + (size - 1)) / size;
235 p->noy = (p->planeheight + (size - 1)) / size;
236
237 av_log(ctx, AV_LOG_DEBUG, "nox:%d noy:%d size:%d\n", p->nox, p->noy, size);
238
239 p->buffer_linesize = p->b * sizeof(AVComplexFloat);
240 p->data_linesize = 2 * p->b * sizeof(float);
241 for (int j = 0; j < s->nb_threads; j++) {
242 p->hdata[j] = av_calloc(p->b, p->data_linesize);
243 p->hdata_out[j] = av_calloc(p->b, p->data_linesize);
244 p->vdata[j] = av_calloc(p->b, p->data_linesize);
245 p->vdata_out[j] = av_calloc(p->b, p->data_linesize);
246 p->buffer[j][CURRENT] = av_calloc(p->b, p->buffer_linesize);
247 if (!p->buffer[j][CURRENT])
248 return AVERROR(ENOMEM);
249 if (s->nb_prev > 0) {
250 p->buffer[j][PREV] = av_calloc(p->b, p->buffer_linesize);
251 if (!p->buffer[j][PREV])
252 return AVERROR(ENOMEM);
253 }
254 if (s->nb_next > 0) {
255 p->buffer[j][NEXT] = av_calloc(p->b, p->buffer_linesize);
256 if (!p->buffer[j][NEXT])
257 return AVERROR(ENOMEM);
258 }
259 if (!p->hdata[j] || !p->vdata[j] ||
260 !p->hdata_out[j] || !p->vdata_out[j])
261 return AVERROR(ENOMEM);
262 }
263 }
264
265 generate_window_func(lut, s->block_size + 1, s->window, &overlap);
266
267 for (int y = 0; y < s->block_size; y++) {
268 for (int x = 0; x < s->block_size; x++)
269 s->win[y][x] = lut[y] * lut[x];
270 }
271
272 return 0;
273 }
274
275 static void import_block(FFTdnoizContext *s,
276 uint8_t *srcp, int src_linesize,
277 float *buffer, int buffer_linesize, int plane,
278 int jobnr, int y, int x)
279 {
280 PlaneContext *p = &s->planes[plane];
281 const int width = p->planewidth;
282 const int height = p->planeheight;
283 const int block = p->b;
284 const int overlap = p->o;
285 const int hoverlap = overlap / 2;
286 const int size = block - overlap;
287 const int bpp = (s->depth + 7) / 8;
288 const int data_linesize = p->data_linesize / sizeof(AVComplexFloat);
289 const float scale = 1.f / ((1.f + s->nb_prev + s->nb_next) * s->block_size * s->block_size);
290 AVComplexFloat *hdata = p->hdata[jobnr];
291 AVComplexFloat *hdata_out = p->hdata_out[jobnr];
292 AVComplexFloat *vdata_out = p->vdata_out[jobnr];
293 const int woff = -hoverlap;
294 const int hoff = -hoverlap;
295 const int rh = FFMIN(block, height - y * size + hoverlap);
296 const int rw = FFMIN(block, width - x * size + hoverlap);
297 AVComplexFloat *ssrc, *ddst, *dst = hdata, *dst_out = hdata_out;
298 float *bdst = buffer;
299
300 buffer_linesize /= sizeof(float);
301
302 for (int i = 0; i < rh; i++) {
303 uint8_t *src = srcp + src_linesize * abs(y * size + i + hoff) + x * size * bpp;
304
305 s->import_row(dst, src, rw, scale, s->win[i], woff);
306 for (int j = rw; j < block; j++) {
307 dst[j].re = dst[rw - 1].re;
308 dst[j].im = 0.f;
309 }
310 s->tx_fn(s->fft[jobnr], dst_out, dst, sizeof(AVComplexFloat));
311
312 ddst = dst_out;
313 dst += data_linesize;
314 dst_out += data_linesize;
315 }
316
317 dst = dst_out;
318 for (int i = rh; i < block; i++) {
319 for (int j = 0; j < block; j++) {
320 dst[j].re = ddst[j].re;
321 dst[j].im = ddst[j].im;
322 }
323
324 dst += data_linesize;
325 }
326
327 ssrc = hdata_out;
328 dst = vdata_out;
329 for (int i = 0; i < block; i++) {
330 for (int j = 0; j < block; j++)
331 dst[j] = ssrc[j * data_linesize + i];
332 s->tx_fn(s->fft[jobnr], bdst, dst, sizeof(AVComplexFloat));
333
334 dst += data_linesize;
335 bdst += buffer_linesize;
336 }
337 }
338
339 static void export_block(FFTdnoizContext *s,
340 uint8_t *dstp, int dst_linesize,
341 float *buffer, int buffer_linesize, int plane,
342 int jobnr, int y, int x)
343 {
344 PlaneContext *p = &s->planes[plane];
345 const int depth = s->depth;
346 const int bpp = (depth + 7) / 8;
347 const int width = p->planewidth;
348 const int height = p->planeheight;
349 const int block = p->b;
350 const int overlap = p->o;
351 const int hoverlap = overlap / 2;
352 const int size = block - overlap;
353 const int data_linesize = p->data_linesize / sizeof(AVComplexFloat);
354 AVComplexFloat *hdata = p->hdata[jobnr];
355 AVComplexFloat *hdata_out = p->hdata_out[jobnr];
356 AVComplexFloat *vdata_out = p->vdata_out[jobnr];
357 const int rw = FFMIN(size, width - x * size);
358 const int rh = FFMIN(size, height - y * size);
359 AVComplexFloat *hdst, *vdst = vdata_out, *hdst_out = hdata_out;
360 float *bsrc = buffer;
361
362 hdst = hdata;
363 buffer_linesize /= sizeof(float);
364
365 for (int i = 0; i < block; i++) {
366 s->itx_fn(s->ifft[jobnr], vdst, bsrc, sizeof(AVComplexFloat));
367 for (int j = 0; j < block; j++)
368 hdst[j * data_linesize + i] = vdst[j];
369
370 vdst += data_linesize;
371 bsrc += buffer_linesize;
372 }
373
374 hdst = hdata + hoverlap * data_linesize;
375 for (int i = 0; i < rh && (y * size + i) < height; i++) {
376 uint8_t *dst = dstp + dst_linesize * (y * size + i) + x * size * bpp;
377
378 s->itx_fn(s->ifft[jobnr], hdst_out, hdst, sizeof(AVComplexFloat));
379 s->export_row(hdst_out + hoverlap, dst, rw, depth, s->win[i + hoverlap] + hoverlap);
380
381 hdst += data_linesize;
382 hdst_out += data_linesize;
383 }
384 }
385
386 static void filter_block3d2(FFTdnoizContext *s, int plane, float *pbuffer, float *nbuffer,
387 int jobnr)
388 {
389 PlaneContext *p = &s->planes[plane];
390 const int block = p->b;
391 const int buffer_linesize = p->buffer_linesize / sizeof(float);
392 const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
393 const float sigma = s->sigma * depthx / (3.f * s->block_size * s->block_size);
394 const float limit = 1.f - s->amount;
395 float *cbuffer = p->buffer[jobnr][CURRENT];
396 const int method = s->method;
397 float *cbuff = cbuffer;
398 float *pbuff = pbuffer;
399 float *nbuff = nbuffer;
400
401 for (int i = 0; i < block; i++) {
402 for (int j = 0; j < block; j++) {
403 AVComplexFloat buffer[BSIZE];
404 AVComplexFloat outbuffer[BSIZE];
405
406 buffer[0].re = pbuff[2 * j ];
407 buffer[0].im = pbuff[2 * j + 1];
408
409 buffer[1].re = cbuff[2 * j ];
410 buffer[1].im = cbuff[2 * j + 1];
411
412 buffer[2].re = nbuff[2 * j ];
413 buffer[2].im = nbuff[2 * j + 1];
414
415 s->tx_r_fn(s->fft_r[jobnr], outbuffer, buffer, sizeof(AVComplexFloat));
416
417 for (int z = 0; z < 3; z++) {
418 const float re = outbuffer[z].re;
419 const float im = outbuffer[z].im;
420 const float power = re * re + im * im;
421 float factor;
422
423 switch (method) {
424 case 0:
425 factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
426 break;
427 case 1:
428 factor = power < sigma ? limit : 1.f;
429 break;
430 }
431
432 outbuffer[z].re *= factor;
433 outbuffer[z].im *= factor;
434 }
435
436 s->itx_r_fn(s->ifft_r[jobnr], buffer, outbuffer, sizeof(AVComplexFloat));
437
438 cbuff[2 * j + 0] = buffer[1].re;
439 cbuff[2 * j + 1] = buffer[1].im;
440 }
441
442 cbuff += buffer_linesize;
443 pbuff += buffer_linesize;
444 nbuff += buffer_linesize;
445 }
446 }
447
448 static void filter_block3d1(FFTdnoizContext *s, int plane, float *pbuffer,
449 int jobnr)
450 {
451 PlaneContext *p = &s->planes[plane];
452 const int block = p->b;
453 const int buffer_linesize = p->buffer_linesize / sizeof(float);
454 const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
455 const float sigma = s->sigma * depthx / (2.f * s->block_size * s->block_size);
456 const float limit = 1.f - s->amount;
457 float *cbuffer = p->buffer[jobnr][CURRENT];
458 const int method = s->method;
459 float *cbuff = cbuffer;
460 float *pbuff = pbuffer;
461
462 for (int i = 0; i < block; i++) {
463 for (int j = 0; j < block; j++) {
464 AVComplexFloat buffer[BSIZE];
465 AVComplexFloat outbuffer[BSIZE];
466
467 buffer[0].re = pbuff[2 * j ];
468 buffer[0].im = pbuff[2 * j + 1];
469
470 buffer[1].re = cbuff[2 * j ];
471 buffer[1].im = cbuff[2 * j + 1];
472
473 s->tx_r_fn(s->fft_r[jobnr], outbuffer, buffer, sizeof(AVComplexFloat));
474
475 for (int z = 0; z < 2; z++) {
476 const float re = outbuffer[z].re;
477 const float im = outbuffer[z].im;
478 const float power = re * re + im * im;
479 float factor;
480
481 switch (method) {
482 case 0:
483 factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
484 break;
485 case 1:
486 factor = power < sigma ? limit : 1.f;
487 break;
488 }
489
490 outbuffer[z].re *= factor;
491 outbuffer[z].im *= factor;
492 }
493
494 s->itx_r_fn(s->ifft_r[jobnr], buffer, outbuffer, sizeof(AVComplexFloat));
495
496 cbuff[2 * j + 0] = buffer[1].re;
497 cbuff[2 * j + 1] = buffer[1].im;
498 }
499
500 cbuff += buffer_linesize;
501 pbuff += buffer_linesize;
502 }
503 }
504
505 static void filter_block2d(FFTdnoizContext *s, int plane,
506 int jobnr)
507 {
508 PlaneContext *p = &s->planes[plane];
509 const int block = p->b;
510 const int method = s->method;
511 const int buffer_linesize = p->buffer_linesize / sizeof(float);
512 const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
513 const float sigma = s->sigma * depthx / (s->block_size * s->block_size);
514 const float limit = 1.f - s->amount;
515 float *buff = p->buffer[jobnr][CURRENT];
516
517 for (int i = 0; i < block; i++) {
518 for (int j = 0; j < block; j++) {
519 float factor, power, re, im;
520
521 re = buff[j * 2 ];
522 im = buff[j * 2 + 1];
523 power = re * re + im * im;
524 switch (method) {
525 case 0:
526 factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
527 break;
528 case 1:
529 factor = power < sigma ? limit : 1.f;
530 break;
531 }
532
533 buff[j * 2 ] *= factor;
534 buff[j * 2 + 1] *= factor;
535 }
536
537 buff += buffer_linesize;
538 }
539 }
540
541 static int denoise(AVFilterContext *ctx, void *arg,
542 int jobnr, int nb_jobs)
543 {
544 FFTdnoizContext *s = ctx->priv;
545 AVFrame *out = arg;
546
547 for (int plane = 0; plane < s->nb_planes; plane++) {
548 PlaneContext *p = &s->planes[plane];
549 const int nox = p->nox;
550 const int noy = p->noy;
551 const int slice_start = (noy * jobnr) / nb_jobs;
552 const int slice_end = (noy * (jobnr+1)) / nb_jobs;
553
554 if (!((1 << plane) & s->planesf) || ctx->is_disabled)
555 continue;
556
557 for (int y = slice_start; y < slice_end; y++) {
558 for (int x = 0; x < nox; x++) {
559 if (s->next) {
560 import_block(s, s->next->data[plane], s->next->linesize[plane],
561 p->buffer[jobnr][NEXT], p->buffer_linesize, plane,
562 jobnr, y, x);
563 }
564
565 if (s->prev) {
566 import_block(s, s->prev->data[plane], s->prev->linesize[plane],
567 p->buffer[jobnr][PREV], p->buffer_linesize, plane,
568 jobnr, y, x);
569 }
570
571 import_block(s, s->cur->data[plane], s->cur->linesize[plane],
572 p->buffer[jobnr][CURRENT], p->buffer_linesize, plane,
573 jobnr, y, x);
574
575 if (s->next && s->prev) {
576 filter_block3d2(s, plane, p->buffer[jobnr][PREV], p->buffer[jobnr][NEXT], jobnr);
577 } else if (s->next) {
578 filter_block3d1(s, plane, p->buffer[jobnr][NEXT], jobnr);
579 } else if (s->prev) {
580 filter_block3d1(s, plane, p->buffer[jobnr][PREV], jobnr);
581 } else {
582 filter_block2d(s, plane, jobnr);
583 }
584
585 export_block(s, out->data[plane], out->linesize[plane],
586 p->buffer[jobnr][CURRENT], p->buffer_linesize, plane,
587 jobnr, y, x);
588 }
589 }
590 }
591
592 return 0;
593 }
594
595 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
596 {
597 AVFilterContext *ctx = inlink->dst;
598 FFTdnoizContext *s = ctx->priv;
599 AVFilterLink *outlink = ctx->outputs[0];
600 int direct, plane;
601 AVFrame *out;
602
603 if (s->nb_next > 0 && s->nb_prev > 0) {
604 av_frame_free(&s->prev);
605 s->prev = s->cur;
606 s->cur = s->next;
607 s->next = in;
608
609 if (!s->prev && s->cur) {
610 s->prev = av_frame_clone(s->cur);
611 if (!s->prev)
612 return AVERROR(ENOMEM);
613 }
614 if (!s->cur)
615 return 0;
616 } else if (s->nb_next > 0) {
617 av_frame_free(&s->cur);
618 s->cur = s->next;
619 s->next = in;
620
621 if (!s->cur)
622 return 0;
623 } else if (s->nb_prev > 0) {
624 av_frame_free(&s->prev);
625 s->prev = s->cur;
626 s->cur = in;
627
628 if (!s->prev)
629 s->prev = av_frame_clone(s->cur);
630 if (!s->prev)
631 return AVERROR(ENOMEM);
632 } else {
633 s->cur = in;
634 }
635
636 if (av_frame_is_writable(in) && s->nb_next == 0 && s->nb_prev == 0) {
637 direct = 1;
638 out = in;
639 } else {
640 direct = 0;
641 out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
642 if (!out)
643 return AVERROR(ENOMEM);
644 av_frame_copy_props(out, s->cur);
645 }
646
647 ff_filter_execute(ctx, denoise, out, NULL,
648 FFMIN(s->planes[0].noy, s->nb_threads));
649
650 for (plane = 0; plane < s->nb_planes; plane++) {
651 PlaneContext *p = &s->planes[plane];
652
653 if (!((1 << plane) & s->planesf) || ctx->is_disabled) {
654 if (!direct)
655 av_image_copy_plane(out->data[plane], out->linesize[plane],
656 s->cur->data[plane], s->cur->linesize[plane],
657 p->planewidth * (1 + (s->depth > 8)), p->planeheight);
658 continue;
659 }
660 }
661
662 if (s->nb_next == 0 && s->nb_prev == 0) {
663 if (direct) {
664 s->cur = NULL;
665 } else {
666 av_frame_free(&s->cur);
667 }
668 }
669 return ff_filter_frame(outlink, out);
670 }
671
672 static int request_frame(AVFilterLink *outlink)
673 {
674 AVFilterContext *ctx = outlink->src;
675 FFTdnoizContext *s = ctx->priv;
676 int ret = 0;
677
678 ret = ff_request_frame(ctx->inputs[0]);
679
680 if (ret == AVERROR_EOF && (s->nb_next > 0)) {
681 AVFrame *buf;
682
683 if (s->next && s->nb_next > 0)
684 buf = av_frame_clone(s->next);
685 else if (s->cur)
686 buf = av_frame_clone(s->cur);
687 else
688 buf = av_frame_clone(s->prev);
689 if (!buf)
690 return AVERROR(ENOMEM);
691
692 ret = filter_frame(ctx->inputs[0], buf);
693 if (ret < 0)
694 return ret;
695 ret = AVERROR_EOF;
696 }
697
698 return ret;
699 }
700
701 static av_cold void uninit(AVFilterContext *ctx)
702 {
703 FFTdnoizContext *s = ctx->priv;
704 int i;
705
706 for (i = 0; i < 4; i++) {
707 PlaneContext *p = &s->planes[i];
708
709 for (int j = 0; j < s->nb_threads; j++) {
710 av_freep(&p->hdata[j]);
711 av_freep(&p->vdata[j]);
712 av_freep(&p->hdata_out[j]);
713 av_freep(&p->vdata_out[j]);
714 av_freep(&p->buffer[j][PREV]);
715 av_freep(&p->buffer[j][CURRENT]);
716 av_freep(&p->buffer[j][NEXT]);
717 }
718 }
719
720 for (i = 0; i < s->nb_threads; i++) {
721 av_tx_uninit(&s->fft[i]);
722 av_tx_uninit(&s->ifft[i]);
723 av_tx_uninit(&s->fft_r[i]);
724 av_tx_uninit(&s->ifft_r[i]);
725 }
726
727 av_frame_free(&s->prev);
728 av_frame_free(&s->cur);
729 av_frame_free(&s->next);
730 }
731
732 static const AVFilterPad fftdnoiz_inputs[] = {
733 {
734 .name = "default",
735 .type = AVMEDIA_TYPE_VIDEO,
736 .filter_frame = filter_frame,
737 .config_props = config_input,
738 },
739 };
740
741 static const AVFilterPad fftdnoiz_outputs[] = {
742 {
743 .name = "default",
744 .type = AVMEDIA_TYPE_VIDEO,
745 .request_frame = request_frame,
746 },
747 };
748
749 const AVFilter ff_vf_fftdnoiz = {
750 .name = "fftdnoiz",
751 .description = NULL_IF_CONFIG_SMALL("Denoise frames using 3D FFT."),
752 .priv_size = sizeof(FFTdnoizContext),
753 .uninit = uninit,
754 FILTER_INPUTS(fftdnoiz_inputs),
755 FILTER_OUTPUTS(fftdnoiz_outputs),
756 FILTER_PIXFMTS_ARRAY(pix_fmts),
757 .priv_class = &fftdnoiz_class,
758 .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
759 AVFILTER_FLAG_SLICE_THREADS,
760 .process_command = ff_filter_process_command,
761 };
762