FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavfilter/vf_fftdnoiz.c
Date: 2025-01-20 09:27:23
Exec Total Coverage
Lines: 0 386 0.0%
Functions: 0 14 0.0%
Branches: 0 187 0.0%

Line Branch Exec Source
1 /*
2 * This file is part of FFmpeg.
3 *
4 * FFmpeg is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
8 *
9 * FFmpeg is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with FFmpeg; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18
19 #include <float.h>
20
21 #include "libavutil/common.h"
22 #include "libavutil/imgutils.h"
23 #include "libavutil/mem.h"
24 #include "libavutil/opt.h"
25 #include "libavutil/pixdesc.h"
26 #include "libavutil/tx.h"
27
28 #include "filters.h"
29 #include "video.h"
30 #include "window_func.h"
31
32 #define MAX_BLOCK 256
33 #define MAX_THREADS 32
34
35 enum BufferTypes {
36 CURRENT,
37 PREV,
38 NEXT,
39 BSIZE
40 };
41
42 typedef struct PlaneContext {
43 int planewidth, planeheight;
44 int nox, noy;
45 int b;
46 int o;
47 float n;
48
49 float *buffer[MAX_THREADS][BSIZE];
50 AVComplexFloat *hdata[MAX_THREADS], *vdata[MAX_THREADS];
51 AVComplexFloat *hdata_out[MAX_THREADS], *vdata_out[MAX_THREADS];
52 int data_linesize;
53 int buffer_linesize;
54 } PlaneContext;
55
56 typedef struct FFTdnoizContext {
57 const AVClass *class;
58
59 float sigma;
60 float amount;
61 int block_size;
62 float overlap;
63 int method;
64 int window;
65 int nb_prev;
66 int nb_next;
67 int planesf;
68
69 AVFrame *prev, *cur, *next;
70
71 int depth;
72 int nb_planes;
73 int nb_threads;
74 PlaneContext planes[4];
75 float win[MAX_BLOCK][MAX_BLOCK];
76
77 AVTXContext *fft[MAX_THREADS], *ifft[MAX_THREADS];
78 AVTXContext *fft_r[MAX_THREADS], *ifft_r[MAX_THREADS];
79
80 av_tx_fn tx_fn, itx_fn;
81 av_tx_fn tx_r_fn, itx_r_fn;
82
83 void (*import_row)(AVComplexFloat *dst, uint8_t *src, int rw, float scale, float *win, int off);
84 void (*export_row)(AVComplexFloat *src, uint8_t *dst, int rw, int depth, float *win);
85 } FFTdnoizContext;
86
87 #define OFFSET(x) offsetof(FFTdnoizContext, x)
88 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
89 #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
90 static const AVOption fftdnoiz_options[] = {
91 { "sigma", "set denoise strength",
92 OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 100, .flags = TFLAGS },
93 { "amount", "set amount of denoising",
94 OFFSET(amount), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0.01, 1, .flags = TFLAGS },
95 { "block", "set block size",
96 OFFSET(block_size), AV_OPT_TYPE_INT, {.i64=32}, 8, MAX_BLOCK, .flags = FLAGS },
97 { "overlap", "set block overlap",
98 OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=0.5}, 0.2, 0.8, .flags = FLAGS },
99 { "method", "set method of denoising",
100 OFFSET(method), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = TFLAGS, .unit = "method" },
101 { "wiener", "wiener method",
102 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, .flags = TFLAGS, .unit = "method" },
103 { "hard", "hard thresholding",
104 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, .flags = TFLAGS, .unit = "method" },
105 { "prev", "set number of previous frames for temporal denoising",
106 OFFSET(nb_prev), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = FLAGS },
107 { "next", "set number of next frames for temporal denoising",
108 OFFSET(nb_next), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = FLAGS },
109 { "planes", "set planes to filter",
110 OFFSET(planesf), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, .flags = TFLAGS },
111 WIN_FUNC_OPTION("window", OFFSET(window), FLAGS, WFUNC_HANNING),
112 { NULL }
113 };
114
115 AVFILTER_DEFINE_CLASS(fftdnoiz);
116
117 static const enum AVPixelFormat pix_fmts[] = {
118 AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
119 AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
120 AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
121 AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
122 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
123 AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
124 AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
125 AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
126 AV_PIX_FMT_YUVJ411P,
127 AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
128 AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
129 AV_PIX_FMT_YUV440P10,
130 AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
131 AV_PIX_FMT_YUV440P12,
132 AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
133 AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
134 AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
135 AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
136 AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
137 AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
138 AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
139 AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
140 AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
141 AV_PIX_FMT_NONE
142 };
143
144 typedef struct ThreadData {
145 float *src, *dst;
146 } ThreadData;
147
148 static void import_row8(AVComplexFloat *dst, uint8_t *src, int rw,
149 float scale, float *win, int off)
150 {
151 for (int j = 0; j < rw; j++) {
152 const int i = abs(j + off);
153 dst[j].re = src[i] * scale * win[j];
154 dst[j].im = 0.f;
155 }
156 }
157
158 static void export_row8(AVComplexFloat *src, uint8_t *dst, int rw, int depth, float *win)
159 {
160 for (int j = 0; j < rw; j++)
161 dst[j] = av_clip_uint8(lrintf(src[j].re / win[j]));
162 }
163
164 static void import_row16(AVComplexFloat *dst, uint8_t *srcp, int rw,
165 float scale, float *win, int off)
166 {
167 uint16_t *src = (uint16_t *)srcp;
168
169 for (int j = 0; j < rw; j++) {
170 const int i = abs(j + off);
171 dst[j].re = src[i] * scale * win[j];
172 dst[j].im = 0;
173 }
174 }
175
176 static void export_row16(AVComplexFloat *src, uint8_t *dstp, int rw, int depth, float *win)
177 {
178 uint16_t *dst = (uint16_t *)dstp;
179
180 for (int j = 0; j < rw; j++)
181 dst[j] = av_clip_uintp2_c(lrintf(src[j].re / win[j]), depth);
182 }
183
184 static int config_input(AVFilterLink *inlink)
185 {
186 AVFilterContext *ctx = inlink->dst;
187 const AVPixFmtDescriptor *desc;
188 FFTdnoizContext *s = ctx->priv;
189 float lut[MAX_BLOCK + 1];
190 float overlap;
191 int i;
192
193 desc = av_pix_fmt_desc_get(inlink->format);
194 s->depth = desc->comp[0].depth;
195
196 if (s->depth <= 8) {
197 s->import_row = import_row8;
198 s->export_row = export_row8;
199 } else {
200 s->import_row = import_row16;
201 s->export_row = export_row16;
202 }
203
204 s->planes[1].planewidth = s->planes[2].planewidth = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
205 s->planes[0].planewidth = s->planes[3].planewidth = inlink->w;
206 s->planes[1].planeheight = s->planes[2].planeheight = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
207 s->planes[0].planeheight = s->planes[3].planeheight = inlink->h;
208
209 s->nb_planes = av_pix_fmt_count_planes(inlink->format);
210 s->nb_threads = FFMIN(ff_filter_get_nb_threads(ctx), MAX_THREADS);
211
212 for (int i = 0; i < s->nb_threads; i++) {
213 float scale = 1.f, iscale = 1.f;
214 int ret;
215
216 if ((ret = av_tx_init(&s->fft[i], &s->tx_fn, AV_TX_FLOAT_FFT,
217 0, s->block_size, &scale, 0)) < 0 ||
218 (ret = av_tx_init(&s->ifft[i], &s->itx_fn, AV_TX_FLOAT_FFT,
219 1, s->block_size, &iscale, 0)) < 0 ||
220 (ret = av_tx_init(&s->fft_r[i], &s->tx_r_fn, AV_TX_FLOAT_FFT,
221 0, 1 + s->nb_prev + s->nb_next, &scale, 0)) < 0 ||
222 (ret = av_tx_init(&s->ifft_r[i], &s->itx_r_fn, AV_TX_FLOAT_FFT,
223 1, 1 + s->nb_prev + s->nb_next, &iscale, 0)) < 0)
224 return ret;
225 }
226
227 for (i = 0; i < s->nb_planes; i++) {
228 PlaneContext *p = &s->planes[i];
229 int size;
230
231 p->b = s->block_size;
232 p->n = 1.f / (p->b * p->b);
233 p->o = lrintf(p->b * s->overlap);
234 size = p->b - p->o;
235 p->nox = (p->planewidth + (size - 1)) / size;
236 p->noy = (p->planeheight + (size - 1)) / size;
237
238 av_log(ctx, AV_LOG_DEBUG, "nox:%d noy:%d size:%d\n", p->nox, p->noy, size);
239
240 p->buffer_linesize = p->b * sizeof(AVComplexFloat);
241 p->data_linesize = 2 * p->b * sizeof(float);
242 for (int j = 0; j < s->nb_threads; j++) {
243 p->hdata[j] = av_calloc(p->b, p->data_linesize);
244 p->hdata_out[j] = av_calloc(p->b, p->data_linesize);
245 p->vdata[j] = av_calloc(p->b, p->data_linesize);
246 p->vdata_out[j] = av_calloc(p->b, p->data_linesize);
247 p->buffer[j][CURRENT] = av_calloc(p->b, p->buffer_linesize);
248 if (!p->buffer[j][CURRENT])
249 return AVERROR(ENOMEM);
250 if (s->nb_prev > 0) {
251 p->buffer[j][PREV] = av_calloc(p->b, p->buffer_linesize);
252 if (!p->buffer[j][PREV])
253 return AVERROR(ENOMEM);
254 }
255 if (s->nb_next > 0) {
256 p->buffer[j][NEXT] = av_calloc(p->b, p->buffer_linesize);
257 if (!p->buffer[j][NEXT])
258 return AVERROR(ENOMEM);
259 }
260 if (!p->hdata[j] || !p->vdata[j] ||
261 !p->hdata_out[j] || !p->vdata_out[j])
262 return AVERROR(ENOMEM);
263 }
264 }
265
266 generate_window_func(lut, s->block_size + 1, s->window, &overlap);
267
268 for (int y = 0; y < s->block_size; y++) {
269 for (int x = 0; x < s->block_size; x++)
270 s->win[y][x] = lut[y] * lut[x];
271 }
272
273 return 0;
274 }
275
276 static void import_block(FFTdnoizContext *s,
277 uint8_t *srcp, int src_linesize,
278 float *buffer, int buffer_linesize, int plane,
279 int jobnr, int y, int x)
280 {
281 PlaneContext *p = &s->planes[plane];
282 const int width = p->planewidth;
283 const int height = p->planeheight;
284 const int block = p->b;
285 const int overlap = p->o;
286 const int hoverlap = overlap / 2;
287 const int size = block - overlap;
288 const int bpp = (s->depth + 7) / 8;
289 const int data_linesize = p->data_linesize / sizeof(AVComplexFloat);
290 const float scale = 1.f / ((1.f + s->nb_prev + s->nb_next) * s->block_size * s->block_size);
291 AVComplexFloat *hdata = p->hdata[jobnr];
292 AVComplexFloat *hdata_out = p->hdata_out[jobnr];
293 AVComplexFloat *vdata_out = p->vdata_out[jobnr];
294 const int woff = -hoverlap;
295 const int hoff = -hoverlap;
296 const int rh = FFMIN(block, height - y * size + hoverlap);
297 const int rw = FFMIN(block, width - x * size + hoverlap);
298 AVComplexFloat *ssrc, *ddst, *dst = hdata, *dst_out = hdata_out;
299 float *bdst = buffer;
300
301 buffer_linesize /= sizeof(float);
302
303 for (int i = 0; i < rh; i++) {
304 uint8_t *src = srcp + src_linesize * abs(y * size + i + hoff) + x * size * bpp;
305
306 s->import_row(dst, src, rw, scale, s->win[i], woff);
307 for (int j = rw; j < block; j++) {
308 dst[j].re = dst[rw - 1].re;
309 dst[j].im = 0.f;
310 }
311 s->tx_fn(s->fft[jobnr], dst_out, dst, sizeof(AVComplexFloat));
312
313 ddst = dst_out;
314 dst += data_linesize;
315 dst_out += data_linesize;
316 }
317
318 dst = dst_out;
319 for (int i = rh; i < block; i++) {
320 for (int j = 0; j < block; j++) {
321 dst[j].re = ddst[j].re;
322 dst[j].im = ddst[j].im;
323 }
324
325 dst += data_linesize;
326 }
327
328 ssrc = hdata_out;
329 dst = vdata_out;
330 for (int i = 0; i < block; i++) {
331 for (int j = 0; j < block; j++)
332 dst[j] = ssrc[j * data_linesize + i];
333 s->tx_fn(s->fft[jobnr], bdst, dst, sizeof(AVComplexFloat));
334
335 dst += data_linesize;
336 bdst += buffer_linesize;
337 }
338 }
339
340 static void export_block(FFTdnoizContext *s,
341 uint8_t *dstp, int dst_linesize,
342 float *buffer, int buffer_linesize, int plane,
343 int jobnr, int y, int x)
344 {
345 PlaneContext *p = &s->planes[plane];
346 const int depth = s->depth;
347 const int bpp = (depth + 7) / 8;
348 const int width = p->planewidth;
349 const int height = p->planeheight;
350 const int block = p->b;
351 const int overlap = p->o;
352 const int hoverlap = overlap / 2;
353 const int size = block - overlap;
354 const int data_linesize = p->data_linesize / sizeof(AVComplexFloat);
355 AVComplexFloat *hdata = p->hdata[jobnr];
356 AVComplexFloat *hdata_out = p->hdata_out[jobnr];
357 AVComplexFloat *vdata_out = p->vdata_out[jobnr];
358 const int rw = FFMIN(size, width - x * size);
359 const int rh = FFMIN(size, height - y * size);
360 AVComplexFloat *hdst, *vdst = vdata_out, *hdst_out = hdata_out;
361 float *bsrc = buffer;
362
363 hdst = hdata;
364 buffer_linesize /= sizeof(float);
365
366 for (int i = 0; i < block; i++) {
367 s->itx_fn(s->ifft[jobnr], vdst, bsrc, sizeof(AVComplexFloat));
368 for (int j = 0; j < block; j++)
369 hdst[j * data_linesize + i] = vdst[j];
370
371 vdst += data_linesize;
372 bsrc += buffer_linesize;
373 }
374
375 hdst = hdata + hoverlap * data_linesize;
376 for (int i = 0; i < rh && (y * size + i) < height; i++) {
377 uint8_t *dst = dstp + dst_linesize * (y * size + i) + x * size * bpp;
378
379 s->itx_fn(s->ifft[jobnr], hdst_out, hdst, sizeof(AVComplexFloat));
380 s->export_row(hdst_out + hoverlap, dst, rw, depth, s->win[i + hoverlap] + hoverlap);
381
382 hdst += data_linesize;
383 hdst_out += data_linesize;
384 }
385 }
386
387 static void filter_block3d2(FFTdnoizContext *s, int plane, float *pbuffer, float *nbuffer,
388 int jobnr)
389 {
390 PlaneContext *p = &s->planes[plane];
391 const int block = p->b;
392 const int buffer_linesize = p->buffer_linesize / sizeof(float);
393 const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
394 const float sigma = s->sigma * depthx / (3.f * s->block_size * s->block_size);
395 const float limit = 1.f - s->amount;
396 float *cbuffer = p->buffer[jobnr][CURRENT];
397 const int method = s->method;
398 float *cbuff = cbuffer;
399 float *pbuff = pbuffer;
400 float *nbuff = nbuffer;
401
402 for (int i = 0; i < block; i++) {
403 for (int j = 0; j < block; j++) {
404 AVComplexFloat buffer[BSIZE];
405 AVComplexFloat outbuffer[BSIZE];
406
407 buffer[0].re = pbuff[2 * j ];
408 buffer[0].im = pbuff[2 * j + 1];
409
410 buffer[1].re = cbuff[2 * j ];
411 buffer[1].im = cbuff[2 * j + 1];
412
413 buffer[2].re = nbuff[2 * j ];
414 buffer[2].im = nbuff[2 * j + 1];
415
416 s->tx_r_fn(s->fft_r[jobnr], outbuffer, buffer, sizeof(AVComplexFloat));
417
418 for (int z = 0; z < 3; z++) {
419 const float re = outbuffer[z].re;
420 const float im = outbuffer[z].im;
421 const float power = re * re + im * im;
422 float factor;
423
424 switch (method) {
425 case 0:
426 factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
427 break;
428 case 1:
429 factor = power < sigma ? limit : 1.f;
430 break;
431 }
432
433 outbuffer[z].re *= factor;
434 outbuffer[z].im *= factor;
435 }
436
437 s->itx_r_fn(s->ifft_r[jobnr], buffer, outbuffer, sizeof(AVComplexFloat));
438
439 cbuff[2 * j + 0] = buffer[1].re;
440 cbuff[2 * j + 1] = buffer[1].im;
441 }
442
443 cbuff += buffer_linesize;
444 pbuff += buffer_linesize;
445 nbuff += buffer_linesize;
446 }
447 }
448
449 static void filter_block3d1(FFTdnoizContext *s, int plane, float *pbuffer,
450 int jobnr)
451 {
452 PlaneContext *p = &s->planes[plane];
453 const int block = p->b;
454 const int buffer_linesize = p->buffer_linesize / sizeof(float);
455 const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
456 const float sigma = s->sigma * depthx / (2.f * s->block_size * s->block_size);
457 const float limit = 1.f - s->amount;
458 float *cbuffer = p->buffer[jobnr][CURRENT];
459 const int method = s->method;
460 float *cbuff = cbuffer;
461 float *pbuff = pbuffer;
462
463 for (int i = 0; i < block; i++) {
464 for (int j = 0; j < block; j++) {
465 AVComplexFloat buffer[BSIZE];
466 AVComplexFloat outbuffer[BSIZE];
467
468 buffer[0].re = pbuff[2 * j ];
469 buffer[0].im = pbuff[2 * j + 1];
470
471 buffer[1].re = cbuff[2 * j ];
472 buffer[1].im = cbuff[2 * j + 1];
473
474 s->tx_r_fn(s->fft_r[jobnr], outbuffer, buffer, sizeof(AVComplexFloat));
475
476 for (int z = 0; z < 2; z++) {
477 const float re = outbuffer[z].re;
478 const float im = outbuffer[z].im;
479 const float power = re * re + im * im;
480 float factor;
481
482 switch (method) {
483 case 0:
484 factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
485 break;
486 case 1:
487 factor = power < sigma ? limit : 1.f;
488 break;
489 }
490
491 outbuffer[z].re *= factor;
492 outbuffer[z].im *= factor;
493 }
494
495 s->itx_r_fn(s->ifft_r[jobnr], buffer, outbuffer, sizeof(AVComplexFloat));
496
497 cbuff[2 * j + 0] = buffer[1].re;
498 cbuff[2 * j + 1] = buffer[1].im;
499 }
500
501 cbuff += buffer_linesize;
502 pbuff += buffer_linesize;
503 }
504 }
505
506 static void filter_block2d(FFTdnoizContext *s, int plane,
507 int jobnr)
508 {
509 PlaneContext *p = &s->planes[plane];
510 const int block = p->b;
511 const int method = s->method;
512 const int buffer_linesize = p->buffer_linesize / sizeof(float);
513 const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
514 const float sigma = s->sigma * depthx / (s->block_size * s->block_size);
515 const float limit = 1.f - s->amount;
516 float *buff = p->buffer[jobnr][CURRENT];
517
518 for (int i = 0; i < block; i++) {
519 for (int j = 0; j < block; j++) {
520 float factor, power, re, im;
521
522 re = buff[j * 2 ];
523 im = buff[j * 2 + 1];
524 power = re * re + im * im;
525 switch (method) {
526 case 0:
527 factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
528 break;
529 case 1:
530 factor = power < sigma ? limit : 1.f;
531 break;
532 }
533
534 buff[j * 2 ] *= factor;
535 buff[j * 2 + 1] *= factor;
536 }
537
538 buff += buffer_linesize;
539 }
540 }
541
542 static int denoise(AVFilterContext *ctx, void *arg,
543 int jobnr, int nb_jobs)
544 {
545 FFTdnoizContext *s = ctx->priv;
546 AVFrame *out = arg;
547
548 for (int plane = 0; plane < s->nb_planes; plane++) {
549 PlaneContext *p = &s->planes[plane];
550 const int nox = p->nox;
551 const int noy = p->noy;
552 const int slice_start = (noy * jobnr) / nb_jobs;
553 const int slice_end = (noy * (jobnr+1)) / nb_jobs;
554
555 if (!((1 << plane) & s->planesf) || ctx->is_disabled)
556 continue;
557
558 for (int y = slice_start; y < slice_end; y++) {
559 for (int x = 0; x < nox; x++) {
560 if (s->next) {
561 import_block(s, s->next->data[plane], s->next->linesize[plane],
562 p->buffer[jobnr][NEXT], p->buffer_linesize, plane,
563 jobnr, y, x);
564 }
565
566 if (s->prev) {
567 import_block(s, s->prev->data[plane], s->prev->linesize[plane],
568 p->buffer[jobnr][PREV], p->buffer_linesize, plane,
569 jobnr, y, x);
570 }
571
572 import_block(s, s->cur->data[plane], s->cur->linesize[plane],
573 p->buffer[jobnr][CURRENT], p->buffer_linesize, plane,
574 jobnr, y, x);
575
576 if (s->next && s->prev) {
577 filter_block3d2(s, plane, p->buffer[jobnr][PREV], p->buffer[jobnr][NEXT], jobnr);
578 } else if (s->next) {
579 filter_block3d1(s, plane, p->buffer[jobnr][NEXT], jobnr);
580 } else if (s->prev) {
581 filter_block3d1(s, plane, p->buffer[jobnr][PREV], jobnr);
582 } else {
583 filter_block2d(s, plane, jobnr);
584 }
585
586 export_block(s, out->data[plane], out->linesize[plane],
587 p->buffer[jobnr][CURRENT], p->buffer_linesize, plane,
588 jobnr, y, x);
589 }
590 }
591 }
592
593 return 0;
594 }
595
596 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
597 {
598 AVFilterContext *ctx = inlink->dst;
599 FFTdnoizContext *s = ctx->priv;
600 AVFilterLink *outlink = ctx->outputs[0];
601 int direct, plane;
602 AVFrame *out;
603
604 if (s->nb_next > 0 && s->nb_prev > 0) {
605 av_frame_free(&s->prev);
606 s->prev = s->cur;
607 s->cur = s->next;
608 s->next = in;
609
610 if (!s->prev && s->cur) {
611 s->prev = av_frame_clone(s->cur);
612 if (!s->prev)
613 return AVERROR(ENOMEM);
614 }
615 if (!s->cur)
616 return 0;
617 } else if (s->nb_next > 0) {
618 av_frame_free(&s->cur);
619 s->cur = s->next;
620 s->next = in;
621
622 if (!s->cur)
623 return 0;
624 } else if (s->nb_prev > 0) {
625 av_frame_free(&s->prev);
626 s->prev = s->cur;
627 s->cur = in;
628
629 if (!s->prev)
630 s->prev = av_frame_clone(s->cur);
631 if (!s->prev)
632 return AVERROR(ENOMEM);
633 } else {
634 s->cur = in;
635 }
636
637 if (av_frame_is_writable(in) && s->nb_next == 0 && s->nb_prev == 0) {
638 direct = 1;
639 out = in;
640 } else {
641 direct = 0;
642 out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
643 if (!out)
644 return AVERROR(ENOMEM);
645 av_frame_copy_props(out, s->cur);
646 }
647
648 ff_filter_execute(ctx, denoise, out, NULL,
649 FFMIN(s->planes[0].noy, s->nb_threads));
650
651 for (plane = 0; plane < s->nb_planes; plane++) {
652 PlaneContext *p = &s->planes[plane];
653
654 if (!((1 << plane) & s->planesf) || ctx->is_disabled) {
655 if (!direct)
656 av_image_copy_plane(out->data[plane], out->linesize[plane],
657 s->cur->data[plane], s->cur->linesize[plane],
658 p->planewidth * (1 + (s->depth > 8)), p->planeheight);
659 continue;
660 }
661 }
662
663 if (s->nb_next == 0 && s->nb_prev == 0) {
664 if (direct) {
665 s->cur = NULL;
666 } else {
667 av_frame_free(&s->cur);
668 }
669 }
670 return ff_filter_frame(outlink, out);
671 }
672
673 static int request_frame(AVFilterLink *outlink)
674 {
675 AVFilterContext *ctx = outlink->src;
676 FFTdnoizContext *s = ctx->priv;
677 int ret = 0;
678
679 ret = ff_request_frame(ctx->inputs[0]);
680
681 if (ret == AVERROR_EOF && (s->nb_next > 0)) {
682 AVFrame *buf;
683
684 if (s->next && s->nb_next > 0)
685 buf = av_frame_clone(s->next);
686 else if (s->cur)
687 buf = av_frame_clone(s->cur);
688 else
689 buf = av_frame_clone(s->prev);
690 if (!buf)
691 return AVERROR(ENOMEM);
692
693 ret = filter_frame(ctx->inputs[0], buf);
694 if (ret < 0)
695 return ret;
696 ret = AVERROR_EOF;
697 }
698
699 return ret;
700 }
701
702 static av_cold void uninit(AVFilterContext *ctx)
703 {
704 FFTdnoizContext *s = ctx->priv;
705 int i;
706
707 for (i = 0; i < 4; i++) {
708 PlaneContext *p = &s->planes[i];
709
710 for (int j = 0; j < s->nb_threads; j++) {
711 av_freep(&p->hdata[j]);
712 av_freep(&p->vdata[j]);
713 av_freep(&p->hdata_out[j]);
714 av_freep(&p->vdata_out[j]);
715 av_freep(&p->buffer[j][PREV]);
716 av_freep(&p->buffer[j][CURRENT]);
717 av_freep(&p->buffer[j][NEXT]);
718 }
719 }
720
721 for (i = 0; i < s->nb_threads; i++) {
722 av_tx_uninit(&s->fft[i]);
723 av_tx_uninit(&s->ifft[i]);
724 av_tx_uninit(&s->fft_r[i]);
725 av_tx_uninit(&s->ifft_r[i]);
726 }
727
728 av_frame_free(&s->prev);
729 av_frame_free(&s->cur);
730 av_frame_free(&s->next);
731 }
732
733 static const AVFilterPad fftdnoiz_inputs[] = {
734 {
735 .name = "default",
736 .type = AVMEDIA_TYPE_VIDEO,
737 .filter_frame = filter_frame,
738 .config_props = config_input,
739 },
740 };
741
742 static const AVFilterPad fftdnoiz_outputs[] = {
743 {
744 .name = "default",
745 .type = AVMEDIA_TYPE_VIDEO,
746 .request_frame = request_frame,
747 },
748 };
749
750 const FFFilter ff_vf_fftdnoiz = {
751 .p.name = "fftdnoiz",
752 .p.description = NULL_IF_CONFIG_SMALL("Denoise frames using 3D FFT."),
753 .p.priv_class = &fftdnoiz_class,
754 .p.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
755 AVFILTER_FLAG_SLICE_THREADS,
756 .priv_size = sizeof(FFTdnoizContext),
757 .uninit = uninit,
758 FILTER_INPUTS(fftdnoiz_inputs),
759 FILTER_OUTPUTS(fftdnoiz_outputs),
760 FILTER_PIXFMTS_ARRAY(pix_fmts),
761 .process_command = ff_filter_process_command,
762 };
763