FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavfilter/vf_convolve.c
Date: 2025-01-20 09:27:23
Exec Total Coverage
Lines: 0 474 0.0%
Functions: 0 23 0.0%
Branches: 0 234 0.0%

Line Branch Exec Source
1 /*
2 * Copyright (c) 2017 Paul B Mahol
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include "config_components.h"
22
23 #include <float.h>
24
25 #include "libavutil/mem.h"
26 #include "libavutil/opt.h"
27 #include "libavutil/pixdesc.h"
28 #include "libavutil/tx.h"
29
30 #include "avfilter.h"
31 #include "filters.h"
32 #include "framesync.h"
33
34 #define MAX_THREADS 16
35
36 typedef struct ConvolveContext {
37 const AVClass *class;
38 FFFrameSync fs;
39
40 AVTXContext *fft[4][MAX_THREADS];
41 AVTXContext *ifft[4][MAX_THREADS];
42
43 av_tx_fn tx_fn[4];
44 av_tx_fn itx_fn[4];
45
46 int fft_len[4];
47 int planewidth[4];
48 int planeheight[4];
49
50 int primarywidth[4];
51 int primaryheight[4];
52
53 int secondarywidth[4];
54 int secondaryheight[4];
55
56 AVComplexFloat *fft_hdata_in[4];
57 AVComplexFloat *fft_vdata_in[4];
58 AVComplexFloat *fft_hdata_out[4];
59 AVComplexFloat *fft_vdata_out[4];
60 AVComplexFloat *fft_hdata_impulse_in[4];
61 AVComplexFloat *fft_vdata_impulse_in[4];
62 AVComplexFloat *fft_hdata_impulse_out[4];
63 AVComplexFloat *fft_vdata_impulse_out[4];
64
65 int depth;
66 int planes;
67 int impulse;
68 float noise;
69 int nb_planes;
70 int got_impulse[4];
71
72 void (*get_input)(struct ConvolveContext *s, AVComplexFloat *fft_hdata,
73 AVFrame *in, int w, int h, int n, int plane, float scale);
74
75 void (*get_output)(struct ConvolveContext *s, AVComplexFloat *input, AVFrame *out,
76 int w, int h, int n, int plane, float scale);
77 void (*prepare_impulse)(AVFilterContext *ctx, AVFrame *impulsepic, int plane);
78
79 int (*filter)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
80 } ConvolveContext;
81
82 #define OFFSET(x) offsetof(ConvolveContext, x)
83 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
84
85 static const AVOption convolve_options[] = {
86 { "planes", "set planes to convolve", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, FLAGS },
87 { "impulse", "when to process impulses", OFFSET(impulse), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, .unit = "impulse" },
88 { "first", "process only first impulse, ignore rest", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, .unit = "impulse" },
89 { "all", "process all impulses", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, .unit = "impulse" },
90 { "noise", "set noise", OFFSET(noise), AV_OPT_TYPE_FLOAT, {.dbl=0.0000001}, 0, 1, FLAGS },
91 { NULL },
92 };
93
94 static const enum AVPixelFormat pixel_fmts_fftfilt[] = {
95 AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
96 AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
97 AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P,
98 AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
99 AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
100 AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
101 AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
102 AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12,
103 AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
104 AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
105 AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9,
106 AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10,
107 AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16,
108 AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
109 AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
110 AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
111 AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
112 AV_PIX_FMT_NONE
113 };
114
115 static int config_input(AVFilterLink *inlink)
116 {
117 ConvolveContext *s = inlink->dst->priv;
118 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
119 const int w = inlink->w;
120 const int h = inlink->h;
121
122 s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(w, desc->log2_chroma_w);
123 s->planewidth[0] = s->planewidth[3] = w;
124 s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(h, desc->log2_chroma_h);
125 s->planeheight[0] = s->planeheight[3] = h;
126
127 s->nb_planes = desc->nb_components;
128 s->depth = desc->comp[0].depth;
129
130 for (int i = 0; i < s->nb_planes; i++) {
131 int w = s->planewidth[i];
132 int h = s->planeheight[i];
133 int n = FFMAX(w, h);
134
135 s->fft_len[i] = 1 << (av_log2(2 * n - 1));
136
137 if (!(s->fft_hdata_in[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(AVComplexFloat))))
138 return AVERROR(ENOMEM);
139
140 if (!(s->fft_hdata_out[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(AVComplexFloat))))
141 return AVERROR(ENOMEM);
142
143 if (!(s->fft_vdata_in[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(AVComplexFloat))))
144 return AVERROR(ENOMEM);
145
146 if (!(s->fft_vdata_out[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(AVComplexFloat))))
147 return AVERROR(ENOMEM);
148
149 if (!(s->fft_hdata_impulse_in[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(AVComplexFloat))))
150 return AVERROR(ENOMEM);
151
152 if (!(s->fft_vdata_impulse_in[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(AVComplexFloat))))
153 return AVERROR(ENOMEM);
154
155 if (!(s->fft_hdata_impulse_out[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(AVComplexFloat))))
156 return AVERROR(ENOMEM);
157
158 if (!(s->fft_vdata_impulse_out[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(AVComplexFloat))))
159 return AVERROR(ENOMEM);
160 }
161
162 return 0;
163 }
164
165 static int config_input_impulse(AVFilterLink *inlink)
166 {
167 AVFilterContext *ctx = inlink->dst;
168
169 if (ctx->inputs[0]->w != ctx->inputs[1]->w ||
170 ctx->inputs[0]->h != ctx->inputs[1]->h) {
171 av_log(ctx, AV_LOG_ERROR, "Width and height of input videos must be same.\n");
172 return AVERROR(EINVAL);
173 }
174
175 return 0;
176 }
177
178 typedef struct ThreadData {
179 AVComplexFloat *hdata_in, *vdata_in;
180 AVComplexFloat *hdata_out, *vdata_out;
181 int plane, n;
182 } ThreadData;
183
184 static int fft_horizontal(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
185 {
186 ConvolveContext *s = ctx->priv;
187 ThreadData *td = arg;
188 AVComplexFloat *hdata_in = td->hdata_in;
189 AVComplexFloat *hdata_out = td->hdata_out;
190 const int plane = td->plane;
191 const int n = td->n;
192 int start = (n * jobnr) / nb_jobs;
193 int end = (n * (jobnr+1)) / nb_jobs;
194 int y;
195
196 for (y = start; y < end; y++) {
197 s->tx_fn[plane](s->fft[plane][jobnr], hdata_out + y * n, hdata_in + y * n, sizeof(AVComplexFloat));
198 }
199
200 return 0;
201 }
202
203 #define SQR(x) ((x) * (x))
204
205 static void get_zeropadded_input(ConvolveContext *s,
206 AVComplexFloat *fft_hdata,
207 AVFrame *in, int w, int h,
208 int n, int plane, float scale)
209 {
210 float sum = 0.f;
211 float mean, dev;
212 int y, x;
213
214 if (s->depth == 8) {
215 for (y = 0; y < h; y++) {
216 const uint8_t *src = in->data[plane] + in->linesize[plane] * y;
217
218 for (x = 0; x < w; x++)
219 sum += src[x];
220 }
221
222 mean = sum / (w * h);
223 sum = 0.f;
224 for (y = 0; y < h; y++) {
225 const uint8_t *src = in->data[plane] + in->linesize[plane] * y;
226
227 for (x = 0; x < w; x++)
228 sum += SQR(src[x] - mean);
229 }
230
231 dev = sqrtf(sum / (w * h));
232 scale /= dev;
233 for (y = 0; y < h; y++) {
234 const uint8_t *src = in->data[plane] + in->linesize[plane] * y;
235
236 for (x = 0; x < w; x++) {
237 fft_hdata[y * n + x].re = (src[x] - mean) * scale;
238 fft_hdata[y * n + x].im = 0;
239 }
240
241 for (x = w; x < n; x++) {
242 fft_hdata[y * n + x].re = 0;
243 fft_hdata[y * n + x].im = 0;
244 }
245 }
246
247 for (y = h; y < n; y++) {
248 for (x = 0; x < n; x++) {
249 fft_hdata[y * n + x].re = 0;
250 fft_hdata[y * n + x].im = 0;
251 }
252 }
253 } else {
254 for (y = 0; y < h; y++) {
255 const uint16_t *src = (const uint16_t *)(in->data[plane] + in->linesize[plane] * y);
256
257 for (x = 0; x < w; x++)
258 sum += src[x];
259 }
260
261 mean = sum / (w * h);
262 sum = 0.f;
263 for (y = 0; y < h; y++) {
264 const uint16_t *src = (const uint16_t *)(in->data[plane] + in->linesize[plane] * y);
265
266 for (x = 0; x < w; x++)
267 sum += SQR(src[x] - mean);
268 }
269
270 dev = sqrtf(sum / (w * h));
271 scale /= dev;
272 for (y = 0; y < h; y++) {
273 const uint16_t *src = (const uint16_t *)(in->data[plane] + in->linesize[plane] * y);
274
275 for (x = 0; x < w; x++) {
276 fft_hdata[y * n + x].re = (src[x] - mean) * scale;
277 fft_hdata[y * n + x].im = 0;
278 }
279
280 for (x = w; x < n; x++) {
281 fft_hdata[y * n + x].re = 0;
282 fft_hdata[y * n + x].im = 0;
283 }
284 }
285
286 for (y = h; y < n; y++) {
287 for (x = 0; x < n; x++) {
288 fft_hdata[y * n + x].re = 0;
289 fft_hdata[y * n + x].im = 0;
290 }
291 }
292 }
293 }
294
295 static void get_input(ConvolveContext *s, AVComplexFloat *fft_hdata,
296 AVFrame *in, int w, int h, int n, int plane, float scale)
297 {
298 const int iw = (n - w) / 2, ih = (n - h) / 2;
299 int y, x;
300
301 if (s->depth == 8) {
302 for (y = 0; y < h; y++) {
303 const uint8_t *src = in->data[plane] + in->linesize[plane] * y;
304
305 for (x = 0; x < w; x++) {
306 fft_hdata[(y + ih) * n + iw + x].re = src[x] * scale;
307 fft_hdata[(y + ih) * n + iw + x].im = 0;
308 }
309
310 for (x = 0; x < iw; x++) {
311 fft_hdata[(y + ih) * n + x].re = fft_hdata[(y + ih) * n + iw].re;
312 fft_hdata[(y + ih) * n + x].im = 0;
313 }
314
315 for (x = n - iw; x < n; x++) {
316 fft_hdata[(y + ih) * n + x].re = fft_hdata[(y + ih) * n + n - iw - 1].re;
317 fft_hdata[(y + ih) * n + x].im = 0;
318 }
319 }
320
321 for (y = 0; y < ih; y++) {
322 for (x = 0; x < n; x++) {
323 fft_hdata[y * n + x].re = fft_hdata[ih * n + x].re;
324 fft_hdata[y * n + x].im = 0;
325 }
326 }
327
328 for (y = n - ih; y < n; y++) {
329 for (x = 0; x < n; x++) {
330 fft_hdata[y * n + x].re = fft_hdata[(n - ih - 1) * n + x].re;
331 fft_hdata[y * n + x].im = 0;
332 }
333 }
334 } else {
335 for (y = 0; y < h; y++) {
336 const uint16_t *src = (const uint16_t *)(in->data[plane] + in->linesize[plane] * y);
337
338 for (x = 0; x < w; x++) {
339 fft_hdata[(y + ih) * n + iw + x].re = src[x] * scale;
340 fft_hdata[(y + ih) * n + iw + x].im = 0;
341 }
342
343 for (x = 0; x < iw; x++) {
344 fft_hdata[(y + ih) * n + x].re = fft_hdata[(y + ih) * n + iw].re;
345 fft_hdata[(y + ih) * n + x].im = 0;
346 }
347
348 for (x = n - iw; x < n; x++) {
349 fft_hdata[(y + ih) * n + x].re = fft_hdata[(y + ih) * n + n - iw - 1].re;
350 fft_hdata[(y + ih) * n + x].im = 0;
351 }
352 }
353
354 for (y = 0; y < ih; y++) {
355 for (x = 0; x < n; x++) {
356 fft_hdata[y * n + x].re = fft_hdata[ih * n + x].re;
357 fft_hdata[y * n + x].im = 0;
358 }
359 }
360
361 for (y = n - ih; y < n; y++) {
362 for (x = 0; x < n; x++) {
363 fft_hdata[y * n + x].re = fft_hdata[(n - ih - 1) * n + x].re;
364 fft_hdata[y * n + x].im = 0;
365 }
366 }
367 }
368 }
369
370 static int fft_vertical(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
371 {
372 ConvolveContext *s = ctx->priv;
373 ThreadData *td = arg;
374 AVComplexFloat *hdata = td->hdata_out;
375 AVComplexFloat *vdata_in = td->vdata_in;
376 AVComplexFloat *vdata_out = td->vdata_out;
377 const int plane = td->plane;
378 const int n = td->n;
379 int start = (n * jobnr) / nb_jobs;
380 int end = (n * (jobnr+1)) / nb_jobs;
381 int y, x;
382
383 for (y = start; y < end; y++) {
384 for (x = 0; x < n; x++) {
385 vdata_in[y * n + x].re = hdata[x * n + y].re;
386 vdata_in[y * n + x].im = hdata[x * n + y].im;
387 }
388
389 s->tx_fn[plane](s->fft[plane][jobnr], vdata_out + y * n, vdata_in + y * n, sizeof(AVComplexFloat));
390 }
391
392 return 0;
393 }
394
395 static int ifft_vertical(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
396 {
397 ConvolveContext *s = ctx->priv;
398 ThreadData *td = arg;
399 AVComplexFloat *hdata = td->hdata_out;
400 AVComplexFloat *vdata_out = td->vdata_out;
401 AVComplexFloat *vdata_in = td->vdata_in;
402 const int plane = td->plane;
403 const int n = td->n;
404 int start = (n * jobnr) / nb_jobs;
405 int end = (n * (jobnr+1)) / nb_jobs;
406 int y, x;
407
408 for (y = start; y < end; y++) {
409 s->itx_fn[plane](s->ifft[plane][jobnr], vdata_out + y * n, vdata_in + y * n, sizeof(AVComplexFloat));
410
411 for (x = 0; x < n; x++) {
412 hdata[x * n + y].re = vdata_out[y * n + x].re;
413 hdata[x * n + y].im = vdata_out[y * n + x].im;
414 }
415 }
416
417 return 0;
418 }
419
420 static int ifft_horizontal(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
421 {
422 ConvolveContext *s = ctx->priv;
423 ThreadData *td = arg;
424 AVComplexFloat *hdata_out = td->hdata_out;
425 AVComplexFloat *hdata_in = td->hdata_in;
426 const int plane = td->plane;
427 const int n = td->n;
428 int start = (n * jobnr) / nb_jobs;
429 int end = (n * (jobnr+1)) / nb_jobs;
430 int y;
431
432 for (y = start; y < end; y++) {
433 s->itx_fn[plane](s->ifft[plane][jobnr], hdata_out + y * n, hdata_in + y * n, sizeof(AVComplexFloat));
434 }
435
436 return 0;
437 }
438
439 static void get_xoutput(ConvolveContext *s, AVComplexFloat *input, AVFrame *out,
440 int w, int h, int n, int plane, float scale)
441 {
442 const int imax = (1 << s->depth) - 1;
443
444 scale *= imax * 16;
445 if (s->depth == 8) {
446 for (int y = 0; y < h; y++) {
447 uint8_t *dst = out->data[plane] + y * out->linesize[plane];
448 for (int x = 0; x < w; x++)
449 dst[x] = av_clip_uint8(input[y * n + x].re * scale);
450 }
451 } else {
452 for (int y = 0; y < h; y++) {
453 uint16_t *dst = (uint16_t *)(out->data[plane] + y * out->linesize[plane]);
454 for (int x = 0; x < w; x++)
455 dst[x] = av_clip(input[y * n + x].re * scale, 0, imax);
456 }
457 }
458 }
459
460 static void get_output(ConvolveContext *s, AVComplexFloat *input, AVFrame *out,
461 int w, int h, int n, int plane, float scale)
462 {
463 const int max = (1 << s->depth) - 1;
464 const int hh = h / 2;
465 const int hw = w / 2;
466 int y, x;
467
468 if (s->depth == 8) {
469 for (y = 0; y < hh; y++) {
470 uint8_t *dst = out->data[plane] + (y + hh) * out->linesize[plane] + hw;
471 for (x = 0; x < hw; x++)
472 dst[x] = av_clip_uint8(input[y * n + x].re * scale);
473 }
474 for (y = 0; y < hh; y++) {
475 uint8_t *dst = out->data[plane] + (y + hh) * out->linesize[plane];
476 for (x = 0; x < hw; x++)
477 dst[x] = av_clip_uint8(input[y * n + n - hw + x].re * scale);
478 }
479 for (y = 0; y < hh; y++) {
480 uint8_t *dst = out->data[plane] + y * out->linesize[plane] + hw;
481 for (x = 0; x < hw; x++)
482 dst[x] = av_clip_uint8(input[(n - hh + y) * n + x].re * scale);
483 }
484 for (y = 0; y < hh; y++) {
485 uint8_t *dst = out->data[plane] + y * out->linesize[plane];
486 for (x = 0; x < hw; x++)
487 dst[x] = av_clip_uint8(input[(n - hh + y) * n + n - hw + x].re * scale);
488 }
489 } else {
490 for (y = 0; y < hh; y++) {
491 uint16_t *dst = (uint16_t *)(out->data[plane] + (y + hh) * out->linesize[plane] + hw * 2);
492 for (x = 0; x < hw; x++)
493 dst[x] = av_clip(input[y * n + x].re * scale, 0, max);
494 }
495 for (y = 0; y < hh; y++) {
496 uint16_t *dst = (uint16_t *)(out->data[plane] + (y + hh) * out->linesize[plane]);
497 for (x = 0; x < hw; x++)
498 dst[x] = av_clip(input[y * n + n - hw + x].re * scale, 0, max);
499 }
500 for (y = 0; y < hh; y++) {
501 uint16_t *dst = (uint16_t *)(out->data[plane] + y * out->linesize[plane] + hw * 2);
502 for (x = 0; x < hw; x++)
503 dst[x] = av_clip(input[(n - hh + y) * n + x].re * scale, 0, max);
504 }
505 for (y = 0; y < hh; y++) {
506 uint16_t *dst = (uint16_t *)(out->data[plane] + y * out->linesize[plane]);
507 for (x = 0; x < hw; x++)
508 dst[x] = av_clip(input[(n - hh + y) * n + n - hw + x].re * scale, 0, max);
509 }
510 }
511 }
512
513 static int complex_multiply(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
514 {
515 ConvolveContext *s = ctx->priv;
516 ThreadData *td = arg;
517 AVComplexFloat *input = td->hdata_in;
518 AVComplexFloat *filter = td->vdata_in;
519 const float noise = s->noise;
520 const int n = td->n;
521 int start = (n * jobnr) / nb_jobs;
522 int end = (n * (jobnr+1)) / nb_jobs;
523 int y, x;
524
525 for (y = start; y < end; y++) {
526 int yn = y * n;
527
528 for (x = 0; x < n; x++) {
529 float re, im, ire, iim;
530
531 re = input[yn + x].re;
532 im = input[yn + x].im;
533 ire = filter[yn + x].re + noise;
534 iim = filter[yn + x].im;
535
536 input[yn + x].re = ire * re - iim * im;
537 input[yn + x].im = iim * re + ire * im;
538 }
539 }
540
541 return 0;
542 }
543
544 static int complex_xcorrelate(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
545 {
546 ThreadData *td = arg;
547 AVComplexFloat *input = td->hdata_in;
548 AVComplexFloat *filter = td->vdata_in;
549 const int n = td->n;
550 const float scale = 1.f / (n * n);
551 int start = (n * jobnr) / nb_jobs;
552 int end = (n * (jobnr+1)) / nb_jobs;
553
554 for (int y = start; y < end; y++) {
555 int yn = y * n;
556
557 for (int x = 0; x < n; x++) {
558 float re, im, ire, iim;
559
560 re = input[yn + x].re;
561 im = input[yn + x].im;
562 ire = filter[yn + x].re * scale;
563 iim = -filter[yn + x].im * scale;
564
565 input[yn + x].re = ire * re - iim * im;
566 input[yn + x].im = iim * re + ire * im;
567 }
568 }
569
570 return 0;
571 }
572
573 static int complex_divide(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
574 {
575 ConvolveContext *s = ctx->priv;
576 ThreadData *td = arg;
577 AVComplexFloat *input = td->hdata_in;
578 AVComplexFloat *filter = td->vdata_in;
579 const float noise = s->noise;
580 const int n = td->n;
581 int start = (n * jobnr) / nb_jobs;
582 int end = (n * (jobnr+1)) / nb_jobs;
583 int y, x;
584
585 for (y = start; y < end; y++) {
586 int yn = y * n;
587
588 for (x = 0; x < n; x++) {
589 float re, im, ire, iim, div;
590
591 re = input[yn + x].re;
592 im = input[yn + x].im;
593 ire = filter[yn + x].re;
594 iim = filter[yn + x].im;
595 div = ire * ire + iim * iim + noise;
596
597 input[yn + x].re = (ire * re + iim * im) / div;
598 input[yn + x].im = (ire * im - iim * re) / div;
599 }
600 }
601
602 return 0;
603 }
604
605 static void prepare_impulse(AVFilterContext *ctx, AVFrame *impulsepic, int plane)
606 {
607 ConvolveContext *s = ctx->priv;
608 const int n = s->fft_len[plane];
609 const int w = s->secondarywidth[plane];
610 const int h = s->secondaryheight[plane];
611 ThreadData td;
612 float total = 0;
613
614 if (s->depth == 8) {
615 for (int y = 0; y < h; y++) {
616 const uint8_t *src = (const uint8_t *)(impulsepic->data[plane] + y * impulsepic->linesize[plane]) ;
617 for (int x = 0; x < w; x++) {
618 total += src[x];
619 }
620 }
621 } else {
622 for (int y = 0; y < h; y++) {
623 const uint16_t *src = (const uint16_t *)(impulsepic->data[plane] + y * impulsepic->linesize[plane]) ;
624 for (int x = 0; x < w; x++) {
625 total += src[x];
626 }
627 }
628 }
629 total = FFMAX(1, total);
630
631 s->get_input(s, s->fft_hdata_impulse_in[plane], impulsepic, w, h, n, plane, 1.f / total);
632
633 td.n = n;
634 td.plane = plane;
635 td.hdata_in = s->fft_hdata_impulse_in[plane];
636 td.vdata_in = s->fft_vdata_impulse_in[plane];
637 td.hdata_out = s->fft_hdata_impulse_out[plane];
638 td.vdata_out = s->fft_vdata_impulse_out[plane];
639
640 ff_filter_execute(ctx, fft_horizontal, &td, NULL,
641 FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
642 ff_filter_execute(ctx, fft_vertical, &td, NULL,
643 FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
644
645 s->got_impulse[plane] = 1;
646 }
647
648 static void prepare_secondary(AVFilterContext *ctx, AVFrame *secondary, int plane)
649 {
650 ConvolveContext *s = ctx->priv;
651 const int n = s->fft_len[plane];
652 ThreadData td;
653
654 s->get_input(s, s->fft_hdata_impulse_in[plane], secondary,
655 s->secondarywidth[plane],
656 s->secondaryheight[plane],
657 n, plane, 1.f);
658
659 td.n = n;
660 td.plane = plane;
661 td.hdata_in = s->fft_hdata_impulse_in[plane];
662 td.vdata_in = s->fft_vdata_impulse_in[plane];
663 td.hdata_out = s->fft_hdata_impulse_out[plane];
664 td.vdata_out = s->fft_vdata_impulse_out[plane];
665
666 ff_filter_execute(ctx, fft_horizontal, &td, NULL,
667 FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
668 ff_filter_execute(ctx, fft_vertical, &td, NULL,
669 FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
670
671 s->got_impulse[plane] = 1;
672 }
673
674 static int do_convolve(FFFrameSync *fs)
675 {
676 AVFilterContext *ctx = fs->parent;
677 AVFilterLink *outlink = ctx->outputs[0];
678 ConvolveContext *s = ctx->priv;
679 AVFrame *mainpic = NULL, *impulsepic = NULL;
680 int ret, plane;
681
682 ret = ff_framesync_dualinput_get(fs, &mainpic, &impulsepic);
683 if (ret < 0)
684 return ret;
685 if (!impulsepic)
686 return ff_filter_frame(outlink, mainpic);
687
688 for (plane = 0; plane < s->nb_planes; plane++) {
689 AVComplexFloat *filter = s->fft_vdata_impulse_out[plane];
690 AVComplexFloat *input = s->fft_vdata_out[plane];
691 const int n = s->fft_len[plane];
692 const int w = s->primarywidth[plane];
693 const int h = s->primaryheight[plane];
694 const int ow = s->planewidth[plane];
695 const int oh = s->planeheight[plane];
696 ThreadData td;
697
698 if (!(s->planes & (1 << plane))) {
699 continue;
700 }
701
702 td.plane = plane, td.n = n;
703 s->get_input(s, s->fft_hdata_in[plane], mainpic, w, h, n, plane, 1.f);
704
705 td.hdata_in = s->fft_hdata_in[plane];
706 td.vdata_in = s->fft_vdata_in[plane];
707 td.hdata_out = s->fft_hdata_out[plane];
708 td.vdata_out = s->fft_vdata_out[plane];
709
710 ff_filter_execute(ctx, fft_horizontal, &td, NULL,
711 FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
712 ff_filter_execute(ctx, fft_vertical, &td, NULL,
713 FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
714
715 if ((!s->impulse && !s->got_impulse[plane]) || s->impulse) {
716 s->prepare_impulse(ctx, impulsepic, plane);
717 }
718
719 td.hdata_in = input;
720 td.vdata_in = filter;
721
722 ff_filter_execute(ctx, s->filter, &td, NULL,
723 FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
724
725 td.hdata_in = s->fft_hdata_out[plane];
726 td.vdata_in = s->fft_vdata_out[plane];
727 td.hdata_out = s->fft_hdata_in[plane];
728 td.vdata_out = s->fft_vdata_in[plane];
729
730 ff_filter_execute(ctx, ifft_vertical, &td, NULL,
731 FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
732
733 td.hdata_out = s->fft_hdata_out[plane];
734 td.hdata_in = s->fft_hdata_in[plane];
735
736 ff_filter_execute(ctx, ifft_horizontal, &td, NULL,
737 FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
738
739 s->get_output(s, s->fft_hdata_out[plane], mainpic, ow, oh, n, plane, 1.f / (n * n));
740 }
741
742 return ff_filter_frame(outlink, mainpic);
743 }
744
745 static int config_output(AVFilterLink *outlink)
746 {
747 FilterLink *outl = ff_filter_link(outlink);
748 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(outlink->format);
749 AVFilterContext *ctx = outlink->src;
750 ConvolveContext *s = ctx->priv;
751 AVFilterLink *mainlink = ctx->inputs[0];
752 FilterLink *ml = ff_filter_link(mainlink);
753 AVFilterLink *secondlink = ctx->inputs[1];
754 int ret, i, j;
755
756 s->primarywidth[1] = s->primarywidth[2] = AV_CEIL_RSHIFT(mainlink->w, desc->log2_chroma_w);
757 s->primarywidth[0] = s->primarywidth[3] = mainlink->w;
758 s->primaryheight[1] = s->primaryheight[2] = AV_CEIL_RSHIFT(mainlink->h, desc->log2_chroma_h);
759 s->primaryheight[0] = s->primaryheight[3] = mainlink->h;
760
761 s->secondarywidth[1] = s->secondarywidth[2] = AV_CEIL_RSHIFT(secondlink->w, desc->log2_chroma_w);
762 s->secondarywidth[0] = s->secondarywidth[3] = secondlink->w;
763 s->secondaryheight[1] = s->secondaryheight[2] = AV_CEIL_RSHIFT(secondlink->h, desc->log2_chroma_h);
764 s->secondaryheight[0] = s->secondaryheight[3] = secondlink->h;
765
766 s->fs.on_event = do_convolve;
767 ret = ff_framesync_init_dualinput(&s->fs, ctx);
768 if (ret < 0)
769 return ret;
770 outlink->w = mainlink->w;
771 outlink->h = mainlink->h;
772 outlink->time_base = mainlink->time_base;
773 outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio;
774 outl->frame_rate = ml->frame_rate;
775
776 if ((ret = ff_framesync_configure(&s->fs)) < 0)
777 return ret;
778
779 for (i = 0; i < s->nb_planes; i++) {
780 for (j = 0; j < MAX_THREADS; j++) {
781 float scale = 1.f;
782
783 ret = av_tx_init(&s->fft[i][j], &s->tx_fn[i], AV_TX_FLOAT_FFT, 0, s->fft_len[i], &scale, 0);
784 if (ret < 0)
785 return ret;
786 ret = av_tx_init(&s->ifft[i][j], &s->itx_fn[i], AV_TX_FLOAT_FFT, 1, s->fft_len[i], &scale, 0);
787 if (ret < 0)
788 return ret;
789 }
790 }
791
792 return 0;
793 }
794
795 static int activate(AVFilterContext *ctx)
796 {
797 ConvolveContext *s = ctx->priv;
798 return ff_framesync_activate(&s->fs);
799 }
800
801 static av_cold int init(AVFilterContext *ctx)
802 {
803 ConvolveContext *s = ctx->priv;
804
805 if (!strcmp(ctx->filter->name, "convolve")) {
806 s->filter = complex_multiply;
807 s->prepare_impulse = prepare_impulse;
808 s->get_input = get_input;
809 s->get_output = get_output;
810 } else if (!strcmp(ctx->filter->name, "xcorrelate")) {
811 s->filter = complex_xcorrelate;
812 s->prepare_impulse = prepare_secondary;
813 s->get_input = get_zeropadded_input;
814 s->get_output = get_xoutput;
815 } else if (!strcmp(ctx->filter->name, "deconvolve")) {
816 s->filter = complex_divide;
817 s->prepare_impulse = prepare_impulse;
818 s->get_input = get_input;
819 s->get_output = get_output;
820 } else {
821 return AVERROR_BUG;
822 }
823
824 return 0;
825 }
826
827 static av_cold void uninit(AVFilterContext *ctx)
828 {
829 ConvolveContext *s = ctx->priv;
830 int i, j;
831
832 for (i = 0; i < 4; i++) {
833 av_freep(&s->fft_hdata_in[i]);
834 av_freep(&s->fft_vdata_in[i]);
835 av_freep(&s->fft_hdata_out[i]);
836 av_freep(&s->fft_vdata_out[i]);
837 av_freep(&s->fft_hdata_impulse_in[i]);
838 av_freep(&s->fft_vdata_impulse_in[i]);
839 av_freep(&s->fft_hdata_impulse_out[i]);
840 av_freep(&s->fft_vdata_impulse_out[i]);
841
842 for (j = 0; j < MAX_THREADS; j++) {
843 av_tx_uninit(&s->fft[i][j]);
844 av_tx_uninit(&s->ifft[i][j]);
845 }
846 }
847
848 ff_framesync_uninit(&s->fs);
849 }
850
851 static const AVFilterPad convolve_inputs[] = {
852 {
853 .name = "main",
854 .type = AVMEDIA_TYPE_VIDEO,
855 .config_props = config_input,
856 },{
857 .name = "impulse",
858 .type = AVMEDIA_TYPE_VIDEO,
859 .config_props = config_input_impulse,
860 },
861 };
862
863 static const AVFilterPad convolve_outputs[] = {
864 {
865 .name = "default",
866 .type = AVMEDIA_TYPE_VIDEO,
867 .config_props = config_output,
868 },
869 };
870
871 FRAMESYNC_AUXILIARY_FUNCS(convolve, ConvolveContext, fs)
872
873 #if CONFIG_CONVOLVE_FILTER
874
875 FRAMESYNC_DEFINE_PURE_CLASS(convolve, "convolve", convolve, convolve_options);
876
877 const FFFilter ff_vf_convolve = {
878 .p.name = "convolve",
879 .p.description = NULL_IF_CONFIG_SMALL("Convolve first video stream with second video stream."),
880 .p.priv_class = &convolve_class,
881 .p.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
882 .preinit = convolve_framesync_preinit,
883 .init = init,
884 .uninit = uninit,
885 .activate = activate,
886 .priv_size = sizeof(ConvolveContext),
887 FILTER_INPUTS(convolve_inputs),
888 FILTER_OUTPUTS(convolve_outputs),
889 FILTER_PIXFMTS_ARRAY(pixel_fmts_fftfilt),
890 };
891
892 #endif /* CONFIG_CONVOLVE_FILTER */
893
894 #if CONFIG_DECONVOLVE_FILTER
895
896 static const AVOption deconvolve_options[] = {
897 { "planes", "set planes to deconvolve", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, FLAGS },
898 { "impulse", "when to process impulses", OFFSET(impulse), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, .unit = "impulse" },
899 { "first", "process only first impulse, ignore rest", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, .unit = "impulse" },
900 { "all", "process all impulses", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, .unit = "impulse" },
901 { "noise", "set noise", OFFSET(noise), AV_OPT_TYPE_FLOAT, {.dbl=0.0000001}, 0, 1, FLAGS },
902 { NULL },
903 };
904
905 FRAMESYNC_DEFINE_PURE_CLASS(deconvolve, "deconvolve", convolve, deconvolve_options);
906
907 const FFFilter ff_vf_deconvolve = {
908 .p.name = "deconvolve",
909 .p.description = NULL_IF_CONFIG_SMALL("Deconvolve first video stream with second video stream."),
910 .p.priv_class = &deconvolve_class,
911 .p.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
912 .preinit = convolve_framesync_preinit,
913 .init = init,
914 .uninit = uninit,
915 .activate = activate,
916 .priv_size = sizeof(ConvolveContext),
917 FILTER_INPUTS(convolve_inputs),
918 FILTER_OUTPUTS(convolve_outputs),
919 FILTER_PIXFMTS_ARRAY(pixel_fmts_fftfilt),
920 };
921
922 #endif /* CONFIG_DECONVOLVE_FILTER */
923
924 #if CONFIG_XCORRELATE_FILTER
925
926 static const AVOption xcorrelate_options[] = {
927 { "planes", "set planes to cross-correlate", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, FLAGS },
928 { "secondary", "when to process secondary frame", OFFSET(impulse), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, .unit = "impulse" },
929 { "first", "process only first secondary frame, ignore rest", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, .unit = "impulse" },
930 { "all", "process all secondary frames", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, .unit = "impulse" },
931 { NULL },
932 };
933
934 FRAMESYNC_DEFINE_PURE_CLASS(xcorrelate, "xcorrelate", convolve, xcorrelate_options);
935
936 static int config_input_secondary(AVFilterLink *inlink)
937 {
938 AVFilterContext *ctx = inlink->dst;
939
940 if (ctx->inputs[0]->w <= ctx->inputs[1]->w ||
941 ctx->inputs[0]->h <= ctx->inputs[1]->h) {
942 av_log(ctx, AV_LOG_ERROR, "Width and height of second input videos must be less than first input.\n");
943 return AVERROR(EINVAL);
944 }
945
946 return 0;
947 }
948
949 static const AVFilterPad xcorrelate_inputs[] = {
950 {
951 .name = "primary",
952 .type = AVMEDIA_TYPE_VIDEO,
953 .config_props = config_input,
954 },{
955 .name = "secondary",
956 .type = AVMEDIA_TYPE_VIDEO,
957 .config_props = config_input_secondary,
958 },
959 };
960
961 #define xcorrelate_outputs convolve_outputs
962
963 const FFFilter ff_vf_xcorrelate = {
964 .p.name = "xcorrelate",
965 .p.description = NULL_IF_CONFIG_SMALL("Cross-correlate first video stream with second video stream."),
966 .p.priv_class = &xcorrelate_class,
967 .p.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
968 .preinit = convolve_framesync_preinit,
969 .init = init,
970 .uninit = uninit,
971 .activate = activate,
972 .priv_size = sizeof(ConvolveContext),
973 FILTER_INPUTS(xcorrelate_inputs),
974 FILTER_OUTPUTS(xcorrelate_outputs),
975 FILTER_PIXFMTS_ARRAY(pixel_fmts_fftfilt),
976 };
977
978 #endif /* CONFIG_XCORRELATE_FILTER */
979