| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /* | ||
| 2 | * Copyright (c) 2018 Mina Sami | ||
| 3 | * | ||
| 4 | * This file is part of FFmpeg. | ||
| 5 | * | ||
| 6 | * FFmpeg is free software; you can redistribute it and/or | ||
| 7 | * modify it under the terms of the GNU Lesser General Public | ||
| 8 | * License as published by the Free Software Foundation; either | ||
| 9 | * version 2.1 of the License, or (at your option) any later version. | ||
| 10 | * | ||
| 11 | * FFmpeg is distributed in the hope that it will be useful, | ||
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
| 14 | * Lesser General Public License for more details. | ||
| 15 | * | ||
| 16 | * You should have received a copy of the GNU Lesser General Public | ||
| 17 | * License along with FFmpeg; if not, write to the Free Software | ||
| 18 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | ||
| 19 | */ | ||
| 20 | |||
| 21 | /** | ||
| 22 | * @file | ||
| 23 | * Color Constancy filter | ||
| 24 | * | ||
| 25 | * @see http://colorconstancy.com/ | ||
| 26 | * | ||
| 27 | * @cite | ||
| 28 | * J. van de Weijer, Th. Gevers, A. Gijsenij "Edge-Based Color Constancy". | ||
| 29 | */ | ||
| 30 | |||
| 31 | #include "libavutil/mem.h" | ||
| 32 | #include "libavutil/opt.h" | ||
| 33 | #include "libavutil/pixdesc.h" | ||
| 34 | |||
| 35 | #include "avfilter.h" | ||
| 36 | #include "filters.h" | ||
| 37 | #include "video.h" | ||
| 38 | |||
| 39 | #include <math.h> | ||
| 40 | |||
| 41 | #define GREY_EDGE "greyedge" | ||
| 42 | |||
| 43 | #define SQRT3 1.73205080757 | ||
| 44 | |||
| 45 | #define NUM_PLANES 3 | ||
| 46 | #define MAX_DIFF_ORD 2 | ||
| 47 | #define MAX_META_DATA 4 | ||
| 48 | #define MAX_DATA 4 | ||
| 49 | |||
| 50 | #define INDEX_TEMP 0 | ||
| 51 | #define INDEX_DX 1 | ||
| 52 | #define INDEX_DY 2 | ||
| 53 | #define INDEX_DXY 3 | ||
| 54 | #define INDEX_NORM INDEX_DX | ||
| 55 | #define INDEX_SRC 0 | ||
| 56 | #define INDEX_DST 1 | ||
| 57 | #define INDEX_ORD 2 | ||
| 58 | #define INDEX_DIR 3 | ||
| 59 | #define DIR_X 0 | ||
| 60 | #define DIR_Y 1 | ||
| 61 | |||
| 62 | /** | ||
| 63 | * Used for passing data between threads. | ||
| 64 | */ | ||
| 65 | typedef struct ThreadData { | ||
| 66 | AVFrame *in, *out; | ||
| 67 | int meta_data[MAX_META_DATA]; | ||
| 68 | double *data[MAX_DATA][NUM_PLANES]; | ||
| 69 | } ThreadData; | ||
| 70 | |||
| 71 | /** | ||
| 72 | * Common struct for all algorithms contexts. | ||
| 73 | */ | ||
| 74 | typedef struct ColorConstancyContext { | ||
| 75 | const AVClass *class; | ||
| 76 | |||
| 77 | int difford; | ||
| 78 | int minknorm; /**< @minknorm = 0 : getMax instead */ | ||
| 79 | double sigma; | ||
| 80 | |||
| 81 | int nb_threads; | ||
| 82 | int planeheight[4]; | ||
| 83 | int planewidth[4]; | ||
| 84 | |||
| 85 | int filtersize; | ||
| 86 | double *gauss[MAX_DIFF_ORD+1]; | ||
| 87 | |||
| 88 | double white[NUM_PLANES]; | ||
| 89 | } ColorConstancyContext; | ||
| 90 | |||
| 91 | #define OFFSET(x) offsetof(ColorConstancyContext, x) | ||
| 92 | #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM | ||
| 93 | |||
| 94 | #define GINDX(s, i) ( (i) - ((s) >> 2) ) | ||
| 95 | |||
| 96 | /** | ||
| 97 | * Sets gauss filters used for calculating gauss derivatives. Filter size | ||
| 98 | * depends on sigma which is a user option hence we calculate these | ||
| 99 | * filters each time. Also each higher order depends on lower ones. Sigma | ||
| 100 | * can be zero only at difford = 0, then we only convert data to double | ||
| 101 | * instead. | ||
| 102 | * | ||
| 103 | * @param ctx the filter context. | ||
| 104 | * | ||
| 105 | * @return 0 in case of success, a negative value corresponding to an | ||
| 106 | * AVERROR code in case of failure. | ||
| 107 | */ | ||
| 108 | ✗ | static int set_gauss(AVFilterContext *ctx) | |
| 109 | { | ||
| 110 | ✗ | ColorConstancyContext *s = ctx->priv; | |
| 111 | ✗ | int filtersize = s->filtersize; | |
| 112 | ✗ | int difford = s->difford; | |
| 113 | ✗ | double sigma = s->sigma; | |
| 114 | double sum1, sum2; | ||
| 115 | int i; | ||
| 116 | |||
| 117 | ✗ | for (i = 0; i <= difford; ++i) { | |
| 118 | ✗ | s->gauss[i] = av_calloc(filtersize, sizeof(*s->gauss[i])); | |
| 119 | ✗ | if (!s->gauss[i]) { | |
| 120 | ✗ | for (; i >= 0; --i) { | |
| 121 | ✗ | av_freep(&s->gauss[i]); | |
| 122 | } | ||
| 123 | ✗ | return AVERROR(ENOMEM); | |
| 124 | } | ||
| 125 | } | ||
| 126 | |||
| 127 | // Order 0 | ||
| 128 | ✗ | av_log(ctx, AV_LOG_TRACE, "Setting 0-d gauss with filtersize = %d.\n", filtersize); | |
| 129 | ✗ | sum1 = 0.0; | |
| 130 | ✗ | if (!sigma) { | |
| 131 | ✗ | s->gauss[0][0] = 1; // Copying data to double instead of convolution | |
| 132 | } else { | ||
| 133 | ✗ | for (i = 0; i < filtersize; ++i) { | |
| 134 | ✗ | s->gauss[0][i] = exp(- pow(GINDX(filtersize, i), 2.) / (2 * sigma * sigma)) / ( sqrt(2 * M_PI) * sigma ); | |
| 135 | ✗ | sum1 += s->gauss[0][i]; | |
| 136 | } | ||
| 137 | ✗ | for (i = 0; i < filtersize; ++i) { | |
| 138 | ✗ | s->gauss[0][i] /= sum1; | |
| 139 | } | ||
| 140 | } | ||
| 141 | // Order 1 | ||
| 142 | ✗ | if (difford > 0) { | |
| 143 | ✗ | av_log(ctx, AV_LOG_TRACE, "Setting 1-d gauss with filtersize = %d.\n", filtersize); | |
| 144 | ✗ | sum1 = 0.0; | |
| 145 | ✗ | for (i = 0; i < filtersize; ++i) { | |
| 146 | ✗ | s->gauss[1][i] = - (GINDX(filtersize, i) / pow(sigma, 2)) * s->gauss[0][i]; | |
| 147 | ✗ | sum1 += s->gauss[1][i] * GINDX(filtersize, i); | |
| 148 | } | ||
| 149 | |||
| 150 | ✗ | for (i = 0; i < filtersize; ++i) { | |
| 151 | ✗ | s->gauss[1][i] /= sum1; | |
| 152 | } | ||
| 153 | |||
| 154 | // Order 2 | ||
| 155 | ✗ | if (difford > 1) { | |
| 156 | ✗ | av_log(ctx, AV_LOG_TRACE, "Setting 2-d gauss with filtersize = %d.\n", filtersize); | |
| 157 | ✗ | sum1 = 0.0; | |
| 158 | ✗ | for (i = 0; i < filtersize; ++i) { | |
| 159 | ✗ | s->gauss[2][i] = ( pow(GINDX(filtersize, i), 2) / pow(sigma, 4) - 1/pow(sigma, 2) ) | |
| 160 | ✗ | * s->gauss[0][i]; | |
| 161 | ✗ | sum1 += s->gauss[2][i]; | |
| 162 | } | ||
| 163 | |||
| 164 | ✗ | sum2 = 0.0; | |
| 165 | ✗ | for (i = 0; i < filtersize; ++i) { | |
| 166 | ✗ | s->gauss[2][i] -= sum1 / (filtersize); | |
| 167 | ✗ | sum2 += (0.5 * GINDX(filtersize, i) * GINDX(filtersize, i) * s->gauss[2][i]); | |
| 168 | } | ||
| 169 | ✗ | for (i = 0; i < filtersize ; ++i) { | |
| 170 | ✗ | s->gauss[2][i] /= sum2; | |
| 171 | } | ||
| 172 | } | ||
| 173 | } | ||
| 174 | ✗ | return 0; | |
| 175 | } | ||
| 176 | |||
| 177 | /** | ||
| 178 | * Frees up buffers used by grey edge for storing derivatives final | ||
| 179 | * and intermediate results. Number of buffers and number of planes | ||
| 180 | * for last buffer are given so it can be safely called at allocation | ||
| 181 | * failure instances. | ||
| 182 | * | ||
| 183 | * @param td holds the buffers. | ||
| 184 | * @param nb_buff number of buffers to be freed. | ||
| 185 | * @param nb_planes number of planes for last buffer to be freed. | ||
| 186 | */ | ||
| 187 | ✗ | static void cleanup_derivative_buffers(ThreadData *td, int nb_buff, int nb_planes) | |
| 188 | { | ||
| 189 | int b, p; | ||
| 190 | |||
| 191 | ✗ | for (b = 0; b < nb_buff; ++b) { | |
| 192 | ✗ | for (p = 0; p < NUM_PLANES; ++p) { | |
| 193 | ✗ | av_freep(&td->data[b][p]); | |
| 194 | } | ||
| 195 | } | ||
| 196 | // Final buffer may not be fully allocated at fail cases | ||
| 197 | ✗ | for (p = 0; p < nb_planes; ++p) { | |
| 198 | ✗ | av_freep(&td->data[b][p]); | |
| 199 | } | ||
| 200 | ✗ | } | |
| 201 | |||
| 202 | /** | ||
| 203 | * Allocates buffers used by grey edge for storing derivatives final | ||
| 204 | * and intermediate results. | ||
| 205 | * | ||
| 206 | * @param ctx the filter context. | ||
| 207 | * @param td holds the buffers. | ||
| 208 | * | ||
| 209 | * @return 0 in case of success, a negative value corresponding to an | ||
| 210 | * AVERROR code in case of failure. | ||
| 211 | */ | ||
| 212 | ✗ | static int setup_derivative_buffers(AVFilterContext* ctx, ThreadData *td) | |
| 213 | { | ||
| 214 | ✗ | ColorConstancyContext *s = ctx->priv; | |
| 215 | ✗ | int nb_buff = s->difford + 1; | |
| 216 | int b, p; | ||
| 217 | |||
| 218 | ✗ | av_log(ctx, AV_LOG_TRACE, "Allocating %d buffer(s) for grey edge.\n", nb_buff); | |
| 219 | ✗ | for (b = 0; b <= nb_buff; ++b) { // We need difford + 1 buffers | |
| 220 | ✗ | for (p = 0; p < NUM_PLANES; ++p) { | |
| 221 | ✗ | td->data[b][p] = av_calloc(s->planeheight[p] * s->planewidth[p], | |
| 222 | sizeof(*td->data[b][p])); | ||
| 223 | ✗ | if (!td->data[b][p]) { | |
| 224 | ✗ | cleanup_derivative_buffers(td, b + 1, p); | |
| 225 | ✗ | return AVERROR(ENOMEM); | |
| 226 | } | ||
| 227 | } | ||
| 228 | } | ||
| 229 | ✗ | return 0; | |
| 230 | } | ||
| 231 | |||
| 232 | #define CLAMP(x, mx) av_clip((x), 0, (mx-1)) | ||
| 233 | #define INDX2D(r, c, w) ( (r) * (w) + (c) ) | ||
| 234 | #define GAUSS(s, sr, sc, sls, sh, sw, g) ( (s)[ INDX2D(CLAMP((sr), (sh)), CLAMP((sc), (sw)), (sls)) ] * (g) ) | ||
| 235 | |||
| 236 | /** | ||
| 237 | * Slice calculation of gaussian derivatives. Applies 1-D gaussian derivative filter | ||
| 238 | * either horizontally or vertically according to meta data given in thread data. | ||
| 239 | * When convoluting horizontally source is always the in frame within thread data | ||
| 240 | * while when convoluting vertically source is a buffer. | ||
| 241 | * | ||
| 242 | * @param ctx the filter context. | ||
| 243 | * @param arg data to be passed between threads. | ||
| 244 | * @param jobnr current job number. | ||
| 245 | * @param nb_jobs total number of jobs. | ||
| 246 | * | ||
| 247 | * @return 0. | ||
| 248 | */ | ||
| 249 | ✗ | static int slice_get_derivative(AVFilterContext* ctx, void* arg, int jobnr, int nb_jobs) | |
| 250 | { | ||
| 251 | ✗ | ColorConstancyContext *s = ctx->priv; | |
| 252 | ✗ | ThreadData *td = arg; | |
| 253 | ✗ | AVFrame *in = td->in; | |
| 254 | ✗ | const int ord = td->meta_data[INDEX_ORD]; | |
| 255 | ✗ | const int dir = td->meta_data[INDEX_DIR]; | |
| 256 | ✗ | const int src_index = td->meta_data[INDEX_SRC]; | |
| 257 | ✗ | const int dst_index = td->meta_data[INDEX_DST]; | |
| 258 | ✗ | const int filtersize = s->filtersize; | |
| 259 | ✗ | const double *gauss = s->gauss[ord]; | |
| 260 | int plane; | ||
| 261 | |||
| 262 | ✗ | for (plane = 0; plane < NUM_PLANES; ++plane) { | |
| 263 | ✗ | const int height = s->planeheight[plane]; | |
| 264 | ✗ | const int width = s->planewidth[plane]; | |
| 265 | ✗ | const int in_linesize = in->linesize[plane]; | |
| 266 | ✗ | double *dst = td->data[dst_index][plane]; | |
| 267 | int slice_start, slice_end; | ||
| 268 | int r, c, g; | ||
| 269 | |||
| 270 | ✗ | if (dir == DIR_X) { | |
| 271 | /** Applying gauss horizontally along each row */ | ||
| 272 | ✗ | const uint8_t *src = in->data[plane]; | |
| 273 | ✗ | slice_start = (height * jobnr ) / nb_jobs; | |
| 274 | ✗ | slice_end = (height * (jobnr + 1)) / nb_jobs; | |
| 275 | |||
| 276 | ✗ | for (r = slice_start; r < slice_end; ++r) { | |
| 277 | ✗ | for (c = 0; c < width; ++c) { | |
| 278 | ✗ | dst[INDX2D(r, c, width)] = 0; | |
| 279 | ✗ | for (g = 0; g < filtersize; ++g) { | |
| 280 | ✗ | dst[INDX2D(r, c, width)] += GAUSS(src, r, c + GINDX(filtersize, g), | |
| 281 | in_linesize, height, width, gauss[g]); | ||
| 282 | } | ||
| 283 | } | ||
| 284 | } | ||
| 285 | } else { | ||
| 286 | /** Applying gauss vertically along each column */ | ||
| 287 | ✗ | const double *src = td->data[src_index][plane]; | |
| 288 | ✗ | slice_start = (width * jobnr ) / nb_jobs; | |
| 289 | ✗ | slice_end = (width * (jobnr + 1)) / nb_jobs; | |
| 290 | |||
| 291 | ✗ | for (c = slice_start; c < slice_end; ++c) { | |
| 292 | ✗ | for (r = 0; r < height; ++r) { | |
| 293 | ✗ | dst[INDX2D(r, c, width)] = 0; | |
| 294 | ✗ | for (g = 0; g < filtersize; ++g) { | |
| 295 | ✗ | dst[INDX2D(r, c, width)] += GAUSS(src, r + GINDX(filtersize, g), c, | |
| 296 | width, height, width, gauss[g]); | ||
| 297 | } | ||
| 298 | } | ||
| 299 | } | ||
| 300 | } | ||
| 301 | |||
| 302 | } | ||
| 303 | ✗ | return 0; | |
| 304 | } | ||
| 305 | |||
| 306 | /** | ||
| 307 | * Slice Frobius normalization of gaussian derivatives. Only called for difford values of | ||
| 308 | * 1 or 2. | ||
| 309 | * | ||
| 310 | * @param ctx the filter context. | ||
| 311 | * @param arg data to be passed between threads. | ||
| 312 | * @param jobnr current job number. | ||
| 313 | * @param nb_jobs total number of jobs. | ||
| 314 | * | ||
| 315 | * @return 0. | ||
| 316 | */ | ||
| 317 | ✗ | static int slice_normalize(AVFilterContext* ctx, void* arg, int jobnr, int nb_jobs) | |
| 318 | { | ||
| 319 | ✗ | ColorConstancyContext *s = ctx->priv; | |
| 320 | ✗ | ThreadData *td = arg; | |
| 321 | ✗ | const int difford = s->difford; | |
| 322 | int plane; | ||
| 323 | |||
| 324 | ✗ | for (plane = 0; plane < NUM_PLANES; ++plane) { | |
| 325 | ✗ | const int height = s->planeheight[plane]; | |
| 326 | ✗ | const int width = s->planewidth[plane]; | |
| 327 | ✗ | const int64_t numpixels = width * (int64_t)height; | |
| 328 | ✗ | const int slice_start = (numpixels * jobnr ) / nb_jobs; | |
| 329 | ✗ | const int slice_end = (numpixels * (jobnr+1)) / nb_jobs; | |
| 330 | ✗ | const double *dx = td->data[INDEX_DX][plane]; | |
| 331 | ✗ | const double *dy = td->data[INDEX_DY][plane]; | |
| 332 | ✗ | double *norm = td->data[INDEX_NORM][plane]; | |
| 333 | int i; | ||
| 334 | |||
| 335 | ✗ | if (difford == 1) { | |
| 336 | ✗ | for (i = slice_start; i < slice_end; ++i) { | |
| 337 | ✗ | norm[i] = sqrt( pow(dx[i], 2) + pow(dy[i], 2)); | |
| 338 | } | ||
| 339 | } else { | ||
| 340 | ✗ | const double *dxy = td->data[INDEX_DXY][plane]; | |
| 341 | ✗ | for (i = slice_start; i < slice_end; ++i) { | |
| 342 | ✗ | norm[i] = sqrt( pow(dx[i], 2) + 4 * pow(dxy[i], 2) + pow(dy[i], 2) ); | |
| 343 | } | ||
| 344 | } | ||
| 345 | } | ||
| 346 | |||
| 347 | ✗ | return 0; | |
| 348 | } | ||
| 349 | |||
| 350 | /** | ||
| 351 | * Utility function for setting up differentiation data/metadata. | ||
| 352 | * | ||
| 353 | * @param ctx the filter context. | ||
| 354 | * @param td to be used for passing data between threads. | ||
| 355 | * @param ord ord of differentiation. | ||
| 356 | * @param dir direction of differentiation. | ||
| 357 | * @param src index of source used for differentiation. | ||
| 358 | * @param dst index destination used for saving differentiation result. | ||
| 359 | * @param dim maximum dimension in current direction. | ||
| 360 | * @param nb_threads number of threads to use. | ||
| 361 | */ | ||
| 362 | static void av_always_inline | ||
| 363 | ✗ | get_deriv(AVFilterContext *ctx, ThreadData *td, int ord, int dir, | |
| 364 | int src, int dst, int dim, int nb_threads) { | ||
| 365 | ✗ | td->meta_data[INDEX_ORD] = ord; | |
| 366 | ✗ | td->meta_data[INDEX_DIR] = dir; | |
| 367 | ✗ | td->meta_data[INDEX_SRC] = src; | |
| 368 | ✗ | td->meta_data[INDEX_DST] = dst; | |
| 369 | ✗ | ff_filter_execute(ctx, slice_get_derivative, td, | |
| 370 | NULL, FFMIN(dim, nb_threads)); | ||
| 371 | ✗ | } | |
| 372 | |||
| 373 | /** | ||
| 374 | * Main control function for calculating gaussian derivatives. | ||
| 375 | * | ||
| 376 | * @param ctx the filter context. | ||
| 377 | * @param td holds the buffers used for storing results. | ||
| 378 | * | ||
| 379 | * @return 0 in case of success, a negative value corresponding to an | ||
| 380 | * AVERROR code in case of failure. | ||
| 381 | */ | ||
| 382 | ✗ | static int get_derivative(AVFilterContext *ctx, ThreadData *td) | |
| 383 | { | ||
| 384 | ✗ | ColorConstancyContext *s = ctx->priv; | |
| 385 | ✗ | int nb_threads = s->nb_threads; | |
| 386 | ✗ | int height = s->planeheight[1]; | |
| 387 | ✗ | int width = s->planewidth[1]; | |
| 388 | |||
| 389 | ✗ | switch(s->difford) { | |
| 390 | ✗ | case 0: | |
| 391 | ✗ | if (!s->sigma) { // Only copy once | |
| 392 | ✗ | get_deriv(ctx, td, 0, DIR_X, 0 , INDEX_NORM, height, nb_threads); | |
| 393 | } else { | ||
| 394 | ✗ | get_deriv(ctx, td, 0, DIR_X, 0, INDEX_TEMP, height, nb_threads); | |
| 395 | ✗ | get_deriv(ctx, td, 0, DIR_Y, INDEX_TEMP, INDEX_NORM, width , nb_threads); | |
| 396 | // save to INDEX_NORM because this will not be normalied and | ||
| 397 | // end gry edge filter expects result to be found in INDEX_NORM | ||
| 398 | } | ||
| 399 | ✗ | return 0; | |
| 400 | |||
| 401 | ✗ | case 1: | |
| 402 | ✗ | get_deriv(ctx, td, 1, DIR_X, 0, INDEX_TEMP, height, nb_threads); | |
| 403 | ✗ | get_deriv(ctx, td, 0, DIR_Y, INDEX_TEMP, INDEX_DX, width , nb_threads); | |
| 404 | |||
| 405 | ✗ | get_deriv(ctx, td, 0, DIR_X, 0, INDEX_TEMP, height, nb_threads); | |
| 406 | ✗ | get_deriv(ctx, td, 1, DIR_Y, INDEX_TEMP, INDEX_DY, width , nb_threads); | |
| 407 | ✗ | return 0; | |
| 408 | |||
| 409 | ✗ | case 2: | |
| 410 | ✗ | get_deriv(ctx, td, 2, DIR_X, 0, INDEX_TEMP, height, nb_threads); | |
| 411 | ✗ | get_deriv(ctx, td, 0, DIR_Y, INDEX_TEMP, INDEX_DX, width , nb_threads); | |
| 412 | |||
| 413 | ✗ | get_deriv(ctx, td, 0, DIR_X, 0, INDEX_TEMP, height, nb_threads); | |
| 414 | ✗ | get_deriv(ctx, td, 2, DIR_Y, INDEX_TEMP, INDEX_DY, width , nb_threads); | |
| 415 | |||
| 416 | ✗ | get_deriv(ctx, td, 1, DIR_X, 0, INDEX_TEMP, height, nb_threads); | |
| 417 | ✗ | get_deriv(ctx, td, 1, DIR_Y, INDEX_TEMP, INDEX_DXY, width , nb_threads); | |
| 418 | ✗ | return 0; | |
| 419 | |||
| 420 | ✗ | default: | |
| 421 | ✗ | av_log(ctx, AV_LOG_ERROR, "Unsupported difford value: %d.\n", s->difford); | |
| 422 | ✗ | return AVERROR(EINVAL); | |
| 423 | } | ||
| 424 | |||
| 425 | } | ||
| 426 | |||
| 427 | /** | ||
| 428 | * Slice function for grey edge algorithm that does partial summing/maximizing | ||
| 429 | * of gaussian derivatives. | ||
| 430 | * | ||
| 431 | * @param ctx the filter context. | ||
| 432 | * @param arg data to be passed between threads. | ||
| 433 | * @param jobnr current job number. | ||
| 434 | * @param nb_jobs total number of jobs. | ||
| 435 | * | ||
| 436 | * @return 0. | ||
| 437 | */ | ||
| 438 | ✗ | static int filter_slice_grey_edge(AVFilterContext* ctx, void* arg, int jobnr, int nb_jobs) | |
| 439 | { | ||
| 440 | ✗ | ColorConstancyContext *s = ctx->priv; | |
| 441 | ✗ | ThreadData *td = arg; | |
| 442 | ✗ | AVFrame *in = td->in; | |
| 443 | ✗ | int minknorm = s->minknorm; | |
| 444 | ✗ | const uint8_t thresh = 255; | |
| 445 | int plane; | ||
| 446 | |||
| 447 | ✗ | for (plane = 0; plane < NUM_PLANES; ++plane) { | |
| 448 | ✗ | const int height = s->planeheight[plane]; | |
| 449 | ✗ | const int width = s->planewidth[plane]; | |
| 450 | ✗ | const int in_linesize = in->linesize[plane]; | |
| 451 | ✗ | const int slice_start = (height * jobnr) / nb_jobs; | |
| 452 | ✗ | const int slice_end = (height * (jobnr+1)) / nb_jobs; | |
| 453 | ✗ | const uint8_t *img_data = in->data[plane]; | |
| 454 | ✗ | const double *src = td->data[INDEX_NORM][plane]; | |
| 455 | ✗ | double *dst = td->data[INDEX_DST][plane]; | |
| 456 | int r, c; | ||
| 457 | |||
| 458 | ✗ | dst[jobnr] = 0; | |
| 459 | ✗ | if (!minknorm) { | |
| 460 | ✗ | for (r = slice_start; r < slice_end; ++r) { | |
| 461 | ✗ | for (c = 0; c < width; ++c) { | |
| 462 | ✗ | dst[jobnr] = FFMAX( dst[jobnr], fabs(src[INDX2D(r, c, width)]) | |
| 463 | * (img_data[INDX2D(r, c, in_linesize)] < thresh) ); | ||
| 464 | } | ||
| 465 | } | ||
| 466 | } else { | ||
| 467 | ✗ | for (r = slice_start; r < slice_end; ++r) { | |
| 468 | ✗ | for (c = 0; c < width; ++c) { | |
| 469 | ✗ | dst[jobnr] += ( pow( fabs(src[INDX2D(r, c, width)] / 255.), minknorm) | |
| 470 | ✗ | * (img_data[INDX2D(r, c, in_linesize)] < thresh) ); | |
| 471 | } | ||
| 472 | } | ||
| 473 | } | ||
| 474 | } | ||
| 475 | ✗ | return 0; | |
| 476 | } | ||
| 477 | |||
| 478 | /** | ||
| 479 | * Main control function for grey edge algorithm. | ||
| 480 | * | ||
| 481 | * @param ctx the filter context. | ||
| 482 | * @param in frame to perform grey edge on. | ||
| 483 | * | ||
| 484 | * @return 0 in case of success, a negative value corresponding to an | ||
| 485 | * AVERROR code in case of failure. | ||
| 486 | */ | ||
| 487 | ✗ | static int filter_grey_edge(AVFilterContext *ctx, AVFrame *in) | |
| 488 | { | ||
| 489 | ✗ | ColorConstancyContext *s = ctx->priv; | |
| 490 | ThreadData td; | ||
| 491 | ✗ | int minknorm = s->minknorm; | |
| 492 | ✗ | int difford = s->difford; | |
| 493 | ✗ | double *white = s->white; | |
| 494 | ✗ | int nb_jobs = FFMIN3(s->planeheight[1], s->planewidth[1], s->nb_threads); | |
| 495 | int plane, job, ret; | ||
| 496 | |||
| 497 | ✗ | td.in = in; | |
| 498 | ✗ | ret = setup_derivative_buffers(ctx, &td); | |
| 499 | ✗ | if (ret) { | |
| 500 | ✗ | return ret; | |
| 501 | } | ||
| 502 | ✗ | get_derivative(ctx, &td); | |
| 503 | ✗ | if (difford > 0) { | |
| 504 | ✗ | ff_filter_execute(ctx, slice_normalize, &td, NULL, nb_jobs); | |
| 505 | } | ||
| 506 | |||
| 507 | ✗ | ff_filter_execute(ctx, filter_slice_grey_edge, &td, NULL, nb_jobs); | |
| 508 | ✗ | if (!minknorm) { | |
| 509 | ✗ | for (plane = 0; plane < NUM_PLANES; ++plane) { | |
| 510 | ✗ | white[plane] = 0; // All values are absolute | |
| 511 | ✗ | for (job = 0; job < nb_jobs; ++job) { | |
| 512 | ✗ | white[plane] = FFMAX(white[plane] , td.data[INDEX_DST][plane][job]); | |
| 513 | } | ||
| 514 | } | ||
| 515 | } else { | ||
| 516 | ✗ | for (plane = 0; plane < NUM_PLANES; ++plane) { | |
| 517 | ✗ | white[plane] = 0; | |
| 518 | ✗ | for (job = 0; job < nb_jobs; ++job) { | |
| 519 | ✗ | white[plane] += td.data[INDEX_DST][plane][job]; | |
| 520 | } | ||
| 521 | ✗ | white[plane] = pow(white[plane], 1./minknorm); | |
| 522 | } | ||
| 523 | } | ||
| 524 | |||
| 525 | ✗ | cleanup_derivative_buffers(&td, difford + 1, NUM_PLANES); | |
| 526 | ✗ | return 0; | |
| 527 | } | ||
| 528 | |||
| 529 | /** | ||
| 530 | * Normalizes estimated illumination since only illumination vector | ||
| 531 | * direction is required for color constancy. | ||
| 532 | * | ||
| 533 | * @param light the estimated illumination to be normalized in place | ||
| 534 | */ | ||
| 535 | ✗ | static void normalize_light(double *light) | |
| 536 | { | ||
| 537 | ✗ | double abs_val = pow( pow(light[0], 2.0) + pow(light[1], 2.0) + pow(light[2], 2.0), 0.5); | |
| 538 | int plane; | ||
| 539 | |||
| 540 | // TODO: check if setting to 1.0 when estimated = 0.0 is the best thing to do | ||
| 541 | |||
| 542 | ✗ | if (!abs_val) { | |
| 543 | ✗ | for (plane = 0; plane < NUM_PLANES; ++plane) { | |
| 544 | ✗ | light[plane] = 1.0; | |
| 545 | } | ||
| 546 | } else { | ||
| 547 | ✗ | for (plane = 0; plane < NUM_PLANES; ++plane) { | |
| 548 | ✗ | light[plane] = (light[plane] / abs_val); | |
| 549 | ✗ | if (!light[plane]) { // to avoid division by zero when correcting | |
| 550 | ✗ | light[plane] = 1.0; | |
| 551 | } | ||
| 552 | } | ||
| 553 | } | ||
| 554 | ✗ | } | |
| 555 | |||
| 556 | /** | ||
| 557 | * Redirects to corresponding algorithm estimation function and performs normalization | ||
| 558 | * after estimation. | ||
| 559 | * | ||
| 560 | * @param ctx the filter context. | ||
| 561 | * @param in frame to perform estimation on. | ||
| 562 | * | ||
| 563 | * @return 0 in case of success, a negative value corresponding to an | ||
| 564 | * AVERROR code in case of failure. | ||
| 565 | */ | ||
| 566 | ✗ | static int illumination_estimation(AVFilterContext *ctx, AVFrame *in) | |
| 567 | { | ||
| 568 | ✗ | ColorConstancyContext *s = ctx->priv; | |
| 569 | int ret; | ||
| 570 | |||
| 571 | ✗ | ret = filter_grey_edge(ctx, in); | |
| 572 | |||
| 573 | ✗ | av_log(ctx, AV_LOG_DEBUG, "Estimated illumination= %f %f %f\n", | |
| 574 | s->white[0], s->white[1], s->white[2]); | ||
| 575 | ✗ | normalize_light(s->white); | |
| 576 | ✗ | av_log(ctx, AV_LOG_DEBUG, "Estimated illumination after normalization= %f %f %f\n", | |
| 577 | s->white[0], s->white[1], s->white[2]); | ||
| 578 | |||
| 579 | ✗ | return ret; | |
| 580 | } | ||
| 581 | |||
| 582 | /** | ||
| 583 | * Performs simple correction via diagonal transformation model. | ||
| 584 | * | ||
| 585 | * @param ctx the filter context. | ||
| 586 | * @param arg data to be passed between threads. | ||
| 587 | * @param jobnr current job number. | ||
| 588 | * @param nb_jobs total number of jobs. | ||
| 589 | * | ||
| 590 | * @return 0. | ||
| 591 | */ | ||
| 592 | ✗ | static int diagonal_transformation(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) | |
| 593 | { | ||
| 594 | ✗ | ColorConstancyContext *s = ctx->priv; | |
| 595 | ✗ | ThreadData *td = arg; | |
| 596 | ✗ | AVFrame *in = td->in; | |
| 597 | ✗ | AVFrame *out = td->out; | |
| 598 | int plane; | ||
| 599 | |||
| 600 | ✗ | for (plane = 0; plane < NUM_PLANES; ++plane) { | |
| 601 | ✗ | const int height = s->planeheight[plane]; | |
| 602 | ✗ | const int width = s->planewidth[plane]; | |
| 603 | ✗ | const int64_t numpixels = width * (int64_t)height; | |
| 604 | ✗ | const int slice_start = (numpixels * jobnr) / nb_jobs; | |
| 605 | ✗ | const int slice_end = (numpixels * (jobnr+1)) / nb_jobs; | |
| 606 | ✗ | const uint8_t *src = in->data[plane]; | |
| 607 | ✗ | uint8_t *dst = out->data[plane]; | |
| 608 | double temp; | ||
| 609 | unsigned i; | ||
| 610 | |||
| 611 | ✗ | for (i = slice_start; i < slice_end; ++i) { | |
| 612 | ✗ | temp = src[i] / (s->white[plane] * SQRT3); | |
| 613 | ✗ | dst[i] = av_clip_uint8((int)(temp + 0.5)); | |
| 614 | } | ||
| 615 | } | ||
| 616 | ✗ | return 0; | |
| 617 | } | ||
| 618 | |||
| 619 | /** | ||
| 620 | * Main control function for correcting scene illumination based on | ||
| 621 | * estimated illumination. | ||
| 622 | * | ||
| 623 | * @param ctx the filter context. | ||
| 624 | * @param in holds frame to correct | ||
| 625 | * @param out holds corrected frame | ||
| 626 | */ | ||
| 627 | ✗ | static void chromatic_adaptation(AVFilterContext *ctx, AVFrame *in, AVFrame *out) | |
| 628 | { | ||
| 629 | ✗ | ColorConstancyContext *s = ctx->priv; | |
| 630 | ThreadData td; | ||
| 631 | ✗ | int nb_jobs = FFMIN3(s->planeheight[1], s->planewidth[1], s->nb_threads); | |
| 632 | |||
| 633 | ✗ | td.in = in; | |
| 634 | ✗ | td.out = out; | |
| 635 | ✗ | ff_filter_execute(ctx, diagonal_transformation, &td, NULL, nb_jobs); | |
| 636 | ✗ | } | |
| 637 | |||
| 638 | ✗ | static int config_props(AVFilterLink *inlink) | |
| 639 | { | ||
| 640 | ✗ | AVFilterContext *ctx = inlink->dst; | |
| 641 | ✗ | ColorConstancyContext *s = ctx->priv; | |
| 642 | ✗ | const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); | |
| 643 | ✗ | const double break_off_sigma = 3.0; | |
| 644 | ✗ | double sigma = s->sigma; | |
| 645 | int ret; | ||
| 646 | |||
| 647 | ✗ | if (!floor(break_off_sigma * sigma + 0.5) && s->difford) { | |
| 648 | ✗ | av_log(ctx, AV_LOG_ERROR, "floor(%f * sigma) must be > 0 when difford > 0.\n", break_off_sigma); | |
| 649 | ✗ | return AVERROR(EINVAL); | |
| 650 | } | ||
| 651 | |||
| 652 | ✗ | s->filtersize = 2 * floor(break_off_sigma * sigma + 0.5) + 1; | |
| 653 | ✗ | if (ret=set_gauss(ctx)) { | |
| 654 | ✗ | return ret; | |
| 655 | } | ||
| 656 | |||
| 657 | ✗ | s->nb_threads = ff_filter_get_nb_threads(ctx); | |
| 658 | ✗ | s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); | |
| 659 | ✗ | s->planewidth[0] = s->planewidth[3] = inlink->w; | |
| 660 | ✗ | s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); | |
| 661 | ✗ | s->planeheight[0] = s->planeheight[3] = inlink->h; | |
| 662 | |||
| 663 | ✗ | return 0; | |
| 664 | } | ||
| 665 | |||
| 666 | ✗ | static int filter_frame(AVFilterLink *inlink, AVFrame *in) | |
| 667 | { | ||
| 668 | ✗ | AVFilterContext *ctx = inlink->dst; | |
| 669 | ✗ | AVFilterLink *outlink = ctx->outputs[0]; | |
| 670 | AVFrame *out; | ||
| 671 | int ret; | ||
| 672 | ✗ | int direct = 0; | |
| 673 | |||
| 674 | ✗ | ret = illumination_estimation(ctx, in); | |
| 675 | ✗ | if (ret) { | |
| 676 | ✗ | av_frame_free(&in); | |
| 677 | ✗ | return ret; | |
| 678 | } | ||
| 679 | |||
| 680 | ✗ | if (av_frame_is_writable(in)) { | |
| 681 | ✗ | direct = 1; | |
| 682 | ✗ | out = in; | |
| 683 | } else { | ||
| 684 | ✗ | out = ff_get_video_buffer(outlink, outlink->w, outlink->h); | |
| 685 | ✗ | if (!out) { | |
| 686 | ✗ | av_frame_free(&in); | |
| 687 | ✗ | return AVERROR(ENOMEM); | |
| 688 | } | ||
| 689 | ✗ | av_frame_copy_props(out, in); | |
| 690 | } | ||
| 691 | ✗ | chromatic_adaptation(ctx, in, out); | |
| 692 | |||
| 693 | ✗ | if (!direct) | |
| 694 | ✗ | av_frame_free(&in); | |
| 695 | |||
| 696 | ✗ | return ff_filter_frame(outlink, out); | |
| 697 | } | ||
| 698 | |||
| 699 | ✗ | static av_cold void uninit(AVFilterContext *ctx) | |
| 700 | { | ||
| 701 | ✗ | ColorConstancyContext *s = ctx->priv; | |
| 702 | ✗ | int difford = s->difford; | |
| 703 | int i; | ||
| 704 | |||
| 705 | ✗ | for (i = 0; i <= difford; ++i) { | |
| 706 | ✗ | av_freep(&s->gauss[i]); | |
| 707 | } | ||
| 708 | ✗ | } | |
| 709 | |||
| 710 | static const AVFilterPad colorconstancy_inputs[] = { | ||
| 711 | { | ||
| 712 | .name = "default", | ||
| 713 | .type = AVMEDIA_TYPE_VIDEO, | ||
| 714 | .config_props = config_props, | ||
| 715 | .filter_frame = filter_frame, | ||
| 716 | }, | ||
| 717 | }; | ||
| 718 | |||
| 719 | static const AVOption greyedge_options[] = { | ||
| 720 | { "difford", "set differentiation order", OFFSET(difford), AV_OPT_TYPE_INT, {.i64=1}, 0, 2, FLAGS }, | ||
| 721 | { "minknorm", "set Minkowski norm", OFFSET(minknorm), AV_OPT_TYPE_INT, {.i64=1}, 0, 20, FLAGS }, | ||
| 722 | { "sigma", "set sigma", OFFSET(sigma), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.0, 1024.0, FLAGS }, | ||
| 723 | { NULL } | ||
| 724 | }; | ||
| 725 | |||
| 726 | AVFILTER_DEFINE_CLASS(greyedge); | ||
| 727 | |||
| 728 | const FFFilter ff_vf_greyedge = { | ||
| 729 | .p.name = GREY_EDGE, | ||
| 730 | .p.description = NULL_IF_CONFIG_SMALL("Estimates scene illumination by grey edge assumption."), | ||
| 731 | .p.priv_class = &greyedge_class, | ||
| 732 | .p.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, | ||
| 733 | .priv_size = sizeof(ColorConstancyContext), | ||
| 734 | .uninit = uninit, | ||
| 735 | FILTER_INPUTS(colorconstancy_inputs), | ||
| 736 | FILTER_OUTPUTS(ff_video_default_filterpad), | ||
| 737 | // TODO: support more formats | ||
| 738 | // FIXME: error when saving to .jpg | ||
| 739 | FILTER_SINGLE_PIXFMT(AV_PIX_FMT_GBRP), | ||
| 740 | }; | ||
| 741 |