FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavfilter/vf_bilateral.c
Date: 2022-12-05 20:26:17
Exec Total Coverage
Lines: 0 129 0.0%
Functions: 0 14 0.0%
Branches: 0 94 0.0%

Line Branch Exec Source
1 /*
2 * Copyright (c) 2017 Ming Yang
3 * Copyright (c) 2019 Paul B Mahol
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in all
13 * copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "libavutil/imgutils.h"
25 #include "libavutil/opt.h"
26 #include "libavutil/pixdesc.h"
27 #include "avfilter.h"
28 #include "formats.h"
29 #include "internal.h"
30 #include "video.h"
31
32 typedef struct BilateralContext {
33 const AVClass *class;
34
35 float sigmaS;
36 float sigmaR;
37 int planes;
38
39 int nb_threads;
40 int nb_planes;
41 int depth;
42 int planewidth[4];
43 int planeheight[4];
44
45 float alpha;
46 float range_table[65536];
47
48 float *img_out_f[4];
49 float *img_temp[4];
50 float *map_factor_a[4];
51 float *map_factor_b[4];
52 float *slice_factor_a[4];
53 float *slice_factor_b[4];
54 float *line_factor_a[4];
55 float *line_factor_b[4];
56 } BilateralContext;
57
58 #define OFFSET(x) offsetof(BilateralContext, x)
59 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
60
61 static const AVOption bilateral_options[] = {
62 { "sigmaS", "set spatial sigma", OFFSET(sigmaS), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 512, FLAGS },
63 { "sigmaR", "set range sigma", OFFSET(sigmaR), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 1, FLAGS },
64 { "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=1}, 0, 0xF, FLAGS },
65 { NULL }
66 };
67
68 AVFILTER_DEFINE_CLASS(bilateral);
69
70 static const enum AVPixelFormat pix_fmts[] = {
71 AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
72 AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
73 AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P,
74 AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
75 AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
76 AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
77 AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
78 AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12,
79 AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
80 AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
81 AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9,
82 AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10,
83 AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16,
84 AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
85 AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
86 AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
87 AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
88 AV_PIX_FMT_NONE
89 };
90
91 static int config_params(AVFilterContext *ctx)
92 {
93 BilateralContext *s = ctx->priv;
94 float inv_sigma_range;
95
96 inv_sigma_range = 1.0f / (s->sigmaR * ((1 << s->depth) - 1));
97 s->alpha = expf(-sqrtf(2.f) / s->sigmaS);
98
99 //compute a lookup table
100 for (int i = 0; i < (1 << s->depth); i++)
101 s->range_table[i] = s->alpha * expf(-i * inv_sigma_range);
102
103 return 0;
104 }
105
106 typedef struct ThreadData {
107 AVFrame *in, *out;
108 } ThreadData;
109
110 static int config_input(AVFilterLink *inlink)
111 {
112 AVFilterContext *ctx = inlink->dst;
113 BilateralContext *s = ctx->priv;
114 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
115
116 s->depth = desc->comp[0].depth;
117 config_params(ctx);
118
119 s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
120 s->planewidth[0] = s->planewidth[3] = inlink->w;
121 s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
122 s->planeheight[0] = s->planeheight[3] = inlink->h;
123
124 s->nb_planes = av_pix_fmt_count_planes(inlink->format);
125 s->nb_threads = ff_filter_get_nb_threads(ctx);
126
127 for (int p = 0; p < s->nb_planes; p++) {
128 const int w = s->planewidth[p];
129 const int h = s->planeheight[p];
130
131 s->img_out_f[p] = av_calloc(w * h, sizeof(float));
132 s->img_temp[p] = av_calloc(w * h, sizeof(float));
133 s->map_factor_a[p] = av_calloc(w * h, sizeof(float));
134 s->map_factor_b[p] = av_calloc(w * h, sizeof(float));
135 s->slice_factor_a[p] = av_calloc(w, sizeof(float));
136 s->slice_factor_b[p] = av_calloc(w, sizeof(float));
137 s->line_factor_a[p] = av_calloc(w, sizeof(float));
138 s->line_factor_b[p] = av_calloc(w, sizeof(float));
139
140 if (!s->img_out_f[p] ||
141 !s->img_temp[p] ||
142 !s->map_factor_a[p] ||
143 !s->map_factor_b[p] ||
144 !s->slice_factor_a[p] ||
145 !s->slice_factor_a[p] ||
146 !s->line_factor_a[p] ||
147 !s->line_factor_a[p])
148 return AVERROR(ENOMEM);
149 }
150
151 return 0;
152 }
153
154 #define BILATERAL_H(type, name) \
155 static void bilateralh_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
156 int jobnr, int nb_jobs, int plane) \
157 { \
158 const int width = s->planewidth[plane]; \
159 const int height = s->planeheight[plane]; \
160 const int slice_start = (height * jobnr) / nb_jobs; \
161 const int slice_end = (height * (jobnr+1)) / nb_jobs; \
162 const int src_linesize = in->linesize[plane] / sizeof(type); \
163 const type *src = (const type *)in->data[plane]; \
164 float *img_temp = s->img_temp[plane]; \
165 float *map_factor_a = s->map_factor_a[plane]; \
166 const float *const range_table = s->range_table; \
167 const float alpha = s->alpha; \
168 float ypr, ycr, fp, fc; \
169 const float inv_alpha_ = 1.f - alpha; \
170 \
171 for (int y = slice_start; y < slice_end; y++) { \
172 float *temp_factor_x, *temp_x = &img_temp[y * width]; \
173 const type *in_x = &src[y * src_linesize]; \
174 const type *texture_x = &src[y * src_linesize]; \
175 type tpr; \
176 \
177 *temp_x++ = ypr = *in_x++; \
178 tpr = *texture_x++; \
179 \
180 temp_factor_x = &map_factor_a[y * width]; \
181 *temp_factor_x++ = fp = 1; \
182 \
183 for (int x = 1; x < width; x++) { \
184 float alpha_; \
185 int range_dist; \
186 type tcr = *texture_x++; \
187 type dr = abs(tcr - tpr); \
188 \
189 range_dist = dr; \
190 alpha_ = range_table[range_dist]; \
191 *temp_x++ = ycr = inv_alpha_*(*in_x++) + alpha_*ypr; \
192 tpr = tcr; \
193 ypr = ycr; \
194 *temp_factor_x++ = fc = inv_alpha_ + alpha_ * fp; \
195 fp = fc; \
196 } \
197 --temp_x; *temp_x = ((*temp_x) + (*--in_x)); \
198 tpr = *--texture_x; \
199 ypr = *in_x; \
200 \
201 --temp_factor_x; *temp_factor_x = ((*temp_factor_x) + 1); \
202 fp = 1; \
203 \
204 for (int x = width - 2; x >= 0; x--) { \
205 type tcr = *--texture_x; \
206 type dr = abs(tcr - tpr); \
207 int range_dist = dr; \
208 float alpha_ = range_table[range_dist]; \
209 \
210 ycr = inv_alpha_ * (*--in_x) + alpha_ * ypr; \
211 --temp_x; *temp_x = ((*temp_x) + ycr); \
212 tpr = tcr; \
213 ypr = ycr; \
214 \
215 fc = inv_alpha_ + alpha_*fp; \
216 --temp_factor_x; \
217 *temp_factor_x = ((*temp_factor_x) + fc); \
218 fp = fc; \
219 } \
220 } \
221 }
222
223 BILATERAL_H(uint8_t, byte)
224 BILATERAL_H(uint16_t, word)
225
226 #define BILATERAL_V(type, name) \
227 static void bilateralv_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
228 int jobnr, int nb_jobs, int plane) \
229 { \
230 const int width = s->planewidth[plane]; \
231 const int height = s->planeheight[plane]; \
232 const int slice_start = (width * jobnr) / nb_jobs; \
233 const int slice_end = (width * (jobnr+1)) / nb_jobs; \
234 const int src_linesize = in->linesize[plane] / sizeof(type); \
235 const type *src = (const type *)in->data[plane] + slice_start; \
236 float *img_out_f = s->img_out_f[plane] + slice_start; \
237 float *img_temp = s->img_temp[plane] + slice_start; \
238 float *map_factor_a = s->map_factor_a[plane] + slice_start; \
239 float *map_factor_b = s->map_factor_b[plane] + slice_start; \
240 float *slice_factor_a = s->slice_factor_a[plane] + slice_start; \
241 float *slice_factor_b = s->slice_factor_b[plane] + slice_start; \
242 float *line_factor_a = s->line_factor_a[plane] + slice_start; \
243 float *line_factor_b = s->line_factor_b[plane] + slice_start; \
244 const float *const range_table = s->range_table; \
245 const float alpha = s->alpha; \
246 float *ycy, *ypy, *xcy; \
247 const float inv_alpha_ = 1.f - alpha; \
248 float *ycf, *ypf, *xcf, *in_factor; \
249 const type *tcy, *tpy; \
250 int h1; \
251 \
252 memcpy(img_out_f, img_temp, sizeof(float) * (slice_end - slice_start)); \
253 \
254 in_factor = map_factor_a; \
255 memcpy(map_factor_b, in_factor, sizeof(float) * (slice_end - slice_start)); \
256 for (int y = 1; y < height; y++) { \
257 tpy = &src[(y - 1) * src_linesize]; \
258 tcy = &src[y * src_linesize]; \
259 xcy = &img_temp[y * width]; \
260 ypy = &img_out_f[(y - 1) * width]; \
261 ycy = &img_out_f[y * width]; \
262 \
263 xcf = &in_factor[y * width]; \
264 ypf = &map_factor_b[(y - 1) * width]; \
265 ycf = &map_factor_b[y * width]; \
266 for (int x = 0; x < slice_end - slice_start; x++) { \
267 type dr = abs((*tcy++) - (*tpy++)); \
268 int range_dist = dr; \
269 float alpha_ = range_table[range_dist]; \
270 \
271 *ycy++ = inv_alpha_*(*xcy++) + alpha_*(*ypy++); \
272 *ycf++ = inv_alpha_*(*xcf++) + alpha_*(*ypf++); \
273 } \
274 } \
275 h1 = height - 1; \
276 ycf = line_factor_a; \
277 ypf = line_factor_b; \
278 memcpy(ypf, &in_factor[h1 * width], sizeof(float) * (slice_end - slice_start)); \
279 for (int x = 0, k = 0; x < slice_end - slice_start; x++) \
280 map_factor_b[h1 * width + x] = (map_factor_b[h1 * width + x] + ypf[k++]); \
281 \
282 ycy = slice_factor_a; \
283 ypy = slice_factor_b; \
284 memcpy(ypy, &img_temp[h1 * width], sizeof(float) * (slice_end - slice_start)); \
285 for (int x = 0, k = 0; x < slice_end - slice_start; x++) { \
286 int idx = h1 * width + x; \
287 img_out_f[idx] = (img_out_f[idx] + ypy[k++]) / map_factor_b[h1 * width + x]; \
288 } \
289 \
290 for (int y = h1 - 1; y >= 0; y--) { \
291 float *ycf_, *ypf_, *factor_; \
292 float *ycy_, *ypy_, *out_; \
293 \
294 tpy = &src[(y + 1) * src_linesize]; \
295 tcy = &src[y * src_linesize]; \
296 xcy = &img_temp[y * width]; \
297 ycy_ = ycy; \
298 ypy_ = ypy; \
299 out_ = &img_out_f[y * width]; \
300 \
301 xcf = &in_factor[y * width]; \
302 ycf_ = ycf; \
303 ypf_ = ypf; \
304 factor_ = &map_factor_b[y * width]; \
305 for (int x = 0; x < slice_end - slice_start; x++) { \
306 type dr = abs((*tcy++) - (*tpy++)); \
307 int range_dist = dr; \
308 float alpha_ = range_table[range_dist]; \
309 float ycc, fcc = inv_alpha_*(*xcf++) + alpha_*(*ypf_++); \
310 \
311 *ycf_++ = fcc; \
312 *factor_ = (*factor_ + fcc); \
313 \
314 ycc = inv_alpha_*(*xcy++) + alpha_*(*ypy_++); \
315 *ycy_++ = ycc; \
316 *out_ = (*out_ + ycc) / (*factor_); \
317 out_++; \
318 factor_++; \
319 } \
320 \
321 ypy = ycy; \
322 ypf = ycf; \
323 } \
324 }
325
326 BILATERAL_V(uint8_t, byte)
327 BILATERAL_V(uint16_t, word)
328
329 #define BILATERAL_O(type, name) \
330 static void bilateralo_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
331 int jobnr, int nb_jobs, int plane) \
332 { \
333 const int width = s->planewidth[plane]; \
334 const int height = s->planeheight[plane]; \
335 const int slice_start = (height * jobnr) / nb_jobs; \
336 const int slice_end = (height * (jobnr+1)) / nb_jobs; \
337 const int dst_linesize = out->linesize[plane] / sizeof(type); \
338 \
339 for (int i = slice_start; i < slice_end; i++) { \
340 type *dst = (type *)out->data[plane] + i * dst_linesize; \
341 const float *const img_out_f = s->img_out_f[plane] + i * width; \
342 for (int j = 0; j < width; j++) \
343 dst[j] = lrintf(img_out_f[j]); \
344 } \
345 }
346
347 BILATERAL_O(uint8_t, byte)
348 BILATERAL_O(uint16_t, word)
349
350 static int bilateralh_planes(AVFilterContext *ctx, void *arg,
351 int jobnr, int nb_jobs)
352 {
353 BilateralContext *s = ctx->priv;
354 ThreadData *td = arg;
355 AVFrame *out = td->out;
356 AVFrame *in = td->in;
357
358 for (int plane = 0; plane < s->nb_planes; plane++) {
359 if (!(s->planes & (1 << plane)))
360 continue;
361
362 if (s->depth <= 8)
363 bilateralh_byte(s, out, in, jobnr, nb_jobs, plane);
364 else
365 bilateralh_word(s, out, in, jobnr, nb_jobs, plane);
366 }
367
368 return 0;
369 }
370
371 static int bilateralv_planes(AVFilterContext *ctx, void *arg,
372 int jobnr, int nb_jobs)
373 {
374 BilateralContext *s = ctx->priv;
375 ThreadData *td = arg;
376 AVFrame *out = td->out;
377 AVFrame *in = td->in;
378
379 for (int plane = 0; plane < s->nb_planes; plane++) {
380 if (!(s->planes & (1 << plane)))
381 continue;
382
383 if (s->depth <= 8)
384 bilateralv_byte(s, out, in, jobnr, nb_jobs, plane);
385 else
386 bilateralv_word(s, out, in, jobnr, nb_jobs, plane);
387 }
388
389 return 0;
390 }
391
392 static int bilateralo_planes(AVFilterContext *ctx, void *arg,
393 int jobnr, int nb_jobs)
394 {
395 BilateralContext *s = ctx->priv;
396 ThreadData *td = arg;
397 AVFrame *out = td->out;
398 AVFrame *in = td->in;
399
400 for (int plane = 0; plane < s->nb_planes; plane++) {
401 if (!(s->planes & (1 << plane))) {
402 if (out != in) {
403 const int height = s->planeheight[plane];
404 const int slice_start = (height * jobnr) / nb_jobs;
405 const int slice_end = (height * (jobnr+1)) / nb_jobs;
406 const int width = s->planewidth[plane];
407 const int linesize = in->linesize[plane];
408 const int dst_linesize = out->linesize[plane];
409 const uint8_t *src = in->data[plane];
410 uint8_t *dst = out->data[plane];
411
412 av_image_copy_plane(dst + slice_start * dst_linesize,
413 dst_linesize,
414 src + slice_start * linesize,
415 linesize,
416 width * ((s->depth + 7) / 8),
417 slice_end - slice_start);
418 }
419 continue;
420 }
421
422 if (s->depth <= 8)
423 bilateralo_byte(s, out, in, jobnr, nb_jobs, plane);
424 else
425 bilateralo_word(s, out, in, jobnr, nb_jobs, plane);
426 }
427
428 return 0;
429 }
430
431 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
432 {
433 AVFilterContext *ctx = inlink->dst;
434 BilateralContext *s = ctx->priv;
435 AVFilterLink *outlink = ctx->outputs[0];
436 ThreadData td;
437 AVFrame *out;
438
439 if (av_frame_is_writable(in)) {
440 out = in;
441 } else {
442 out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
443 if (!out) {
444 av_frame_free(&in);
445 return AVERROR(ENOMEM);
446 }
447 av_frame_copy_props(out, in);
448 }
449
450 td.in = in;
451 td.out = out;
452 ff_filter_execute(ctx, bilateralh_planes, &td, NULL, s->nb_threads);
453 ff_filter_execute(ctx, bilateralv_planes, &td, NULL, s->nb_threads);
454 ff_filter_execute(ctx, bilateralo_planes, &td, NULL, s->nb_threads);
455
456 if (out != in)
457 av_frame_free(&in);
458 return ff_filter_frame(outlink, out);
459 }
460
461 static av_cold void uninit(AVFilterContext *ctx)
462 {
463 BilateralContext *s = ctx->priv;
464
465 for (int p = 0; p < s->nb_planes; p++) {
466 av_freep(&s->img_out_f[p]);
467 av_freep(&s->img_temp[p]);
468 av_freep(&s->map_factor_a[p]);
469 av_freep(&s->map_factor_b[p]);
470 av_freep(&s->slice_factor_a[p]);
471 av_freep(&s->slice_factor_b[p]);
472 av_freep(&s->line_factor_a[p]);
473 av_freep(&s->line_factor_b[p]);
474 }
475 }
476
477 static int process_command(AVFilterContext *ctx,
478 const char *cmd,
479 const char *arg,
480 char *res,
481 int res_len,
482 int flags)
483 {
484 int ret = ff_filter_process_command(ctx, cmd, arg, res, res_len, flags);
485
486 if (ret < 0)
487 return ret;
488
489 return config_params(ctx);
490 }
491
492 static const AVFilterPad bilateral_inputs[] = {
493 {
494 .name = "default",
495 .type = AVMEDIA_TYPE_VIDEO,
496 .config_props = config_input,
497 .filter_frame = filter_frame,
498 },
499 };
500
501 static const AVFilterPad bilateral_outputs[] = {
502 {
503 .name = "default",
504 .type = AVMEDIA_TYPE_VIDEO,
505 },
506 };
507
508 const AVFilter ff_vf_bilateral = {
509 .name = "bilateral",
510 .description = NULL_IF_CONFIG_SMALL("Apply Bilateral filter."),
511 .priv_size = sizeof(BilateralContext),
512 .priv_class = &bilateral_class,
513 .uninit = uninit,
514 FILTER_INPUTS(bilateral_inputs),
515 FILTER_OUTPUTS(bilateral_outputs),
516 FILTER_PIXFMTS_ARRAY(pix_fmts),
517 .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
518 AVFILTER_FLAG_SLICE_THREADS,
519 .process_command = process_command,
520 };
521