GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavfilter/vf_fftdnoiz.c Lines: 0 356 0.0 %
Date: 2020-08-14 10:39:37 Branches: 0 176 0.0 %

Line Branch Exec Source
1
/*
2
 * This file is part of FFmpeg.
3
 *
4
 * FFmpeg is free software; you can redistribute it and/or
5
 * modify it under the terms of the GNU Lesser General Public
6
 * License as published by the Free Software Foundation; either
7
 * version 2.1 of the License, or (at your option) any later version.
8
 *
9
 * FFmpeg is distributed in the hope that it will be useful,
10
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12
 * Lesser General Public License for more details.
13
 *
14
 * You should have received a copy of the GNU Lesser General Public
15
 * License along with FFmpeg; if not, write to the Free Software
16
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17
 */
18
19
#include <float.h>
20
21
#include "libavutil/avassert.h"
22
#include "libavutil/common.h"
23
#include "libavutil/imgutils.h"
24
#include "libavutil/opt.h"
25
#include "libavutil/pixdesc.h"
26
#include "internal.h"
27
#include "libavcodec/avfft.h"
28
29
enum BufferTypes {
30
    CURRENT,
31
    PREV,
32
    NEXT,
33
    BSIZE
34
};
35
36
typedef struct PlaneContext {
37
    int planewidth, planeheight;
38
    int nox, noy;
39
    int b;
40
    int o;
41
    float n;
42
43
    float *buffer[BSIZE];
44
    FFTComplex *hdata, *vdata;
45
    int data_linesize;
46
    int buffer_linesize;
47
48
    FFTContext *fft, *ifft;
49
} PlaneContext;
50
51
typedef struct FFTdnoizContext {
52
    const AVClass *class;
53
54
    float sigma;
55
    float amount;
56
    int   block_bits;
57
    float overlap;
58
    int   nb_prev;
59
    int   nb_next;
60
    int   planesf;
61
62
    AVFrame *prev, *cur, *next;
63
64
    int depth;
65
    int nb_planes;
66
    PlaneContext planes[4];
67
68
    void (*import_row)(FFTComplex *dst, uint8_t *src, int rw);
69
    void (*export_row)(FFTComplex *src, uint8_t *dst, int rw, float scale, int depth);
70
} FFTdnoizContext;
71
72
#define OFFSET(x) offsetof(FFTdnoizContext, x)
73
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
74
static const AVOption fftdnoiz_options[] = {
75
    { "sigma",   "set denoise strength",
76
        OFFSET(sigma),      AV_OPT_TYPE_FLOAT, {.dbl=1},        0,  30, .flags = FLAGS },
77
    { "amount",  "set amount of denoising",
78
        OFFSET(amount),     AV_OPT_TYPE_FLOAT, {.dbl=1},     0.01,   1, .flags = FLAGS },
79
    { "block",   "set block log2(size)",
80
        OFFSET(block_bits), AV_OPT_TYPE_INT,   {.i64=4},        3,   6, .flags = FLAGS },
81
    { "overlap", "set block overlap",
82
        OFFSET(overlap),    AV_OPT_TYPE_FLOAT, {.dbl=0.5},    0.2, 0.8, .flags = FLAGS },
83
    { "prev",    "set number of previous frames for temporal denoising",
84
        OFFSET(nb_prev),    AV_OPT_TYPE_INT,   {.i64=0},        0,   1, .flags = FLAGS },
85
    { "next",    "set number of next frames for temporal denoising",
86
        OFFSET(nb_next),    AV_OPT_TYPE_INT,   {.i64=0},        0,   1, .flags = FLAGS },
87
    { "planes",  "set planes to filter",
88
        OFFSET(planesf),    AV_OPT_TYPE_INT,   {.i64=7},        0,  15, .flags = FLAGS },
89
    { NULL }
90
};
91
92
AVFILTER_DEFINE_CLASS(fftdnoiz);
93
94
static av_cold int init(AVFilterContext *ctx)
95
{
96
    FFTdnoizContext *s = ctx->priv;
97
    int i;
98
99
    for (i = 0; i < 4; i++) {
100
        PlaneContext *p = &s->planes[i];
101
102
        p->fft  = av_fft_init(s->block_bits, 0);
103
        p->ifft = av_fft_init(s->block_bits, 1);
104
        if (!p->fft || !p->ifft)
105
            return AVERROR(ENOMEM);
106
    }
107
108
    return 0;
109
}
110
111
static int query_formats(AVFilterContext *ctx)
112
{
113
    static const enum AVPixelFormat pix_fmts[] = {
114
        AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
115
        AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
116
        AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
117
        AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
118
        AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
119
        AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
120
        AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
121
        AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
122
        AV_PIX_FMT_YUVJ411P,
123
        AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
124
        AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
125
        AV_PIX_FMT_YUV440P10,
126
        AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
127
        AV_PIX_FMT_YUV440P12,
128
        AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
129
        AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
130
        AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
131
        AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
132
        AV_PIX_FMT_YUVA420P,  AV_PIX_FMT_YUVA422P,   AV_PIX_FMT_YUVA444P,
133
        AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
134
        AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
135
        AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
136
        AV_PIX_FMT_GBRAP,     AV_PIX_FMT_GBRAP10,    AV_PIX_FMT_GBRAP12,    AV_PIX_FMT_GBRAP16,
137
        AV_PIX_FMT_NONE
138
    };
139
    AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
140
    if (!fmts_list)
141
        return AVERROR(ENOMEM);
142
    return ff_set_common_formats(ctx, fmts_list);
143
}
144
145
typedef struct ThreadData {
146
    float *src, *dst;
147
} ThreadData;
148
149
static void import_row8(FFTComplex *dst, uint8_t *src, int rw)
150
{
151
    int j;
152
153
    for (j = 0; j < rw; j++) {
154
        dst[j].re = src[j];
155
        dst[j].im = 0;
156
    }
157
}
158
159
static void export_row8(FFTComplex *src, uint8_t *dst, int rw, float scale, int depth)
160
{
161
    int j;
162
163
    for (j = 0; j < rw; j++)
164
        dst[j] = av_clip_uint8(src[j].re * scale + 0.5f);
165
}
166
167
static void import_row16(FFTComplex *dst, uint8_t *srcp, int rw)
168
{
169
    uint16_t *src = (uint16_t *)srcp;
170
    int j;
171
172
    for (j = 0; j < rw; j++) {
173
        dst[j].re = src[j];
174
        dst[j].im = 0;
175
    }
176
}
177
178
static void export_row16(FFTComplex *src, uint8_t *dstp, int rw, float scale, int depth)
179
{
180
    uint16_t *dst = (uint16_t *)dstp;
181
    int j;
182
183
    for (j = 0; j < rw; j++)
184
        dst[j] = av_clip_uintp2_c(src[j].re * scale + 0.5f, depth);
185
}
186
187
static int config_input(AVFilterLink *inlink)
188
{
189
    AVFilterContext *ctx = inlink->dst;
190
    const AVPixFmtDescriptor *desc;
191
    FFTdnoizContext *s = ctx->priv;
192
    int i;
193
194
    desc = av_pix_fmt_desc_get(inlink->format);
195
    s->depth = desc->comp[0].depth;
196
197
    if (s->depth <= 8) {
198
        s->import_row = import_row8;
199
        s->export_row = export_row8;
200
    } else {
201
        s->import_row = import_row16;
202
        s->export_row = export_row16;
203
        s->sigma *= 1 << (s->depth - 8) * (1 + s->nb_prev + s->nb_next);
204
    }
205
206
    s->planes[1].planewidth = s->planes[2].planewidth = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
207
    s->planes[0].planewidth = s->planes[3].planewidth = inlink->w;
208
    s->planes[1].planeheight = s->planes[2].planeheight = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
209
    s->planes[0].planeheight = s->planes[3].planeheight = inlink->h;
210
211
    s->nb_planes = av_pix_fmt_count_planes(inlink->format);
212
213
    for (i = 0; i < s->nb_planes; i++) {
214
        PlaneContext *p = &s->planes[i];
215
        int size;
216
217
        p->b = 1 << s->block_bits;
218
        p->n = 1.f / (p->b * p->b);
219
        p->o = p->b * s->overlap;
220
        size = p->b - p->o;
221
        p->nox = (p->planewidth  + (size - 1)) / size;
222
        p->noy = (p->planeheight + (size - 1)) / size;
223
224
        av_log(ctx, AV_LOG_DEBUG, "nox:%d noy:%d size:%d\n", p->nox, p->noy, size);
225
226
        p->buffer_linesize = p->b * p->nox * sizeof(FFTComplex);
227
        p->buffer[CURRENT] = av_calloc(p->b * p->noy, p->buffer_linesize);
228
        if (!p->buffer[CURRENT])
229
            return AVERROR(ENOMEM);
230
        if (s->nb_prev > 0) {
231
            p->buffer[PREV] = av_calloc(p->b * p->noy, p->buffer_linesize);
232
            if (!p->buffer[PREV])
233
                return AVERROR(ENOMEM);
234
        }
235
        if (s->nb_next > 0) {
236
            p->buffer[NEXT] = av_calloc(p->b * p->noy, p->buffer_linesize);
237
            if (!p->buffer[NEXT])
238
                return AVERROR(ENOMEM);
239
        }
240
        p->data_linesize = 2 * p->b * sizeof(float);
241
        p->hdata = av_calloc(p->b, p->data_linesize);
242
        p->vdata = av_calloc(p->b, p->data_linesize);
243
        if (!p->hdata || !p->vdata)
244
            return AVERROR(ENOMEM);
245
    }
246
247
    return 0;
248
}
249
250
static void import_plane(FFTdnoizContext *s,
251
                         uint8_t *srcp, int src_linesize,
252
                         float *buffer, int buffer_linesize, int plane)
253
{
254
    PlaneContext *p = &s->planes[plane];
255
    const int width = p->planewidth;
256
    const int height = p->planeheight;
257
    const int block = p->b;
258
    const int overlap = p->o;
259
    const int size = block - overlap;
260
    const int nox = p->nox;
261
    const int noy = p->noy;
262
    const int bpp = (s->depth + 7) / 8;
263
    const int data_linesize = p->data_linesize / sizeof(FFTComplex);
264
    FFTComplex *hdata = p->hdata;
265
    FFTComplex *vdata = p->vdata;
266
    int x, y, i, j;
267
268
    buffer_linesize /= sizeof(float);
269
    for (y = 0; y < noy; y++) {
270
        for (x = 0; x < nox; x++) {
271
            const int rh = FFMIN(block, height - y * size);
272
            const int rw = FFMIN(block, width  - x * size);
273
            uint8_t *src = srcp + src_linesize * y * size + x * size * bpp;
274
            float *bdst = buffer + buffer_linesize * y * block + x * block * 2;
275
            FFTComplex *ssrc, *dst = hdata;
276
277
            for (i = 0; i < rh; i++) {
278
                s->import_row(dst, src, rw);
279
                for (j = rw; j < block; j++) {
280
                    dst[j].re = dst[block - j - 1].re;
281
                    dst[j].im = 0;
282
                }
283
                av_fft_permute(p->fft, dst);
284
                av_fft_calc(p->fft, dst);
285
286
                src += src_linesize;
287
                dst += data_linesize;
288
            }
289
290
            dst = hdata;
291
            for (; i < block; i++) {
292
                for (j = 0; j < block; j++) {
293
                    dst[j].re = dst[(block - i - 1) * data_linesize + j].re;
294
                    dst[j].im = dst[(block - i - 1) * data_linesize + j].im;
295
                }
296
            }
297
298
            ssrc = hdata;
299
            dst = vdata;
300
            for (i = 0; i < block; i++) {
301
                for (j = 0; j < block; j++)
302
                    dst[j] = ssrc[j * data_linesize + i];
303
                av_fft_permute(p->fft, dst);
304
                av_fft_calc(p->fft, dst);
305
                memcpy(bdst, dst, block * sizeof(FFTComplex));
306
307
                dst += data_linesize;
308
                bdst += buffer_linesize;
309
            }
310
        }
311
    }
312
}
313
314
static void export_plane(FFTdnoizContext *s,
315
                         uint8_t *dstp, int dst_linesize,
316
                         float *buffer, int buffer_linesize, int plane)
317
{
318
    PlaneContext *p = &s->planes[plane];
319
    const int depth = s->depth;
320
    const int bpp = (depth + 7) / 8;
321
    const int width = p->planewidth;
322
    const int height = p->planeheight;
323
    const int block = p->b;
324
    const int overlap = p->o;
325
    const int hoverlap = overlap / 2;
326
    const int size = block - overlap;
327
    const int nox = p->nox;
328
    const int noy = p->noy;
329
    const int data_linesize = p->data_linesize / sizeof(FFTComplex);
330
    const float scale = 1.f / (block * block);
331
    FFTComplex *hdata = p->hdata;
332
    FFTComplex *vdata = p->vdata;
333
    int x, y, i, j;
334
335
    buffer_linesize /= sizeof(float);
336
    for (y = 0; y < noy; y++) {
337
        for (x = 0; x < nox; x++) {
338
            const int woff = x == 0 ? 0 : hoverlap;
339
            const int hoff = y == 0 ? 0 : hoverlap;
340
            const int rw = x == 0 ? block : FFMIN(size, width  - x * size - woff);
341
            const int rh = y == 0 ? block : FFMIN(size, height - y * size - hoff);
342
            float *bsrc = buffer + buffer_linesize * y * block + x * block * 2;
343
            uint8_t *dst = dstp + dst_linesize * (y * size + hoff) + (x * size + woff) * bpp;
344
            FFTComplex *hdst, *ddst = vdata;
345
346
            hdst = hdata;
347
            for (i = 0; i < block; i++) {
348
                memcpy(ddst, bsrc, block * sizeof(FFTComplex));
349
                av_fft_permute(p->ifft, ddst);
350
                av_fft_calc(p->ifft, ddst);
351
                for (j = 0; j < block; j++) {
352
                    hdst[j * data_linesize + i] = ddst[j];
353
                }
354
355
                ddst += data_linesize;
356
                bsrc += buffer_linesize;
357
            }
358
359
            hdst = hdata + hoff * data_linesize;
360
            for (i = 0; i < rh; i++) {
361
                av_fft_permute(p->ifft, hdst);
362
                av_fft_calc(p->ifft, hdst);
363
                s->export_row(hdst + woff, dst, rw, scale, depth);
364
365
                hdst += data_linesize;
366
                dst += dst_linesize;
367
            }
368
        }
369
    }
370
}
371
372
static void filter_plane3d2(FFTdnoizContext *s, int plane, float *pbuffer, float *nbuffer)
373
{
374
    PlaneContext *p = &s->planes[plane];
375
    const int block = p->b;
376
    const int nox = p->nox;
377
    const int noy = p->noy;
378
    const int buffer_linesize = p->buffer_linesize / sizeof(float);
379
    const float sigma = s->sigma * s->sigma * block * block;
380
    const float limit = 1.f - s->amount;
381
    float *cbuffer = p->buffer[CURRENT];
382
    const float cfactor = sqrtf(3.f) * 0.5f;
383
    const float scale = 1.f / 3.f;
384
    int y, x, i, j;
385
386
    for (y = 0; y < noy; y++) {
387
        for (x = 0; x < nox; x++) {
388
            float *cbuff = cbuffer + buffer_linesize * y * block + x * block * 2;
389
            float *pbuff = pbuffer + buffer_linesize * y * block + x * block * 2;
390
            float *nbuff = nbuffer + buffer_linesize * y * block + x * block * 2;
391
392
            for (i = 0; i < block; i++) {
393
                for (j = 0; j < block; j++) {
394
                    float sumr, sumi, difr, difi, mpr, mpi, mnr, mni;
395
                    float factor, power, sumpnr, sumpni;
396
397
                    sumpnr = pbuff[2 * j    ] + nbuff[2 * j    ];
398
                    sumpni = pbuff[2 * j + 1] + nbuff[2 * j + 1];
399
                    sumr = cbuff[2 * j    ] + sumpnr;
400
                    sumi = cbuff[2 * j + 1] + sumpni;
401
                    difr = cfactor * (nbuff[2 * j    ] - pbuff[2 * j    ]);
402
                    difi = cfactor * (pbuff[2 * j + 1] - nbuff[2 * j + 1]);
403
                    mpr = cbuff[2 * j    ] - 0.5f * sumpnr + difi;
404
                    mnr = mpr - difi - difi;
405
                    mpi = cbuff[2 * j + 1] - 0.5f * sumpni + difr;
406
                    mni = mpi - difr - difr;
407
                    power = sumr * sumr + sumi * sumi + 1e-15f;
408
                    factor = FFMAX((power - sigma) / power, limit);
409
                    sumr *= factor;
410
                    sumi *= factor;
411
                    power = mpr * mpr + mpi * mpi + 1e-15f;
412
                    factor = FFMAX((power - sigma) / power, limit);
413
                    mpr *= factor;
414
                    mpi *= factor;
415
                    power = mnr * mnr + mni * mni + 1e-15f;
416
                    factor = FFMAX((power - sigma) / power, limit);
417
                    mnr *= factor;
418
                    mni *= factor;
419
                    cbuff[2 * j    ] = (sumr + mpr + mnr) * scale;
420
                    cbuff[2 * j + 1] = (sumi + mpi + mni) * scale;
421
422
                }
423
424
                cbuff += buffer_linesize;
425
                pbuff += buffer_linesize;
426
                nbuff += buffer_linesize;
427
            }
428
        }
429
    }
430
}
431
432
static void filter_plane3d1(FFTdnoizContext *s, int plane, float *pbuffer)
433
{
434
    PlaneContext *p = &s->planes[plane];
435
    const int block = p->b;
436
    const int nox = p->nox;
437
    const int noy = p->noy;
438
    const int buffer_linesize = p->buffer_linesize / sizeof(float);
439
    const float sigma = s->sigma * s->sigma * block * block;
440
    const float limit = 1.f - s->amount;
441
    float *cbuffer = p->buffer[CURRENT];
442
    int y, x, i, j;
443
444
    for (y = 0; y < noy; y++) {
445
        for (x = 0; x < nox; x++) {
446
            float *cbuff = cbuffer + buffer_linesize * y * block + x * block * 2;
447
            float *pbuff = pbuffer + buffer_linesize * y * block + x * block * 2;
448
449
            for (i = 0; i < block; i++) {
450
                for (j = 0; j < block; j++) {
451
                    float factor, power, re, im, pre, pim;
452
                    float sumr, sumi, difr, difi;
453
454
                    re = cbuff[j * 2    ];
455
                    pre = pbuff[j * 2    ];
456
                    im = cbuff[j * 2 + 1];
457
                    pim = pbuff[j * 2 + 1];
458
459
                    sumr = re + pre;
460
                    sumi = im + pim;
461
                    difr = re - pre;
462
                    difi = im - pim;
463
464
                    power = sumr * sumr + sumi * sumi + 1e-15f;
465
                    factor = FFMAX(limit, (power - sigma) / power);
466
                    sumr *= factor;
467
                    sumi *= factor;
468
                    power = difr * difr + difi * difi + 1e-15f;
469
                    factor = FFMAX(limit, (power - sigma) / power);
470
                    difr *= factor;
471
                    difi *= factor;
472
473
                    cbuff[j * 2    ] = (sumr + difr) * 0.5f;
474
                    cbuff[j * 2 + 1] = (sumi + difi) * 0.5f;
475
                }
476
477
                cbuff += buffer_linesize;
478
                pbuff += buffer_linesize;
479
            }
480
        }
481
    }
482
}
483
484
static void filter_plane2d(FFTdnoizContext *s, int plane)
485
{
486
    PlaneContext *p = &s->planes[plane];
487
    const int block = p->b;
488
    const int nox = p->nox;
489
    const int noy = p->noy;
490
    const int buffer_linesize = p->buffer_linesize / 4;
491
    const float sigma = s->sigma * s->sigma * block * block;
492
    const float limit = 1.f - s->amount;
493
    float *buffer = p->buffer[CURRENT];
494
    int y, x, i, j;
495
496
    for (y = 0; y < noy; y++) {
497
        for (x = 0; x < nox; x++) {
498
            float *buff = buffer + buffer_linesize * y * block + x * block * 2;
499
500
            for (i = 0; i < block; i++) {
501
                for (j = 0; j < block; j++) {
502
                    float factor, power, re, im;
503
504
                    re = buff[j * 2    ];
505
                    im = buff[j * 2 + 1];
506
                    power = re * re + im * im + 1e-15f;
507
                    factor = FFMAX(limit, (power - sigma) / power);
508
                    buff[j * 2    ] *= factor;
509
                    buff[j * 2 + 1] *= factor;
510
                }
511
512
                buff += buffer_linesize;
513
            }
514
        }
515
    }
516
}
517
518
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
519
{
520
    AVFilterContext *ctx = inlink->dst;
521
    FFTdnoizContext *s = ctx->priv;
522
    AVFilterLink *outlink = ctx->outputs[0];
523
    int direct, plane;
524
    AVFrame *out;
525
526
    if (s->nb_next > 0 && s->nb_prev > 0) {
527
        av_frame_free(&s->prev);
528
        s->prev = s->cur;
529
        s->cur = s->next;
530
        s->next = in;
531
532
        if (!s->prev && s->cur) {
533
            s->prev = av_frame_clone(s->cur);
534
            if (!s->prev)
535
                return AVERROR(ENOMEM);
536
        }
537
        if (!s->cur)
538
            return 0;
539
    } else if (s->nb_next > 0) {
540
        av_frame_free(&s->cur);
541
        s->cur = s->next;
542
        s->next = in;
543
544
        if (!s->cur)
545
            return 0;
546
    } else if (s->nb_prev > 0) {
547
        av_frame_free(&s->prev);
548
        s->prev = s->cur;
549
        s->cur = in;
550
551
        if (!s->prev)
552
            s->prev = av_frame_clone(s->cur);
553
        if (!s->prev)
554
            return AVERROR(ENOMEM);
555
    } else {
556
        s->cur = in;
557
    }
558
559
    if (av_frame_is_writable(in) && s->nb_next == 0 && s->nb_prev == 0) {
560
        direct = 1;
561
        out = in;
562
    } else {
563
        direct = 0;
564
        out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
565
        if (!out)
566
            return AVERROR(ENOMEM);
567
        av_frame_copy_props(out, s->cur);
568
    }
569
570
    for (plane = 0; plane < s->nb_planes; plane++) {
571
        PlaneContext *p = &s->planes[plane];
572
573
        if (!((1 << plane) & s->planesf) || ctx->is_disabled) {
574
            if (!direct)
575
                av_image_copy_plane(out->data[plane], out->linesize[plane],
576
                                    s->cur->data[plane], s->cur->linesize[plane],
577
                                    p->planewidth, p->planeheight);
578
            continue;
579
        }
580
581
        if (s->next) {
582
            import_plane(s, s->next->data[plane], s->next->linesize[plane],
583
                         p->buffer[NEXT], p->buffer_linesize, plane);
584
        }
585
586
        if (s->prev) {
587
            import_plane(s, s->prev->data[plane], s->prev->linesize[plane],
588
                         p->buffer[PREV], p->buffer_linesize, plane);
589
        }
590
591
        import_plane(s, s->cur->data[plane], s->cur->linesize[plane],
592
                     p->buffer[CURRENT], p->buffer_linesize, plane);
593
594
        if (s->next && s->prev) {
595
            filter_plane3d2(s, plane, p->buffer[PREV], p->buffer[NEXT]);
596
        } else if (s->next) {
597
            filter_plane3d1(s, plane, p->buffer[NEXT]);
598
        } else  if (s->prev) {
599
            filter_plane3d1(s, plane, p->buffer[PREV]);
600
        } else {
601
            filter_plane2d(s, plane);
602
        }
603
604
        export_plane(s, out->data[plane], out->linesize[plane],
605
                     p->buffer[CURRENT], p->buffer_linesize, plane);
606
    }
607
608
    if (s->nb_next == 0 && s->nb_prev == 0) {
609
        if (direct) {
610
            s->cur = NULL;
611
        } else {
612
            av_frame_free(&s->cur);
613
        }
614
    }
615
    return ff_filter_frame(outlink, out);
616
}
617
618
static int request_frame(AVFilterLink *outlink)
619
{
620
    AVFilterContext *ctx = outlink->src;
621
    FFTdnoizContext *s = ctx->priv;
622
    int ret = 0;
623
624
    ret = ff_request_frame(ctx->inputs[0]);
625
626
    if (ret == AVERROR_EOF && (s->nb_next > 0)) {
627
        AVFrame *buf;
628
629
        if (s->next && s->nb_next > 0)
630
            buf = av_frame_clone(s->next);
631
        else if (s->cur)
632
            buf = av_frame_clone(s->cur);
633
        else
634
            buf = av_frame_clone(s->prev);
635
        if (!buf)
636
            return AVERROR(ENOMEM);
637
638
        ret = filter_frame(ctx->inputs[0], buf);
639
        if (ret < 0)
640
            return ret;
641
        ret = AVERROR_EOF;
642
    }
643
644
    return ret;
645
}
646
647
static av_cold void uninit(AVFilterContext *ctx)
648
{
649
    FFTdnoizContext *s = ctx->priv;
650
    int i;
651
652
    for (i = 0; i < 4; i++) {
653
        PlaneContext *p = &s->planes[i];
654
655
        av_freep(&p->hdata);
656
        av_freep(&p->vdata);
657
        av_freep(&p->buffer[PREV]);
658
        av_freep(&p->buffer[CURRENT]);
659
        av_freep(&p->buffer[NEXT]);
660
        av_fft_end(p->fft);
661
        av_fft_end(p->ifft);
662
    }
663
664
    av_frame_free(&s->prev);
665
    av_frame_free(&s->cur);
666
    av_frame_free(&s->next);
667
}
668
669
static const AVFilterPad fftdnoiz_inputs[] = {
670
    {
671
        .name         = "default",
672
        .type         = AVMEDIA_TYPE_VIDEO,
673
        .filter_frame = filter_frame,
674
        .config_props = config_input,
675
    },
676
    { NULL }
677
};
678
679
static const AVFilterPad fftdnoiz_outputs[] = {
680
    {
681
        .name          = "default",
682
        .type          = AVMEDIA_TYPE_VIDEO,
683
        .request_frame = request_frame,
684
    },
685
    { NULL }
686
};
687
688
AVFilter ff_vf_fftdnoiz = {
689
    .name          = "fftdnoiz",
690
    .description   = NULL_IF_CONFIG_SMALL("Denoise frames using 3D FFT."),
691
    .priv_size     = sizeof(FFTdnoizContext),
692
    .init          = init,
693
    .uninit        = uninit,
694
    .query_formats = query_formats,
695
    .inputs        = fftdnoiz_inputs,
696
    .outputs       = fftdnoiz_outputs,
697
    .priv_class    = &fftdnoiz_class,
698
    .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
699
};