GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavfilter/vaf_spectrumsynth.c Lines: 0 263 0.0 %
Date: 2020-09-25 14:59:26 Branches: 0 140 0.0 %

Line Branch Exec Source
1
/*
2
 * Copyright (c) 2016 Paul B Mahol
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20
21
/**
22
 * @file
23
 * SpectrumSynth filter
24
 * @todo support float pixel format
25
 */
26
27
#include "libavcodec/avfft.h"
28
#include "libavutil/avassert.h"
29
#include "libavutil/channel_layout.h"
30
#include "libavutil/ffmath.h"
31
#include "libavutil/opt.h"
32
#include "libavutil/parseutils.h"
33
#include "avfilter.h"
34
#include "formats.h"
35
#include "audio.h"
36
#include "video.h"
37
#include "filters.h"
38
#include "internal.h"
39
#include "window_func.h"
40
41
enum MagnitudeScale { LINEAR, LOG, NB_SCALES };
42
enum SlideMode      { REPLACE, SCROLL, FULLFRAME, RSCROLL, NB_SLIDES };
43
enum Orientation    { VERTICAL, HORIZONTAL, NB_ORIENTATIONS };
44
45
typedef struct SpectrumSynthContext {
46
    const AVClass *class;
47
    int sample_rate;
48
    int channels;
49
    int scale;
50
    int sliding;
51
    int win_func;
52
    float overlap;
53
    int orientation;
54
55
    AVFrame *magnitude, *phase;
56
    FFTContext *fft;            ///< Fast Fourier Transform context
57
    int fft_bits;               ///< number of bits (FFT window size = 1<<fft_bits)
58
    FFTComplex **fft_data;      ///< bins holder for each (displayed) channels
59
    int win_size;
60
    int size;
61
    int nb_freq;
62
    int hop_size;
63
    int start, end;
64
    int xpos;
65
    int xend;
66
    int64_t pts;
67
    float factor;
68
    AVFrame *buffer;
69
    float *window_func_lut;     ///< Window function LUT
70
} SpectrumSynthContext;
71
72
#define OFFSET(x) offsetof(SpectrumSynthContext, x)
73
#define A AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_AUDIO_PARAM
74
#define V AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
75
76
static const AVOption spectrumsynth_options[] = {
77
    { "sample_rate", "set sample rate",  OFFSET(sample_rate), AV_OPT_TYPE_INT, {.i64 = 44100}, 15,  INT_MAX, A },
78
    { "channels",    "set channels",     OFFSET(channels), AV_OPT_TYPE_INT, {.i64 = 1}, 1, 8, A },
79
    { "scale",       "set input amplitude scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64 = LOG}, 0, NB_SCALES-1, V, "scale" },
80
        { "lin",  "linear",      0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, V, "scale" },
81
        { "log",  "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG},    0, 0, V, "scale" },
82
    { "slide", "set input sliding mode", OFFSET(sliding), AV_OPT_TYPE_INT, {.i64 = FULLFRAME}, 0, NB_SLIDES-1, V, "slide" },
83
        { "replace",   "consume old columns with new",   0, AV_OPT_TYPE_CONST, {.i64=REPLACE},   0, 0, V, "slide" },
84
        { "scroll",    "consume only most right column", 0, AV_OPT_TYPE_CONST, {.i64=SCROLL},    0, 0, V, "slide" },
85
        { "fullframe", "consume full frames",            0, AV_OPT_TYPE_CONST, {.i64=FULLFRAME}, 0, 0, V, "slide" },
86
        { "rscroll",   "consume only most left column",  0, AV_OPT_TYPE_CONST, {.i64=RSCROLL},   0, 0, V, "slide" },
87
    { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_WFUNC-1, A, "win_func" },
88
        { "rect",     "Rectangular",      0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT},     0, 0, A, "win_func" },
89
        { "bartlett", "Bartlett",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, A, "win_func" },
90
        { "hann",     "Hann",             0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING},  0, 0, A, "win_func" },
91
        { "hanning",  "Hanning",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING},  0, 0, A, "win_func" },
92
        { "hamming",  "Hamming",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING},  0, 0, A, "win_func" },
93
        { "sine",     "Sine",             0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE},     0, 0, A, "win_func" },
94
    { "overlap", "set window overlap",  OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0,  1, A },
95
    { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, V, "orientation" },
96
        { "vertical",   NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL},   0, 0, V, "orientation" },
97
        { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, V, "orientation" },
98
    { NULL }
99
};
100
101
AVFILTER_DEFINE_CLASS(spectrumsynth);
102
103
static int query_formats(AVFilterContext *ctx)
104
{
105
    SpectrumSynthContext *s = ctx->priv;
106
    AVFilterFormats *formats = NULL;
107
    AVFilterChannelLayouts *layout = NULL;
108
    AVFilterLink *magnitude = ctx->inputs[0];
109
    AVFilterLink *phase = ctx->inputs[1];
110
    AVFilterLink *outlink = ctx->outputs[0];
111
    static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE };
112
    static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY16,
113
                                                   AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P,
114
                                                   AV_PIX_FMT_YUV444P16, AV_PIX_FMT_NONE };
115
    int ret, sample_rates[] = { 48000, -1 };
116
117
    formats = ff_make_format_list(sample_fmts);
118
    if ((ret = ff_formats_ref         (formats, &outlink->incfg.formats        )) < 0 ||
119
        (ret = ff_add_channel_layout  (&layout, FF_COUNT2LAYOUT(s->channels))) < 0 ||
120
        (ret = ff_channel_layouts_ref (layout , &outlink->incfg.channel_layouts)) < 0)
121
        return ret;
122
123
    sample_rates[0] = s->sample_rate;
124
    formats = ff_make_format_list(sample_rates);
125
    if (!formats)
126
        return AVERROR(ENOMEM);
127
    if ((ret = ff_formats_ref(formats, &outlink->incfg.samplerates)) < 0)
128
        return ret;
129
130
    formats = ff_make_format_list(pix_fmts);
131
    if (!formats)
132
        return AVERROR(ENOMEM);
133
    if ((ret = ff_formats_ref(formats, &magnitude->outcfg.formats)) < 0)
134
        return ret;
135
136
    formats = ff_make_format_list(pix_fmts);
137
    if (!formats)
138
        return AVERROR(ENOMEM);
139
    if ((ret = ff_formats_ref(formats, &phase->outcfg.formats)) < 0)
140
        return ret;
141
142
    return 0;
143
}
144
145
static int config_output(AVFilterLink *outlink)
146
{
147
    AVFilterContext *ctx = outlink->src;
148
    SpectrumSynthContext *s = ctx->priv;
149
    int width = ctx->inputs[0]->w;
150
    int height = ctx->inputs[0]->h;
151
    AVRational time_base  = ctx->inputs[0]->time_base;
152
    AVRational frame_rate = ctx->inputs[0]->frame_rate;
153
    int i, ch, fft_bits;
154
    float factor, overlap;
155
156
    outlink->sample_rate = s->sample_rate;
157
    outlink->time_base = (AVRational){1, s->sample_rate};
158
159
    if (width  != ctx->inputs[1]->w ||
160
        height != ctx->inputs[1]->h) {
161
        av_log(ctx, AV_LOG_ERROR,
162
               "Magnitude and Phase sizes differ (%dx%d vs %dx%d).\n",
163
               width, height,
164
               ctx->inputs[1]->w, ctx->inputs[1]->h);
165
        return AVERROR_INVALIDDATA;
166
    } else if (av_cmp_q(time_base, ctx->inputs[1]->time_base) != 0) {
167
        av_log(ctx, AV_LOG_ERROR,
168
               "Magnitude and Phase time bases differ (%d/%d vs %d/%d).\n",
169
               time_base.num, time_base.den,
170
               ctx->inputs[1]->time_base.num,
171
               ctx->inputs[1]->time_base.den);
172
        return AVERROR_INVALIDDATA;
173
    } else if (av_cmp_q(frame_rate, ctx->inputs[1]->frame_rate) != 0) {
174
        av_log(ctx, AV_LOG_ERROR,
175
               "Magnitude and Phase framerates differ (%d/%d vs %d/%d).\n",
176
               frame_rate.num, frame_rate.den,
177
               ctx->inputs[1]->frame_rate.num,
178
               ctx->inputs[1]->frame_rate.den);
179
        return AVERROR_INVALIDDATA;
180
    }
181
182
    s->size = s->orientation == VERTICAL ? height / s->channels : width / s->channels;
183
    s->xend = s->orientation == VERTICAL ? width : height;
184
185
    for (fft_bits = 1; 1 << fft_bits < 2 * s->size; fft_bits++);
186
187
    s->win_size = 1 << fft_bits;
188
    s->nb_freq = 1 << (fft_bits - 1);
189
190
    s->fft = av_fft_init(fft_bits, 1);
191
    if (!s->fft) {
192
        av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. "
193
               "The window size might be too high.\n");
194
        return AVERROR(EINVAL);
195
    }
196
    s->fft_data = av_calloc(s->channels, sizeof(*s->fft_data));
197
    if (!s->fft_data)
198
        return AVERROR(ENOMEM);
199
    for (ch = 0; ch < s->channels; ch++) {
200
        s->fft_data[ch] = av_calloc(s->win_size, sizeof(**s->fft_data));
201
        if (!s->fft_data[ch])
202
            return AVERROR(ENOMEM);
203
    }
204
205
    s->buffer = ff_get_audio_buffer(outlink, s->win_size * 2);
206
    if (!s->buffer)
207
        return AVERROR(ENOMEM);
208
209
    /* pre-calc windowing function */
210
    s->window_func_lut = av_realloc_f(s->window_func_lut, s->win_size,
211
                                      sizeof(*s->window_func_lut));
212
    if (!s->window_func_lut)
213
        return AVERROR(ENOMEM);
214
    generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap);
215
    if (s->overlap == 1)
216
        s->overlap = overlap;
217
    s->hop_size = (1 - s->overlap) * s->win_size;
218
    for (factor = 0, i = 0; i < s->win_size; i++) {
219
        factor += s->window_func_lut[i] * s->window_func_lut[i];
220
    }
221
    s->factor = (factor / s->win_size) / FFMAX(1 / (1 - s->overlap) - 1, 1);
222
223
    return 0;
224
}
225
226
static void read16_fft_bin(SpectrumSynthContext *s,
227
                           int x, int y, int f, int ch)
228
{
229
    const int m_linesize = s->magnitude->linesize[0];
230
    const int p_linesize = s->phase->linesize[0];
231
    const uint16_t *m = (uint16_t *)(s->magnitude->data[0] + y * m_linesize);
232
    const uint16_t *p = (uint16_t *)(s->phase->data[0] + y * p_linesize);
233
    float magnitude, phase;
234
235
    switch (s->scale) {
236
    case LINEAR:
237
        magnitude = m[x] / (double)UINT16_MAX;
238
        break;
239
    case LOG:
240
        magnitude = ff_exp10(((m[x] / (double)UINT16_MAX) - 1.) * 6.);
241
        break;
242
    default:
243
        av_assert0(0);
244
    }
245
    phase = ((p[x] / (double)UINT16_MAX) * 2. - 1.) * M_PI;
246
247
    s->fft_data[ch][f].re = magnitude * cos(phase);
248
    s->fft_data[ch][f].im = magnitude * sin(phase);
249
}
250
251
static void read8_fft_bin(SpectrumSynthContext *s,
252
                          int x, int y, int f, int ch)
253
{
254
    const int m_linesize = s->magnitude->linesize[0];
255
    const int p_linesize = s->phase->linesize[0];
256
    const uint8_t *m = (uint8_t *)(s->magnitude->data[0] + y * m_linesize);
257
    const uint8_t *p = (uint8_t *)(s->phase->data[0] + y * p_linesize);
258
    float magnitude, phase;
259
260
    switch (s->scale) {
261
    case LINEAR:
262
        magnitude = m[x] / (double)UINT8_MAX;
263
        break;
264
    case LOG:
265
        magnitude = ff_exp10(((m[x] / (double)UINT8_MAX) - 1.) * 6.);
266
        break;
267
    default:
268
        av_assert0(0);
269
    }
270
    phase = ((p[x] / (double)UINT8_MAX) * 2. - 1.) * M_PI;
271
272
    s->fft_data[ch][f].re = magnitude * cos(phase);
273
    s->fft_data[ch][f].im = magnitude * sin(phase);
274
}
275
276
static void read_fft_data(AVFilterContext *ctx, int x, int h, int ch)
277
{
278
    SpectrumSynthContext *s = ctx->priv;
279
    AVFilterLink *inlink = ctx->inputs[0];
280
    int start = h * (s->channels - ch) - 1;
281
    int end = h * (s->channels - ch - 1);
282
    int y, f;
283
284
    switch (s->orientation) {
285
    case VERTICAL:
286
        switch (inlink->format) {
287
        case AV_PIX_FMT_YUV444P16:
288
        case AV_PIX_FMT_GRAY16:
289
            for (y = start, f = 0; y >= end; y--, f++) {
290
                read16_fft_bin(s, x, y, f, ch);
291
            }
292
            break;
293
        case AV_PIX_FMT_YUVJ444P:
294
        case AV_PIX_FMT_YUV444P:
295
        case AV_PIX_FMT_GRAY8:
296
            for (y = start, f = 0; y >= end; y--, f++) {
297
                read8_fft_bin(s, x, y, f, ch);
298
            }
299
            break;
300
        }
301
        break;
302
    case HORIZONTAL:
303
        switch (inlink->format) {
304
        case AV_PIX_FMT_YUV444P16:
305
        case AV_PIX_FMT_GRAY16:
306
            for (y = end, f = 0; y <= start; y++, f++) {
307
                read16_fft_bin(s, y, x, f, ch);
308
            }
309
            break;
310
        case AV_PIX_FMT_YUVJ444P:
311
        case AV_PIX_FMT_YUV444P:
312
        case AV_PIX_FMT_GRAY8:
313
            for (y = end, f = 0; y <= start; y++, f++) {
314
                read8_fft_bin(s, y, x, f, ch);
315
            }
316
            break;
317
        }
318
        break;
319
    }
320
}
321
322
static void synth_window(AVFilterContext *ctx, int x)
323
{
324
    SpectrumSynthContext *s = ctx->priv;
325
    const int h = s->size;
326
    int nb = s->win_size;
327
    int y, f, ch;
328
329
    for (ch = 0; ch < s->channels; ch++) {
330
        read_fft_data(ctx, x, h, ch);
331
332
        for (y = h; y <= s->nb_freq; y++) {
333
            s->fft_data[ch][y].re = 0;
334
            s->fft_data[ch][y].im = 0;
335
        }
336
337
        for (y = s->nb_freq + 1, f = s->nb_freq - 1; y < nb; y++, f--) {
338
            s->fft_data[ch][y].re =  s->fft_data[ch][f].re;
339
            s->fft_data[ch][y].im = -s->fft_data[ch][f].im;
340
        }
341
342
        av_fft_permute(s->fft, s->fft_data[ch]);
343
        av_fft_calc(s->fft, s->fft_data[ch]);
344
    }
345
}
346
347
static int try_push_frame(AVFilterContext *ctx, int x)
348
{
349
    SpectrumSynthContext *s = ctx->priv;
350
    AVFilterLink *outlink = ctx->outputs[0];
351
    const float factor = s->factor;
352
    int ch, n, i, ret;
353
    int start, end;
354
    AVFrame *out;
355
356
    synth_window(ctx, x);
357
358
    for (ch = 0; ch < s->channels; ch++) {
359
        float *buf = (float *)s->buffer->extended_data[ch];
360
        int j, k;
361
362
        start = s->start;
363
        end = s->end;
364
        k = end;
365
        for (i = 0, j = start; j < k && i < s->win_size; i++, j++) {
366
            buf[j] += s->fft_data[ch][i].re;
367
        }
368
369
        for (; i < s->win_size; i++, j++) {
370
            buf[j] = s->fft_data[ch][i].re;
371
        }
372
373
        start += s->hop_size;
374
        end = j;
375
376
        if (start >= s->win_size) {
377
            start -= s->win_size;
378
            end -= s->win_size;
379
380
            if (ch == s->channels - 1) {
381
                float *dst;
382
                int c;
383
384
                out = ff_get_audio_buffer(outlink, s->win_size);
385
                if (!out) {
386
                    av_frame_free(&s->magnitude);
387
                    av_frame_free(&s->phase);
388
                    return AVERROR(ENOMEM);
389
                }
390
391
                out->pts = s->pts;
392
                s->pts += s->win_size;
393
                for (c = 0; c < s->channels; c++) {
394
                    dst = (float *)out->extended_data[c];
395
                    buf = (float *)s->buffer->extended_data[c];
396
397
                    for (n = 0; n < s->win_size; n++) {
398
                        dst[n] = buf[n] * factor;
399
                    }
400
                    memmove(buf, buf + s->win_size, s->win_size * 4);
401
                }
402
403
                ret = ff_filter_frame(outlink, out);
404
                if (ret < 0)
405
                    return ret;
406
            }
407
        }
408
    }
409
410
    s->start = start;
411
    s->end = end;
412
413
    return 0;
414
}
415
416
static int try_push_frames(AVFilterContext *ctx)
417
{
418
    SpectrumSynthContext *s = ctx->priv;
419
    int ret, x;
420
421
    if (!(s->magnitude && s->phase))
422
        return 0;
423
424
    switch (s->sliding) {
425
    case REPLACE:
426
        ret = try_push_frame(ctx, s->xpos);
427
        s->xpos++;
428
        if (s->xpos >= s->xend)
429
            s->xpos = 0;
430
        break;
431
    case SCROLL:
432
        s->xpos = s->xend - 1;
433
        ret = try_push_frame(ctx, s->xpos);
434
        break;
435
    case RSCROLL:
436
        s->xpos = 0;
437
        ret = try_push_frame(ctx, s->xpos);
438
        break;
439
    case FULLFRAME:
440
        for (x = 0; x < s->xend; x++) {
441
            ret = try_push_frame(ctx, x);
442
            if (ret < 0)
443
                break;
444
        }
445
        break;
446
    default:
447
        av_assert0(0);
448
    }
449
450
    av_frame_free(&s->magnitude);
451
    av_frame_free(&s->phase);
452
    return ret;
453
}
454
455
static int activate(AVFilterContext *ctx)
456
{
457
    SpectrumSynthContext *s = ctx->priv;
458
    AVFrame **staging[2] = { &s->magnitude, &s->phase };
459
    int64_t pts;
460
    int i, ret;
461
462
    FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
463
464
    for (i = 0; i < 2; i++) {
465
        if (*staging[i])
466
            continue;
467
        ret = ff_inlink_consume_frame(ctx->inputs[i], staging[i]);
468
        if (ret < 0)
469
            return ret;
470
        if (ret) {
471
            ff_filter_set_ready(ctx, 10);
472
            return try_push_frames(ctx);
473
        }
474
    }
475
476
    for (i = 0; i < 2; i++) {
477
        if (ff_inlink_acknowledge_status(ctx->inputs[i], &ret, &pts)) {
478
            ff_outlink_set_status(ctx->outputs[0], ret, pts);
479
            ff_inlink_set_status(ctx->inputs[1 - i], ret);
480
            return 0;
481
        }
482
    }
483
484
    if (ff_outlink_frame_wanted(ctx->outputs[0])) {
485
        for (i = 0; i < 2; i++) {
486
            if (!*staging[i])
487
                ff_inlink_request_frame(ctx->inputs[i]);
488
        }
489
    }
490
491
    return FFERROR_NOT_READY;
492
}
493
494
static av_cold void uninit(AVFilterContext *ctx)
495
{
496
    SpectrumSynthContext *s = ctx->priv;
497
    int i;
498
499
    av_frame_free(&s->magnitude);
500
    av_frame_free(&s->phase);
501
    av_frame_free(&s->buffer);
502
    av_fft_end(s->fft);
503
    if (s->fft_data) {
504
        for (i = 0; i < s->channels; i++)
505
            av_freep(&s->fft_data[i]);
506
    }
507
    av_freep(&s->fft_data);
508
    av_freep(&s->window_func_lut);
509
}
510
511
static const AVFilterPad spectrumsynth_inputs[] = {
512
    {
513
        .name         = "magnitude",
514
        .type         = AVMEDIA_TYPE_VIDEO,
515
    },
516
    {
517
        .name         = "phase",
518
        .type         = AVMEDIA_TYPE_VIDEO,
519
    },
520
    { NULL }
521
};
522
523
static const AVFilterPad spectrumsynth_outputs[] = {
524
    {
525
        .name          = "default",
526
        .type          = AVMEDIA_TYPE_AUDIO,
527
        .config_props  = config_output,
528
    },
529
    { NULL }
530
};
531
532
AVFilter ff_vaf_spectrumsynth = {
533
    .name          = "spectrumsynth",
534
    .description   = NULL_IF_CONFIG_SMALL("Convert input spectrum videos to audio output."),
535
    .uninit        = uninit,
536
    .query_formats = query_formats,
537
    .activate      = activate,
538
    .priv_size     = sizeof(SpectrumSynthContext),
539
    .inputs        = spectrumsynth_inputs,
540
    .outputs       = spectrumsynth_outputs,
541
    .priv_class    = &spectrumsynth_class,
542
};