GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavfilter/transform.c Lines: 0 84 0.0 %
Date: 2020-09-25 23:16:12 Branches: 0 106 0.0 %

Line Branch Exec Source
1
/*
2
 * Copyright (C) 2010 Georg Martius <georg.martius@web.de>
3
 * Copyright (C) 2010 Daniel G. Taylor <dan@programmer-art.org>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * transform input video
25
 */
26
27
#include "libavutil/common.h"
28
#include "libavutil/avassert.h"
29
30
#include "transform.h"
31
32
#define INTERPOLATE_METHOD(name) \
33
    static uint8_t name(float x, float y, const uint8_t *src, \
34
                        int width, int height, int stride, uint8_t def)
35
36
#define PIXEL(img, x, y, w, h, stride, def) \
37
    ((x) < 0 || (y) < 0) ? (def) : \
38
    (((x) >= (w) || (y) >= (h)) ? (def) : \
39
    img[(x) + (y) * (stride)])
40
41
/**
42
 * Nearest neighbor interpolation
43
 */
44
INTERPOLATE_METHOD(interpolate_nearest)
45
{
46
    return PIXEL(src, (int)(x + 0.5), (int)(y + 0.5), width, height, stride, def);
47
}
48
49
/**
50
 * Bilinear interpolation
51
 */
52
INTERPOLATE_METHOD(interpolate_bilinear)
53
{
54
    int x_c, x_f, y_c, y_f;
55
    int v1, v2, v3, v4;
56
57
    if (x < -1 || x > width || y < -1 || y > height) {
58
        return def;
59
    } else {
60
        x_f = (int)x;
61
        x_c = x_f + 1;
62
63
        y_f = (int)y;
64
        y_c = y_f + 1;
65
66
        v1 = PIXEL(src, x_c, y_c, width, height, stride, def);
67
        v2 = PIXEL(src, x_c, y_f, width, height, stride, def);
68
        v3 = PIXEL(src, x_f, y_c, width, height, stride, def);
69
        v4 = PIXEL(src, x_f, y_f, width, height, stride, def);
70
71
        return (v1*(x - x_f)*(y - y_f) + v2*((x - x_f)*(y_c - y)) +
72
                v3*(x_c - x)*(y - y_f) + v4*((x_c - x)*(y_c - y)));
73
    }
74
}
75
76
/**
77
 * Biquadratic interpolation
78
 */
79
INTERPOLATE_METHOD(interpolate_biquadratic)
80
{
81
    int     x_c, x_f, y_c, y_f;
82
    uint8_t v1,  v2,  v3,  v4;
83
    float   f1,  f2,  f3,  f4;
84
85
    if (x < - 1 || x > width || y < -1 || y > height)
86
        return def;
87
    else {
88
        x_f = (int)x;
89
        x_c = x_f + 1;
90
        y_f = (int)y;
91
        y_c = y_f + 1;
92
93
        v1 = PIXEL(src, x_c, y_c, width, height, stride, def);
94
        v2 = PIXEL(src, x_c, y_f, width, height, stride, def);
95
        v3 = PIXEL(src, x_f, y_c, width, height, stride, def);
96
        v4 = PIXEL(src, x_f, y_f, width, height, stride, def);
97
98
        f1 = 1 - sqrt((x_c - x) * (y_c - y));
99
        f2 = 1 - sqrt((x_c - x) * (y - y_f));
100
        f3 = 1 - sqrt((x - x_f) * (y_c - y));
101
        f4 = 1 - sqrt((x - x_f) * (y - y_f));
102
        return (v1 * f1 + v2 * f2 + v3 * f3 + v4 * f4) / (f1 + f2 + f3 + f4);
103
    }
104
}
105
106
void ff_get_matrix(
107
    float x_shift,
108
    float y_shift,
109
    float angle,
110
    float scale_x,
111
    float scale_y,
112
    float *matrix
113
) {
114
    matrix[0] = scale_x * cos(angle);
115
    matrix[1] = -sin(angle);
116
    matrix[2] = x_shift;
117
    matrix[3] = -matrix[1];
118
    matrix[4] = scale_y * cos(angle);
119
    matrix[5] = y_shift;
120
    matrix[6] = 0;
121
    matrix[7] = 0;
122
    matrix[8] = 1;
123
}
124
125
void avfilter_add_matrix(const float *m1, const float *m2, float *result)
126
{
127
    int i;
128
    for (i = 0; i < 9; i++)
129
        result[i] = m1[i] + m2[i];
130
}
131
132
void avfilter_sub_matrix(const float *m1, const float *m2, float *result)
133
{
134
    int i;
135
    for (i = 0; i < 9; i++)
136
        result[i] = m1[i] - m2[i];
137
}
138
139
void avfilter_mul_matrix(const float *m1, float scalar, float *result)
140
{
141
    int i;
142
    for (i = 0; i < 9; i++)
143
        result[i] = m1[i] * scalar;
144
}
145
146
int avfilter_transform(const uint8_t *src, uint8_t *dst,
147
                        int src_stride, int dst_stride,
148
                        int width, int height, const float *matrix,
149
                        enum InterpolateMethod interpolate,
150
                        enum FillMethod fill)
151
{
152
    int x, y;
153
    float x_s, y_s;
154
    uint8_t def = 0;
155
    uint8_t (*func)(float, float, const uint8_t *, int, int, int, uint8_t) = NULL;
156
157
    switch(interpolate) {
158
        case INTERPOLATE_NEAREST:
159
            func = interpolate_nearest;
160
            break;
161
        case INTERPOLATE_BILINEAR:
162
            func = interpolate_bilinear;
163
            break;
164
        case INTERPOLATE_BIQUADRATIC:
165
            func = interpolate_biquadratic;
166
            break;
167
        default:
168
            return AVERROR(EINVAL);
169
    }
170
171
    for (y = 0; y < height; y++) {
172
        for(x = 0; x < width; x++) {
173
            x_s = x * matrix[0] + y * matrix[1] + matrix[2];
174
            y_s = x * matrix[3] + y * matrix[4] + matrix[5];
175
176
            switch(fill) {
177
                case FILL_ORIGINAL:
178
                    def = src[y * src_stride + x];
179
                    break;
180
                case FILL_CLAMP:
181
                    y_s = av_clipf(y_s, 0, height - 1);
182
                    x_s = av_clipf(x_s, 0, width - 1);
183
                    def = src[(int)y_s * src_stride + (int)x_s];
184
                    break;
185
                case FILL_MIRROR:
186
                    x_s = avpriv_mirror(x_s,  width-1);
187
                    y_s = avpriv_mirror(y_s, height-1);
188
189
                    av_assert2(x_s >= 0 && y_s >= 0);
190
                    av_assert2(x_s < width && y_s < height);
191
                    def = src[(int)y_s * src_stride + (int)x_s];
192
            }
193
194
            dst[y * dst_stride + x] = func(x_s, y_s, src, width, height, src_stride, def);
195
        }
196
    }
197
    return 0;
198
}