GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavfilter/f_ebur128.c Lines: 184 365 50.4 %
Date: 2020-09-25 23:16:12 Branches: 83 242 34.3 %

Line Branch Exec Source
1
/*
2
 * Copyright (c) 2012 Clément Bœsch
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20
21
/**
22
 * @file
23
 * EBU R.128 implementation
24
 * @see http://tech.ebu.ch/loudness
25
 * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
26
 * @todo implement start/stop/reset through filter command injection
27
 * @todo support other frequencies to avoid resampling
28
 */
29
30
#include <math.h>
31
32
#include "libavutil/avassert.h"
33
#include "libavutil/avstring.h"
34
#include "libavutil/channel_layout.h"
35
#include "libavutil/dict.h"
36
#include "libavutil/ffmath.h"
37
#include "libavutil/xga_font_data.h"
38
#include "libavutil/opt.h"
39
#include "libavutil/timestamp.h"
40
#include "libswresample/swresample.h"
41
#include "audio.h"
42
#include "avfilter.h"
43
#include "formats.h"
44
#include "internal.h"
45
46
#define MAX_CHANNELS 63
47
48
/* pre-filter coefficients */
49
#define PRE_B0  1.53512485958697
50
#define PRE_B1 -2.69169618940638
51
#define PRE_B2  1.19839281085285
52
#define PRE_A1 -1.69065929318241
53
#define PRE_A2  0.73248077421585
54
55
/* RLB-filter coefficients */
56
#define RLB_B0  1.0
57
#define RLB_B1 -2.0
58
#define RLB_B2  1.0
59
#define RLB_A1 -1.99004745483398
60
#define RLB_A2  0.99007225036621
61
62
#define ABS_THRES    -70            ///< silence gate: we discard anything below this absolute (LUFS) threshold
63
#define ABS_UP_THRES  10            ///< upper loud limit to consider (ABS_THRES being the minimum)
64
#define HIST_GRAIN   100            ///< defines histogram precision
65
#define HIST_SIZE  ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
66
67
/**
68
 * A histogram is an array of HIST_SIZE hist_entry storing all the energies
69
 * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
70
 * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
71
 * This fixed-size system avoids the need of a list of energies growing
72
 * infinitely over the time and is thus more scalable.
73
 */
74
struct hist_entry {
75
    int count;                      ///< how many times the corresponding value occurred
76
    double energy;                  ///< E = 10^((L + 0.691) / 10)
77
    double loudness;                ///< L = -0.691 + 10 * log10(E)
78
};
79
80
struct integrator {
81
    double *cache[MAX_CHANNELS];    ///< window of filtered samples (N ms)
82
    int cache_pos;                  ///< focus on the last added bin in the cache array
83
    double sum[MAX_CHANNELS];       ///< sum of the last N ms filtered samples (cache content)
84
    int filled;                     ///< 1 if the cache is completely filled, 0 otherwise
85
    double rel_threshold;           ///< relative threshold
86
    double sum_kept_powers;         ///< sum of the powers (weighted sums) above absolute threshold
87
    int nb_kept_powers;             ///< number of sum above absolute threshold
88
    struct hist_entry *histogram;   ///< histogram of the powers, used to compute LRA and I
89
};
90
91
struct rect { int x, y, w, h; };
92
93
typedef struct EBUR128Context {
94
    const AVClass *class;           ///< AVClass context for log and options purpose
95
96
    /* peak metering */
97
    int peak_mode;                  ///< enabled peak modes
98
    double *true_peaks;             ///< true peaks per channel
99
    double *sample_peaks;           ///< sample peaks per channel
100
    double *true_peaks_per_frame;   ///< true peaks in a frame per channel
101
#if CONFIG_SWRESAMPLE
102
    SwrContext *swr_ctx;            ///< over-sampling context for true peak metering
103
    double *swr_buf;                ///< resampled audio data for true peak metering
104
    int swr_linesize;
105
#endif
106
107
    /* video  */
108
    int do_video;                   ///< 1 if video output enabled, 0 otherwise
109
    int w, h;                       ///< size of the video output
110
    struct rect text;               ///< rectangle for the LU legend on the left
111
    struct rect graph;              ///< rectangle for the main graph in the center
112
    struct rect gauge;              ///< rectangle for the gauge on the right
113
    AVFrame *outpicref;             ///< output picture reference, updated regularly
114
    int meter;                      ///< select a EBU mode between +9 and +18
115
    int scale_range;                ///< the range of LU values according to the meter
116
    int y_zero_lu;                  ///< the y value (pixel position) for 0 LU
117
    int y_opt_max;                  ///< the y value (pixel position) for 1 LU
118
    int y_opt_min;                  ///< the y value (pixel position) for -1 LU
119
    int *y_line_ref;                ///< y reference values for drawing the LU lines in the graph and the gauge
120
121
    /* audio */
122
    int nb_channels;                ///< number of channels in the input
123
    double *ch_weighting;           ///< channel weighting mapping
124
    int sample_count;               ///< sample count used for refresh frequency, reset at refresh
125
126
    /* Filter caches.
127
     * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
128
    double x[MAX_CHANNELS * 3];     ///< 3 input samples cache for each channel
129
    double y[MAX_CHANNELS * 3];     ///< 3 pre-filter samples cache for each channel
130
    double z[MAX_CHANNELS * 3];     ///< 3 RLB-filter samples cache for each channel
131
132
#define I400_BINS  (48000 * 4 / 10)
133
#define I3000_BINS (48000 * 3)
134
    struct integrator i400;         ///< 400ms integrator, used for Momentary loudness  (M), and Integrated loudness (I)
135
    struct integrator i3000;        ///<    3s integrator, used for Short term loudness (S), and Loudness Range      (LRA)
136
137
    /* I and LRA specific */
138
    double integrated_loudness;     ///< integrated loudness in LUFS (I)
139
    double loudness_range;          ///< loudness range in LU (LRA)
140
    double lra_low, lra_high;       ///< low and high LRA values
141
142
    /* misc */
143
    int loglevel;                   ///< log level for frame logging
144
    int metadata;                   ///< whether or not to inject loudness results in frames
145
    int dual_mono;                  ///< whether or not to treat single channel input files as dual-mono
146
    double pan_law;                 ///< pan law value used to calculate dual-mono measurements
147
    int target;                     ///< target level in LUFS used to set relative zero LU in visualization
148
    int gauge_type;                 ///< whether gauge shows momentary or short
149
    int scale;                      ///< display scale type of statistics
150
} EBUR128Context;
151
152
enum {
153
    PEAK_MODE_NONE          = 0,
154
    PEAK_MODE_SAMPLES_PEAKS = 1<<1,
155
    PEAK_MODE_TRUE_PEAKS    = 1<<2,
156
};
157
158
enum {
159
    GAUGE_TYPE_MOMENTARY = 0,
160
    GAUGE_TYPE_SHORTTERM = 1,
161
};
162
163
enum {
164
    SCALE_TYPE_ABSOLUTE = 0,
165
    SCALE_TYPE_RELATIVE = 1,
166
};
167
168
#define OFFSET(x) offsetof(EBUR128Context, x)
169
#define A AV_OPT_FLAG_AUDIO_PARAM
170
#define V AV_OPT_FLAG_VIDEO_PARAM
171
#define F AV_OPT_FLAG_FILTERING_PARAM
172
static const AVOption ebur128_options[] = {
173
    { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, V|F },
174
    { "size",  "set video size",   OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
175
    { "meter", "set scale meter (+9 to +18)",  OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
176
    { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1},   INT_MIN, INT_MAX, A|V|F, "level" },
177
        { "info",    "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO},    INT_MIN, INT_MAX, A|V|F, "level" },
178
        { "verbose", "verbose logging level",     0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, "level" },
179
    { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|V|F },
180
    { "peak", "set peak mode", OFFSET(peak_mode), AV_OPT_TYPE_FLAGS, {.i64 = PEAK_MODE_NONE}, 0, INT_MAX, A|F, "mode" },
181
        { "none",   "disable any peak mode",   0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_NONE},          INT_MIN, INT_MAX, A|F, "mode" },
182
        { "sample", "enable peak-sample mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_SAMPLES_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
183
        { "true",   "enable true-peak mode",   0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_TRUE_PEAKS},    INT_MIN, INT_MAX, A|F, "mode" },
184
    { "dualmono", "treat mono input files as dual-mono", OFFSET(dual_mono), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|F },
185
    { "panlaw", "set a specific pan law for dual-mono files", OFFSET(pan_law), AV_OPT_TYPE_DOUBLE, {.dbl = -3.01029995663978}, -10.0, 0.0, A|F },
186
    { "target", "set a specific target level in LUFS (-23 to 0)", OFFSET(target), AV_OPT_TYPE_INT, {.i64 = -23}, -23, 0, V|F },
187
    { "gauge", "set gauge display type", OFFSET(gauge_type), AV_OPT_TYPE_INT, {.i64 = 0 }, GAUGE_TYPE_MOMENTARY, GAUGE_TYPE_SHORTTERM, V|F, "gaugetype" },
188
        { "momentary",   "display momentary value",   0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, "gaugetype" },
189
        { "m",           "display momentary value",   0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, "gaugetype" },
190
        { "shortterm",   "display short-term value",  0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, "gaugetype" },
191
        { "s",           "display short-term value",  0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, "gaugetype" },
192
    { "scale", "sets display method for the stats", OFFSET(scale), AV_OPT_TYPE_INT, {.i64 = 0}, SCALE_TYPE_ABSOLUTE, SCALE_TYPE_RELATIVE, V|F, "scaletype" },
193
        { "absolute",   "display absolute values (LUFS)",          0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, "scaletype" },
194
        { "LUFS",       "display absolute values (LUFS)",          0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, "scaletype" },
195
        { "relative",   "display values relative to target (LU)",  0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, "scaletype" },
196
        { "LU",         "display values relative to target (LU)",  0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, "scaletype" },
197
    { NULL },
198
};
199
200
AVFILTER_DEFINE_CLASS(ebur128);
201
202
static const uint8_t graph_colors[] = {
203
    0xdd, 0x66, 0x66,   // value above 1LU non reached below -1LU (impossible)
204
    0x66, 0x66, 0xdd,   // value below 1LU non reached below -1LU
205
    0x96, 0x33, 0x33,   // value above 1LU reached below -1LU (impossible)
206
    0x33, 0x33, 0x96,   // value below 1LU reached below -1LU
207
    0xdd, 0x96, 0x96,   // value above 1LU line non reached below -1LU (impossible)
208
    0x96, 0x96, 0xdd,   // value below 1LU line non reached below -1LU
209
    0xdd, 0x33, 0x33,   // value above 1LU line reached below -1LU (impossible)
210
    0x33, 0x33, 0xdd,   // value below 1LU line reached below -1LU
211
    0xdd, 0x66, 0x66,   // value above 1LU non reached above -1LU
212
    0x66, 0xdd, 0x66,   // value below 1LU non reached above -1LU
213
    0x96, 0x33, 0x33,   // value above 1LU reached above -1LU
214
    0x33, 0x96, 0x33,   // value below 1LU reached above -1LU
215
    0xdd, 0x96, 0x96,   // value above 1LU line non reached above -1LU
216
    0x96, 0xdd, 0x96,   // value below 1LU line non reached above -1LU
217
    0xdd, 0x33, 0x33,   // value above 1LU line reached above -1LU
218
    0x33, 0xdd, 0x33,   // value below 1LU line reached above -1LU
219
};
220
221
static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
222
{
223
    const int above_opt_max = y > ebur128->y_opt_max;
224
    const int below_opt_min = y < ebur128->y_opt_min;
225
    const int reached = y >= v;
226
    const int line    = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
227
    const int colorid = 8*below_opt_min+ 4*line + 2*reached + above_opt_max;
228
    return graph_colors + 3*colorid;
229
}
230
231
static inline int lu_to_y(const EBUR128Context *ebur128, double v)
232
{
233
    v += 2 * ebur128->meter;                            // make it in range [0;...]
234
    v  = av_clipf(v, 0, ebur128->scale_range);          // make sure it's in the graph scale
235
    v  = ebur128->scale_range - v;                      // invert value (y=0 is on top)
236
    return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
237
}
238
239
#define FONT8   0
240
#define FONT16  1
241
242
static const uint8_t font_colors[] = {
243
    0xdd, 0xdd, 0x00,
244
    0x00, 0x96, 0x96,
245
};
246
247
static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
248
{
249
    int i;
250
    char buf[128] = {0};
251
    const uint8_t *font;
252
    int font_height;
253
    va_list vl;
254
255
    if      (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
256
    else if (ftid == FONT8)  font = avpriv_cga_font,   font_height =  8;
257
    else return;
258
259
    va_start(vl, fmt);
260
    vsnprintf(buf, sizeof(buf), fmt, vl);
261
    va_end(vl);
262
263
    for (i = 0; buf[i]; i++) {
264
        int char_y, mask;
265
        uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
266
267
        for (char_y = 0; char_y < font_height; char_y++) {
268
            for (mask = 0x80; mask; mask >>= 1) {
269
                if (font[buf[i] * font_height + char_y] & mask)
270
                    memcpy(p, color, 3);
271
                else
272
                    memcpy(p, "\x00\x00\x00", 3);
273
                p += 3;
274
            }
275
            p += pic->linesize[0] - 8*3;
276
        }
277
    }
278
}
279
280
static void drawline(AVFrame *pic, int x, int y, int len, int step)
281
{
282
    int i;
283
    uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
284
285
    for (i = 0; i < len; i++) {
286
        memcpy(p, "\x00\xff\x00", 3);
287
        p += step;
288
    }
289
}
290
291
static int config_video_output(AVFilterLink *outlink)
292
{
293
    int i, x, y;
294
    uint8_t *p;
295
    AVFilterContext *ctx = outlink->src;
296
    EBUR128Context *ebur128 = ctx->priv;
297
    AVFrame *outpicref;
298
299
    /* check if there is enough space to represent everything decently */
300
    if (ebur128->w < 640 || ebur128->h < 480) {
301
        av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
302
               "minimum size is 640x480\n", ebur128->w, ebur128->h);
303
        return AVERROR(EINVAL);
304
    }
305
    outlink->w = ebur128->w;
306
    outlink->h = ebur128->h;
307
    outlink->sample_aspect_ratio = (AVRational){1,1};
308
309
#define PAD 8
310
311
    /* configure text area position and size */
312
    ebur128->text.x  = PAD;
313
    ebur128->text.y  = 40;
314
    ebur128->text.w  = 3 * 8;   // 3 characters
315
    ebur128->text.h  = ebur128->h - PAD - ebur128->text.y;
316
317
    /* configure gauge position and size */
318
    ebur128->gauge.w = 20;
319
    ebur128->gauge.h = ebur128->text.h;
320
    ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
321
    ebur128->gauge.y = ebur128->text.y;
322
323
    /* configure graph position and size */
324
    ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
325
    ebur128->graph.y = ebur128->gauge.y;
326
    ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
327
    ebur128->graph.h = ebur128->gauge.h;
328
329
    /* graph and gauge share the LU-to-pixel code */
330
    av_assert0(ebur128->graph.h == ebur128->gauge.h);
331
332
    /* prepare the initial picref buffer */
333
    av_frame_free(&ebur128->outpicref);
334
    ebur128->outpicref = outpicref =
335
        ff_get_video_buffer(outlink, outlink->w, outlink->h);
336
    if (!outpicref)
337
        return AVERROR(ENOMEM);
338
    outpicref->sample_aspect_ratio = (AVRational){1,1};
339
340
    /* init y references values (to draw LU lines) */
341
    ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
342
    if (!ebur128->y_line_ref)
343
        return AVERROR(ENOMEM);
344
345
    /* black background */
346
    memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]);
347
348
    /* draw LU legends */
349
    drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
350
    for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
351
        y = lu_to_y(ebur128, i);
352
        x = PAD + (i < 10 && i > -10) * 8;
353
        ebur128->y_line_ref[y] = i;
354
        y -= 4; // -4 to center vertically
355
        drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
356
                 "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
357
    }
358
359
    /* draw graph */
360
    ebur128->y_zero_lu = lu_to_y(ebur128, 0);
361
    ebur128->y_opt_max = lu_to_y(ebur128, 1);
362
    ebur128->y_opt_min = lu_to_y(ebur128, -1);
363
    p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
364
                           + ebur128->graph.x * 3;
365
    for (y = 0; y < ebur128->graph.h; y++) {
366
        const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
367
368
        for (x = 0; x < ebur128->graph.w; x++)
369
            memcpy(p + x*3, c, 3);
370
        p += outpicref->linesize[0];
371
    }
372
373
    /* draw fancy rectangles around the graph and the gauge */
374
#define DRAW_RECT(r) do { \
375
    drawline(outpicref, r.x,       r.y - 1,   r.w, 3); \
376
    drawline(outpicref, r.x,       r.y + r.h, r.w, 3); \
377
    drawline(outpicref, r.x - 1,   r.y,       r.h, outpicref->linesize[0]); \
378
    drawline(outpicref, r.x + r.w, r.y,       r.h, outpicref->linesize[0]); \
379
} while (0)
380
    DRAW_RECT(ebur128->graph);
381
    DRAW_RECT(ebur128->gauge);
382
383
    return 0;
384
}
385
386
1
static int config_audio_input(AVFilterLink *inlink)
387
{
388
1
    AVFilterContext *ctx = inlink->dst;
389
1
    EBUR128Context *ebur128 = ctx->priv;
390
391
    /* Force 100ms framing in case of metadata injection: the frames must have
392
     * a granularity of the window overlap to be accurately exploited.
393
     * As for the true peaks mode, it just simplifies the resampling buffer
394
     * allocation and the lookup in it (since sample buffers differ in size, it
395
     * can be more complex to integrate in the one-sample loop of
396
     * filter_frame()). */
397

1
    if (ebur128->metadata || (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS))
398
1
        inlink->min_samples =
399
1
        inlink->max_samples =
400
1
        inlink->partial_buf_size = inlink->sample_rate / 10;
401
1
    return 0;
402
}
403
404
1
static int config_audio_output(AVFilterLink *outlink)
405
{
406
    int i;
407
1
    AVFilterContext *ctx = outlink->src;
408
1
    EBUR128Context *ebur128 = ctx->priv;
409
1
    const int nb_channels = av_get_channel_layout_nb_channels(outlink->channel_layout);
410
411
#define BACK_MASK (AV_CH_BACK_LEFT    |AV_CH_BACK_CENTER    |AV_CH_BACK_RIGHT| \
412
                   AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
413
                   AV_CH_SIDE_LEFT                          |AV_CH_SIDE_RIGHT| \
414
                   AV_CH_SURROUND_DIRECT_LEFT               |AV_CH_SURROUND_DIRECT_RIGHT)
415
416
1
    ebur128->nb_channels  = nb_channels;
417
1
    ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
418
1
    if (!ebur128->ch_weighting)
419
        return AVERROR(ENOMEM);
420
421
3
    for (i = 0; i < nb_channels; i++) {
422
        /* channel weighting */
423
2
        const uint64_t chl = av_channel_layout_extract_channel(outlink->channel_layout, i);
424
2
        if (chl & (AV_CH_LOW_FREQUENCY|AV_CH_LOW_FREQUENCY_2)) {
425
            ebur128->ch_weighting[i] = 0;
426
2
        } else if (chl & BACK_MASK) {
427
            ebur128->ch_weighting[i] = 1.41;
428
        } else {
429
2
            ebur128->ch_weighting[i] = 1.0;
430
        }
431
432
2
        if (!ebur128->ch_weighting[i])
433
            continue;
434
435
        /* bins buffer for the two integration window (400ms and 3s) */
436
2
        ebur128->i400.cache[i]  = av_calloc(I400_BINS,  sizeof(*ebur128->i400.cache[0]));
437
2
        ebur128->i3000.cache[i] = av_calloc(I3000_BINS, sizeof(*ebur128->i3000.cache[0]));
438

2
        if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
439
            return AVERROR(ENOMEM);
440
    }
441
442
#if CONFIG_SWRESAMPLE
443
1
    if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
444
        int ret;
445
446
        ebur128->swr_buf    = av_malloc_array(nb_channels, 19200 * sizeof(double));
447
        ebur128->true_peaks = av_calloc(nb_channels, sizeof(*ebur128->true_peaks));
448
        ebur128->true_peaks_per_frame = av_calloc(nb_channels, sizeof(*ebur128->true_peaks_per_frame));
449
        ebur128->swr_ctx    = swr_alloc();
450
        if (!ebur128->swr_buf || !ebur128->true_peaks ||
451
            !ebur128->true_peaks_per_frame || !ebur128->swr_ctx)
452
            return AVERROR(ENOMEM);
453
454
        av_opt_set_int(ebur128->swr_ctx, "in_channel_layout",    outlink->channel_layout, 0);
455
        av_opt_set_int(ebur128->swr_ctx, "in_sample_rate",       outlink->sample_rate, 0);
456
        av_opt_set_sample_fmt(ebur128->swr_ctx, "in_sample_fmt", outlink->format, 0);
457
458
        av_opt_set_int(ebur128->swr_ctx, "out_channel_layout",    outlink->channel_layout, 0);
459
        av_opt_set_int(ebur128->swr_ctx, "out_sample_rate",       192000, 0);
460
        av_opt_set_sample_fmt(ebur128->swr_ctx, "out_sample_fmt", outlink->format, 0);
461
462
        ret = swr_init(ebur128->swr_ctx);
463
        if (ret < 0)
464
            return ret;
465
    }
466
#endif
467
468
1
    if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) {
469
        ebur128->sample_peaks = av_calloc(nb_channels, sizeof(*ebur128->sample_peaks));
470
        if (!ebur128->sample_peaks)
471
            return AVERROR(ENOMEM);
472
    }
473
474
1
    return 0;
475
}
476
477
#define ENERGY(loudness) (ff_exp10(((loudness) + 0.691) / 10.))
478
#define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
479
#define DBFS(energy) (20 * log10(energy))
480
481
2
static struct hist_entry *get_histogram(void)
482
{
483
    int i;
484
2
    struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
485
486
2
    if (!h)
487
        return NULL;
488
16004
    for (i = 0; i < HIST_SIZE; i++) {
489
16002
        h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
490
16002
        h[i].energy   = ENERGY(h[i].loudness);
491
    }
492
2
    return h;
493
}
494
495
1
static av_cold int init(AVFilterContext *ctx)
496
{
497
1
    EBUR128Context *ebur128 = ctx->priv;
498
    AVFilterPad pad;
499
    int ret;
500
501
1
    if (ebur128->loglevel != AV_LOG_INFO &&
502
1
        ebur128->loglevel != AV_LOG_VERBOSE) {
503

1
        if (ebur128->do_video || ebur128->metadata)
504
1
            ebur128->loglevel = AV_LOG_VERBOSE;
505
        else
506
            ebur128->loglevel = AV_LOG_INFO;
507
    }
508
509
    if (!CONFIG_SWRESAMPLE && (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) {
510
        av_log(ctx, AV_LOG_ERROR,
511
               "True-peak mode requires libswresample to be performed\n");
512
        return AVERROR(EINVAL);
513
    }
514
515
    // if meter is  +9 scale, scale range is from -18 LU to  +9 LU (or 3*9)
516
    // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
517
1
    ebur128->scale_range = 3 * ebur128->meter;
518
519
1
    ebur128->i400.histogram  = get_histogram();
520
1
    ebur128->i3000.histogram = get_histogram();
521

1
    if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
522
        return AVERROR(ENOMEM);
523
524
1
    ebur128->integrated_loudness = ABS_THRES;
525
1
    ebur128->loudness_range = 0;
526
527
    /* insert output pads */
528
1
    if (ebur128->do_video) {
529
        pad = (AVFilterPad){
530
            .name         = "out0",
531
            .type         = AVMEDIA_TYPE_VIDEO,
532
            .config_props = config_video_output,
533
        };
534
        ret = ff_insert_outpad(ctx, 0, &pad);
535
        if (ret < 0)
536
            return ret;
537
    }
538
1
    pad = (AVFilterPad){
539
1
        .name         = ebur128->do_video ? "out1" : "out0",
540
        .type         = AVMEDIA_TYPE_AUDIO,
541
        .config_props = config_audio_output,
542
    };
543
1
    ret = ff_insert_outpad(ctx, ebur128->do_video, &pad);
544
1
    if (ret < 0)
545
        return ret;
546
547
    /* summary */
548
1
    av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
549
550
1
    return 0;
551
}
552
553
#define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
554
555
/* loudness and power should be set such as loudness = -0.691 +
556
 * 10*log10(power), we just avoid doing that calculus two times */
557
526
static int gate_update(struct integrator *integ, double power,
558
                       double loudness, int gate_thres)
559
{
560
    int ipower;
561
    double relative_threshold;
562
    int gate_hist_pos;
563
564
    /* update powers histograms by incrementing current power count */
565
526
    ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
566
526
    integ->histogram[ipower].count++;
567
568
    /* compute relative threshold and get its position in the histogram */
569
526
    integ->sum_kept_powers += power;
570
526
    integ->nb_kept_powers++;
571
526
    relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
572
526
    if (!relative_threshold)
573
        relative_threshold = 1e-12;
574
526
    integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
575
526
    gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
576
577
526
    return gate_hist_pos;
578
}
579
580
280
static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
581
{
582
    int i, ch, idx_insample;
583
280
    AVFilterContext *ctx = inlink->dst;
584
280
    EBUR128Context *ebur128 = ctx->priv;
585
280
    const int nb_channels = ebur128->nb_channels;
586
280
    const int nb_samples  = insamples->nb_samples;
587
280
    const double *samples = (double *)insamples->data[0];
588
280
    AVFrame *pic = ebur128->outpicref;
589
590
#if CONFIG_SWRESAMPLE
591
280
    if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
592
        const double *swr_samples = ebur128->swr_buf;
593
        int ret = swr_convert(ebur128->swr_ctx, (uint8_t**)&ebur128->swr_buf, 19200,
594
                              (const uint8_t **)insamples->data, nb_samples);
595
        if (ret < 0)
596
            return ret;
597
        for (ch = 0; ch < nb_channels; ch++)
598
            ebur128->true_peaks_per_frame[ch] = 0.0;
599
        for (idx_insample = 0; idx_insample < ret; idx_insample++) {
600
            for (ch = 0; ch < nb_channels; ch++) {
601
                ebur128->true_peaks[ch] = FFMAX(ebur128->true_peaks[ch], fabs(*swr_samples));
602
                ebur128->true_peaks_per_frame[ch] = FFMAX(ebur128->true_peaks_per_frame[ch],
603
                                                          fabs(*swr_samples));
604
                swr_samples++;
605
            }
606
        }
607
    }
608
#endif
609
610
1344278
    for (idx_insample = 0; idx_insample < nb_samples; idx_insample++) {
611
1343998
        const int bin_id_400  = ebur128->i400.cache_pos;
612
1343998
        const int bin_id_3000 = ebur128->i3000.cache_pos;
613
614
#define MOVE_TO_NEXT_CACHED_ENTRY(time) do {                \
615
    ebur128->i##time.cache_pos++;                           \
616
    if (ebur128->i##time.cache_pos == I##time##_BINS) {     \
617
        ebur128->i##time.filled    = 1;                     \
618
        ebur128->i##time.cache_pos = 0;                     \
619
    }                                                       \
620
} while (0)
621
622
1343998
        MOVE_TO_NEXT_CACHED_ENTRY(400);
623
1343998
        MOVE_TO_NEXT_CACHED_ENTRY(3000);
624
625
4031994
        for (ch = 0; ch < nb_channels; ch++) {
626
            double bin;
627
628
2687996
            if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS)
629
                ebur128->sample_peaks[ch] = FFMAX(ebur128->sample_peaks[ch], fabs(*samples));
630
631
2687996
            ebur128->x[ch * 3] = *samples++; // set X[i]
632
633
2687996
            if (!ebur128->ch_weighting[ch])
634
                continue;
635
636
            /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
637
#define FILTER(Y, X, name) do {                                                 \
638
            double *dst = ebur128->Y + ch*3;                                    \
639
            double *src = ebur128->X + ch*3;                                    \
640
            dst[2] = dst[1];                                                    \
641
            dst[1] = dst[0];                                                    \
642
            dst[0] = src[0]*name##_B0 + src[1]*name##_B1 + src[2]*name##_B2     \
643
                                      - dst[1]*name##_A1 - dst[2]*name##_A2;    \
644
} while (0)
645
646
            // TODO: merge both filters in one?
647
2687996
            FILTER(y, x, PRE);  // apply pre-filter
648
2687996
            ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
649
2687996
            ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3    ];
650
2687996
            FILTER(z, y, RLB);  // apply RLB-filter
651
652
2687996
            bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
653
654
            /* add the new value, and limit the sum to the cache size (400ms or 3s)
655
             * by removing the oldest one */
656
2687996
            ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
657
2687996
            ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
658
659
            /* override old cache entry with the new value */
660
2687996
            ebur128->i400.cache [ch][bin_id_400 ] = bin;
661
2687996
            ebur128->i3000.cache[ch][bin_id_3000] = bin;
662
        }
663
664
        /* For integrated loudness, gating blocks are 400ms long with 75%
665
         * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
666
         * (4800 samples at 48kHz). */
667
1343998
        if (++ebur128->sample_count == 4800) {
668
            double loudness_400, loudness_3000;
669
279
            double power_400 = 1e-12, power_3000 = 1e-12;
670
279
            AVFilterLink *outlink = ctx->outputs[0];
671
279
            const int64_t pts = insamples->pts +
672
279
                av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
673
                             outlink->time_base);
674
675
279
            ebur128->sample_count = 0;
676
677
#define COMPUTE_LOUDNESS(m, time) do {                                              \
678
    if (ebur128->i##time.filled) {                                                  \
679
        /* weighting sum of the last <time> ms */                                   \
680
        for (ch = 0; ch < nb_channels; ch++)                                        \
681
            power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch];   \
682
        power_##time /= I##time##_BINS;                                             \
683
    }                                                                               \
684
    loudness_##time = LOUDNESS(power_##time);                                       \
685
} while (0)
686
687

831
            COMPUTE_LOUDNESS(M,  400);
688

779
            COMPUTE_LOUDNESS(S, 3000);
689
690
            /* Integrated loudness */
691
#define I_GATE_THRES -10  // initially defined to -8 LU in the first EBU standard
692
693
279
            if (loudness_400 >= ABS_THRES) {
694
276
                double integrated_sum = 0;
695
276
                int nb_integrated = 0;
696
276
                int gate_hist_pos = gate_update(&ebur128->i400, power_400,
697
                                                loudness_400, I_GATE_THRES);
698
699
                /* compute integrated loudness by summing the histogram values
700
                 * above the relative threshold */
701
1217024
                for (i = gate_hist_pos; i < HIST_SIZE; i++) {
702
1216748
                    const int nb_v = ebur128->i400.histogram[i].count;
703
1216748
                    nb_integrated  += nb_v;
704
1216748
                    integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
705
                }
706
276
                if (nb_integrated) {
707
276
                    ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
708
                    /* dual-mono correction */
709

276
                    if (nb_channels == 1 && ebur128->dual_mono) {
710
                        ebur128->integrated_loudness -= ebur128->pan_law;
711
                    }
712
                }
713
            }
714
715
            /* LRA */
716
#define LRA_GATE_THRES -20
717
#define LRA_LOWER_PRC   10
718
#define LRA_HIGHER_PRC  95
719
720
            /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
721
             * specs is ">" */
722
279
            if (loudness_3000 >= ABS_THRES) {
723
250
                int nb_powers = 0;
724
250
                int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
725
                                                loudness_3000, LRA_GATE_THRES);
726
727
1364049
                for (i = gate_hist_pos; i < HIST_SIZE; i++)
728
1363799
                    nb_powers += ebur128->i3000.histogram[i].count;
729
250
                if (nb_powers) {
730
                    int n, nb_pow;
731
732
                    /* get lower loudness to consider */
733
250
                    n = 0;
734
250
                    nb_pow = LRA_LOWER_PRC  * nb_powers / 100. + 0.5;
735
447747
                    for (i = gate_hist_pos; i < HIST_SIZE; i++) {
736
447747
                        n += ebur128->i3000.histogram[i].count;
737
447747
                        if (n >= nb_pow) {
738
250
                            ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
739
250
                            break;
740
                        }
741
                    }
742
743
                    /* get higher loudness to consider */
744
250
                    n = nb_powers;
745
250
                    nb_pow = LRA_HIGHER_PRC * nb_powers / 100. + 0.5;
746
824419
                    for (i = HIST_SIZE - 1; i >= 0; i--) {
747
824419
                        n -= ebur128->i3000.histogram[i].count;
748
824419
                        if (n < nb_pow) {
749
250
                            ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
750
250
                            break;
751
                        }
752
                    }
753
754
                    // XXX: show low & high on the graph?
755
250
                    ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
756
                }
757
            }
758
759
            /* dual-mono correction */
760

279
            if (nb_channels == 1 && ebur128->dual_mono) {
761
                loudness_400 -= ebur128->pan_law;
762
                loudness_3000 -= ebur128->pan_law;
763
            }
764
765
#define LOG_FMT "TARGET:%d LUFS    M:%6.1f S:%6.1f     I:%6.1f %s       LRA:%6.1f LU"
766
767
            /* push one video frame */
768
279
            if (ebur128->do_video) {
769
                AVFrame *clone;
770
                int x, y, ret;
771
                uint8_t *p;
772
                double gauge_value;
773
                int y_loudness_lu_graph, y_loudness_lu_gauge;
774
775
                if (ebur128->gauge_type == GAUGE_TYPE_MOMENTARY) {
776
                    gauge_value = loudness_400 - ebur128->target;
777
                } else {
778
                    gauge_value = loudness_3000 - ebur128->target;
779
                }
780
781
                y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 - ebur128->target);
782
                y_loudness_lu_gauge = lu_to_y(ebur128, gauge_value);
783
784
                /* draw the graph using the short-term loudness */
785
                p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
786
                for (y = 0; y < ebur128->graph.h; y++) {
787
                    const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
788
789
                    memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
790
                    memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
791
                    p += pic->linesize[0];
792
                }
793
794
                /* draw the gauge using either momentary or short-term loudness */
795
                p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
796
                for (y = 0; y < ebur128->gauge.h; y++) {
797
                    const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
798
799
                    for (x = 0; x < ebur128->gauge.w; x++)
800
                        memcpy(p + x*3, c, 3);
801
                    p += pic->linesize[0];
802
                }
803
804
                /* draw textual info */
805
                if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
806
                    drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
807
                             LOG_FMT "     ", // padding to erase trailing characters
808
                             ebur128->target, loudness_400, loudness_3000,
809
                             ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
810
                } else {
811
                    drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
812
                             LOG_FMT "     ", // padding to erase trailing characters
813
                             ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
814
                             ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
815
                }
816
817
                /* set pts and push frame */
818
                pic->pts = pts;
819
                clone = av_frame_clone(pic);
820
                if (!clone)
821
                    return AVERROR(ENOMEM);
822
                ret = ff_filter_frame(outlink, clone);
823
                if (ret < 0)
824
                    return ret;
825
            }
826
827
279
            if (ebur128->metadata) { /* happens only once per filter_frame call */
828
                char metabuf[128];
829
#define META_PREFIX "lavfi.r128."
830
831
#define SET_META(name, var) do {                                            \
832
    snprintf(metabuf, sizeof(metabuf), "%.3f", var);                        \
833
    av_dict_set(&insamples->metadata, name, metabuf, 0);                    \
834
} while (0)
835
836
#define SET_META_PEAK(name, ptype) do {                                     \
837
    if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {               \
838
        char key[64];                                                       \
839
        for (ch = 0; ch < nb_channels; ch++) {                              \
840
            snprintf(key, sizeof(key),                                      \
841
                     META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch);     \
842
            SET_META(key, ebur128->name##_peaks[ch]);                       \
843
        }                                                                   \
844
    }                                                                       \
845
} while (0)
846
847
279
                SET_META(META_PREFIX "M",        loudness_400);
848
279
                SET_META(META_PREFIX "S",        loudness_3000);
849
279
                SET_META(META_PREFIX "I",        ebur128->integrated_loudness);
850
279
                SET_META(META_PREFIX "LRA",      ebur128->loudness_range);
851
279
                SET_META(META_PREFIX "LRA.low",  ebur128->lra_low);
852
279
                SET_META(META_PREFIX "LRA.high", ebur128->lra_high);
853
854

279
                SET_META_PEAK(sample, SAMPLES);
855

279
                SET_META_PEAK(true,   TRUE);
856
            }
857
858
279
            if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
859
279
                av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
860
279
                       av_ts2timestr(pts, &outlink->time_base),
861
                       ebur128->target, loudness_400, loudness_3000,
862
                       ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
863
            } else {
864
                av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
865
                       av_ts2timestr(pts, &outlink->time_base),
866
                       ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
867
                       ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
868
            }
869
870
#define PRINT_PEAKS(str, sp, ptype) do {                            \
871
    if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {       \
872
        av_log(ctx, ebur128->loglevel, "  " str ":");               \
873
        for (ch = 0; ch < nb_channels; ch++)                        \
874
            av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \
875
        av_log(ctx, ebur128->loglevel, " dBFS");                    \
876
    }                                                               \
877
} while (0)
878
879

279
            PRINT_PEAKS("SPK", ebur128->sample_peaks, SAMPLES);
880

279
            PRINT_PEAKS("FTPK", ebur128->true_peaks_per_frame, TRUE);
881

279
            PRINT_PEAKS("TPK", ebur128->true_peaks,   TRUE);
882
279
            av_log(ctx, ebur128->loglevel, "\n");
883
        }
884
    }
885
886
280
    return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
887
}
888
889
1
static int query_formats(AVFilterContext *ctx)
890
{
891
1
    EBUR128Context *ebur128 = ctx->priv;
892
    AVFilterFormats *formats;
893
    AVFilterChannelLayouts *layouts;
894
1
    AVFilterLink *inlink = ctx->inputs[0];
895
1
    AVFilterLink *outlink = ctx->outputs[0];
896
    int ret;
897
898
    static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE };
899
    static const int input_srate[] = {48000, -1}; // ITU-R BS.1770 provides coeff only for 48kHz
900
    static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
901
902
    /* set optional output video format */
903
1
    if (ebur128->do_video) {
904
        formats = ff_make_format_list(pix_fmts);
905
        if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
906
            return ret;
907
        outlink = ctx->outputs[1];
908
    }
909
910
    /* set input and output audio formats
911
     * Note: ff_set_common_* functions are not used because they affect all the
912
     * links, and thus break the video format negotiation */
913
1
    formats = ff_make_format_list(sample_fmts);
914

2
    if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0 ||
915
1
        (ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
916
        return ret;
917
918
1
    layouts = ff_all_channel_layouts();
919

2
    if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0 ||
920
1
        (ret = ff_channel_layouts_ref(layouts, &outlink->incfg.channel_layouts)) < 0)
921
        return ret;
922
923
1
    formats = ff_make_format_list(input_srate);
924

2
    if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0 ||
925
1
        (ret = ff_formats_ref(formats, &outlink->incfg.samplerates)) < 0)
926
        return ret;
927
928
1
    return 0;
929
}
930
931
1
static av_cold void uninit(AVFilterContext *ctx)
932
{
933
    int i;
934
1
    EBUR128Context *ebur128 = ctx->priv;
935
936
    /* dual-mono correction */
937

1
    if (ebur128->nb_channels == 1 && ebur128->dual_mono) {
938
        ebur128->i400.rel_threshold -= ebur128->pan_law;
939
        ebur128->i3000.rel_threshold -= ebur128->pan_law;
940
        ebur128->lra_low -= ebur128->pan_law;
941
        ebur128->lra_high -= ebur128->pan_law;
942
    }
943
944
1
    av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
945
           "  Integrated loudness:\n"
946
           "    I:         %5.1f LUFS\n"
947
           "    Threshold: %5.1f LUFS\n\n"
948
           "  Loudness range:\n"
949
           "    LRA:       %5.1f LU\n"
950
           "    Threshold: %5.1f LUFS\n"
951
           "    LRA low:   %5.1f LUFS\n"
952
           "    LRA high:  %5.1f LUFS",
953
           ebur128->integrated_loudness, ebur128->i400.rel_threshold,
954
           ebur128->loudness_range,      ebur128->i3000.rel_threshold,
955
           ebur128->lra_low, ebur128->lra_high);
956
957
#define PRINT_PEAK_SUMMARY(str, sp, ptype) do {                  \
958
    int ch;                                                      \
959
    double maxpeak;                                              \
960
    maxpeak = 0.0;                                               \
961
    if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {    \
962
        for (ch = 0; ch < ebur128->nb_channels; ch++)            \
963
            maxpeak = FFMAX(maxpeak, sp[ch]);                    \
964
        av_log(ctx, AV_LOG_INFO, "\n\n  " str " peak:\n"         \
965
               "    Peak:      %5.1f dBFS",                      \
966
               DBFS(maxpeak));                                   \
967
    }                                                            \
968
} while (0)
969
970

1
    PRINT_PEAK_SUMMARY("Sample", ebur128->sample_peaks, SAMPLES);
971

1
    PRINT_PEAK_SUMMARY("True",   ebur128->true_peaks,   TRUE);
972
1
    av_log(ctx, AV_LOG_INFO, "\n");
973
974
1
    av_freep(&ebur128->y_line_ref);
975
1
    av_freep(&ebur128->ch_weighting);
976
1
    av_freep(&ebur128->true_peaks);
977
1
    av_freep(&ebur128->sample_peaks);
978
1
    av_freep(&ebur128->true_peaks_per_frame);
979
1
    av_freep(&ebur128->i400.histogram);
980
1
    av_freep(&ebur128->i3000.histogram);
981
3
    for (i = 0; i < ebur128->nb_channels; i++) {
982
2
        av_freep(&ebur128->i400.cache[i]);
983
2
        av_freep(&ebur128->i3000.cache[i]);
984
    }
985
1
    av_frame_free(&ebur128->outpicref);
986
#if CONFIG_SWRESAMPLE
987
1
    av_freep(&ebur128->swr_buf);
988
1
    swr_free(&ebur128->swr_ctx);
989
#endif
990
1
}
991
992
static const AVFilterPad ebur128_inputs[] = {
993
    {
994
        .name         = "default",
995
        .type         = AVMEDIA_TYPE_AUDIO,
996
        .filter_frame = filter_frame,
997
        .config_props = config_audio_input,
998
    },
999
    { NULL }
1000
};
1001
1002
AVFilter ff_af_ebur128 = {
1003
    .name          = "ebur128",
1004
    .description   = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
1005
    .priv_size     = sizeof(EBUR128Context),
1006
    .init          = init,
1007
    .uninit        = uninit,
1008
    .query_formats = query_formats,
1009
    .inputs        = ebur128_inputs,
1010
    .outputs       = NULL,
1011
    .priv_class    = &ebur128_class,
1012
    .flags         = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
1013
};