GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavfilter/ebur128.c Lines: 0 360 0.0 %
Date: 2020-08-14 10:39:37 Branches: 0 343 0.0 %

Line Branch Exec Source
1
/*
2
 * Copyright (c) 2011 Jan Kokemüller
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 *
20
 * This file is based on libebur128 which is available at
21
 * https://github.com/jiixyj/libebur128/
22
 *
23
 * Libebur128 has the following copyright:
24
 *
25
 * Permission is hereby granted, free of charge, to any person obtaining a copy
26
 * of this software and associated documentation files (the "Software"), to deal
27
 * in the Software without restriction, including without limitation the rights
28
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
29
 * copies of the Software, and to permit persons to whom the Software is
30
 * furnished to do so, subject to the following conditions:
31
 *
32
 * The above copyright notice and this permission notice shall be included in
33
 * all copies or substantial portions of the Software.
34
 *
35
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
36
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
37
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
38
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
39
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
40
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
41
 * THE SOFTWARE.
42
*/
43
44
#include "ebur128.h"
45
46
#include <float.h>
47
#include <limits.h>
48
#include <math.h>               /* You may have to define _USE_MATH_DEFINES if you use MSVC */
49
50
#include "libavutil/common.h"
51
#include "libavutil/mem.h"
52
#include "libavutil/thread.h"
53
54
#define CHECK_ERROR(condition, errorcode, goto_point)                          \
55
    if ((condition)) {                                                         \
56
        errcode = (errorcode);                                                 \
57
        goto goto_point;                                                       \
58
    }
59
60
#define ALMOST_ZERO 0.000001
61
62
#define RELATIVE_GATE         (-10.0)
63
#define RELATIVE_GATE_FACTOR  pow(10.0, RELATIVE_GATE / 10.0)
64
#define MINUS_20DB            pow(10.0, -20.0 / 10.0)
65
66
struct FFEBUR128StateInternal {
67
    /** Filtered audio data (used as ring buffer). */
68
    double *audio_data;
69
    /** Size of audio_data array. */
70
    size_t audio_data_frames;
71
    /** Current index for audio_data. */
72
    size_t audio_data_index;
73
    /** How many frames are needed for a gating block. Will correspond to 400ms
74
     *  of audio at initialization, and 100ms after the first block (75% overlap
75
     *  as specified in the 2011 revision of BS1770). */
76
    unsigned long needed_frames;
77
    /** The channel map. Has as many elements as there are channels. */
78
    int *channel_map;
79
    /** How many samples fit in 100ms (rounded). */
80
    unsigned long samples_in_100ms;
81
    /** BS.1770 filter coefficients (nominator). */
82
    double b[5];
83
    /** BS.1770 filter coefficients (denominator). */
84
    double a[5];
85
    /** BS.1770 filter state. */
86
    double v[5][5];
87
    /** Histograms, used to calculate LRA. */
88
    unsigned long *block_energy_histogram;
89
    unsigned long *short_term_block_energy_histogram;
90
    /** Keeps track of when a new short term block is needed. */
91
    size_t short_term_frame_counter;
92
    /** Maximum sample peak, one per channel */
93
    double *sample_peak;
94
    /** The maximum window duration in ms. */
95
    unsigned long window;
96
    /** Data pointer array for interleaved data */
97
    void **data_ptrs;
98
};
99
100
static AVOnce histogram_init = AV_ONCE_INIT;
101
static DECLARE_ALIGNED(32, double, histogram_energies)[1000];
102
static DECLARE_ALIGNED(32, double, histogram_energy_boundaries)[1001];
103
104
static void ebur128_init_filter(FFEBUR128State * st)
105
{
106
    int i, j;
107
108
    double f0 = 1681.974450955533;
109
    double G = 3.999843853973347;
110
    double Q = 0.7071752369554196;
111
112
    double K = tan(M_PI * f0 / (double) st->samplerate);
113
    double Vh = pow(10.0, G / 20.0);
114
    double Vb = pow(Vh, 0.4996667741545416);
115
116
    double pb[3] = { 0.0, 0.0, 0.0 };
117
    double pa[3] = { 1.0, 0.0, 0.0 };
118
    double rb[3] = { 1.0, -2.0, 1.0 };
119
    double ra[3] = { 1.0, 0.0, 0.0 };
120
121
    double a0 = 1.0 + K / Q + K * K;
122
    pb[0] = (Vh + Vb * K / Q + K * K) / a0;
123
    pb[1] = 2.0 * (K * K - Vh) / a0;
124
    pb[2] = (Vh - Vb * K / Q + K * K) / a0;
125
    pa[1] = 2.0 * (K * K - 1.0) / a0;
126
    pa[2] = (1.0 - K / Q + K * K) / a0;
127
128
    f0 = 38.13547087602444;
129
    Q = 0.5003270373238773;
130
    K = tan(M_PI * f0 / (double) st->samplerate);
131
132
    ra[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
133
    ra[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);
134
135
    st->d->b[0] = pb[0] * rb[0];
136
    st->d->b[1] = pb[0] * rb[1] + pb[1] * rb[0];
137
    st->d->b[2] = pb[0] * rb[2] + pb[1] * rb[1] + pb[2] * rb[0];
138
    st->d->b[3] = pb[1] * rb[2] + pb[2] * rb[1];
139
    st->d->b[4] = pb[2] * rb[2];
140
141
    st->d->a[0] = pa[0] * ra[0];
142
    st->d->a[1] = pa[0] * ra[1] + pa[1] * ra[0];
143
    st->d->a[2] = pa[0] * ra[2] + pa[1] * ra[1] + pa[2] * ra[0];
144
    st->d->a[3] = pa[1] * ra[2] + pa[2] * ra[1];
145
    st->d->a[4] = pa[2] * ra[2];
146
147
    for (i = 0; i < 5; ++i) {
148
        for (j = 0; j < 5; ++j) {
149
            st->d->v[i][j] = 0.0;
150
        }
151
    }
152
}
153
154
static int ebur128_init_channel_map(FFEBUR128State * st)
155
{
156
    size_t i;
157
    st->d->channel_map =
158
        (int *) av_malloc_array(st->channels, sizeof(*st->d->channel_map));
159
    if (!st->d->channel_map)
160
        return AVERROR(ENOMEM);
161
    if (st->channels == 4) {
162
        st->d->channel_map[0] = FF_EBUR128_LEFT;
163
        st->d->channel_map[1] = FF_EBUR128_RIGHT;
164
        st->d->channel_map[2] = FF_EBUR128_LEFT_SURROUND;
165
        st->d->channel_map[3] = FF_EBUR128_RIGHT_SURROUND;
166
    } else if (st->channels == 5) {
167
        st->d->channel_map[0] = FF_EBUR128_LEFT;
168
        st->d->channel_map[1] = FF_EBUR128_RIGHT;
169
        st->d->channel_map[2] = FF_EBUR128_CENTER;
170
        st->d->channel_map[3] = FF_EBUR128_LEFT_SURROUND;
171
        st->d->channel_map[4] = FF_EBUR128_RIGHT_SURROUND;
172
    } else {
173
        for (i = 0; i < st->channels; ++i) {
174
            switch (i) {
175
            case 0:
176
                st->d->channel_map[i] = FF_EBUR128_LEFT;
177
                break;
178
            case 1:
179
                st->d->channel_map[i] = FF_EBUR128_RIGHT;
180
                break;
181
            case 2:
182
                st->d->channel_map[i] = FF_EBUR128_CENTER;
183
                break;
184
            case 3:
185
                st->d->channel_map[i] = FF_EBUR128_UNUSED;
186
                break;
187
            case 4:
188
                st->d->channel_map[i] = FF_EBUR128_LEFT_SURROUND;
189
                break;
190
            case 5:
191
                st->d->channel_map[i] = FF_EBUR128_RIGHT_SURROUND;
192
                break;
193
            default:
194
                st->d->channel_map[i] = FF_EBUR128_UNUSED;
195
                break;
196
            }
197
        }
198
    }
199
    return 0;
200
}
201
202
static inline void init_histogram(void)
203
{
204
    int i;
205
    /* initialize static constants */
206
    histogram_energy_boundaries[0] = pow(10.0, (-70.0 + 0.691) / 10.0);
207
    for (i = 0; i < 1000; ++i) {
208
        histogram_energies[i] =
209
            pow(10.0, ((double) i / 10.0 - 69.95 + 0.691) / 10.0);
210
    }
211
    for (i = 1; i < 1001; ++i) {
212
        histogram_energy_boundaries[i] =
213
            pow(10.0, ((double) i / 10.0 - 70.0 + 0.691) / 10.0);
214
    }
215
}
216
217
FFEBUR128State *ff_ebur128_init(unsigned int channels,
218
                                unsigned long samplerate,
219
                                unsigned long window, int mode)
220
{
221
    int errcode;
222
    FFEBUR128State *st;
223
224
    st = (FFEBUR128State *) av_malloc(sizeof(*st));
225
    CHECK_ERROR(!st, 0, exit)
226
    st->d = (struct FFEBUR128StateInternal *)
227
        av_malloc(sizeof(*st->d));
228
    CHECK_ERROR(!st->d, 0, free_state)
229
    st->channels = channels;
230
    errcode = ebur128_init_channel_map(st);
231
    CHECK_ERROR(errcode, 0, free_internal)
232
233
    st->d->sample_peak =
234
        (double *) av_mallocz_array(channels, sizeof(*st->d->sample_peak));
235
    CHECK_ERROR(!st->d->sample_peak, 0, free_channel_map)
236
237
    st->samplerate = samplerate;
238
    st->d->samples_in_100ms = (st->samplerate + 5) / 10;
239
    st->mode = mode;
240
    if ((mode & FF_EBUR128_MODE_S) == FF_EBUR128_MODE_S) {
241
        st->d->window = FFMAX(window, 3000);
242
    } else if ((mode & FF_EBUR128_MODE_M) == FF_EBUR128_MODE_M) {
243
        st->d->window = FFMAX(window, 400);
244
    } else {
245
        goto free_sample_peak;
246
    }
247
    st->d->audio_data_frames = st->samplerate * st->d->window / 1000;
248
    if (st->d->audio_data_frames % st->d->samples_in_100ms) {
249
        /* round up to multiple of samples_in_100ms */
250
        st->d->audio_data_frames = st->d->audio_data_frames
251
            + st->d->samples_in_100ms
252
            - (st->d->audio_data_frames % st->d->samples_in_100ms);
253
    }
254
    st->d->audio_data =
255
        (double *) av_mallocz_array(st->d->audio_data_frames,
256
                                    st->channels * sizeof(*st->d->audio_data));
257
    CHECK_ERROR(!st->d->audio_data, 0, free_sample_peak)
258
259
    ebur128_init_filter(st);
260
261
    st->d->block_energy_histogram =
262
        av_mallocz(1000 * sizeof(*st->d->block_energy_histogram));
263
    CHECK_ERROR(!st->d->block_energy_histogram, 0, free_audio_data)
264
    st->d->short_term_block_energy_histogram =
265
        av_mallocz(1000 * sizeof(*st->d->short_term_block_energy_histogram));
266
    CHECK_ERROR(!st->d->short_term_block_energy_histogram, 0,
267
                free_block_energy_histogram)
268
    st->d->short_term_frame_counter = 0;
269
270
    /* the first block needs 400ms of audio data */
271
    st->d->needed_frames = st->d->samples_in_100ms * 4;
272
    /* start at the beginning of the buffer */
273
    st->d->audio_data_index = 0;
274
275
    if (ff_thread_once(&histogram_init, &init_histogram) != 0)
276
        goto free_short_term_block_energy_histogram;
277
278
    st->d->data_ptrs = av_malloc_array(channels, sizeof(*st->d->data_ptrs));
279
    CHECK_ERROR(!st->d->data_ptrs, 0,
280
                free_short_term_block_energy_histogram);
281
282
    return st;
283
284
free_short_term_block_energy_histogram:
285
    av_free(st->d->short_term_block_energy_histogram);
286
free_block_energy_histogram:
287
    av_free(st->d->block_energy_histogram);
288
free_audio_data:
289
    av_free(st->d->audio_data);
290
free_sample_peak:
291
    av_free(st->d->sample_peak);
292
free_channel_map:
293
    av_free(st->d->channel_map);
294
free_internal:
295
    av_free(st->d);
296
free_state:
297
    av_free(st);
298
exit:
299
    return NULL;
300
}
301
302
void ff_ebur128_destroy(FFEBUR128State ** st)
303
{
304
    av_free((*st)->d->block_energy_histogram);
305
    av_free((*st)->d->short_term_block_energy_histogram);
306
    av_free((*st)->d->audio_data);
307
    av_free((*st)->d->channel_map);
308
    av_free((*st)->d->sample_peak);
309
    av_free((*st)->d->data_ptrs);
310
    av_free((*st)->d);
311
    av_free(*st);
312
    *st = NULL;
313
}
314
315
#define EBUR128_FILTER(type, scaling_factor)                                       \
316
static void ebur128_filter_##type(FFEBUR128State* st, const type** srcs,           \
317
                                  size_t src_index, size_t frames,                 \
318
                                  int stride) {                                    \
319
    double* audio_data = st->d->audio_data + st->d->audio_data_index;              \
320
    size_t i, c;                                                                   \
321
                                                                                   \
322
    if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) == FF_EBUR128_MODE_SAMPLE_PEAK) { \
323
        for (c = 0; c < st->channels; ++c) {                                       \
324
            double max = 0.0;                                                      \
325
            for (i = 0; i < frames; ++i) {                                         \
326
                type v = srcs[c][src_index + i * stride];                          \
327
                if (v > max) {                                                     \
328
                    max =        v;                                                \
329
                } else if (-v > max) {                                             \
330
                    max = -1.0 * v;                                                \
331
                }                                                                  \
332
            }                                                                      \
333
            max /= scaling_factor;                                                 \
334
            if (max > st->d->sample_peak[c]) st->d->sample_peak[c] = max;          \
335
        }                                                                          \
336
    }                                                                              \
337
    for (c = 0; c < st->channels; ++c) {                                           \
338
        int ci = st->d->channel_map[c] - 1;                                        \
339
        if (ci < 0) continue;                                                      \
340
        else if (ci == FF_EBUR128_DUAL_MONO - 1) ci = 0; /*dual mono */            \
341
        for (i = 0; i < frames; ++i) {                                             \
342
            st->d->v[ci][0] = (double) (srcs[c][src_index + i * stride] / scaling_factor) \
343
                         - st->d->a[1] * st->d->v[ci][1]                           \
344
                         - st->d->a[2] * st->d->v[ci][2]                           \
345
                         - st->d->a[3] * st->d->v[ci][3]                           \
346
                         - st->d->a[4] * st->d->v[ci][4];                          \
347
            audio_data[i * st->channels + c] =                                     \
348
                           st->d->b[0] * st->d->v[ci][0]                           \
349
                         + st->d->b[1] * st->d->v[ci][1]                           \
350
                         + st->d->b[2] * st->d->v[ci][2]                           \
351
                         + st->d->b[3] * st->d->v[ci][3]                           \
352
                         + st->d->b[4] * st->d->v[ci][4];                          \
353
            st->d->v[ci][4] = st->d->v[ci][3];                                     \
354
            st->d->v[ci][3] = st->d->v[ci][2];                                     \
355
            st->d->v[ci][2] = st->d->v[ci][1];                                     \
356
            st->d->v[ci][1] = st->d->v[ci][0];                                     \
357
        }                                                                          \
358
        st->d->v[ci][4] = fabs(st->d->v[ci][4]) < DBL_MIN ? 0.0 : st->d->v[ci][4]; \
359
        st->d->v[ci][3] = fabs(st->d->v[ci][3]) < DBL_MIN ? 0.0 : st->d->v[ci][3]; \
360
        st->d->v[ci][2] = fabs(st->d->v[ci][2]) < DBL_MIN ? 0.0 : st->d->v[ci][2]; \
361
        st->d->v[ci][1] = fabs(st->d->v[ci][1]) < DBL_MIN ? 0.0 : st->d->v[ci][1]; \
362
    }                                                                              \
363
}
364
EBUR128_FILTER(short, -((double)SHRT_MIN))
365
EBUR128_FILTER(int, -((double)INT_MIN))
366
EBUR128_FILTER(float,  1.0)
367
EBUR128_FILTER(double, 1.0)
368
369
static double ebur128_energy_to_loudness(double energy)
370
{
371
    return 10 * log10(energy) - 0.691;
372
}
373
374
static size_t find_histogram_index(double energy)
375
{
376
    size_t index_min = 0;
377
    size_t index_max = 1000;
378
    size_t index_mid;
379
380
    do {
381
        index_mid = (index_min + index_max) / 2;
382
        if (energy >= histogram_energy_boundaries[index_mid]) {
383
            index_min = index_mid;
384
        } else {
385
            index_max = index_mid;
386
        }
387
    } while (index_max - index_min != 1);
388
389
    return index_min;
390
}
391
392
static void ebur128_calc_gating_block(FFEBUR128State * st,
393
                                      size_t frames_per_block,
394
                                      double *optional_output)
395
{
396
    size_t i, c;
397
    double sum = 0.0;
398
    double channel_sum;
399
    for (c = 0; c < st->channels; ++c) {
400
        if (st->d->channel_map[c] == FF_EBUR128_UNUSED)
401
            continue;
402
        channel_sum = 0.0;
403
        if (st->d->audio_data_index < frames_per_block * st->channels) {
404
            for (i = 0; i < st->d->audio_data_index / st->channels; ++i) {
405
                channel_sum += st->d->audio_data[i * st->channels + c] *
406
                    st->d->audio_data[i * st->channels + c];
407
            }
408
            for (i = st->d->audio_data_frames -
409
                 (frames_per_block -
410
                  st->d->audio_data_index / st->channels);
411
                 i < st->d->audio_data_frames; ++i) {
412
                channel_sum += st->d->audio_data[i * st->channels + c] *
413
                    st->d->audio_data[i * st->channels + c];
414
            }
415
        } else {
416
            for (i =
417
                 st->d->audio_data_index / st->channels - frames_per_block;
418
                 i < st->d->audio_data_index / st->channels; ++i) {
419
                channel_sum +=
420
                    st->d->audio_data[i * st->channels +
421
                                      c] * st->d->audio_data[i *
422
                                                             st->channels +
423
                                                             c];
424
            }
425
        }
426
        if (st->d->channel_map[c] == FF_EBUR128_Mp110 ||
427
            st->d->channel_map[c] == FF_EBUR128_Mm110 ||
428
            st->d->channel_map[c] == FF_EBUR128_Mp060 ||
429
            st->d->channel_map[c] == FF_EBUR128_Mm060 ||
430
            st->d->channel_map[c] == FF_EBUR128_Mp090 ||
431
            st->d->channel_map[c] == FF_EBUR128_Mm090) {
432
            channel_sum *= 1.41;
433
        } else if (st->d->channel_map[c] == FF_EBUR128_DUAL_MONO) {
434
            channel_sum *= 2.0;
435
        }
436
        sum += channel_sum;
437
    }
438
    sum /= (double) frames_per_block;
439
    if (optional_output) {
440
        *optional_output = sum;
441
    } else if (sum >= histogram_energy_boundaries[0]) {
442
        ++st->d->block_energy_histogram[find_histogram_index(sum)];
443
    }
444
}
445
446
int ff_ebur128_set_channel(FFEBUR128State * st,
447
                           unsigned int channel_number, int value)
448
{
449
    if (channel_number >= st->channels) {
450
        return 1;
451
    }
452
    if (value == FF_EBUR128_DUAL_MONO &&
453
        (st->channels != 1 || channel_number != 0)) {
454
        return 1;
455
    }
456
    st->d->channel_map[channel_number] = value;
457
    return 0;
458
}
459
460
static int ebur128_energy_shortterm(FFEBUR128State * st, double *out);
461
#define FF_EBUR128_ADD_FRAMES_PLANAR(type)                                             \
462
void ff_ebur128_add_frames_planar_##type(FFEBUR128State* st, const type** srcs,        \
463
                                 size_t frames, int stride) {                          \
464
    size_t src_index = 0;                                                              \
465
    while (frames > 0) {                                                               \
466
        if (frames >= st->d->needed_frames) {                                          \
467
            ebur128_filter_##type(st, srcs, src_index, st->d->needed_frames, stride);  \
468
            src_index += st->d->needed_frames * stride;                                \
469
            frames -= st->d->needed_frames;                                            \
470
            st->d->audio_data_index += st->d->needed_frames * st->channels;            \
471
            /* calculate the new gating block */                                       \
472
            if ((st->mode & FF_EBUR128_MODE_I) == FF_EBUR128_MODE_I) {                 \
473
                ebur128_calc_gating_block(st, st->d->samples_in_100ms * 4, NULL);      \
474
            }                                                                          \
475
            if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) {             \
476
                st->d->short_term_frame_counter += st->d->needed_frames;               \
477
                if (st->d->short_term_frame_counter == st->d->samples_in_100ms * 30) { \
478
                    double st_energy;                                                  \
479
                    ebur128_energy_shortterm(st, &st_energy);                          \
480
                    if (st_energy >= histogram_energy_boundaries[0]) {                 \
481
                        ++st->d->short_term_block_energy_histogram[                    \
482
                                                    find_histogram_index(st_energy)];  \
483
                    }                                                                  \
484
                    st->d->short_term_frame_counter = st->d->samples_in_100ms * 20;    \
485
                }                                                                      \
486
            }                                                                          \
487
            /* 100ms are needed for all blocks besides the first one */                \
488
            st->d->needed_frames = st->d->samples_in_100ms;                            \
489
            /* reset audio_data_index when buffer full */                              \
490
            if (st->d->audio_data_index == st->d->audio_data_frames * st->channels) {  \
491
                st->d->audio_data_index = 0;                                           \
492
            }                                                                          \
493
        } else {                                                                       \
494
            ebur128_filter_##type(st, srcs, src_index, frames, stride);                \
495
            st->d->audio_data_index += frames * st->channels;                          \
496
            if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) {             \
497
                st->d->short_term_frame_counter += frames;                             \
498
            }                                                                          \
499
            st->d->needed_frames -= frames;                                            \
500
            frames = 0;                                                                \
501
        }                                                                              \
502
    }                                                                                  \
503
}
504
FF_EBUR128_ADD_FRAMES_PLANAR(short)
505
FF_EBUR128_ADD_FRAMES_PLANAR(int)
506
FF_EBUR128_ADD_FRAMES_PLANAR(float)
507
FF_EBUR128_ADD_FRAMES_PLANAR(double)
508
#define FF_EBUR128_ADD_FRAMES(type)                                            \
509
void ff_ebur128_add_frames_##type(FFEBUR128State* st, const type* src,         \
510
                                    size_t frames) {                           \
511
  int i;                                                                       \
512
  const type **buf = (const type**)st->d->data_ptrs;                           \
513
  for (i = 0; i < st->channels; i++)                                           \
514
    buf[i] = src + i;                                                          \
515
  ff_ebur128_add_frames_planar_##type(st, buf, frames, st->channels);          \
516
}
517
FF_EBUR128_ADD_FRAMES(short)
518
FF_EBUR128_ADD_FRAMES(int)
519
FF_EBUR128_ADD_FRAMES(float)
520
FF_EBUR128_ADD_FRAMES(double)
521
522
static int ebur128_calc_relative_threshold(FFEBUR128State **sts, size_t size,
523
                                           double *relative_threshold)
524
{
525
    size_t i, j;
526
    int above_thresh_counter = 0;
527
    *relative_threshold = 0.0;
528
529
    for (i = 0; i < size; i++) {
530
        unsigned long *block_energy_histogram = sts[i]->d->block_energy_histogram;
531
        for (j = 0; j < 1000; ++j) {
532
            *relative_threshold += block_energy_histogram[j] * histogram_energies[j];
533
            above_thresh_counter += block_energy_histogram[j];
534
        }
535
    }
536
537
    if (above_thresh_counter != 0) {
538
        *relative_threshold /= (double)above_thresh_counter;
539
        *relative_threshold *= RELATIVE_GATE_FACTOR;
540
    }
541
542
    return above_thresh_counter;
543
}
544
545
static int ebur128_gated_loudness(FFEBUR128State ** sts, size_t size,
546
                                  double *out)
547
{
548
    double gated_loudness = 0.0;
549
    double relative_threshold;
550
    size_t above_thresh_counter;
551
    size_t i, j, start_index;
552
553
    for (i = 0; i < size; i++)
554
        if ((sts[i]->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I)
555
            return AVERROR(EINVAL);
556
557
    if (!ebur128_calc_relative_threshold(sts, size, &relative_threshold)) {
558
        *out = -HUGE_VAL;
559
        return 0;
560
    }
561
562
    above_thresh_counter = 0;
563
    if (relative_threshold < histogram_energy_boundaries[0]) {
564
        start_index = 0;
565
    } else {
566
        start_index = find_histogram_index(relative_threshold);
567
        if (relative_threshold > histogram_energies[start_index]) {
568
            ++start_index;
569
        }
570
    }
571
    for (i = 0; i < size; i++) {
572
        for (j = start_index; j < 1000; ++j) {
573
            gated_loudness += sts[i]->d->block_energy_histogram[j] *
574
                histogram_energies[j];
575
            above_thresh_counter += sts[i]->d->block_energy_histogram[j];
576
        }
577
    }
578
    if (!above_thresh_counter) {
579
        *out = -HUGE_VAL;
580
        return 0;
581
    }
582
    gated_loudness /= (double) above_thresh_counter;
583
    *out = ebur128_energy_to_loudness(gated_loudness);
584
    return 0;
585
}
586
587
int ff_ebur128_relative_threshold(FFEBUR128State * st, double *out)
588
{
589
    double relative_threshold;
590
591
    if ((st->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I)
592
        return AVERROR(EINVAL);
593
594
    if (!ebur128_calc_relative_threshold(&st, 1, &relative_threshold)) {
595
        *out = -70.0;
596
        return 0;
597
    }
598
599
    *out = ebur128_energy_to_loudness(relative_threshold);
600
    return 0;
601
}
602
603
int ff_ebur128_loudness_global(FFEBUR128State * st, double *out)
604
{
605
    return ebur128_gated_loudness(&st, 1, out);
606
}
607
608
int ff_ebur128_loudness_global_multiple(FFEBUR128State ** sts, size_t size,
609
                                        double *out)
610
{
611
    return ebur128_gated_loudness(sts, size, out);
612
}
613
614
static int ebur128_energy_in_interval(FFEBUR128State * st,
615
                                      size_t interval_frames, double *out)
616
{
617
    if (interval_frames > st->d->audio_data_frames) {
618
        return AVERROR(EINVAL);
619
    }
620
    ebur128_calc_gating_block(st, interval_frames, out);
621
    return 0;
622
}
623
624
static int ebur128_energy_shortterm(FFEBUR128State * st, double *out)
625
{
626
    return ebur128_energy_in_interval(st, st->d->samples_in_100ms * 30,
627
                                      out);
628
}
629
630
int ff_ebur128_loudness_momentary(FFEBUR128State * st, double *out)
631
{
632
    double energy;
633
    int error = ebur128_energy_in_interval(st, st->d->samples_in_100ms * 4,
634
                                           &energy);
635
    if (error) {
636
        return error;
637
    } else if (energy <= 0.0) {
638
        *out = -HUGE_VAL;
639
        return 0;
640
    }
641
    *out = ebur128_energy_to_loudness(energy);
642
    return 0;
643
}
644
645
int ff_ebur128_loudness_shortterm(FFEBUR128State * st, double *out)
646
{
647
    double energy;
648
    int error = ebur128_energy_shortterm(st, &energy);
649
    if (error) {
650
        return error;
651
    } else if (energy <= 0.0) {
652
        *out = -HUGE_VAL;
653
        return 0;
654
    }
655
    *out = ebur128_energy_to_loudness(energy);
656
    return 0;
657
}
658
659
int ff_ebur128_loudness_window(FFEBUR128State * st,
660
                               unsigned long window, double *out)
661
{
662
    double energy;
663
    size_t interval_frames = st->samplerate * window / 1000;
664
    int error = ebur128_energy_in_interval(st, interval_frames, &energy);
665
    if (error) {
666
        return error;
667
    } else if (energy <= 0.0) {
668
        *out = -HUGE_VAL;
669
        return 0;
670
    }
671
    *out = ebur128_energy_to_loudness(energy);
672
    return 0;
673
}
674
675
/* EBU - TECH 3342 */
676
int ff_ebur128_loudness_range_multiple(FFEBUR128State ** sts, size_t size,
677
                                       double *out)
678
{
679
    size_t i, j;
680
    size_t stl_size;
681
    double stl_power, stl_integrated;
682
    /* High and low percentile energy */
683
    double h_en, l_en;
684
    unsigned long hist[1000] = { 0 };
685
    size_t percentile_low, percentile_high;
686
    size_t index;
687
688
    for (i = 0; i < size; ++i) {
689
        if (sts[i]) {
690
            if ((sts[i]->mode & FF_EBUR128_MODE_LRA) !=
691
                FF_EBUR128_MODE_LRA) {
692
                return AVERROR(EINVAL);
693
            }
694
        }
695
    }
696
697
    stl_size = 0;
698
    stl_power = 0.0;
699
    for (i = 0; i < size; ++i) {
700
        if (!sts[i])
701
            continue;
702
        for (j = 0; j < 1000; ++j) {
703
            hist[j] += sts[i]->d->short_term_block_energy_histogram[j];
704
            stl_size += sts[i]->d->short_term_block_energy_histogram[j];
705
            stl_power += sts[i]->d->short_term_block_energy_histogram[j]
706
                * histogram_energies[j];
707
        }
708
    }
709
    if (!stl_size) {
710
        *out = 0.0;
711
        return 0;
712
    }
713
714
    stl_power /= stl_size;
715
    stl_integrated = MINUS_20DB * stl_power;
716
717
    if (stl_integrated < histogram_energy_boundaries[0]) {
718
        index = 0;
719
    } else {
720
        index = find_histogram_index(stl_integrated);
721
        if (stl_integrated > histogram_energies[index]) {
722
            ++index;
723
        }
724
    }
725
    stl_size = 0;
726
    for (j = index; j < 1000; ++j) {
727
        stl_size += hist[j];
728
    }
729
    if (!stl_size) {
730
        *out = 0.0;
731
        return 0;
732
    }
733
734
    percentile_low = (size_t) ((stl_size - 1) * 0.1 + 0.5);
735
    percentile_high = (size_t) ((stl_size - 1) * 0.95 + 0.5);
736
737
    stl_size = 0;
738
    j = index;
739
    while (stl_size <= percentile_low) {
740
        stl_size += hist[j++];
741
    }
742
    l_en = histogram_energies[j - 1];
743
    while (stl_size <= percentile_high) {
744
        stl_size += hist[j++];
745
    }
746
    h_en = histogram_energies[j - 1];
747
    *out =
748
        ebur128_energy_to_loudness(h_en) -
749
        ebur128_energy_to_loudness(l_en);
750
    return 0;
751
}
752
753
int ff_ebur128_loudness_range(FFEBUR128State * st, double *out)
754
{
755
    return ff_ebur128_loudness_range_multiple(&st, 1, out);
756
}
757
758
int ff_ebur128_sample_peak(FFEBUR128State * st,
759
                           unsigned int channel_number, double *out)
760
{
761
    if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) !=
762
        FF_EBUR128_MODE_SAMPLE_PEAK) {
763
        return AVERROR(EINVAL);
764
    } else if (channel_number >= st->channels) {
765
        return AVERROR(EINVAL);
766
    }
767
    *out = st->d->sample_peak[channel_number];
768
    return 0;
769
}