GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavfilter/ebur128.c Lines: 0 330 0.0 %
Date: 2021-04-15 16:04:23 Branches: 0 197 0.0 %

Line Branch Exec Source
1
/*
2
 * Copyright (c) 2011 Jan Kokemüller
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 *
20
 * This file is based on libebur128 which is available at
21
 * https://github.com/jiixyj/libebur128/
22
 *
23
 * Libebur128 has the following copyright:
24
 *
25
 * Permission is hereby granted, free of charge, to any person obtaining a copy
26
 * of this software and associated documentation files (the "Software"), to deal
27
 * in the Software without restriction, including without limitation the rights
28
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
29
 * copies of the Software, and to permit persons to whom the Software is
30
 * furnished to do so, subject to the following conditions:
31
 *
32
 * The above copyright notice and this permission notice shall be included in
33
 * all copies or substantial portions of the Software.
34
 *
35
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
36
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
37
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
38
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
39
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
40
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
41
 * THE SOFTWARE.
42
*/
43
44
#include "ebur128.h"
45
46
#include <float.h>
47
#include <limits.h>
48
#include <math.h>               /* You may have to define _USE_MATH_DEFINES if you use MSVC */
49
50
#include "libavutil/common.h"
51
#include "libavutil/mem.h"
52
#include "libavutil/mem_internal.h"
53
#include "libavutil/thread.h"
54
55
#define CHECK_ERROR(condition, errorcode, goto_point)                          \
56
    if ((condition)) {                                                         \
57
        errcode = (errorcode);                                                 \
58
        goto goto_point;                                                       \
59
    }
60
61
#define ALMOST_ZERO 0.000001
62
63
#define RELATIVE_GATE         (-10.0)
64
#define RELATIVE_GATE_FACTOR  pow(10.0, RELATIVE_GATE / 10.0)
65
#define MINUS_20DB            pow(10.0, -20.0 / 10.0)
66
67
struct FFEBUR128StateInternal {
68
    /** Filtered audio data (used as ring buffer). */
69
    double *audio_data;
70
    /** Size of audio_data array. */
71
    size_t audio_data_frames;
72
    /** Current index for audio_data. */
73
    size_t audio_data_index;
74
    /** How many frames are needed for a gating block. Will correspond to 400ms
75
     *  of audio at initialization, and 100ms after the first block (75% overlap
76
     *  as specified in the 2011 revision of BS1770). */
77
    unsigned long needed_frames;
78
    /** The channel map. Has as many elements as there are channels. */
79
    int *channel_map;
80
    /** How many samples fit in 100ms (rounded). */
81
    unsigned long samples_in_100ms;
82
    /** BS.1770 filter coefficients (nominator). */
83
    double b[5];
84
    /** BS.1770 filter coefficients (denominator). */
85
    double a[5];
86
    /** BS.1770 filter state. */
87
    double v[5][5];
88
    /** Histograms, used to calculate LRA. */
89
    unsigned long *block_energy_histogram;
90
    unsigned long *short_term_block_energy_histogram;
91
    /** Keeps track of when a new short term block is needed. */
92
    size_t short_term_frame_counter;
93
    /** Maximum sample peak, one per channel */
94
    double *sample_peak;
95
    /** The maximum window duration in ms. */
96
    unsigned long window;
97
    /** Data pointer array for interleaved data */
98
    void **data_ptrs;
99
};
100
101
static AVOnce histogram_init = AV_ONCE_INIT;
102
static DECLARE_ALIGNED(32, double, histogram_energies)[1000];
103
static DECLARE_ALIGNED(32, double, histogram_energy_boundaries)[1001];
104
105
static void ebur128_init_filter(FFEBUR128State * st)
106
{
107
    int i, j;
108
109
    double f0 = 1681.974450955533;
110
    double G = 3.999843853973347;
111
    double Q = 0.7071752369554196;
112
113
    double K = tan(M_PI * f0 / (double) st->samplerate);
114
    double Vh = pow(10.0, G / 20.0);
115
    double Vb = pow(Vh, 0.4996667741545416);
116
117
    double pb[3] = { 0.0, 0.0, 0.0 };
118
    double pa[3] = { 1.0, 0.0, 0.0 };
119
    double rb[3] = { 1.0, -2.0, 1.0 };
120
    double ra[3] = { 1.0, 0.0, 0.0 };
121
122
    double a0 = 1.0 + K / Q + K * K;
123
    pb[0] = (Vh + Vb * K / Q + K * K) / a0;
124
    pb[1] = 2.0 * (K * K - Vh) / a0;
125
    pb[2] = (Vh - Vb * K / Q + K * K) / a0;
126
    pa[1] = 2.0 * (K * K - 1.0) / a0;
127
    pa[2] = (1.0 - K / Q + K * K) / a0;
128
129
    f0 = 38.13547087602444;
130
    Q = 0.5003270373238773;
131
    K = tan(M_PI * f0 / (double) st->samplerate);
132
133
    ra[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
134
    ra[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);
135
136
    st->d->b[0] = pb[0] * rb[0];
137
    st->d->b[1] = pb[0] * rb[1] + pb[1] * rb[0];
138
    st->d->b[2] = pb[0] * rb[2] + pb[1] * rb[1] + pb[2] * rb[0];
139
    st->d->b[3] = pb[1] * rb[2] + pb[2] * rb[1];
140
    st->d->b[4] = pb[2] * rb[2];
141
142
    st->d->a[0] = pa[0] * ra[0];
143
    st->d->a[1] = pa[0] * ra[1] + pa[1] * ra[0];
144
    st->d->a[2] = pa[0] * ra[2] + pa[1] * ra[1] + pa[2] * ra[0];
145
    st->d->a[3] = pa[1] * ra[2] + pa[2] * ra[1];
146
    st->d->a[4] = pa[2] * ra[2];
147
148
    for (i = 0; i < 5; ++i) {
149
        for (j = 0; j < 5; ++j) {
150
            st->d->v[i][j] = 0.0;
151
        }
152
    }
153
}
154
155
static int ebur128_init_channel_map(FFEBUR128State * st)
156
{
157
    size_t i;
158
    st->d->channel_map =
159
        (int *) av_malloc_array(st->channels, sizeof(*st->d->channel_map));
160
    if (!st->d->channel_map)
161
        return AVERROR(ENOMEM);
162
    if (st->channels == 4) {
163
        st->d->channel_map[0] = FF_EBUR128_LEFT;
164
        st->d->channel_map[1] = FF_EBUR128_RIGHT;
165
        st->d->channel_map[2] = FF_EBUR128_LEFT_SURROUND;
166
        st->d->channel_map[3] = FF_EBUR128_RIGHT_SURROUND;
167
    } else if (st->channels == 5) {
168
        st->d->channel_map[0] = FF_EBUR128_LEFT;
169
        st->d->channel_map[1] = FF_EBUR128_RIGHT;
170
        st->d->channel_map[2] = FF_EBUR128_CENTER;
171
        st->d->channel_map[3] = FF_EBUR128_LEFT_SURROUND;
172
        st->d->channel_map[4] = FF_EBUR128_RIGHT_SURROUND;
173
    } else {
174
        for (i = 0; i < st->channels; ++i) {
175
            switch (i) {
176
            case 0:
177
                st->d->channel_map[i] = FF_EBUR128_LEFT;
178
                break;
179
            case 1:
180
                st->d->channel_map[i] = FF_EBUR128_RIGHT;
181
                break;
182
            case 2:
183
                st->d->channel_map[i] = FF_EBUR128_CENTER;
184
                break;
185
            case 3:
186
                st->d->channel_map[i] = FF_EBUR128_UNUSED;
187
                break;
188
            case 4:
189
                st->d->channel_map[i] = FF_EBUR128_LEFT_SURROUND;
190
                break;
191
            case 5:
192
                st->d->channel_map[i] = FF_EBUR128_RIGHT_SURROUND;
193
                break;
194
            default:
195
                st->d->channel_map[i] = FF_EBUR128_UNUSED;
196
                break;
197
            }
198
        }
199
    }
200
    return 0;
201
}
202
203
static inline void init_histogram(void)
204
{
205
    int i;
206
    /* initialize static constants */
207
    histogram_energy_boundaries[0] = pow(10.0, (-70.0 + 0.691) / 10.0);
208
    for (i = 0; i < 1000; ++i) {
209
        histogram_energies[i] =
210
            pow(10.0, ((double) i / 10.0 - 69.95 + 0.691) / 10.0);
211
    }
212
    for (i = 1; i < 1001; ++i) {
213
        histogram_energy_boundaries[i] =
214
            pow(10.0, ((double) i / 10.0 - 70.0 + 0.691) / 10.0);
215
    }
216
}
217
218
FFEBUR128State *ff_ebur128_init(unsigned int channels,
219
                                unsigned long samplerate,
220
                                unsigned long window, int mode)
221
{
222
    int errcode;
223
    FFEBUR128State *st;
224
225
    st = (FFEBUR128State *) av_malloc(sizeof(*st));
226
    CHECK_ERROR(!st, 0, exit)
227
    st->d = (struct FFEBUR128StateInternal *)
228
        av_malloc(sizeof(*st->d));
229
    CHECK_ERROR(!st->d, 0, free_state)
230
    st->channels = channels;
231
    errcode = ebur128_init_channel_map(st);
232
    CHECK_ERROR(errcode, 0, free_internal)
233
234
    st->d->sample_peak =
235
        (double *) av_mallocz_array(channels, sizeof(*st->d->sample_peak));
236
    CHECK_ERROR(!st->d->sample_peak, 0, free_channel_map)
237
238
    st->samplerate = samplerate;
239
    st->d->samples_in_100ms = (st->samplerate + 5) / 10;
240
    st->mode = mode;
241
    if ((mode & FF_EBUR128_MODE_S) == FF_EBUR128_MODE_S) {
242
        st->d->window = FFMAX(window, 3000);
243
    } else if ((mode & FF_EBUR128_MODE_M) == FF_EBUR128_MODE_M) {
244
        st->d->window = FFMAX(window, 400);
245
    } else {
246
        goto free_sample_peak;
247
    }
248
    st->d->audio_data_frames = st->samplerate * st->d->window / 1000;
249
    if (st->d->audio_data_frames % st->d->samples_in_100ms) {
250
        /* round up to multiple of samples_in_100ms */
251
        st->d->audio_data_frames = st->d->audio_data_frames
252
            + st->d->samples_in_100ms
253
            - (st->d->audio_data_frames % st->d->samples_in_100ms);
254
    }
255
    st->d->audio_data =
256
        (double *) av_mallocz_array(st->d->audio_data_frames,
257
                                    st->channels * sizeof(*st->d->audio_data));
258
    CHECK_ERROR(!st->d->audio_data, 0, free_sample_peak)
259
260
    ebur128_init_filter(st);
261
262
    st->d->block_energy_histogram =
263
        av_mallocz(1000 * sizeof(*st->d->block_energy_histogram));
264
    CHECK_ERROR(!st->d->block_energy_histogram, 0, free_audio_data)
265
    st->d->short_term_block_energy_histogram =
266
        av_mallocz(1000 * sizeof(*st->d->short_term_block_energy_histogram));
267
    CHECK_ERROR(!st->d->short_term_block_energy_histogram, 0,
268
                free_block_energy_histogram)
269
    st->d->short_term_frame_counter = 0;
270
271
    /* the first block needs 400ms of audio data */
272
    st->d->needed_frames = st->d->samples_in_100ms * 4;
273
    /* start at the beginning of the buffer */
274
    st->d->audio_data_index = 0;
275
276
    if (ff_thread_once(&histogram_init, &init_histogram) != 0)
277
        goto free_short_term_block_energy_histogram;
278
279
    st->d->data_ptrs = av_malloc_array(channels, sizeof(*st->d->data_ptrs));
280
    CHECK_ERROR(!st->d->data_ptrs, 0,
281
                free_short_term_block_energy_histogram);
282
283
    return st;
284
285
free_short_term_block_energy_histogram:
286
    av_free(st->d->short_term_block_energy_histogram);
287
free_block_energy_histogram:
288
    av_free(st->d->block_energy_histogram);
289
free_audio_data:
290
    av_free(st->d->audio_data);
291
free_sample_peak:
292
    av_free(st->d->sample_peak);
293
free_channel_map:
294
    av_free(st->d->channel_map);
295
free_internal:
296
    av_free(st->d);
297
free_state:
298
    av_free(st);
299
exit:
300
    return NULL;
301
}
302
303
void ff_ebur128_destroy(FFEBUR128State ** st)
304
{
305
    av_free((*st)->d->block_energy_histogram);
306
    av_free((*st)->d->short_term_block_energy_histogram);
307
    av_free((*st)->d->audio_data);
308
    av_free((*st)->d->channel_map);
309
    av_free((*st)->d->sample_peak);
310
    av_free((*st)->d->data_ptrs);
311
    av_free((*st)->d);
312
    av_free(*st);
313
    *st = NULL;
314
}
315
316
#define EBUR128_FILTER(type, scaling_factor)                                       \
317
static void ebur128_filter_##type(FFEBUR128State* st, const type** srcs,           \
318
                                  size_t src_index, size_t frames,                 \
319
                                  int stride) {                                    \
320
    double* audio_data = st->d->audio_data + st->d->audio_data_index;              \
321
    size_t i, c;                                                                   \
322
                                                                                   \
323
    if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) == FF_EBUR128_MODE_SAMPLE_PEAK) { \
324
        for (c = 0; c < st->channels; ++c) {                                       \
325
            double max = 0.0;                                                      \
326
            for (i = 0; i < frames; ++i) {                                         \
327
                type v = srcs[c][src_index + i * stride];                          \
328
                if (v > max) {                                                     \
329
                    max =        v;                                                \
330
                } else if (-v > max) {                                             \
331
                    max = -1.0 * v;                                                \
332
                }                                                                  \
333
            }                                                                      \
334
            max /= scaling_factor;                                                 \
335
            if (max > st->d->sample_peak[c]) st->d->sample_peak[c] = max;          \
336
        }                                                                          \
337
    }                                                                              \
338
    for (c = 0; c < st->channels; ++c) {                                           \
339
        int ci = st->d->channel_map[c] - 1;                                        \
340
        if (ci < 0) continue;                                                      \
341
        else if (ci == FF_EBUR128_DUAL_MONO - 1) ci = 0; /*dual mono */            \
342
        for (i = 0; i < frames; ++i) {                                             \
343
            st->d->v[ci][0] = (double) (srcs[c][src_index + i * stride] / scaling_factor) \
344
                         - st->d->a[1] * st->d->v[ci][1]                           \
345
                         - st->d->a[2] * st->d->v[ci][2]                           \
346
                         - st->d->a[3] * st->d->v[ci][3]                           \
347
                         - st->d->a[4] * st->d->v[ci][4];                          \
348
            audio_data[i * st->channels + c] =                                     \
349
                           st->d->b[0] * st->d->v[ci][0]                           \
350
                         + st->d->b[1] * st->d->v[ci][1]                           \
351
                         + st->d->b[2] * st->d->v[ci][2]                           \
352
                         + st->d->b[3] * st->d->v[ci][3]                           \
353
                         + st->d->b[4] * st->d->v[ci][4];                          \
354
            st->d->v[ci][4] = st->d->v[ci][3];                                     \
355
            st->d->v[ci][3] = st->d->v[ci][2];                                     \
356
            st->d->v[ci][2] = st->d->v[ci][1];                                     \
357
            st->d->v[ci][1] = st->d->v[ci][0];                                     \
358
        }                                                                          \
359
        st->d->v[ci][4] = fabs(st->d->v[ci][4]) < DBL_MIN ? 0.0 : st->d->v[ci][4]; \
360
        st->d->v[ci][3] = fabs(st->d->v[ci][3]) < DBL_MIN ? 0.0 : st->d->v[ci][3]; \
361
        st->d->v[ci][2] = fabs(st->d->v[ci][2]) < DBL_MIN ? 0.0 : st->d->v[ci][2]; \
362
        st->d->v[ci][1] = fabs(st->d->v[ci][1]) < DBL_MIN ? 0.0 : st->d->v[ci][1]; \
363
    }                                                                              \
364
}
365
EBUR128_FILTER(double, 1.0)
366
367
static double ebur128_energy_to_loudness(double energy)
368
{
369
    return 10 * log10(energy) - 0.691;
370
}
371
372
static size_t find_histogram_index(double energy)
373
{
374
    size_t index_min = 0;
375
    size_t index_max = 1000;
376
    size_t index_mid;
377
378
    do {
379
        index_mid = (index_min + index_max) / 2;
380
        if (energy >= histogram_energy_boundaries[index_mid]) {
381
            index_min = index_mid;
382
        } else {
383
            index_max = index_mid;
384
        }
385
    } while (index_max - index_min != 1);
386
387
    return index_min;
388
}
389
390
static void ebur128_calc_gating_block(FFEBUR128State * st,
391
                                      size_t frames_per_block,
392
                                      double *optional_output)
393
{
394
    size_t i, c;
395
    double sum = 0.0;
396
    double channel_sum;
397
    for (c = 0; c < st->channels; ++c) {
398
        if (st->d->channel_map[c] == FF_EBUR128_UNUSED)
399
            continue;
400
        channel_sum = 0.0;
401
        if (st->d->audio_data_index < frames_per_block * st->channels) {
402
            for (i = 0; i < st->d->audio_data_index / st->channels; ++i) {
403
                channel_sum += st->d->audio_data[i * st->channels + c] *
404
                    st->d->audio_data[i * st->channels + c];
405
            }
406
            for (i = st->d->audio_data_frames -
407
                 (frames_per_block -
408
                  st->d->audio_data_index / st->channels);
409
                 i < st->d->audio_data_frames; ++i) {
410
                channel_sum += st->d->audio_data[i * st->channels + c] *
411
                    st->d->audio_data[i * st->channels + c];
412
            }
413
        } else {
414
            for (i =
415
                 st->d->audio_data_index / st->channels - frames_per_block;
416
                 i < st->d->audio_data_index / st->channels; ++i) {
417
                channel_sum +=
418
                    st->d->audio_data[i * st->channels +
419
                                      c] * st->d->audio_data[i *
420
                                                             st->channels +
421
                                                             c];
422
            }
423
        }
424
        if (st->d->channel_map[c] == FF_EBUR128_Mp110 ||
425
            st->d->channel_map[c] == FF_EBUR128_Mm110 ||
426
            st->d->channel_map[c] == FF_EBUR128_Mp060 ||
427
            st->d->channel_map[c] == FF_EBUR128_Mm060 ||
428
            st->d->channel_map[c] == FF_EBUR128_Mp090 ||
429
            st->d->channel_map[c] == FF_EBUR128_Mm090) {
430
            channel_sum *= 1.41;
431
        } else if (st->d->channel_map[c] == FF_EBUR128_DUAL_MONO) {
432
            channel_sum *= 2.0;
433
        }
434
        sum += channel_sum;
435
    }
436
    sum /= (double) frames_per_block;
437
    if (optional_output) {
438
        *optional_output = sum;
439
    } else if (sum >= histogram_energy_boundaries[0]) {
440
        ++st->d->block_energy_histogram[find_histogram_index(sum)];
441
    }
442
}
443
444
int ff_ebur128_set_channel(FFEBUR128State * st,
445
                           unsigned int channel_number, int value)
446
{
447
    if (channel_number >= st->channels) {
448
        return 1;
449
    }
450
    if (value == FF_EBUR128_DUAL_MONO &&
451
        (st->channels != 1 || channel_number != 0)) {
452
        return 1;
453
    }
454
    st->d->channel_map[channel_number] = value;
455
    return 0;
456
}
457
458
static int ebur128_energy_shortterm(FFEBUR128State * st, double *out);
459
#define EBUR128_ADD_FRAMES_PLANAR(type)                                                \
460
static void ebur128_add_frames_planar_##type(FFEBUR128State* st, const type** srcs,    \
461
                                 size_t frames, int stride) {                          \
462
    size_t src_index = 0;                                                              \
463
    while (frames > 0) {                                                               \
464
        if (frames >= st->d->needed_frames) {                                          \
465
            ebur128_filter_##type(st, srcs, src_index, st->d->needed_frames, stride);  \
466
            src_index += st->d->needed_frames * stride;                                \
467
            frames -= st->d->needed_frames;                                            \
468
            st->d->audio_data_index += st->d->needed_frames * st->channels;            \
469
            /* calculate the new gating block */                                       \
470
            if ((st->mode & FF_EBUR128_MODE_I) == FF_EBUR128_MODE_I) {                 \
471
                ebur128_calc_gating_block(st, st->d->samples_in_100ms * 4, NULL);      \
472
            }                                                                          \
473
            if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) {             \
474
                st->d->short_term_frame_counter += st->d->needed_frames;               \
475
                if (st->d->short_term_frame_counter == st->d->samples_in_100ms * 30) { \
476
                    double st_energy;                                                  \
477
                    ebur128_energy_shortterm(st, &st_energy);                          \
478
                    if (st_energy >= histogram_energy_boundaries[0]) {                 \
479
                        ++st->d->short_term_block_energy_histogram[                    \
480
                                                    find_histogram_index(st_energy)];  \
481
                    }                                                                  \
482
                    st->d->short_term_frame_counter = st->d->samples_in_100ms * 20;    \
483
                }                                                                      \
484
            }                                                                          \
485
            /* 100ms are needed for all blocks besides the first one */                \
486
            st->d->needed_frames = st->d->samples_in_100ms;                            \
487
            /* reset audio_data_index when buffer full */                              \
488
            if (st->d->audio_data_index == st->d->audio_data_frames * st->channels) {  \
489
                st->d->audio_data_index = 0;                                           \
490
            }                                                                          \
491
        } else {                                                                       \
492
            ebur128_filter_##type(st, srcs, src_index, frames, stride);                \
493
            st->d->audio_data_index += frames * st->channels;                          \
494
            if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) {             \
495
                st->d->short_term_frame_counter += frames;                             \
496
            }                                                                          \
497
            st->d->needed_frames -= frames;                                            \
498
            frames = 0;                                                                \
499
        }                                                                              \
500
    }                                                                                  \
501
}
502
EBUR128_ADD_FRAMES_PLANAR(double)
503
#define FF_EBUR128_ADD_FRAMES(type)                                            \
504
void ff_ebur128_add_frames_##type(FFEBUR128State* st, const type* src,         \
505
                                    size_t frames) {                           \
506
  int i;                                                                       \
507
  const type **buf = (const type**)st->d->data_ptrs;                           \
508
  for (i = 0; i < st->channels; i++)                                           \
509
    buf[i] = src + i;                                                          \
510
  ebur128_add_frames_planar_##type(st, buf, frames, st->channels);             \
511
}
512
FF_EBUR128_ADD_FRAMES(double)
513
514
static int ebur128_calc_relative_threshold(FFEBUR128State **sts, size_t size,
515
                                           double *relative_threshold)
516
{
517
    size_t i, j;
518
    int above_thresh_counter = 0;
519
    *relative_threshold = 0.0;
520
521
    for (i = 0; i < size; i++) {
522
        unsigned long *block_energy_histogram = sts[i]->d->block_energy_histogram;
523
        for (j = 0; j < 1000; ++j) {
524
            *relative_threshold += block_energy_histogram[j] * histogram_energies[j];
525
            above_thresh_counter += block_energy_histogram[j];
526
        }
527
    }
528
529
    if (above_thresh_counter != 0) {
530
        *relative_threshold /= (double)above_thresh_counter;
531
        *relative_threshold *= RELATIVE_GATE_FACTOR;
532
    }
533
534
    return above_thresh_counter;
535
}
536
537
static int ebur128_gated_loudness(FFEBUR128State ** sts, size_t size,
538
                                  double *out)
539
{
540
    double gated_loudness = 0.0;
541
    double relative_threshold;
542
    size_t above_thresh_counter;
543
    size_t i, j, start_index;
544
545
    for (i = 0; i < size; i++)
546
        if ((sts[i]->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I)
547
            return AVERROR(EINVAL);
548
549
    if (!ebur128_calc_relative_threshold(sts, size, &relative_threshold)) {
550
        *out = -HUGE_VAL;
551
        return 0;
552
    }
553
554
    above_thresh_counter = 0;
555
    if (relative_threshold < histogram_energy_boundaries[0]) {
556
        start_index = 0;
557
    } else {
558
        start_index = find_histogram_index(relative_threshold);
559
        if (relative_threshold > histogram_energies[start_index]) {
560
            ++start_index;
561
        }
562
    }
563
    for (i = 0; i < size; i++) {
564
        for (j = start_index; j < 1000; ++j) {
565
            gated_loudness += sts[i]->d->block_energy_histogram[j] *
566
                histogram_energies[j];
567
            above_thresh_counter += sts[i]->d->block_energy_histogram[j];
568
        }
569
    }
570
    if (!above_thresh_counter) {
571
        *out = -HUGE_VAL;
572
        return 0;
573
    }
574
    gated_loudness /= (double) above_thresh_counter;
575
    *out = ebur128_energy_to_loudness(gated_loudness);
576
    return 0;
577
}
578
579
int ff_ebur128_relative_threshold(FFEBUR128State * st, double *out)
580
{
581
    double relative_threshold;
582
583
    if ((st->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I)
584
        return AVERROR(EINVAL);
585
586
    if (!ebur128_calc_relative_threshold(&st, 1, &relative_threshold)) {
587
        *out = -70.0;
588
        return 0;
589
    }
590
591
    *out = ebur128_energy_to_loudness(relative_threshold);
592
    return 0;
593
}
594
595
int ff_ebur128_loudness_global(FFEBUR128State * st, double *out)
596
{
597
    return ebur128_gated_loudness(&st, 1, out);
598
}
599
600
static int ebur128_energy_in_interval(FFEBUR128State * st,
601
                                      size_t interval_frames, double *out)
602
{
603
    if (interval_frames > st->d->audio_data_frames) {
604
        return AVERROR(EINVAL);
605
    }
606
    ebur128_calc_gating_block(st, interval_frames, out);
607
    return 0;
608
}
609
610
static int ebur128_energy_shortterm(FFEBUR128State * st, double *out)
611
{
612
    return ebur128_energy_in_interval(st, st->d->samples_in_100ms * 30,
613
                                      out);
614
}
615
616
int ff_ebur128_loudness_shortterm(FFEBUR128State * st, double *out)
617
{
618
    double energy;
619
    int error = ebur128_energy_shortterm(st, &energy);
620
    if (error) {
621
        return error;
622
    } else if (energy <= 0.0) {
623
        *out = -HUGE_VAL;
624
        return 0;
625
    }
626
    *out = ebur128_energy_to_loudness(energy);
627
    return 0;
628
}
629
630
/* EBU - TECH 3342 */
631
int ff_ebur128_loudness_range_multiple(FFEBUR128State ** sts, size_t size,
632
                                       double *out)
633
{
634
    size_t i, j;
635
    size_t stl_size;
636
    double stl_power, stl_integrated;
637
    /* High and low percentile energy */
638
    double h_en, l_en;
639
    unsigned long hist[1000] = { 0 };
640
    size_t percentile_low, percentile_high;
641
    size_t index;
642
643
    for (i = 0; i < size; ++i) {
644
        if (sts[i]) {
645
            if ((sts[i]->mode & FF_EBUR128_MODE_LRA) !=
646
                FF_EBUR128_MODE_LRA) {
647
                return AVERROR(EINVAL);
648
            }
649
        }
650
    }
651
652
    stl_size = 0;
653
    stl_power = 0.0;
654
    for (i = 0; i < size; ++i) {
655
        if (!sts[i])
656
            continue;
657
        for (j = 0; j < 1000; ++j) {
658
            hist[j] += sts[i]->d->short_term_block_energy_histogram[j];
659
            stl_size += sts[i]->d->short_term_block_energy_histogram[j];
660
            stl_power += sts[i]->d->short_term_block_energy_histogram[j]
661
                * histogram_energies[j];
662
        }
663
    }
664
    if (!stl_size) {
665
        *out = 0.0;
666
        return 0;
667
    }
668
669
    stl_power /= stl_size;
670
    stl_integrated = MINUS_20DB * stl_power;
671
672
    if (stl_integrated < histogram_energy_boundaries[0]) {
673
        index = 0;
674
    } else {
675
        index = find_histogram_index(stl_integrated);
676
        if (stl_integrated > histogram_energies[index]) {
677
            ++index;
678
        }
679
    }
680
    stl_size = 0;
681
    for (j = index; j < 1000; ++j) {
682
        stl_size += hist[j];
683
    }
684
    if (!stl_size) {
685
        *out = 0.0;
686
        return 0;
687
    }
688
689
    percentile_low = (size_t) ((stl_size - 1) * 0.1 + 0.5);
690
    percentile_high = (size_t) ((stl_size - 1) * 0.95 + 0.5);
691
692
    stl_size = 0;
693
    j = index;
694
    while (stl_size <= percentile_low) {
695
        stl_size += hist[j++];
696
    }
697
    l_en = histogram_energies[j - 1];
698
    while (stl_size <= percentile_high) {
699
        stl_size += hist[j++];
700
    }
701
    h_en = histogram_energies[j - 1];
702
    *out =
703
        ebur128_energy_to_loudness(h_en) -
704
        ebur128_energy_to_loudness(l_en);
705
    return 0;
706
}
707
708
int ff_ebur128_loudness_range(FFEBUR128State * st, double *out)
709
{
710
    return ff_ebur128_loudness_range_multiple(&st, 1, out);
711
}
712
713
int ff_ebur128_sample_peak(FFEBUR128State * st,
714
                           unsigned int channel_number, double *out)
715
{
716
    if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) !=
717
        FF_EBUR128_MODE_SAMPLE_PEAK) {
718
        return AVERROR(EINVAL);
719
    } else if (channel_number >= st->channels) {
720
        return AVERROR(EINVAL);
721
    }
722
    *out = st->d->sample_peak[channel_number];
723
    return 0;
724
}