GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavfilter/avf_showspectrum.c Lines: 0 832 0.0 %
Date: 2020-08-14 10:39:37 Branches: 0 557 0.0 %

Line Branch Exec Source
1
/*
2
 * Copyright (c) 2012-2013 Clément Bœsch
3
 * Copyright (c) 2013 Rudolf Polzer <divverent@xonotic.org>
4
 * Copyright (c) 2015 Paul B Mahol
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
23
/**
24
 * @file
25
 * audio to spectrum (video) transmedia filter, based on ffplay rdft showmode
26
 * (by Michael Niedermayer) and lavfi/avf_showwaves (by Stefano Sabatini).
27
 */
28
29
#include <math.h>
30
31
#include "libavcodec/avfft.h"
32
#include "libavutil/audio_fifo.h"
33
#include "libavutil/avassert.h"
34
#include "libavutil/avstring.h"
35
#include "libavutil/channel_layout.h"
36
#include "libavutil/opt.h"
37
#include "libavutil/parseutils.h"
38
#include "libavutil/xga_font_data.h"
39
#include "audio.h"
40
#include "video.h"
41
#include "avfilter.h"
42
#include "filters.h"
43
#include "internal.h"
44
#include "window_func.h"
45
46
enum DisplayMode  { COMBINED, SEPARATE, NB_MODES };
47
enum DataMode     { D_MAGNITUDE, D_PHASE, NB_DMODES };
48
enum FrequencyScale { F_LINEAR, F_LOG, NB_FSCALES };
49
enum DisplayScale { LINEAR, SQRT, CBRT, LOG, FOURTHRT, FIFTHRT, NB_SCALES };
50
enum ColorMode    { CHANNEL, INTENSITY, RAINBOW, MORELAND, NEBULAE, FIRE, FIERY, FRUIT, COOL, MAGMA, GREEN, VIRIDIS, PLASMA, CIVIDIS, TERRAIN, NB_CLMODES };
51
enum SlideMode    { REPLACE, SCROLL, FULLFRAME, RSCROLL, NB_SLIDES };
52
enum Orientation  { VERTICAL, HORIZONTAL, NB_ORIENTATIONS };
53
54
typedef struct ShowSpectrumContext {
55
    const AVClass *class;
56
    int w, h;
57
    char *rate_str;
58
    AVRational auto_frame_rate;
59
    AVRational frame_rate;
60
    AVFrame *outpicref;
61
    int nb_display_channels;
62
    int orientation;
63
    int channel_width;
64
    int channel_height;
65
    int sliding;                ///< 1 if sliding mode, 0 otherwise
66
    int mode;                   ///< channel display mode
67
    int color_mode;             ///< display color scheme
68
    int scale;
69
    int fscale;
70
    float saturation;           ///< color saturation multiplier
71
    float rotation;             ///< color rotation
72
    int start, stop;            ///< zoom mode
73
    int data;
74
    int xpos;                   ///< x position (current column)
75
    FFTContext **fft;           ///< Fast Fourier Transform context
76
    FFTContext **ifft;          ///< Inverse Fast Fourier Transform context
77
    int fft_bits;               ///< number of bits (FFT window size = 1<<fft_bits)
78
    FFTComplex **fft_data;      ///< bins holder for each (displayed) channels
79
    FFTComplex **fft_scratch;   ///< scratch buffers
80
    float *window_func_lut;     ///< Window function LUT
81
    float **magnitudes;
82
    float **phases;
83
    int win_func;
84
    int win_size;
85
    int buf_size;
86
    double win_scale;
87
    float overlap;
88
    float gain;
89
    int consumed;
90
    int hop_size;
91
    float *combine_buffer;      ///< color combining buffer (3 * h items)
92
    float **color_buffer;       ///< color buffer (3 * h * ch items)
93
    AVAudioFifo *fifo;
94
    int64_t pts;
95
    int64_t old_pts;
96
    int old_len;
97
    int single_pic;
98
    int legend;
99
    int start_x, start_y;
100
    int (*plot_channel)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
101
} ShowSpectrumContext;
102
103
#define OFFSET(x) offsetof(ShowSpectrumContext, x)
104
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
105
106
static const AVOption showspectrum_options[] = {
107
    { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
108
    { "s",    "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
109
    { "slide", "set sliding mode", OFFSET(sliding), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_SLIDES-1, FLAGS, "slide" },
110
        { "replace", "replace old columns with new", 0, AV_OPT_TYPE_CONST, {.i64=REPLACE}, 0, 0, FLAGS, "slide" },
111
        { "scroll", "scroll from right to left", 0, AV_OPT_TYPE_CONST, {.i64=SCROLL}, 0, 0, FLAGS, "slide" },
112
        { "fullframe", "return full frames", 0, AV_OPT_TYPE_CONST, {.i64=FULLFRAME}, 0, 0, FLAGS, "slide" },
113
        { "rscroll", "scroll from left to right", 0, AV_OPT_TYPE_CONST, {.i64=RSCROLL}, 0, 0, FLAGS, "slide" },
114
    { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, COMBINED, NB_MODES-1, FLAGS, "mode" },
115
        { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" },
116
        { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" },
117
    { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=CHANNEL}, CHANNEL, NB_CLMODES-1, FLAGS, "color" },
118
        { "channel",   "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL},   0, 0, FLAGS, "color" },
119
        { "intensity", "intensity based coloring",        0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" },
120
        { "rainbow",   "rainbow based coloring",          0, AV_OPT_TYPE_CONST, {.i64=RAINBOW},   0, 0, FLAGS, "color" },
121
        { "moreland",  "moreland based coloring",         0, AV_OPT_TYPE_CONST, {.i64=MORELAND},  0, 0, FLAGS, "color" },
122
        { "nebulae",   "nebulae based coloring",          0, AV_OPT_TYPE_CONST, {.i64=NEBULAE},   0, 0, FLAGS, "color" },
123
        { "fire",      "fire based coloring",             0, AV_OPT_TYPE_CONST, {.i64=FIRE},      0, 0, FLAGS, "color" },
124
        { "fiery",     "fiery based coloring",            0, AV_OPT_TYPE_CONST, {.i64=FIERY},     0, 0, FLAGS, "color" },
125
        { "fruit",     "fruit based coloring",            0, AV_OPT_TYPE_CONST, {.i64=FRUIT},     0, 0, FLAGS, "color" },
126
        { "cool",      "cool based coloring",             0, AV_OPT_TYPE_CONST, {.i64=COOL},      0, 0, FLAGS, "color" },
127
        { "magma",     "magma based coloring",            0, AV_OPT_TYPE_CONST, {.i64=MAGMA},     0, 0, FLAGS, "color" },
128
        { "green",     "green based coloring",            0, AV_OPT_TYPE_CONST, {.i64=GREEN},     0, 0, FLAGS, "color" },
129
        { "viridis",   "viridis based coloring",          0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS},   0, 0, FLAGS, "color" },
130
        { "plasma",    "plasma based coloring",           0, AV_OPT_TYPE_CONST, {.i64=PLASMA},    0, 0, FLAGS, "color" },
131
        { "cividis",   "cividis based coloring",          0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS},   0, 0, FLAGS, "color" },
132
        { "terrain",   "terrain based coloring",          0, AV_OPT_TYPE_CONST, {.i64=TERRAIN},   0, 0, FLAGS, "color" },
133
    { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=SQRT}, LINEAR, NB_SCALES-1, FLAGS, "scale" },
134
        { "lin",  "linear",      0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" },
135
        { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT},   0, 0, FLAGS, "scale" },
136
        { "cbrt", "cubic root",  0, AV_OPT_TYPE_CONST, {.i64=CBRT},   0, 0, FLAGS, "scale" },
137
        { "log",  "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG},    0, 0, FLAGS, "scale" },
138
        { "4thrt","4th root",    0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" },
139
        { "5thrt","5th root",    0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT},  0, 0, FLAGS, "scale" },
140
    { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" },
141
        { "lin",  "linear",      0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, "fscale" },
142
        { "log",  "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG},    0, 0, FLAGS, "fscale" },
143
    { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS },
144
    { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" },
145
        { "rect",     "Rectangular",      0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT},     0, 0, FLAGS, "win_func" },
146
        { "bartlett", "Bartlett",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" },
147
        { "hann",     "Hann",             0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING},  0, 0, FLAGS, "win_func" },
148
        { "hanning",  "Hanning",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING},  0, 0, FLAGS, "win_func" },
149
        { "hamming",  "Hamming",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING},  0, 0, FLAGS, "win_func" },
150
        { "blackman", "Blackman",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" },
151
        { "welch",    "Welch",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH},    0, 0, FLAGS, "win_func" },
152
        { "flattop",  "Flat-top",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP},  0, 0, FLAGS, "win_func" },
153
        { "bharris",  "Blackman-Harris",  0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS},  0, 0, FLAGS, "win_func" },
154
        { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" },
155
        { "bhann",    "Bartlett-Hann",    0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN},    0, 0, FLAGS, "win_func" },
156
        { "sine",     "Sine",             0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE},     0, 0, FLAGS, "win_func" },
157
        { "nuttall",  "Nuttall",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL},  0, 0, FLAGS, "win_func" },
158
        { "lanczos",  "Lanczos",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS},  0, 0, FLAGS, "win_func" },
159
        { "gauss",    "Gauss",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS},    0, 0, FLAGS, "win_func" },
160
        { "tukey",    "Tukey",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY},    0, 0, FLAGS, "win_func" },
161
        { "dolph",    "Dolph-Chebyshev",  0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH},    0, 0, FLAGS, "win_func" },
162
        { "cauchy",   "Cauchy",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY},   0, 0, FLAGS, "win_func" },
163
        { "parzen",   "Parzen",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN},   0, 0, FLAGS, "win_func" },
164
        { "poisson",  "Poisson",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON},  0, 0, FLAGS, "win_func" },
165
        { "bohman",   "Bohman",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BOHMAN},   0, 0, FLAGS, "win_func" },
166
    { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, "orientation" },
167
        { "vertical",   NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL},   0, 0, FLAGS, "orientation" },
168
        { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, "orientation" },
169
    { "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl = 0}, 0, 1, FLAGS },
170
    { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS },
171
    { "data", "set data mode", OFFSET(data), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_DMODES-1, FLAGS, "data" },
172
        { "magnitude", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_MAGNITUDE}, 0, 0, FLAGS, "data" },
173
        { "phase",     NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_PHASE},     0, 0, FLAGS, "data" },
174
    { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS },
175
    { "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
176
    { "stop",  "stop frequency",  OFFSET(stop),  AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
177
    { "fps",   "set video rate",  OFFSET(rate_str), AV_OPT_TYPE_STRING, {.str = "auto"}, 0, 0, FLAGS },
178
    { "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
179
    { NULL }
180
};
181
182
AVFILTER_DEFINE_CLASS(showspectrum);
183
184
static const struct ColorTable {
185
    float a, y, u, v;
186
} color_table[][8] = {
187
    [INTENSITY] = {
188
    {    0,                  0,                  0,                   0 },
189
    { 0.13, .03587126228984074,  .1573300977624594, -.02548747583751842 },
190
    { 0.30, .18572281794568020,  .1772436246393981,  .17475554840414750 },
191
    { 0.60, .28184980583656130, -.1593064119945782,  .47132074554608920 },
192
    { 0.73, .65830621175547810, -.3716070802232764,  .24352759331252930 },
193
    { 0.78, .76318535758242900, -.4307467689263783,  .16866496622310430 },
194
    { 0.91, .95336363636363640, -.2045454545454546,  .03313636363636363 },
195
    {    1,                  1,                  0,                   0 }},
196
    [RAINBOW] = {
197
    {    0,                  0,                  0,                   0 },
198
    { 0.13,            44/256.,     (189-128)/256.,      (138-128)/256. },
199
    { 0.25,            29/256.,     (186-128)/256.,      (119-128)/256. },
200
    { 0.38,           119/256.,     (194-128)/256.,       (53-128)/256. },
201
    { 0.60,           111/256.,      (73-128)/256.,       (59-128)/256. },
202
    { 0.73,           205/256.,      (19-128)/256.,      (149-128)/256. },
203
    { 0.86,           135/256.,      (83-128)/256.,      (200-128)/256. },
204
    {    1,            73/256.,      (95-128)/256.,      (225-128)/256. }},
205
    [MORELAND] = {
206
    {    0,            44/256.,     (181-128)/256.,      (112-128)/256. },
207
    { 0.13,           126/256.,     (177-128)/256.,      (106-128)/256. },
208
    { 0.25,           164/256.,     (163-128)/256.,      (109-128)/256. },
209
    { 0.38,           200/256.,     (140-128)/256.,      (120-128)/256. },
210
    { 0.60,           201/256.,     (117-128)/256.,      (141-128)/256. },
211
    { 0.73,           177/256.,     (103-128)/256.,      (165-128)/256. },
212
    { 0.86,           136/256.,     (100-128)/256.,      (183-128)/256. },
213
    {    1,            68/256.,     (117-128)/256.,      (203-128)/256. }},
214
    [NEBULAE] = {
215
    {    0,            10/256.,     (134-128)/256.,      (132-128)/256. },
216
    { 0.23,            21/256.,     (137-128)/256.,      (130-128)/256. },
217
    { 0.45,            35/256.,     (134-128)/256.,      (134-128)/256. },
218
    { 0.57,            51/256.,     (130-128)/256.,      (139-128)/256. },
219
    { 0.67,           104/256.,     (116-128)/256.,      (162-128)/256. },
220
    { 0.77,           120/256.,     (105-128)/256.,      (188-128)/256. },
221
    { 0.87,           140/256.,     (105-128)/256.,      (188-128)/256. },
222
    {    1,                  1,                  0,                   0 }},
223
    [FIRE] = {
224
    {    0,                  0,                  0,                   0 },
225
    { 0.23,            44/256.,     (132-128)/256.,      (127-128)/256. },
226
    { 0.45,            62/256.,     (116-128)/256.,      (140-128)/256. },
227
    { 0.57,            75/256.,     (105-128)/256.,      (152-128)/256. },
228
    { 0.67,            95/256.,      (91-128)/256.,      (166-128)/256. },
229
    { 0.77,           126/256.,      (74-128)/256.,      (172-128)/256. },
230
    { 0.87,           164/256.,      (73-128)/256.,      (162-128)/256. },
231
    {    1,                  1,                  0,                   0 }},
232
    [FIERY] = {
233
    {    0,                  0,                  0,                   0 },
234
    { 0.23,            36/256.,     (116-128)/256.,      (163-128)/256. },
235
    { 0.45,            52/256.,     (102-128)/256.,      (200-128)/256. },
236
    { 0.57,           116/256.,      (84-128)/256.,      (196-128)/256. },
237
    { 0.67,           157/256.,      (67-128)/256.,      (181-128)/256. },
238
    { 0.77,           193/256.,      (40-128)/256.,      (155-128)/256. },
239
    { 0.87,           221/256.,     (101-128)/256.,      (134-128)/256. },
240
    {    1,                  1,                  0,                   0 }},
241
    [FRUIT] = {
242
    {    0,                  0,                  0,                   0 },
243
    { 0.20,            29/256.,     (136-128)/256.,      (119-128)/256. },
244
    { 0.30,            60/256.,     (119-128)/256.,       (90-128)/256. },
245
    { 0.40,            85/256.,      (91-128)/256.,       (85-128)/256. },
246
    { 0.50,           116/256.,      (70-128)/256.,      (105-128)/256. },
247
    { 0.60,           151/256.,      (50-128)/256.,      (146-128)/256. },
248
    { 0.70,           191/256.,      (63-128)/256.,      (178-128)/256. },
249
    {    1,            98/256.,      (80-128)/256.,      (221-128)/256. }},
250
    [COOL] = {
251
    {    0,                  0,                  0,                   0 },
252
    {  .15,                  0,                 .5,                 -.5 },
253
    {    1,                  1,                -.5,                  .5 }},
254
    [MAGMA] = {
255
    {    0,                  0,                  0,                   0 },
256
    { 0.10,            23/256.,     (175-128)/256.,      (120-128)/256. },
257
    { 0.23,            43/256.,     (158-128)/256.,      (144-128)/256. },
258
    { 0.35,            85/256.,     (138-128)/256.,      (179-128)/256. },
259
    { 0.48,            96/256.,     (128-128)/256.,      (189-128)/256. },
260
    { 0.64,           128/256.,     (103-128)/256.,      (214-128)/256. },
261
    { 0.92,           205/256.,      (80-128)/256.,      (152-128)/256. },
262
    {    1,                  1,                  0,                   0 }},
263
    [GREEN] = {
264
    {    0,                  0,                  0,                   0 },
265
    {  .75,                 .5,                  0,                 -.5 },
266
    {    1,                  1,                  0,                   0 }},
267
    [VIRIDIS] = {
268
    {    0,                  0,                  0,                   0 },
269
    { 0.10,          0x39/255.,   (0x9D -128)/255.,    (0x8F -128)/255. },
270
    { 0.23,          0x5C/255.,   (0x9A -128)/255.,    (0x68 -128)/255. },
271
    { 0.35,          0x69/255.,   (0x93 -128)/255.,    (0x57 -128)/255. },
272
    { 0.48,          0x76/255.,   (0x88 -128)/255.,    (0x4B -128)/255. },
273
    { 0.64,          0x8A/255.,   (0x72 -128)/255.,    (0x4F -128)/255. },
274
    { 0.80,          0xA3/255.,   (0x50 -128)/255.,    (0x66 -128)/255. },
275
    {    1,          0xCC/255.,   (0x2F -128)/255.,    (0x87 -128)/255. }},
276
    [PLASMA] = {
277
    {    0,                  0,                  0,                   0 },
278
    { 0.10,          0x27/255.,   (0xC2 -128)/255.,    (0x82 -128)/255. },
279
    { 0.58,          0x5B/255.,   (0x9A -128)/255.,    (0xAE -128)/255. },
280
    { 0.70,          0x89/255.,   (0x44 -128)/255.,    (0xAB -128)/255. },
281
    { 0.80,          0xB4/255.,   (0x2B -128)/255.,    (0x9E -128)/255. },
282
    { 0.91,          0xD2/255.,   (0x38 -128)/255.,    (0x92 -128)/255. },
283
    {    1,                  1,                  0,                  0. }},
284
    [CIVIDIS] = {
285
    {    0,                  0,                  0,                   0 },
286
    { 0.20,          0x28/255.,   (0x98 -128)/255.,    (0x6F -128)/255. },
287
    { 0.50,          0x48/255.,   (0x95 -128)/255.,    (0x74 -128)/255. },
288
    { 0.63,          0x69/255.,   (0x84 -128)/255.,    (0x7F -128)/255. },
289
    { 0.76,          0x89/255.,   (0x75 -128)/255.,    (0x84 -128)/255. },
290
    { 0.90,          0xCE/255.,   (0x35 -128)/255.,    (0x95 -128)/255. },
291
    {    1,                  1,                  0,                  0. }},
292
    [TERRAIN] = {
293
    {    0,                  0,                  0,                   0 },
294
    { 0.15,                  0,                 .5,                   0 },
295
    { 0.60,                  1,                -.5,                 -.5 },
296
    { 0.85,                  1,                -.5,                  .5 },
297
    {    1,                  1,                  0,                   0 }},
298
};
299
300
static av_cold void uninit(AVFilterContext *ctx)
301
{
302
    ShowSpectrumContext *s = ctx->priv;
303
    int i;
304
305
    av_freep(&s->combine_buffer);
306
    if (s->fft) {
307
        for (i = 0; i < s->nb_display_channels; i++)
308
            av_fft_end(s->fft[i]);
309
    }
310
    av_freep(&s->fft);
311
    if (s->ifft) {
312
        for (i = 0; i < s->nb_display_channels; i++)
313
            av_fft_end(s->ifft[i]);
314
    }
315
    av_freep(&s->ifft);
316
    if (s->fft_data) {
317
        for (i = 0; i < s->nb_display_channels; i++)
318
            av_freep(&s->fft_data[i]);
319
    }
320
    av_freep(&s->fft_data);
321
    if (s->fft_scratch) {
322
        for (i = 0; i < s->nb_display_channels; i++)
323
            av_freep(&s->fft_scratch[i]);
324
    }
325
    av_freep(&s->fft_scratch);
326
    if (s->color_buffer) {
327
        for (i = 0; i < s->nb_display_channels; i++)
328
            av_freep(&s->color_buffer[i]);
329
    }
330
    av_freep(&s->color_buffer);
331
    av_freep(&s->window_func_lut);
332
    if (s->magnitudes) {
333
        for (i = 0; i < s->nb_display_channels; i++)
334
            av_freep(&s->magnitudes[i]);
335
    }
336
    av_freep(&s->magnitudes);
337
    av_frame_free(&s->outpicref);
338
    av_audio_fifo_free(s->fifo);
339
    if (s->phases) {
340
        for (i = 0; i < s->nb_display_channels; i++)
341
            av_freep(&s->phases[i]);
342
    }
343
    av_freep(&s->phases);
344
}
345
346
static int query_formats(AVFilterContext *ctx)
347
{
348
    AVFilterFormats *formats = NULL;
349
    AVFilterChannelLayouts *layouts = NULL;
350
    AVFilterLink *inlink = ctx->inputs[0];
351
    AVFilterLink *outlink = ctx->outputs[0];
352
    static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE };
353
    static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_NONE };
354
    int ret;
355
356
    /* set input audio formats */
357
    formats = ff_make_format_list(sample_fmts);
358
    if ((ret = ff_formats_ref(formats, &inlink->out_formats)) < 0)
359
        return ret;
360
361
    layouts = ff_all_channel_layouts();
362
    if ((ret = ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts)) < 0)
363
        return ret;
364
365
    formats = ff_all_samplerates();
366
    if ((ret = ff_formats_ref(formats, &inlink->out_samplerates)) < 0)
367
        return ret;
368
369
    /* set output video format */
370
    formats = ff_make_format_list(pix_fmts);
371
    if ((ret = ff_formats_ref(formats, &outlink->in_formats)) < 0)
372
        return ret;
373
374
    return 0;
375
}
376
377
static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
378
{
379
    ShowSpectrumContext *s = ctx->priv;
380
    AVFilterLink *inlink = ctx->inputs[0];
381
    const float *window_func_lut = s->window_func_lut;
382
    AVFrame *fin = arg;
383
    const int ch = jobnr;
384
    int n;
385
386
    /* fill FFT input with the number of samples available */
387
    const float *p = (float *)fin->extended_data[ch];
388
389
    for (n = 0; n < s->win_size; n++) {
390
        s->fft_data[ch][n].re = p[n] * window_func_lut[n];
391
        s->fft_data[ch][n].im = 0;
392
    }
393
394
    if (s->stop) {
395
        float theta, phi, psi, a, b, S, c;
396
        FFTComplex *g = s->fft_data[ch];
397
        FFTComplex *h = s->fft_scratch[ch];
398
        int L = s->buf_size;
399
        int N = s->win_size;
400
        int M = s->win_size / 2;
401
402
        phi = 2.f * M_PI * (s->stop - s->start) / (float)inlink->sample_rate / (M - 1);
403
        theta = 2.f * M_PI * s->start / (float)inlink->sample_rate;
404
405
        for (int n = 0; n < M; n++) {
406
            h[n].re = cosf(n * n / 2.f * phi);
407
            h[n].im = sinf(n * n / 2.f * phi);
408
        }
409
410
        for (int n = M; n < L; n++) {
411
            h[n].re = 0.f;
412
            h[n].im = 0.f;
413
        }
414
415
        for (int n = L - N; n < L; n++) {
416
            h[n].re = cosf((L - n) * (L - n) / 2.f * phi);
417
            h[n].im = sinf((L - n) * (L - n) / 2.f * phi);
418
        }
419
420
        for (int n = 0; n < N; n++) {
421
            g[n].re = s->fft_data[ch][n].re;
422
            g[n].im = s->fft_data[ch][n].im;
423
        }
424
425
        for (int n = N; n < L; n++) {
426
            g[n].re = 0.f;
427
            g[n].im = 0.f;
428
        }
429
430
        for (int n = 0; n < N; n++) {
431
            psi = n * theta + n * n / 2.f * phi;
432
            c =  cosf(psi);
433
            S = -sinf(psi);
434
            a = c * g[n].re - S * g[n].im;
435
            b = S * g[n].re + c * g[n].im;
436
            g[n].re = a;
437
            g[n].im = b;
438
        }
439
440
        av_fft_permute(s->fft[ch], h);
441
        av_fft_calc(s->fft[ch], h);
442
443
        av_fft_permute(s->fft[ch], g);
444
        av_fft_calc(s->fft[ch], g);
445
446
        for (int n = 0; n < L; n++) {
447
            c = g[n].re;
448
            S = g[n].im;
449
            a = c * h[n].re - S * h[n].im;
450
            b = S * h[n].re + c * h[n].im;
451
452
            g[n].re = a / L;
453
            g[n].im = b / L;
454
        }
455
456
        av_fft_permute(s->ifft[ch], g);
457
        av_fft_calc(s->ifft[ch], g);
458
459
        for (int k = 0; k < M; k++) {
460
            psi = k * k / 2.f * phi;
461
            c =  cosf(psi);
462
            S = -sinf(psi);
463
            a = c * g[k].re - S * g[k].im;
464
            b = S * g[k].re + c * g[k].im;
465
            s->fft_data[ch][k].re = a;
466
            s->fft_data[ch][k].im = b;
467
        }
468
    } else {
469
        /* run FFT on each samples set */
470
        av_fft_permute(s->fft[ch], s->fft_data[ch]);
471
        av_fft_calc(s->fft[ch], s->fft_data[ch]);
472
    }
473
474
    return 0;
475
}
476
477
static void drawtext(AVFrame *pic, int x, int y, const char *txt, int o)
478
{
479
    const uint8_t *font;
480
    int font_height;
481
    int i;
482
483
    font = avpriv_cga_font,   font_height =  8;
484
485
    for (i = 0; txt[i]; i++) {
486
        int char_y, mask;
487
488
        if (o) {
489
            for (char_y = font_height - 1; char_y >= 0; char_y--) {
490
                uint8_t *p = pic->data[0] + (y + i * 10) * pic->linesize[0] + x;
491
                for (mask = 0x80; mask; mask >>= 1) {
492
                    if (font[txt[i] * font_height + font_height - 1 - char_y] & mask)
493
                        p[char_y] = ~p[char_y];
494
                    p += pic->linesize[0];
495
                }
496
            }
497
        } else {
498
            uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8);
499
            for (char_y = 0; char_y < font_height; char_y++) {
500
                for (mask = 0x80; mask; mask >>= 1) {
501
                    if (font[txt[i] * font_height + char_y] & mask)
502
                        *p = ~(*p);
503
                    p++;
504
                }
505
                p += pic->linesize[0] - 8;
506
            }
507
        }
508
    }
509
}
510
511
static void color_range(ShowSpectrumContext *s, int ch,
512
                        float *yf, float *uf, float *vf)
513
{
514
    switch (s->mode) {
515
    case COMBINED:
516
        // reduce range by channel count
517
        *yf = 256.0f / s->nb_display_channels;
518
        switch (s->color_mode) {
519
        case RAINBOW:
520
        case MORELAND:
521
        case NEBULAE:
522
        case FIRE:
523
        case FIERY:
524
        case FRUIT:
525
        case COOL:
526
        case GREEN:
527
        case VIRIDIS:
528
        case PLASMA:
529
        case CIVIDIS:
530
        case TERRAIN:
531
        case MAGMA:
532
        case INTENSITY:
533
            *uf = *yf;
534
            *vf = *yf;
535
            break;
536
        case CHANNEL:
537
            /* adjust saturation for mixed UV coloring */
538
            /* this factor is correct for infinite channels, an approximation otherwise */
539
            *uf = *yf * M_PI;
540
            *vf = *yf * M_PI;
541
            break;
542
        default:
543
            av_assert0(0);
544
        }
545
        break;
546
    case SEPARATE:
547
        // full range
548
        *yf = 256.0f;
549
        *uf = 256.0f;
550
        *vf = 256.0f;
551
        break;
552
    default:
553
        av_assert0(0);
554
    }
555
556
    if (s->color_mode == CHANNEL) {
557
        if (s->nb_display_channels > 1) {
558
            *uf *= 0.5f * sinf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation);
559
            *vf *= 0.5f * cosf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation);
560
        } else {
561
            *uf *= 0.5f * sinf(M_PI * s->rotation);
562
            *vf *= 0.5f * cosf(M_PI * s->rotation + M_PI_2);
563
        }
564
    } else {
565
        *uf += *uf * sinf(M_PI * s->rotation);
566
        *vf += *vf * cosf(M_PI * s->rotation + M_PI_2);
567
    }
568
569
    *uf *= s->saturation;
570
    *vf *= s->saturation;
571
}
572
573
static void pick_color(ShowSpectrumContext *s,
574
                       float yf, float uf, float vf,
575
                       float a, float *out)
576
{
577
    if (s->color_mode > CHANNEL) {
578
        const int cm = s->color_mode;
579
        float y, u, v;
580
        int i;
581
582
        for (i = 1; i < FF_ARRAY_ELEMS(color_table[cm]) - 1; i++)
583
            if (color_table[cm][i].a >= a)
584
                break;
585
        // i now is the first item >= the color
586
        // now we know to interpolate between item i - 1 and i
587
        if (a <= color_table[cm][i - 1].a) {
588
            y = color_table[cm][i - 1].y;
589
            u = color_table[cm][i - 1].u;
590
            v = color_table[cm][i - 1].v;
591
        } else if (a >= color_table[cm][i].a) {
592
            y = color_table[cm][i].y;
593
            u = color_table[cm][i].u;
594
            v = color_table[cm][i].v;
595
        } else {
596
            float start = color_table[cm][i - 1].a;
597
            float end = color_table[cm][i].a;
598
            float lerpfrac = (a - start) / (end - start);
599
            y = color_table[cm][i - 1].y * (1.0f - lerpfrac)
600
              + color_table[cm][i].y * lerpfrac;
601
            u = color_table[cm][i - 1].u * (1.0f - lerpfrac)
602
              + color_table[cm][i].u * lerpfrac;
603
            v = color_table[cm][i - 1].v * (1.0f - lerpfrac)
604
              + color_table[cm][i].v * lerpfrac;
605
        }
606
607
        out[0] = y * yf;
608
        out[1] = u * uf;
609
        out[2] = v * vf;
610
    } else {
611
        out[0] = a * yf;
612
        out[1] = a * uf;
613
        out[2] = a * vf;
614
    }
615
}
616
617
static char *get_time(AVFilterContext *ctx, float seconds, int x)
618
{
619
    char *units;
620
621
    if (x == 0)
622
        units = av_asprintf("0");
623
    else if (log10(seconds) > 6)
624
        units = av_asprintf("%.2fh", seconds / (60 * 60));
625
    else if (log10(seconds) > 3)
626
        units = av_asprintf("%.2fm", seconds / 60);
627
    else
628
        units = av_asprintf("%.2fs", seconds);
629
    return units;
630
}
631
632
static float log_scale(const float value, const float min, const float max)
633
{
634
    if (value < min)
635
        return min;
636
    if (value > max)
637
        return max;
638
639
    {
640
        const float b = logf(max / min) / (max - min);
641
        const float a = max / expf(max * b);
642
643
        return expf(value * b) * a;
644
    }
645
}
646
647
static float get_log_hz(const int bin, const int num_bins, const float sample_rate)
648
{
649
    const float max_freq = sample_rate / 2;
650
    const float hz_per_bin = max_freq / num_bins;
651
    const float freq = hz_per_bin * bin;
652
    const float scaled_freq = log_scale(freq + 1, 21, max_freq) - 1;
653
654
    return num_bins * scaled_freq / max_freq;
655
}
656
657
static float inv_log_scale(const float value, const float min, const float max)
658
{
659
    if (value < min)
660
        return min;
661
    if (value > max)
662
        return max;
663
664
    {
665
        const float b = logf(max / min) / (max - min);
666
        const float a = max / expf(max * b);
667
668
        return logf(value / a) / b;
669
    }
670
}
671
672
static float bin_pos(const int bin, const int num_bins, const float sample_rate)
673
{
674
    const float max_freq = sample_rate / 2;
675
    const float hz_per_bin = max_freq / num_bins;
676
    const float freq = hz_per_bin * bin;
677
    const float scaled_freq = inv_log_scale(freq + 1, 21, max_freq) - 1;
678
679
    return num_bins * scaled_freq / max_freq;
680
}
681
682
static int draw_legend(AVFilterContext *ctx, int samples)
683
{
684
    ShowSpectrumContext *s = ctx->priv;
685
    AVFilterLink *inlink = ctx->inputs[0];
686
    AVFilterLink *outlink = ctx->outputs[0];
687
    int ch, y, x = 0, sz = s->orientation == VERTICAL ? s->w : s->h;
688
    int multi = (s->mode == SEPARATE && s->color_mode == CHANNEL);
689
    float spp = samples / (float)sz;
690
    char *text;
691
    uint8_t *dst;
692
    char chlayout_str[128];
693
694
    av_get_channel_layout_string(chlayout_str, sizeof(chlayout_str), inlink->channels,
695
                                 inlink->channel_layout);
696
697
    text = av_asprintf("%d Hz | %s", inlink->sample_rate, chlayout_str);
698
    if (!text)
699
        return AVERROR(ENOMEM);
700
701
    drawtext(s->outpicref, 2, outlink->h - 10, "CREATED BY LIBAVFILTER", 0);
702
    drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, outlink->h - 10, text, 0);
703
    av_freep(&text);
704
    if (s->stop) {
705
        text = av_asprintf("Zoom: %d Hz - %d Hz", s->start, s->stop);
706
        if (!text)
707
            return AVERROR(ENOMEM);
708
        drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, 3, text, 0);
709
        av_freep(&text);
710
    }
711
712
    dst = s->outpicref->data[0] + (s->start_y - 1) * s->outpicref->linesize[0] + s->start_x - 1;
713
    for (x = 0; x < s->w + 1; x++)
714
        dst[x] = 200;
715
    dst = s->outpicref->data[0] + (s->start_y + s->h) * s->outpicref->linesize[0] + s->start_x - 1;
716
    for (x = 0; x < s->w + 1; x++)
717
        dst[x] = 200;
718
    for (y = 0; y < s->h + 2; y++) {
719
        dst = s->outpicref->data[0] + (y + s->start_y - 1) * s->outpicref->linesize[0];
720
        dst[s->start_x - 1] = 200;
721
        dst[s->start_x + s->w] = 200;
722
    }
723
    if (s->orientation == VERTICAL) {
724
        int h = s->mode == SEPARATE ? s->h / s->nb_display_channels : s->h;
725
        int hh = s->mode == SEPARATE ? -(s->h % s->nb_display_channels) + 1 : 1;
726
        for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) {
727
            for (y = 0; y < h; y += 20) {
728
                dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0];
729
                dst[s->start_x - 2] = 200;
730
                dst[s->start_x + s->w + 1] = 200;
731
            }
732
            for (y = 0; y < h; y += 40) {
733
                dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0];
734
                dst[s->start_x - 3] = 200;
735
                dst[s->start_x + s->w + 2] = 200;
736
            }
737
            dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x;
738
            for (x = 0; x < s->w; x+=40)
739
                dst[x] = 200;
740
            dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x;
741
            for (x = 0; x < s->w; x+=80)
742
                dst[x] = 200;
743
            dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x;
744
            for (x = 0; x < s->w; x+=40) {
745
                dst[x] = 200;
746
            }
747
            dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x;
748
            for (x = 0; x < s->w; x+=80) {
749
                dst[x] = 200;
750
            }
751
            for (y = 0; y < h; y += 40) {
752
                float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2;
753
                float bin = s->fscale == F_LINEAR ? y : get_log_hz(y, h, inlink->sample_rate);
754
                float hertz = s->start + bin * range / (float)(1 << (int)ceil(log2(h)));
755
                char *units;
756
757
                if (hertz == 0)
758
                    units = av_asprintf("DC");
759
                else
760
                    units = av_asprintf("%.2f", hertz);
761
                if (!units)
762
                    return AVERROR(ENOMEM);
763
764
                drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, h * (ch + 1) + s->start_y - y - 4 - hh, units, 0);
765
                av_free(units);
766
            }
767
        }
768
769
        for (x = 0; x < s->w && s->single_pic; x+=80) {
770
            float seconds = x * spp / inlink->sample_rate;
771
            char *units = get_time(ctx, seconds, x);
772
            if (!units)
773
                return AVERROR(ENOMEM);
774
775
            drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->h + s->start_y + 6, units, 0);
776
            drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->start_y - 12, units, 0);
777
            av_free(units);
778
        }
779
780
        drawtext(s->outpicref, outlink->w / 2 - 4 * 4, outlink->h - s->start_y / 2, "TIME", 0);
781
        drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 14 * 4, "FREQUENCY (Hz)", 1);
782
    } else {
783
        int w = s->mode == SEPARATE ? s->w / s->nb_display_channels : s->w;
784
        for (y = 0; y < s->h; y += 20) {
785
            dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0];
786
            dst[s->start_x - 2] = 200;
787
            dst[s->start_x + s->w + 1] = 200;
788
        }
789
        for (y = 0; y < s->h; y += 40) {
790
            dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0];
791
            dst[s->start_x - 3] = 200;
792
            dst[s->start_x + s->w + 2] = 200;
793
        }
794
        for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) {
795
            dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x + w * ch;
796
            for (x = 0; x < w; x+=40)
797
                dst[x] = 200;
798
            dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x + w * ch;
799
            for (x = 0; x < w; x+=80)
800
                dst[x] = 200;
801
            dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x + w * ch;
802
            for (x = 0; x < w; x+=40) {
803
                dst[x] = 200;
804
            }
805
            dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x + w * ch;
806
            for (x = 0; x < w; x+=80) {
807
                dst[x] = 200;
808
            }
809
            for (x = 0; x < w - 79; x += 80) {
810
                float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2;
811
                float bin = s->fscale == F_LINEAR ? x : get_log_hz(x, w, inlink->sample_rate);
812
                float hertz = s->start + bin * range / (float)(1 << (int)ceil(log2(w)));
813
                char *units;
814
815
                if (hertz == 0)
816
                    units = av_asprintf("DC");
817
                else
818
                    units = av_asprintf("%.2f", hertz);
819
                if (!units)
820
                    return AVERROR(ENOMEM);
821
822
                drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->start_y - 12, units, 0);
823
                drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->h + s->start_y + 6, units, 0);
824
                av_free(units);
825
            }
826
        }
827
        for (y = 0; y < s->h && s->single_pic; y+=40) {
828
            float seconds = y * spp / inlink->sample_rate;
829
            char *units = get_time(ctx, seconds, x);
830
            if (!units)
831
                return AVERROR(ENOMEM);
832
833
            drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, s->start_y + y - 4, units, 0);
834
            av_free(units);
835
        }
836
        drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 4 * 4, "TIME", 1);
837
        drawtext(s->outpicref, outlink->w / 2 - 14 * 4, outlink->h - s->start_y / 2, "FREQUENCY (Hz)", 0);
838
    }
839
840
    for (ch = 0; ch < (multi ? s->nb_display_channels : 1); ch++) {
841
        int h = multi ? s->h / s->nb_display_channels : s->h;
842
843
        for (y = 0; y < h; y++) {
844
            float out[3] = { 0., 127.5, 127.5};
845
            int chn;
846
847
            for (chn = 0; chn < (s->mode == SEPARATE ? 1 : s->nb_display_channels); chn++) {
848
                float yf, uf, vf;
849
                int channel = (multi) ? s->nb_display_channels - ch - 1 : chn;
850
                float lout[3];
851
852
                color_range(s, channel, &yf, &uf, &vf);
853
                pick_color(s, yf, uf, vf, y / (float)h, lout);
854
                out[0] += lout[0];
855
                out[1] += lout[1];
856
                out[2] += lout[2];
857
            }
858
            memset(s->outpicref->data[0]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[0] + s->w + s->start_x + 20, av_clip_uint8(out[0]), 10);
859
            memset(s->outpicref->data[1]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[1] + s->w + s->start_x + 20, av_clip_uint8(out[1]), 10);
860
            memset(s->outpicref->data[2]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[2] + s->w + s->start_x + 20, av_clip_uint8(out[2]), 10);
861
        }
862
863
        for (y = 0; ch == 0 && y < h; y += h / 10) {
864
            float value = 120.f * log10f(1.f - y / (float)h);
865
            char *text;
866
867
            if (value < -120)
868
                break;
869
            text = av_asprintf("%.0f dB", value);
870
            if (!text)
871
                continue;
872
            drawtext(s->outpicref, s->w + s->start_x + 35, s->start_y + y - 5, text, 0);
873
            av_free(text);
874
        }
875
    }
876
877
    return 0;
878
}
879
880
static float get_value(AVFilterContext *ctx, int ch, int y)
881
{
882
    ShowSpectrumContext *s = ctx->priv;
883
    float *magnitudes = s->magnitudes[ch];
884
    float *phases = s->phases[ch];
885
    float a;
886
887
    switch (s->data) {
888
    case D_MAGNITUDE:
889
        /* get magnitude */
890
        a = magnitudes[y];
891
        break;
892
    case D_PHASE:
893
        /* get phase */
894
        a = phases[y];
895
        break;
896
    default:
897
        av_assert0(0);
898
    }
899
900
    /* apply scale */
901
    switch (s->scale) {
902
    case LINEAR:
903
        a = av_clipf(a, 0, 1);
904
        break;
905
    case SQRT:
906
        a = av_clipf(sqrtf(a), 0, 1);
907
        break;
908
    case CBRT:
909
        a = av_clipf(cbrtf(a), 0, 1);
910
        break;
911
    case FOURTHRT:
912
        a = av_clipf(sqrtf(sqrtf(a)), 0, 1);
913
        break;
914
    case FIFTHRT:
915
        a = av_clipf(powf(a, 0.20), 0, 1);
916
        break;
917
    case LOG:
918
        a = 1.f + log10f(av_clipf(a, 1e-6, 1)) / 6.f; // zero = -120dBFS
919
        break;
920
    default:
921
        av_assert0(0);
922
    }
923
924
    return a;
925
}
926
927
static int plot_channel_lin(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
928
{
929
    ShowSpectrumContext *s = ctx->priv;
930
    const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width;
931
    const int ch = jobnr;
932
    float yf, uf, vf;
933
    int y;
934
935
    /* decide color range */
936
    color_range(s, ch, &yf, &uf, &vf);
937
938
    /* draw the channel */
939
    for (y = 0; y < h; y++) {
940
        int row = (s->mode == COMBINED) ? y : ch * h + y;
941
        float *out = &s->color_buffer[ch][3 * row];
942
        float a = get_value(ctx, ch, y);
943
944
        pick_color(s, yf, uf, vf, a, out);
945
    }
946
947
    return 0;
948
}
949
950
static int plot_channel_log(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
951
{
952
    ShowSpectrumContext *s = ctx->priv;
953
    AVFilterLink *inlink = ctx->inputs[0];
954
    const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width;
955
    const int ch = jobnr;
956
    float y, yf, uf, vf;
957
    int yy = 0;
958
959
    /* decide color range */
960
    color_range(s, ch, &yf, &uf, &vf);
961
962
    /* draw the channel */
963
    for (y = 0; y < h && yy < h; yy++) {
964
        float pos0 = bin_pos(yy+0, h, inlink->sample_rate);
965
        float pos1 = bin_pos(yy+1, h, inlink->sample_rate);
966
        float delta = pos1 - pos0;
967
        float a0, a1;
968
969
        a0 = get_value(ctx, ch, yy+0);
970
        a1 = get_value(ctx, ch, FFMIN(yy+1, h-1));
971
        for (float j = pos0; j < pos1 && y + j - pos0 < h; j++) {
972
            float row = (s->mode == COMBINED) ? y + j - pos0 : ch * h + y + j - pos0;
973
            float *out = &s->color_buffer[ch][3 * FFMIN(lrintf(row), h-1)];
974
            float lerpfrac = (j - pos0) / delta;
975
976
            pick_color(s, yf, uf, vf, lerpfrac * a1 + (1.f-lerpfrac) * a0, out);
977
        }
978
        y += delta;
979
    }
980
981
    return 0;
982
}
983
984
static int config_output(AVFilterLink *outlink)
985
{
986
    AVFilterContext *ctx = outlink->src;
987
    AVFilterLink *inlink = ctx->inputs[0];
988
    ShowSpectrumContext *s = ctx->priv;
989
    int i, fft_bits, h, w;
990
    float overlap;
991
992
    switch (s->fscale) {
993
    case F_LINEAR: s->plot_channel = plot_channel_lin; break;
994
    case F_LOG:    s->plot_channel = plot_channel_log; break;
995
    default: return AVERROR_BUG;
996
    }
997
998
    s->stop = FFMIN(s->stop, inlink->sample_rate / 2);
999
    if (s->stop && s->stop <= s->start) {
1000
        av_log(ctx, AV_LOG_ERROR, "Stop frequency should be greater than start.\n");
1001
        return AVERROR(EINVAL);
1002
    }
1003
1004
    if (!strcmp(ctx->filter->name, "showspectrumpic"))
1005
        s->single_pic = 1;
1006
1007
    outlink->w = s->w;
1008
    outlink->h = s->h;
1009
    outlink->sample_aspect_ratio = (AVRational){1,1};
1010
1011
    if (s->legend) {
1012
        s->start_x = (log10(inlink->sample_rate) + 1) * 25;
1013
        s->start_y = 64;
1014
        outlink->w += s->start_x * 2;
1015
        outlink->h += s->start_y * 2;
1016
    }
1017
1018
    h = (s->mode == COMBINED || s->orientation == HORIZONTAL) ? s->h : s->h / inlink->channels;
1019
    w = (s->mode == COMBINED || s->orientation == VERTICAL)   ? s->w : s->w / inlink->channels;
1020
    s->channel_height = h;
1021
    s->channel_width  = w;
1022
1023
    if (s->orientation == VERTICAL) {
1024
        /* FFT window size (precision) according to the requested output frame height */
1025
        for (fft_bits = 1; 1 << fft_bits < 2 * h; fft_bits++);
1026
    } else {
1027
        /* FFT window size (precision) according to the requested output frame width */
1028
        for (fft_bits = 1; 1 << fft_bits < 2 * w; fft_bits++);
1029
    }
1030
1031
    s->win_size = 1 << fft_bits;
1032
    s->buf_size = s->win_size << !!s->stop;
1033
1034
    if (!s->fft) {
1035
        s->fft = av_calloc(inlink->channels, sizeof(*s->fft));
1036
        if (!s->fft)
1037
            return AVERROR(ENOMEM);
1038
    }
1039
1040
    if (s->stop) {
1041
        if (!s->ifft) {
1042
            s->ifft = av_calloc(inlink->channels, sizeof(*s->ifft));
1043
            if (!s->ifft)
1044
                return AVERROR(ENOMEM);
1045
        }
1046
    }
1047
1048
    /* (re-)configuration if the video output changed (or first init) */
1049
    if (fft_bits != s->fft_bits) {
1050
        AVFrame *outpicref;
1051
1052
        s->fft_bits = fft_bits;
1053
1054
        /* FFT buffers: x2 for each (display) channel buffer.
1055
         * Note: we use free and malloc instead of a realloc-like function to
1056
         * make sure the buffer is aligned in memory for the FFT functions. */
1057
        for (i = 0; i < s->nb_display_channels; i++) {
1058
            if (s->stop) {
1059
                av_fft_end(s->ifft[i]);
1060
                av_freep(&s->fft_scratch[i]);
1061
            }
1062
            av_fft_end(s->fft[i]);
1063
            av_freep(&s->fft_data[i]);
1064
        }
1065
        av_freep(&s->fft_data);
1066
1067
        s->nb_display_channels = inlink->channels;
1068
        for (i = 0; i < s->nb_display_channels; i++) {
1069
            s->fft[i] = av_fft_init(fft_bits + !!s->stop, 0);
1070
            if (s->stop) {
1071
                s->ifft[i] = av_fft_init(fft_bits + !!s->stop, 1);
1072
                if (!s->ifft[i]) {
1073
                    av_log(ctx, AV_LOG_ERROR, "Unable to create Inverse FFT context. "
1074
                           "The window size might be too high.\n");
1075
                    return AVERROR(EINVAL);
1076
                }
1077
            }
1078
            if (!s->fft[i]) {
1079
                av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. "
1080
                       "The window size might be too high.\n");
1081
                return AVERROR(EINVAL);
1082
            }
1083
        }
1084
1085
        s->magnitudes = av_calloc(s->nb_display_channels, sizeof(*s->magnitudes));
1086
        if (!s->magnitudes)
1087
            return AVERROR(ENOMEM);
1088
        for (i = 0; i < s->nb_display_channels; i++) {
1089
            s->magnitudes[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->magnitudes));
1090
            if (!s->magnitudes[i])
1091
                return AVERROR(ENOMEM);
1092
        }
1093
1094
        s->phases = av_calloc(s->nb_display_channels, sizeof(*s->phases));
1095
        if (!s->phases)
1096
            return AVERROR(ENOMEM);
1097
        for (i = 0; i < s->nb_display_channels; i++) {
1098
            s->phases[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->phases));
1099
            if (!s->phases[i])
1100
                return AVERROR(ENOMEM);
1101
        }
1102
1103
        av_freep(&s->color_buffer);
1104
        s->color_buffer = av_calloc(s->nb_display_channels, sizeof(*s->color_buffer));
1105
        if (!s->color_buffer)
1106
            return AVERROR(ENOMEM);
1107
        for (i = 0; i < s->nb_display_channels; i++) {
1108
            s->color_buffer[i] = av_calloc(s->orientation == VERTICAL ? s->h * 3 : s->w * 3, sizeof(**s->color_buffer));
1109
            if (!s->color_buffer[i])
1110
                return AVERROR(ENOMEM);
1111
        }
1112
1113
        s->fft_data = av_calloc(s->nb_display_channels, sizeof(*s->fft_data));
1114
        if (!s->fft_data)
1115
            return AVERROR(ENOMEM);
1116
        s->fft_scratch = av_calloc(s->nb_display_channels, sizeof(*s->fft_scratch));
1117
        if (!s->fft_scratch)
1118
            return AVERROR(ENOMEM);
1119
        for (i = 0; i < s->nb_display_channels; i++) {
1120
            s->fft_data[i] = av_calloc(s->buf_size, sizeof(**s->fft_data));
1121
            if (!s->fft_data[i])
1122
                return AVERROR(ENOMEM);
1123
1124
            s->fft_scratch[i] = av_calloc(s->buf_size, sizeof(**s->fft_scratch));
1125
            if (!s->fft_scratch[i])
1126
                return AVERROR(ENOMEM);
1127
        }
1128
1129
        /* pre-calc windowing function */
1130
        s->window_func_lut =
1131
            av_realloc_f(s->window_func_lut, s->win_size,
1132
                         sizeof(*s->window_func_lut));
1133
        if (!s->window_func_lut)
1134
            return AVERROR(ENOMEM);
1135
        generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap);
1136
        if (s->overlap == 1)
1137
            s->overlap = overlap;
1138
        s->hop_size = (1.f - s->overlap) * s->win_size;
1139
        if (s->hop_size < 1) {
1140
            av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap);
1141
            return AVERROR(EINVAL);
1142
        }
1143
1144
        for (s->win_scale = 0, i = 0; i < s->win_size; i++) {
1145
            s->win_scale += s->window_func_lut[i] * s->window_func_lut[i];
1146
        }
1147
        s->win_scale = 1.f / sqrtf(s->win_scale);
1148
1149
        /* prepare the initial picref buffer (black frame) */
1150
        av_frame_free(&s->outpicref);
1151
        s->outpicref = outpicref =
1152
            ff_get_video_buffer(outlink, outlink->w, outlink->h);
1153
        if (!outpicref)
1154
            return AVERROR(ENOMEM);
1155
        outpicref->sample_aspect_ratio = (AVRational){1,1};
1156
        for (i = 0; i < outlink->h; i++) {
1157
            memset(outpicref->data[0] + i * outpicref->linesize[0],   0, outlink->w);
1158
            memset(outpicref->data[1] + i * outpicref->linesize[1], 128, outlink->w);
1159
            memset(outpicref->data[2] + i * outpicref->linesize[2], 128, outlink->w);
1160
        }
1161
        outpicref->color_range = AVCOL_RANGE_JPEG;
1162
1163
        if (!s->single_pic && s->legend)
1164
            draw_legend(ctx, 0);
1165
    }
1166
1167
    if ((s->orientation == VERTICAL   && s->xpos >= s->w) ||
1168
        (s->orientation == HORIZONTAL && s->xpos >= s->h))
1169
        s->xpos = 0;
1170
1171
    s->auto_frame_rate = av_make_q(inlink->sample_rate, s->hop_size);
1172
    if (s->orientation == VERTICAL && s->sliding == FULLFRAME)
1173
        s->auto_frame_rate.den *= s->w;
1174
    if (s->orientation == HORIZONTAL && s->sliding == FULLFRAME)
1175
        s->auto_frame_rate.den *= s->h;
1176
    if (!s->single_pic && strcmp(s->rate_str, "auto")) {
1177
        int ret = av_parse_video_rate(&s->frame_rate, s->rate_str);
1178
        if (ret < 0)
1179
            return ret;
1180
    } else {
1181
        s->frame_rate = s->auto_frame_rate;
1182
    }
1183
    outlink->frame_rate = s->frame_rate;
1184
    outlink->time_base = av_inv_q(outlink->frame_rate);
1185
1186
    if (s->orientation == VERTICAL) {
1187
        s->combine_buffer =
1188
            av_realloc_f(s->combine_buffer, s->h * 3,
1189
                         sizeof(*s->combine_buffer));
1190
    } else {
1191
        s->combine_buffer =
1192
            av_realloc_f(s->combine_buffer, s->w * 3,
1193
                         sizeof(*s->combine_buffer));
1194
    }
1195
1196
    av_log(ctx, AV_LOG_VERBOSE, "s:%dx%d FFT window size:%d\n",
1197
           s->w, s->h, s->win_size);
1198
1199
    av_audio_fifo_free(s->fifo);
1200
    s->fifo = av_audio_fifo_alloc(inlink->format, inlink->channels, s->win_size);
1201
    if (!s->fifo)
1202
        return AVERROR(ENOMEM);
1203
    return 0;
1204
}
1205
1206
#define RE(y, ch) s->fft_data[ch][y].re
1207
#define IM(y, ch) s->fft_data[ch][y].im
1208
#define MAGNITUDE(y, ch) hypotf(RE(y, ch), IM(y, ch))
1209
#define PHASE(y, ch) atan2f(IM(y, ch), RE(y, ch))
1210
1211
static int calc_channel_magnitudes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
1212
{
1213
    ShowSpectrumContext *s = ctx->priv;
1214
    const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1);
1215
    int y, h = s->orientation == VERTICAL ? s->h : s->w;
1216
    const float f = s->gain * w;
1217
    const int ch = jobnr;
1218
    float *magnitudes = s->magnitudes[ch];
1219
1220
    for (y = 0; y < h; y++)
1221
        magnitudes[y] = MAGNITUDE(y, ch) * f;
1222
1223
    return 0;
1224
}
1225
1226
static int calc_channel_phases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
1227
{
1228
    ShowSpectrumContext *s = ctx->priv;
1229
    const int h = s->orientation == VERTICAL ? s->h : s->w;
1230
    const int ch = jobnr;
1231
    float *phases = s->phases[ch];
1232
    int y;
1233
1234
    for (y = 0; y < h; y++)
1235
        phases[y] = (PHASE(y, ch) / M_PI + 1) / 2;
1236
1237
    return 0;
1238
}
1239
1240
static void acalc_magnitudes(ShowSpectrumContext *s)
1241
{
1242
    const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1);
1243
    int ch, y, h = s->orientation == VERTICAL ? s->h : s->w;
1244
    const float f = s->gain * w;
1245
1246
    for (ch = 0; ch < s->nb_display_channels; ch++) {
1247
        float *magnitudes = s->magnitudes[ch];
1248
1249
        for (y = 0; y < h; y++)
1250
            magnitudes[y] += MAGNITUDE(y, ch) * f;
1251
    }
1252
}
1253
1254
static void scale_magnitudes(ShowSpectrumContext *s, float scale)
1255
{
1256
    int ch, y, h = s->orientation == VERTICAL ? s->h : s->w;
1257
1258
    for (ch = 0; ch < s->nb_display_channels; ch++) {
1259
        float *magnitudes = s->magnitudes[ch];
1260
1261
        for (y = 0; y < h; y++)
1262
            magnitudes[y] *= scale;
1263
    }
1264
}
1265
1266
static void clear_combine_buffer(ShowSpectrumContext *s, int size)
1267
{
1268
    int y;
1269
1270
    for (y = 0; y < size; y++) {
1271
        s->combine_buffer[3 * y    ] = 0;
1272
        s->combine_buffer[3 * y + 1] = 127.5;
1273
        s->combine_buffer[3 * y + 2] = 127.5;
1274
    }
1275
}
1276
1277
static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples)
1278
{
1279
    AVFilterContext *ctx = inlink->dst;
1280
    AVFilterLink *outlink = ctx->outputs[0];
1281
    ShowSpectrumContext *s = ctx->priv;
1282
    AVFrame *outpicref = s->outpicref;
1283
    int ret, plane, x, y, z = s->orientation == VERTICAL ? s->h : s->w;
1284
1285
    /* fill a new spectrum column */
1286
    /* initialize buffer for combining to black */
1287
    clear_combine_buffer(s, z);
1288
1289
    ctx->internal->execute(ctx, s->plot_channel, NULL, NULL, s->nb_display_channels);
1290
1291
    for (y = 0; y < z * 3; y++) {
1292
        for (x = 0; x < s->nb_display_channels; x++) {
1293
            s->combine_buffer[y] += s->color_buffer[x][y];
1294
        }
1295
    }
1296
1297
    av_frame_make_writable(s->outpicref);
1298
    /* copy to output */
1299
    if (s->orientation == VERTICAL) {
1300
        if (s->sliding == SCROLL) {
1301
            for (plane = 0; plane < 3; plane++) {
1302
                for (y = 0; y < s->h; y++) {
1303
                    uint8_t *p = outpicref->data[plane] + s->start_x +
1304
                                 (y + s->start_y) * outpicref->linesize[plane];
1305
                    memmove(p, p + 1, s->w - 1);
1306
                }
1307
            }
1308
            s->xpos = s->w - 1;
1309
        } else if (s->sliding == RSCROLL) {
1310
            for (plane = 0; plane < 3; plane++) {
1311
                for (y = 0; y < s->h; y++) {
1312
                    uint8_t *p = outpicref->data[plane] + s->start_x +
1313
                                 (y + s->start_y) * outpicref->linesize[plane];
1314
                    memmove(p + 1, p, s->w - 1);
1315
                }
1316
            }
1317
            s->xpos = 0;
1318
        }
1319
        for (plane = 0; plane < 3; plane++) {
1320
            uint8_t *p = outpicref->data[plane] + s->start_x +
1321
                         (outlink->h - 1 - s->start_y) * outpicref->linesize[plane] +
1322
                         s->xpos;
1323
            for (y = 0; y < s->h; y++) {
1324
                *p = lrintf(av_clipf(s->combine_buffer[3 * y + plane], 0, 255));
1325
                p -= outpicref->linesize[plane];
1326
            }
1327
        }
1328
    } else {
1329
        if (s->sliding == SCROLL) {
1330
            for (plane = 0; plane < 3; plane++) {
1331
                for (y = 1; y < s->h; y++) {
1332
                    memmove(outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x,
1333
                            outpicref->data[plane] + (y   + s->start_y) * outpicref->linesize[plane] + s->start_x,
1334
                            s->w);
1335
                }
1336
            }
1337
            s->xpos = s->h - 1;
1338
        } else if (s->sliding == RSCROLL) {
1339
            for (plane = 0; plane < 3; plane++) {
1340
                for (y = s->h - 1; y >= 1; y--) {
1341
                    memmove(outpicref->data[plane] + (y   + s->start_y) * outpicref->linesize[plane] + s->start_x,
1342
                            outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x,
1343
                            s->w);
1344
                }
1345
            }
1346
            s->xpos = 0;
1347
        }
1348
        for (plane = 0; plane < 3; plane++) {
1349
            uint8_t *p = outpicref->data[plane] + s->start_x +
1350
                         (s->xpos + s->start_y) * outpicref->linesize[plane];
1351
            for (x = 0; x < s->w; x++) {
1352
                *p = lrintf(av_clipf(s->combine_buffer[3 * x + plane], 0, 255));
1353
                p++;
1354
            }
1355
        }
1356
    }
1357
1358
    if (s->sliding != FULLFRAME || s->xpos == 0)
1359
        outpicref->pts = av_rescale_q(insamples->pts, inlink->time_base, outlink->time_base);
1360
1361
    s->xpos++;
1362
    if (s->orientation == VERTICAL && s->xpos >= s->w)
1363
        s->xpos = 0;
1364
    if (s->orientation == HORIZONTAL && s->xpos >= s->h)
1365
        s->xpos = 0;
1366
    if (!s->single_pic && (s->sliding != FULLFRAME || s->xpos == 0)) {
1367
        if (s->old_pts < outpicref->pts) {
1368
            AVFrame *clone;
1369
1370
            if (s->legend) {
1371
                char *units = get_time(ctx, insamples->pts /(float)inlink->sample_rate, x);
1372
                if (!units)
1373
                    return AVERROR(ENOMEM);
1374
1375
                if (s->orientation == VERTICAL) {
1376
                    for (y = 0; y < 10; y++) {
1377
                        memset(s->outpicref->data[0] + outlink->w / 2 - 4 * s->old_len +
1378
                               (outlink->h - s->start_y / 2 - 20 + y) * s->outpicref->linesize[0], 0, 10 * s->old_len);
1379
                    }
1380
                    drawtext(s->outpicref,
1381
                             outlink->w / 2 - 4 * strlen(units),
1382
                             outlink->h - s->start_y / 2 - 20,
1383
                             units, 0);
1384
                } else  {
1385
                    for (y = 0; y < 10 * s->old_len; y++) {
1386
                        memset(s->outpicref->data[0] + s->start_x / 7 + 20 +
1387
                               (outlink->h / 2 - 4 * s->old_len + y) * s->outpicref->linesize[0], 0, 10);
1388
                    }
1389
                    drawtext(s->outpicref,
1390
                             s->start_x / 7 + 20,
1391
                             outlink->h / 2 - 4 * strlen(units),
1392
                             units, 1);
1393
                }
1394
                s->old_len = strlen(units);
1395
                av_free(units);
1396
            }
1397
            s->old_pts = outpicref->pts;
1398
            clone = av_frame_clone(s->outpicref);
1399
            if (!clone)
1400
                return AVERROR(ENOMEM);
1401
            ret = ff_filter_frame(outlink, clone);
1402
            if (ret < 0)
1403
                return ret;
1404
            return 0;
1405
        }
1406
    }
1407
1408
    return 1;
1409
}
1410
1411
#if CONFIG_SHOWSPECTRUM_FILTER
1412
1413
static int activate(AVFilterContext *ctx)
1414
{
1415
    AVFilterLink *inlink = ctx->inputs[0];
1416
    AVFilterLink *outlink = ctx->outputs[0];
1417
    ShowSpectrumContext *s = ctx->priv;
1418
    int ret;
1419
1420
    FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
1421
1422
    if (av_audio_fifo_size(s->fifo) < s->win_size) {
1423
        AVFrame *frame = NULL;
1424
1425
        ret = ff_inlink_consume_frame(inlink, &frame);
1426
        if (ret < 0)
1427
            return ret;
1428
        if (ret > 0) {
1429
            s->pts = frame->pts;
1430
            s->consumed = 0;
1431
1432
            av_audio_fifo_write(s->fifo, (void **)frame->extended_data, frame->nb_samples);
1433
            av_frame_free(&frame);
1434
        }
1435
    }
1436
1437
    if (s->outpicref && (av_audio_fifo_size(s->fifo) >= s->win_size ||
1438
        ff_outlink_get_status(inlink))) {
1439
        AVFrame *fin = ff_get_audio_buffer(inlink, s->win_size);
1440
        if (!fin)
1441
            return AVERROR(ENOMEM);
1442
1443
        fin->pts = s->pts + s->consumed;
1444
        s->consumed += s->hop_size;
1445
        ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data,
1446
                                 FFMIN(s->win_size, av_audio_fifo_size(s->fifo)));
1447
        if (ret < 0) {
1448
            av_frame_free(&fin);
1449
            return ret;
1450
        }
1451
1452
        av_assert0(fin->nb_samples == s->win_size);
1453
1454
        ctx->internal->execute(ctx, run_channel_fft, fin, NULL, s->nb_display_channels);
1455
1456
        if (s->data == D_MAGNITUDE)
1457
            ctx->internal->execute(ctx, calc_channel_magnitudes, NULL, NULL, s->nb_display_channels);
1458
1459
        if (s->data == D_PHASE)
1460
            ctx->internal->execute(ctx, calc_channel_phases, NULL, NULL, s->nb_display_channels);
1461
1462
        ret = plot_spectrum_column(inlink, fin);
1463
1464
        av_frame_free(&fin);
1465
        av_audio_fifo_drain(s->fifo, s->hop_size);
1466
        if (ret <= 0 && !ff_outlink_get_status(inlink))
1467
            return ret;
1468
    }
1469
1470
    if (ff_outlink_get_status(inlink) == AVERROR_EOF &&
1471
        s->sliding == FULLFRAME &&
1472
        s->xpos > 0 && s->outpicref) {
1473
        int64_t pts;
1474
1475
        if (s->orientation == VERTICAL) {
1476
            for (int i = 0; i < outlink->h; i++) {
1477
                memset(s->outpicref->data[0] + i * s->outpicref->linesize[0] + s->xpos,   0, outlink->w - s->xpos);
1478
                memset(s->outpicref->data[1] + i * s->outpicref->linesize[1] + s->xpos, 128, outlink->w - s->xpos);
1479
                memset(s->outpicref->data[2] + i * s->outpicref->linesize[2] + s->xpos, 128, outlink->w - s->xpos);
1480
            }
1481
        } else {
1482
            for (int i = s->xpos; i < outlink->h; i++) {
1483
                memset(s->outpicref->data[0] + i * s->outpicref->linesize[0],   0, outlink->w);
1484
                memset(s->outpicref->data[1] + i * s->outpicref->linesize[1], 128, outlink->w);
1485
                memset(s->outpicref->data[2] + i * s->outpicref->linesize[2], 128, outlink->w);
1486
            }
1487
        }
1488
        s->outpicref->pts += s->consumed;
1489
        pts = s->outpicref->pts;
1490
        ret = ff_filter_frame(outlink, s->outpicref);
1491
        s->outpicref = NULL;
1492
        ff_outlink_set_status(outlink, AVERROR_EOF, pts);
1493
        return 0;
1494
    }
1495
1496
    FF_FILTER_FORWARD_STATUS(inlink, outlink);
1497
    if (av_audio_fifo_size(s->fifo) >= s->win_size ||
1498
        ff_outlink_get_status(inlink) == AVERROR_EOF) {
1499
        ff_filter_set_ready(ctx, 10);
1500
        return 0;
1501
    }
1502
1503
    if (ff_outlink_frame_wanted(outlink) && av_audio_fifo_size(s->fifo) < s->win_size &&
1504
        ff_outlink_get_status(inlink) != AVERROR_EOF) {
1505
        ff_inlink_request_frame(inlink);
1506
        return 0;
1507
    }
1508
1509
    return FFERROR_NOT_READY;
1510
}
1511
1512
static const AVFilterPad showspectrum_inputs[] = {
1513
    {
1514
        .name         = "default",
1515
        .type         = AVMEDIA_TYPE_AUDIO,
1516
    },
1517
    { NULL }
1518
};
1519
1520
static const AVFilterPad showspectrum_outputs[] = {
1521
    {
1522
        .name          = "default",
1523
        .type          = AVMEDIA_TYPE_VIDEO,
1524
        .config_props  = config_output,
1525
    },
1526
    { NULL }
1527
};
1528
1529
AVFilter ff_avf_showspectrum = {
1530
    .name          = "showspectrum",
1531
    .description   = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output."),
1532
    .uninit        = uninit,
1533
    .query_formats = query_formats,
1534
    .priv_size     = sizeof(ShowSpectrumContext),
1535
    .inputs        = showspectrum_inputs,
1536
    .outputs       = showspectrum_outputs,
1537
    .activate      = activate,
1538
    .priv_class    = &showspectrum_class,
1539
    .flags         = AVFILTER_FLAG_SLICE_THREADS,
1540
};
1541
#endif // CONFIG_SHOWSPECTRUM_FILTER
1542
1543
#if CONFIG_SHOWSPECTRUMPIC_FILTER
1544
1545
static const AVOption showspectrumpic_options[] = {
1546
    { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS },
1547
    { "s",    "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS },
1548
    { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_MODES-1, FLAGS, "mode" },
1549
        { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" },
1550
        { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" },
1551
    { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=INTENSITY}, 0, NB_CLMODES-1, FLAGS, "color" },
1552
        { "channel",   "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL},   0, 0, FLAGS, "color" },
1553
        { "intensity", "intensity based coloring",        0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" },
1554
        { "rainbow",   "rainbow based coloring",          0, AV_OPT_TYPE_CONST, {.i64=RAINBOW},   0, 0, FLAGS, "color" },
1555
        { "moreland",  "moreland based coloring",         0, AV_OPT_TYPE_CONST, {.i64=MORELAND},  0, 0, FLAGS, "color" },
1556
        { "nebulae",   "nebulae based coloring",          0, AV_OPT_TYPE_CONST, {.i64=NEBULAE},   0, 0, FLAGS, "color" },
1557
        { "fire",      "fire based coloring",             0, AV_OPT_TYPE_CONST, {.i64=FIRE},      0, 0, FLAGS, "color" },
1558
        { "fiery",     "fiery based coloring",            0, AV_OPT_TYPE_CONST, {.i64=FIERY},     0, 0, FLAGS, "color" },
1559
        { "fruit",     "fruit based coloring",            0, AV_OPT_TYPE_CONST, {.i64=FRUIT},     0, 0, FLAGS, "color" },
1560
        { "cool",      "cool based coloring",             0, AV_OPT_TYPE_CONST, {.i64=COOL},      0, 0, FLAGS, "color" },
1561
        { "magma",     "magma based coloring",            0, AV_OPT_TYPE_CONST, {.i64=MAGMA},     0, 0, FLAGS, "color" },
1562
        { "green",     "green based coloring",            0, AV_OPT_TYPE_CONST, {.i64=GREEN},     0, 0, FLAGS, "color" },
1563
        { "viridis",   "viridis based coloring",          0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS},   0, 0, FLAGS, "color" },
1564
        { "plasma",    "plasma based coloring",           0, AV_OPT_TYPE_CONST, {.i64=PLASMA},    0, 0, FLAGS, "color" },
1565
        { "cividis",   "cividis based coloring",          0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS},   0, 0, FLAGS, "color" },
1566
        { "terrain",   "terrain based coloring",          0, AV_OPT_TYPE_CONST, {.i64=TERRAIN},   0, 0, FLAGS, "color" },
1567
    { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=LOG}, 0, NB_SCALES-1, FLAGS, "scale" },
1568
        { "lin",  "linear",      0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" },
1569
        { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT},   0, 0, FLAGS, "scale" },
1570
        { "cbrt", "cubic root",  0, AV_OPT_TYPE_CONST, {.i64=CBRT},   0, 0, FLAGS, "scale" },
1571
        { "log",  "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG},    0, 0, FLAGS, "scale" },
1572
        { "4thrt","4th root",    0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" },
1573
        { "5thrt","5th root",    0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT},  0, 0, FLAGS, "scale" },
1574
    { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" },
1575
        { "lin",  "linear",      0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, "fscale" },
1576
        { "log",  "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG},    0, 0, FLAGS, "fscale" },
1577
    { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS },
1578
    { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" },
1579
        { "rect",     "Rectangular",      0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT},     0, 0, FLAGS, "win_func" },
1580
        { "bartlett", "Bartlett",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" },
1581
        { "hann",     "Hann",             0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING},  0, 0, FLAGS, "win_func" },
1582
        { "hanning",  "Hanning",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING},  0, 0, FLAGS, "win_func" },
1583
        { "hamming",  "Hamming",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING},  0, 0, FLAGS, "win_func" },
1584
        { "blackman", "Blackman",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" },
1585
        { "welch",    "Welch",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH},    0, 0, FLAGS, "win_func" },
1586
        { "flattop",  "Flat-top",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP},  0, 0, FLAGS, "win_func" },
1587
        { "bharris",  "Blackman-Harris",  0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS},  0, 0, FLAGS, "win_func" },
1588
        { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" },
1589
        { "bhann",    "Bartlett-Hann",    0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN},    0, 0, FLAGS, "win_func" },
1590
        { "sine",     "Sine",             0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE},     0, 0, FLAGS, "win_func" },
1591
        { "nuttall",  "Nuttall",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL},  0, 0, FLAGS, "win_func" },
1592
        { "lanczos",  "Lanczos",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS},  0, 0, FLAGS, "win_func" },
1593
        { "gauss",    "Gauss",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS},    0, 0, FLAGS, "win_func" },
1594
        { "tukey",    "Tukey",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY},    0, 0, FLAGS, "win_func" },
1595
        { "dolph",    "Dolph-Chebyshev",  0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH},    0, 0, FLAGS, "win_func" },
1596
        { "cauchy",   "Cauchy",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY},   0, 0, FLAGS, "win_func" },
1597
        { "parzen",   "Parzen",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN},   0, 0, FLAGS, "win_func" },
1598
        { "poisson",  "Poisson",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON},  0, 0, FLAGS, "win_func" },
1599
        { "bohman",   "Bohman",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BOHMAN},   0, 0, FLAGS, "win_func" },
1600
    { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, "orientation" },
1601
        { "vertical",   NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL},   0, 0, FLAGS, "orientation" },
1602
        { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, "orientation" },
1603
    { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS },
1604
    { "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS },
1605
    { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS },
1606
    { "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
1607
    { "stop",  "stop frequency",  OFFSET(stop),  AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
1608
    { NULL }
1609
};
1610
1611
AVFILTER_DEFINE_CLASS(showspectrumpic);
1612
1613
static int showspectrumpic_request_frame(AVFilterLink *outlink)
1614
{
1615
    AVFilterContext *ctx = outlink->src;
1616
    ShowSpectrumContext *s = ctx->priv;
1617
    AVFilterLink *inlink = ctx->inputs[0];
1618
    int ret, samples;
1619
1620
    ret = ff_request_frame(inlink);
1621
    samples = av_audio_fifo_size(s->fifo);
1622
    if (ret == AVERROR_EOF && s->outpicref && samples > 0) {
1623
        int consumed = 0;
1624
        int x = 0, sz = s->orientation == VERTICAL ? s->w : s->h;
1625
        int ch, spf, spb;
1626
        AVFrame *fin;
1627
1628
        spf = s->win_size * (samples / ((s->win_size * sz) * ceil(samples / (float)(s->win_size * sz))));
1629
        spf = FFMAX(1, spf);
1630
1631
        spb = (samples / (spf * sz)) * spf;
1632
1633
        fin = ff_get_audio_buffer(inlink, s->win_size);
1634
        if (!fin)
1635
            return AVERROR(ENOMEM);
1636
1637
        while (x < sz) {
1638
            ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data, s->win_size);
1639
            if (ret < 0) {
1640
                av_frame_free(&fin);
1641
                return ret;
1642
            }
1643
1644
            av_audio_fifo_drain(s->fifo, spf);
1645
1646
            if (ret < s->win_size) {
1647
                for (ch = 0; ch < s->nb_display_channels; ch++) {
1648
                    memset(fin->extended_data[ch] + ret * sizeof(float), 0,
1649
                           (s->win_size - ret) * sizeof(float));
1650
                }
1651
            }
1652
1653
            ctx->internal->execute(ctx, run_channel_fft, fin, NULL, s->nb_display_channels);
1654
            acalc_magnitudes(s);
1655
1656
            consumed += spf;
1657
            if (consumed >= spb) {
1658
                int h = s->orientation == VERTICAL ? s->h : s->w;
1659
1660
                scale_magnitudes(s, 1.f / (consumed / spf));
1661
                plot_spectrum_column(inlink, fin);
1662
                consumed = 0;
1663
                x++;
1664
                for (ch = 0; ch < s->nb_display_channels; ch++)
1665
                    memset(s->magnitudes[ch], 0, h * sizeof(float));
1666
            }
1667
        }
1668
1669
        av_frame_free(&fin);
1670
        s->outpicref->pts = 0;
1671
1672
        if (s->legend)
1673
            draw_legend(ctx, samples);
1674
1675
        ret = ff_filter_frame(outlink, s->outpicref);
1676
        s->outpicref = NULL;
1677
    }
1678
1679
    return ret;
1680
}
1681
1682
static int showspectrumpic_filter_frame(AVFilterLink *inlink, AVFrame *insamples)
1683
{
1684
    AVFilterContext *ctx = inlink->dst;
1685
    ShowSpectrumContext *s = ctx->priv;
1686
    int ret;
1687
1688
    ret = av_audio_fifo_write(s->fifo, (void **)insamples->extended_data, insamples->nb_samples);
1689
    av_frame_free(&insamples);
1690
    return ret;
1691
}
1692
1693
static const AVFilterPad showspectrumpic_inputs[] = {
1694
    {
1695
        .name         = "default",
1696
        .type         = AVMEDIA_TYPE_AUDIO,
1697
        .filter_frame = showspectrumpic_filter_frame,
1698
    },
1699
    { NULL }
1700
};
1701
1702
static const AVFilterPad showspectrumpic_outputs[] = {
1703
    {
1704
        .name          = "default",
1705
        .type          = AVMEDIA_TYPE_VIDEO,
1706
        .config_props  = config_output,
1707
        .request_frame = showspectrumpic_request_frame,
1708
    },
1709
    { NULL }
1710
};
1711
1712
AVFilter ff_avf_showspectrumpic = {
1713
    .name          = "showspectrumpic",
1714
    .description   = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output single picture."),
1715
    .uninit        = uninit,
1716
    .query_formats = query_formats,
1717
    .priv_size     = sizeof(ShowSpectrumContext),
1718
    .inputs        = showspectrumpic_inputs,
1719
    .outputs       = showspectrumpic_outputs,
1720
    .priv_class    = &showspectrumpic_class,
1721
    .flags         = AVFILTER_FLAG_SLICE_THREADS,
1722
};
1723
1724
#endif // CONFIG_SHOWSPECTRUMPIC_FILTER