GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavfilter/af_headphone.c Lines: 0 481 0.0 %
Date: 2020-08-14 10:39:37 Branches: 0 250 0.0 %

Line Branch Exec Source
1
/*
2
 * Copyright (C) 2017 Paul B Mahol
3
 * Copyright (C) 2013-2015 Andreas Fuchs, Wolfgang Hrauda
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20
21
#include <math.h>
22
23
#include "libavutil/avstring.h"
24
#include "libavutil/channel_layout.h"
25
#include "libavutil/float_dsp.h"
26
#include "libavutil/intmath.h"
27
#include "libavutil/opt.h"
28
#include "libavcodec/avfft.h"
29
30
#include "avfilter.h"
31
#include "filters.h"
32
#include "internal.h"
33
#include "audio.h"
34
35
#define TIME_DOMAIN      0
36
#define FREQUENCY_DOMAIN 1
37
38
#define HRIR_STEREO 0
39
#define HRIR_MULTI  1
40
41
typedef struct HeadphoneContext {
42
    const AVClass *class;
43
44
    char *map;
45
    int type;
46
47
    int lfe_channel;
48
49
    int have_hrirs;
50
    int eof_hrirs;
51
52
    int ir_len;
53
    int air_len;
54
55
    int mapping[64];
56
57
    int nb_inputs;
58
59
    int nb_irs;
60
61
    float gain;
62
    float lfe_gain, gain_lfe;
63
64
    float *ringbuffer[2];
65
    int write[2];
66
67
    int buffer_length;
68
    int n_fft;
69
    int size;
70
    int hrir_fmt;
71
72
    int *delay[2];
73
    float *data_ir[2];
74
    float *temp_src[2];
75
    FFTComplex *temp_fft[2];
76
    FFTComplex *temp_afft[2];
77
78
    FFTContext *fft[2], *ifft[2];
79
    FFTComplex *data_hrtf[2];
80
81
    AVFloatDSPContext *fdsp;
82
    struct headphone_inputs {
83
        AVFrame     *frame;
84
        int          ir_len;
85
        int          delay_l;
86
        int          delay_r;
87
        int          eof;
88
    } *in;
89
} HeadphoneContext;
90
91
static int parse_channel_name(HeadphoneContext *s, int x, char **arg, int *rchannel, char *buf)
92
{
93
    int len, i, channel_id = 0;
94
    int64_t layout, layout0;
95
96
    if (sscanf(*arg, "%7[A-Z]%n", buf, &len)) {
97
        layout0 = layout = av_get_channel_layout(buf);
98
        if (layout == AV_CH_LOW_FREQUENCY)
99
            s->lfe_channel = x;
100
        for (i = 32; i > 0; i >>= 1) {
101
            if (layout >= 1LL << i) {
102
                channel_id += i;
103
                layout >>= i;
104
            }
105
        }
106
        if (channel_id >= 64 || layout0 != 1LL << channel_id)
107
            return AVERROR(EINVAL);
108
        *rchannel = channel_id;
109
        *arg += len;
110
        return 0;
111
    }
112
    return AVERROR(EINVAL);
113
}
114
115
static void parse_map(AVFilterContext *ctx)
116
{
117
    HeadphoneContext *s = ctx->priv;
118
    char *arg, *tokenizer, *p, *args = av_strdup(s->map);
119
    int i;
120
121
    if (!args)
122
        return;
123
    p = args;
124
125
    s->lfe_channel = -1;
126
    s->nb_inputs = 1;
127
128
    for (i = 0; i < 64; i++) {
129
        s->mapping[i] = -1;
130
    }
131
132
    while ((arg = av_strtok(p, "|", &tokenizer))) {
133
        int out_ch_id;
134
        char buf[8];
135
136
        p = NULL;
137
        if (parse_channel_name(s, s->nb_irs, &arg, &out_ch_id, buf)) {
138
            av_log(ctx, AV_LOG_WARNING, "Failed to parse \'%s\' as channel name.\n", buf);
139
            continue;
140
        }
141
        s->mapping[s->nb_irs] = out_ch_id;
142
        s->nb_irs++;
143
    }
144
145
    if (s->hrir_fmt == HRIR_MULTI)
146
        s->nb_inputs = 2;
147
    else
148
        s->nb_inputs = s->nb_irs + 1;
149
150
    av_free(args);
151
}
152
153
typedef struct ThreadData {
154
    AVFrame *in, *out;
155
    int *write;
156
    int **delay;
157
    float **ir;
158
    int *n_clippings;
159
    float **ringbuffer;
160
    float **temp_src;
161
    FFTComplex **temp_fft;
162
    FFTComplex **temp_afft;
163
} ThreadData;
164
165
static int headphone_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
166
{
167
    HeadphoneContext *s = ctx->priv;
168
    ThreadData *td = arg;
169
    AVFrame *in = td->in, *out = td->out;
170
    int offset = jobnr;
171
    int *write = &td->write[jobnr];
172
    const int *const delay = td->delay[jobnr];
173
    const float *const ir = td->ir[jobnr];
174
    int *n_clippings = &td->n_clippings[jobnr];
175
    float *ringbuffer = td->ringbuffer[jobnr];
176
    float *temp_src = td->temp_src[jobnr];
177
    const int ir_len = s->ir_len;
178
    const int air_len = s->air_len;
179
    const float *src = (const float *)in->data[0];
180
    float *dst = (float *)out->data[0];
181
    const int in_channels = in->channels;
182
    const int buffer_length = s->buffer_length;
183
    const uint32_t modulo = (uint32_t)buffer_length - 1;
184
    float *buffer[16];
185
    int wr = *write;
186
    int read;
187
    int i, l;
188
189
    dst += offset;
190
    for (l = 0; l < in_channels; l++) {
191
        buffer[l] = ringbuffer + l * buffer_length;
192
    }
193
194
    for (i = 0; i < in->nb_samples; i++) {
195
        const float *temp_ir = ir;
196
197
        *dst = 0;
198
        for (l = 0; l < in_channels; l++) {
199
            *(buffer[l] + wr) = src[l];
200
        }
201
202
        for (l = 0; l < in_channels; l++) {
203
            const float *const bptr = buffer[l];
204
205
            if (l == s->lfe_channel) {
206
                *dst += *(buffer[s->lfe_channel] + wr) * s->gain_lfe;
207
                temp_ir += air_len;
208
                continue;
209
            }
210
211
            read = (wr - *(delay + l) - (ir_len - 1) + buffer_length) & modulo;
212
213
            if (read + ir_len < buffer_length) {
214
                memcpy(temp_src, bptr + read, ir_len * sizeof(*temp_src));
215
            } else {
216
                int len = FFMIN(air_len - (read % ir_len), buffer_length - read);
217
218
                memcpy(temp_src, bptr + read, len * sizeof(*temp_src));
219
                memcpy(temp_src + len, bptr, (air_len - len) * sizeof(*temp_src));
220
            }
221
222
            dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, FFALIGN(ir_len, 32));
223
            temp_ir += air_len;
224
        }
225
226
        if (fabsf(dst[0]) > 1)
227
            n_clippings[0]++;
228
229
        dst += 2;
230
        src += in_channels;
231
        wr   = (wr + 1) & modulo;
232
    }
233
234
    *write = wr;
235
236
    return 0;
237
}
238
239
static int headphone_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
240
{
241
    HeadphoneContext *s = ctx->priv;
242
    ThreadData *td = arg;
243
    AVFrame *in = td->in, *out = td->out;
244
    int offset = jobnr;
245
    int *write = &td->write[jobnr];
246
    FFTComplex *hrtf = s->data_hrtf[jobnr];
247
    int *n_clippings = &td->n_clippings[jobnr];
248
    float *ringbuffer = td->ringbuffer[jobnr];
249
    const int ir_len = s->ir_len;
250
    const float *src = (const float *)in->data[0];
251
    float *dst = (float *)out->data[0];
252
    const int in_channels = in->channels;
253
    const int buffer_length = s->buffer_length;
254
    const uint32_t modulo = (uint32_t)buffer_length - 1;
255
    FFTComplex *fft_in = s->temp_fft[jobnr];
256
    FFTComplex *fft_acc = s->temp_afft[jobnr];
257
    FFTContext *ifft = s->ifft[jobnr];
258
    FFTContext *fft = s->fft[jobnr];
259
    const int n_fft = s->n_fft;
260
    const float fft_scale = 1.0f / s->n_fft;
261
    FFTComplex *hrtf_offset;
262
    int wr = *write;
263
    int n_read;
264
    int i, j;
265
266
    dst += offset;
267
268
    n_read = FFMIN(ir_len, in->nb_samples);
269
    for (j = 0; j < n_read; j++) {
270
        dst[2 * j]     = ringbuffer[wr];
271
        ringbuffer[wr] = 0.0;
272
        wr  = (wr + 1) & modulo;
273
    }
274
275
    for (j = n_read; j < in->nb_samples; j++) {
276
        dst[2 * j] = 0;
277
    }
278
279
    memset(fft_acc, 0, sizeof(FFTComplex) * n_fft);
280
281
    for (i = 0; i < in_channels; i++) {
282
        if (i == s->lfe_channel) {
283
            for (j = 0; j < in->nb_samples; j++) {
284
                dst[2 * j] += src[i + j * in_channels] * s->gain_lfe;
285
            }
286
            continue;
287
        }
288
289
        offset = i * n_fft;
290
        hrtf_offset = hrtf + offset;
291
292
        memset(fft_in, 0, sizeof(FFTComplex) * n_fft);
293
294
        for (j = 0; j < in->nb_samples; j++) {
295
            fft_in[j].re = src[j * in_channels + i];
296
        }
297
298
        av_fft_permute(fft, fft_in);
299
        av_fft_calc(fft, fft_in);
300
        for (j = 0; j < n_fft; j++) {
301
            const FFTComplex *hcomplex = hrtf_offset + j;
302
            const float re = fft_in[j].re;
303
            const float im = fft_in[j].im;
304
305
            fft_acc[j].re += re * hcomplex->re - im * hcomplex->im;
306
            fft_acc[j].im += re * hcomplex->im + im * hcomplex->re;
307
        }
308
    }
309
310
    av_fft_permute(ifft, fft_acc);
311
    av_fft_calc(ifft, fft_acc);
312
313
    for (j = 0; j < in->nb_samples; j++) {
314
        dst[2 * j] += fft_acc[j].re * fft_scale;
315
    }
316
317
    for (j = 0; j < ir_len - 1; j++) {
318
        int write_pos = (wr + j) & modulo;
319
320
        *(ringbuffer + write_pos) += fft_acc[in->nb_samples + j].re * fft_scale;
321
    }
322
323
    for (i = 0; i < out->nb_samples; i++) {
324
        if (fabsf(dst[0]) > 1) {
325
            n_clippings[0]++;
326
        }
327
328
        dst += 2;
329
    }
330
331
    *write = wr;
332
333
    return 0;
334
}
335
336
static int check_ir(AVFilterLink *inlink, int input_number)
337
{
338
    AVFilterContext *ctx = inlink->dst;
339
    HeadphoneContext *s = ctx->priv;
340
    int ir_len, max_ir_len;
341
342
    ir_len = ff_inlink_queued_samples(inlink);
343
    max_ir_len = 65536;
344
    if (ir_len > max_ir_len) {
345
        av_log(ctx, AV_LOG_ERROR, "Too big length of IRs: %d > %d.\n", ir_len, max_ir_len);
346
        return AVERROR(EINVAL);
347
    }
348
    s->in[input_number].ir_len = ir_len;
349
    s->ir_len = FFMAX(ir_len, s->ir_len);
350
351
    return 0;
352
}
353
354
static int headphone_frame(HeadphoneContext *s, AVFrame *in, AVFilterLink *outlink)
355
{
356
    AVFilterContext *ctx = outlink->src;
357
    int n_clippings[2] = { 0 };
358
    ThreadData td;
359
    AVFrame *out;
360
361
    out = ff_get_audio_buffer(outlink, in->nb_samples);
362
    if (!out) {
363
        av_frame_free(&in);
364
        return AVERROR(ENOMEM);
365
    }
366
    out->pts = in->pts;
367
368
    td.in = in; td.out = out; td.write = s->write;
369
    td.delay = s->delay; td.ir = s->data_ir; td.n_clippings = n_clippings;
370
    td.ringbuffer = s->ringbuffer; td.temp_src = s->temp_src;
371
    td.temp_fft = s->temp_fft;
372
    td.temp_afft = s->temp_afft;
373
374
    if (s->type == TIME_DOMAIN) {
375
        ctx->internal->execute(ctx, headphone_convolute, &td, NULL, 2);
376
    } else {
377
        ctx->internal->execute(ctx, headphone_fast_convolute, &td, NULL, 2);
378
    }
379
    emms_c();
380
381
    if (n_clippings[0] + n_clippings[1] > 0) {
382
        av_log(ctx, AV_LOG_WARNING, "%d of %d samples clipped. Please reduce gain.\n",
383
               n_clippings[0] + n_clippings[1], out->nb_samples * 2);
384
    }
385
386
    av_frame_free(&in);
387
    return ff_filter_frame(outlink, out);
388
}
389
390
static int convert_coeffs(AVFilterContext *ctx, AVFilterLink *inlink)
391
{
392
    struct HeadphoneContext *s = ctx->priv;
393
    const int ir_len = s->ir_len;
394
    int nb_irs = s->nb_irs;
395
    int nb_input_channels = ctx->inputs[0]->channels;
396
    float gain_lin = expf((s->gain - 3 * nb_input_channels) / 20 * M_LN10);
397
    FFTComplex *data_hrtf_l = NULL;
398
    FFTComplex *data_hrtf_r = NULL;
399
    FFTComplex *fft_in_l = NULL;
400
    FFTComplex *fft_in_r = NULL;
401
    float *data_ir_l = NULL;
402
    float *data_ir_r = NULL;
403
    int offset = 0, ret = 0;
404
    int n_fft;
405
    int i, j, k;
406
407
    s->air_len = 1 << (32 - ff_clz(ir_len));
408
    s->buffer_length = 1 << (32 - ff_clz(s->air_len));
409
    s->n_fft = n_fft = 1 << (32 - ff_clz(ir_len + s->size));
410
411
    if (s->type == FREQUENCY_DOMAIN) {
412
        fft_in_l = av_calloc(n_fft, sizeof(*fft_in_l));
413
        fft_in_r = av_calloc(n_fft, sizeof(*fft_in_r));
414
        if (!fft_in_l || !fft_in_r) {
415
            ret = AVERROR(ENOMEM);
416
            goto fail;
417
        }
418
419
        av_fft_end(s->fft[0]);
420
        av_fft_end(s->fft[1]);
421
        s->fft[0] = av_fft_init(av_log2(s->n_fft), 0);
422
        s->fft[1] = av_fft_init(av_log2(s->n_fft), 0);
423
        av_fft_end(s->ifft[0]);
424
        av_fft_end(s->ifft[1]);
425
        s->ifft[0] = av_fft_init(av_log2(s->n_fft), 1);
426
        s->ifft[1] = av_fft_init(av_log2(s->n_fft), 1);
427
428
        if (!s->fft[0] || !s->fft[1] || !s->ifft[0] || !s->ifft[1]) {
429
            av_log(ctx, AV_LOG_ERROR, "Unable to create FFT contexts of size %d.\n", s->n_fft);
430
            ret = AVERROR(ENOMEM);
431
            goto fail;
432
        }
433
    }
434
435
    s->data_ir[0] = av_calloc(s->air_len, sizeof(float) * s->nb_irs);
436
    s->data_ir[1] = av_calloc(s->air_len, sizeof(float) * s->nb_irs);
437
    s->delay[0] = av_calloc(s->nb_irs, sizeof(float));
438
    s->delay[1] = av_calloc(s->nb_irs, sizeof(float));
439
440
    if (s->type == TIME_DOMAIN) {
441
        s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
442
        s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
443
    } else {
444
        s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float));
445
        s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float));
446
        s->temp_fft[0] = av_calloc(s->n_fft, sizeof(FFTComplex));
447
        s->temp_fft[1] = av_calloc(s->n_fft, sizeof(FFTComplex));
448
        s->temp_afft[0] = av_calloc(s->n_fft, sizeof(FFTComplex));
449
        s->temp_afft[1] = av_calloc(s->n_fft, sizeof(FFTComplex));
450
        if (!s->temp_fft[0] || !s->temp_fft[1] ||
451
            !s->temp_afft[0] || !s->temp_afft[1]) {
452
            ret = AVERROR(ENOMEM);
453
            goto fail;
454
        }
455
    }
456
457
    if (!s->data_ir[0] || !s->data_ir[1] ||
458
        !s->ringbuffer[0] || !s->ringbuffer[1]) {
459
        ret = AVERROR(ENOMEM);
460
        goto fail;
461
    }
462
463
    if (s->type == TIME_DOMAIN) {
464
        s->temp_src[0] = av_calloc(s->air_len, sizeof(float));
465
        s->temp_src[1] = av_calloc(s->air_len, sizeof(float));
466
467
        data_ir_l = av_calloc(nb_irs * s->air_len, sizeof(*data_ir_l));
468
        data_ir_r = av_calloc(nb_irs * s->air_len, sizeof(*data_ir_r));
469
        if (!data_ir_r || !data_ir_l || !s->temp_src[0] || !s->temp_src[1]) {
470
            ret = AVERROR(ENOMEM);
471
            goto fail;
472
        }
473
    } else {
474
        data_hrtf_l = av_calloc(n_fft, sizeof(*data_hrtf_l) * nb_irs);
475
        data_hrtf_r = av_calloc(n_fft, sizeof(*data_hrtf_r) * nb_irs);
476
        if (!data_hrtf_r || !data_hrtf_l) {
477
            ret = AVERROR(ENOMEM);
478
            goto fail;
479
        }
480
    }
481
482
    for (i = 0; i < s->nb_inputs - 1; i++) {
483
        int len = s->in[i + 1].ir_len;
484
        int delay_l = s->in[i + 1].delay_l;
485
        int delay_r = s->in[i + 1].delay_r;
486
        float *ptr;
487
488
        ret = ff_inlink_consume_samples(ctx->inputs[i + 1], len, len, &s->in[i + 1].frame);
489
        if (ret < 0)
490
            goto fail;
491
        ptr = (float *)s->in[i + 1].frame->extended_data[0];
492
493
        if (s->hrir_fmt == HRIR_STEREO) {
494
            int idx = -1;
495
496
            for (j = 0; j < inlink->channels; j++) {
497
                if (s->mapping[i] < 0) {
498
                    continue;
499
                }
500
501
                if ((av_channel_layout_extract_channel(inlink->channel_layout, j)) == (1LL << s->mapping[i])) {
502
                    idx = i;
503
                    break;
504
                }
505
            }
506
507
            if (idx == -1)
508
                continue;
509
            if (s->type == TIME_DOMAIN) {
510
                offset = idx * s->air_len;
511
                for (j = 0; j < len; j++) {
512
                    data_ir_l[offset + j] = ptr[len * 2 - j * 2 - 2] * gain_lin;
513
                    data_ir_r[offset + j] = ptr[len * 2 - j * 2 - 1] * gain_lin;
514
                }
515
            } else {
516
                memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l));
517
                memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r));
518
519
                offset = idx * n_fft;
520
                for (j = 0; j < len; j++) {
521
                    fft_in_l[delay_l + j].re = ptr[j * 2    ] * gain_lin;
522
                    fft_in_r[delay_r + j].re = ptr[j * 2 + 1] * gain_lin;
523
                }
524
525
                av_fft_permute(s->fft[0], fft_in_l);
526
                av_fft_calc(s->fft[0], fft_in_l);
527
                memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l));
528
                av_fft_permute(s->fft[0], fft_in_r);
529
                av_fft_calc(s->fft[0], fft_in_r);
530
                memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
531
            }
532
        } else {
533
            int I, N = ctx->inputs[1]->channels;
534
535
            for (k = 0; k < N / 2; k++) {
536
                int idx = -1;
537
538
                for (j = 0; j < inlink->channels; j++) {
539
                    if (s->mapping[k] < 0) {
540
                        continue;
541
                    }
542
543
                    if ((av_channel_layout_extract_channel(inlink->channel_layout, j)) == (1LL << s->mapping[k])) {
544
                        idx = k;
545
                        break;
546
                    }
547
                }
548
                if (idx == -1)
549
                    continue;
550
551
                I = idx * 2;
552
                if (s->type == TIME_DOMAIN) {
553
                    offset = idx * s->air_len;
554
                    for (j = 0; j < len; j++) {
555
                        data_ir_l[offset + j] = ptr[len * N - j * N - N + I    ] * gain_lin;
556
                        data_ir_r[offset + j] = ptr[len * N - j * N - N + I + 1] * gain_lin;
557
                    }
558
                } else {
559
                    memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l));
560
                    memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r));
561
562
                    offset = idx * n_fft;
563
                    for (j = 0; j < len; j++) {
564
                        fft_in_l[delay_l + j].re = ptr[j * N + I    ] * gain_lin;
565
                        fft_in_r[delay_r + j].re = ptr[j * N + I + 1] * gain_lin;
566
                    }
567
568
                    av_fft_permute(s->fft[0], fft_in_l);
569
                    av_fft_calc(s->fft[0], fft_in_l);
570
                    memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l));
571
                    av_fft_permute(s->fft[0], fft_in_r);
572
                    av_fft_calc(s->fft[0], fft_in_r);
573
                    memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
574
                }
575
            }
576
        }
577
578
        av_frame_free(&s->in[i + 1].frame);
579
    }
580
581
    if (s->type == TIME_DOMAIN) {
582
        memcpy(s->data_ir[0], data_ir_l, sizeof(float) * nb_irs * s->air_len);
583
        memcpy(s->data_ir[1], data_ir_r, sizeof(float) * nb_irs * s->air_len);
584
    } else {
585
        s->data_hrtf[0] = av_calloc(n_fft * s->nb_irs, sizeof(FFTComplex));
586
        s->data_hrtf[1] = av_calloc(n_fft * s->nb_irs, sizeof(FFTComplex));
587
        if (!s->data_hrtf[0] || !s->data_hrtf[1]) {
588
            ret = AVERROR(ENOMEM);
589
            goto fail;
590
        }
591
592
        memcpy(s->data_hrtf[0], data_hrtf_l,
593
            sizeof(FFTComplex) * nb_irs * n_fft);
594
        memcpy(s->data_hrtf[1], data_hrtf_r,
595
            sizeof(FFTComplex) * nb_irs * n_fft);
596
    }
597
598
    s->have_hrirs = 1;
599
600
fail:
601
602
    for (i = 0; i < s->nb_inputs - 1; i++)
603
        av_frame_free(&s->in[i + 1].frame);
604
605
    av_freep(&data_ir_l);
606
    av_freep(&data_ir_r);
607
608
    av_freep(&data_hrtf_l);
609
    av_freep(&data_hrtf_r);
610
611
    av_freep(&fft_in_l);
612
    av_freep(&fft_in_r);
613
614
    return ret;
615
}
616
617
static int activate(AVFilterContext *ctx)
618
{
619
    HeadphoneContext *s = ctx->priv;
620
    AVFilterLink *inlink = ctx->inputs[0];
621
    AVFilterLink *outlink = ctx->outputs[0];
622
    AVFrame *in = NULL;
623
    int i, ret;
624
625
    FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
626
    if (!s->eof_hrirs) {
627
        for (i = 1; i < s->nb_inputs; i++) {
628
            if (s->in[i].eof)
629
                continue;
630
631
            if ((ret = check_ir(ctx->inputs[i], i)) < 0)
632
                return ret;
633
634
            if (!s->in[i].eof) {
635
                if (ff_outlink_get_status(ctx->inputs[i]) == AVERROR_EOF)
636
                    s->in[i].eof = 1;
637
            }
638
        }
639
640
        for (i = 1; i < s->nb_inputs; i++) {
641
            if (!s->in[i].eof)
642
                break;
643
        }
644
645
        if (i != s->nb_inputs) {
646
            if (ff_outlink_frame_wanted(ctx->outputs[0])) {
647
                for (i = 1; i < s->nb_inputs; i++) {
648
                    if (!s->in[i].eof)
649
                        ff_inlink_request_frame(ctx->inputs[i]);
650
                }
651
            }
652
653
            return 0;
654
        } else {
655
            s->eof_hrirs = 1;
656
        }
657
    }
658
659
    if (!s->have_hrirs && s->eof_hrirs) {
660
        ret = convert_coeffs(ctx, inlink);
661
        if (ret < 0)
662
            return ret;
663
    }
664
665
    if ((ret = ff_inlink_consume_samples(ctx->inputs[0], s->size, s->size, &in)) > 0) {
666
        ret = headphone_frame(s, in, outlink);
667
        if (ret < 0)
668
            return ret;
669
    }
670
671
    if (ret < 0)
672
        return ret;
673
674
    FF_FILTER_FORWARD_STATUS(ctx->inputs[0], ctx->outputs[0]);
675
    if (ff_outlink_frame_wanted(ctx->outputs[0]))
676
        ff_inlink_request_frame(ctx->inputs[0]);
677
678
    return 0;
679
}
680
681
static int query_formats(AVFilterContext *ctx)
682
{
683
    struct HeadphoneContext *s = ctx->priv;
684
    AVFilterFormats *formats = NULL;
685
    AVFilterChannelLayouts *layouts = NULL;
686
    AVFilterChannelLayouts *stereo_layout = NULL;
687
    AVFilterChannelLayouts *hrir_layouts = NULL;
688
    int ret, i;
689
690
    ret = ff_add_format(&formats, AV_SAMPLE_FMT_FLT);
691
    if (ret)
692
        return ret;
693
    ret = ff_set_common_formats(ctx, formats);
694
    if (ret)
695
        return ret;
696
697
    layouts = ff_all_channel_layouts();
698
    if (!layouts)
699
        return AVERROR(ENOMEM);
700
701
    ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts);
702
    if (ret)
703
        return ret;
704
705
    ret = ff_add_channel_layout(&stereo_layout, AV_CH_LAYOUT_STEREO);
706
    if (ret)
707
        return ret;
708
709
    if (s->hrir_fmt == HRIR_MULTI) {
710
        hrir_layouts = ff_all_channel_counts();
711
        if (!hrir_layouts)
712
            return AVERROR(ENOMEM);
713
        ret = ff_channel_layouts_ref(hrir_layouts, &ctx->inputs[1]->out_channel_layouts);
714
        if (ret)
715
            return ret;
716
    } else {
717
        for (i = 1; i < s->nb_inputs; i++) {
718
            ret = ff_channel_layouts_ref(stereo_layout, &ctx->inputs[i]->out_channel_layouts);
719
            if (ret)
720
                return ret;
721
        }
722
    }
723
724
    ret = ff_channel_layouts_ref(stereo_layout, &ctx->outputs[0]->in_channel_layouts);
725
    if (ret)
726
        return ret;
727
728
    formats = ff_all_samplerates();
729
    if (!formats)
730
        return AVERROR(ENOMEM);
731
    return ff_set_common_samplerates(ctx, formats);
732
}
733
734
static int config_input(AVFilterLink *inlink)
735
{
736
    AVFilterContext *ctx = inlink->dst;
737
    HeadphoneContext *s = ctx->priv;
738
739
    if (s->nb_irs < inlink->channels) {
740
        av_log(ctx, AV_LOG_ERROR, "Number of HRIRs must be >= %d.\n", inlink->channels);
741
        return AVERROR(EINVAL);
742
    }
743
744
    return 0;
745
}
746
747
static av_cold int init(AVFilterContext *ctx)
748
{
749
    HeadphoneContext *s = ctx->priv;
750
    int i, ret;
751
752
    AVFilterPad pad = {
753
        .name         = "in0",
754
        .type         = AVMEDIA_TYPE_AUDIO,
755
        .config_props = config_input,
756
    };
757
    if ((ret = ff_insert_inpad(ctx, 0, &pad)) < 0)
758
        return ret;
759
760
    if (!s->map) {
761
        av_log(ctx, AV_LOG_ERROR, "Valid mapping must be set.\n");
762
        return AVERROR(EINVAL);
763
    }
764
765
    parse_map(ctx);
766
767
    s->in = av_calloc(s->nb_inputs, sizeof(*s->in));
768
    if (!s->in)
769
        return AVERROR(ENOMEM);
770
771
    for (i = 1; i < s->nb_inputs; i++) {
772
        char *name = av_asprintf("hrir%d", i - 1);
773
        AVFilterPad pad = {
774
            .name         = name,
775
            .type         = AVMEDIA_TYPE_AUDIO,
776
        };
777
        if (!name)
778
            return AVERROR(ENOMEM);
779
        if ((ret = ff_insert_inpad(ctx, i, &pad)) < 0) {
780
            av_freep(&pad.name);
781
            return ret;
782
        }
783
    }
784
785
    s->fdsp = avpriv_float_dsp_alloc(0);
786
    if (!s->fdsp)
787
        return AVERROR(ENOMEM);
788
789
    return 0;
790
}
791
792
static int config_output(AVFilterLink *outlink)
793
{
794
    AVFilterContext *ctx = outlink->src;
795
    HeadphoneContext *s = ctx->priv;
796
    AVFilterLink *inlink = ctx->inputs[0];
797
798
    if (s->hrir_fmt == HRIR_MULTI) {
799
        AVFilterLink *hrir_link = ctx->inputs[1];
800
801
        if (hrir_link->channels < inlink->channels * 2) {
802
            av_log(ctx, AV_LOG_ERROR, "Number of channels in HRIR stream must be >= %d.\n", inlink->channels * 2);
803
            return AVERROR(EINVAL);
804
        }
805
    }
806
807
    s->gain_lfe = expf((s->gain - 3 * inlink->channels + s->lfe_gain) / 20 * M_LN10);
808
809
    return 0;
810
}
811
812
static av_cold void uninit(AVFilterContext *ctx)
813
{
814
    HeadphoneContext *s = ctx->priv;
815
    int i;
816
817
    av_fft_end(s->ifft[0]);
818
    av_fft_end(s->ifft[1]);
819
    av_fft_end(s->fft[0]);
820
    av_fft_end(s->fft[1]);
821
    av_freep(&s->delay[0]);
822
    av_freep(&s->delay[1]);
823
    av_freep(&s->data_ir[0]);
824
    av_freep(&s->data_ir[1]);
825
    av_freep(&s->ringbuffer[0]);
826
    av_freep(&s->ringbuffer[1]);
827
    av_freep(&s->temp_src[0]);
828
    av_freep(&s->temp_src[1]);
829
    av_freep(&s->temp_fft[0]);
830
    av_freep(&s->temp_fft[1]);
831
    av_freep(&s->temp_afft[0]);
832
    av_freep(&s->temp_afft[1]);
833
    av_freep(&s->data_hrtf[0]);
834
    av_freep(&s->data_hrtf[1]);
835
    av_freep(&s->fdsp);
836
837
    for (i = 0; i < s->nb_inputs; i++) {
838
        if (ctx->input_pads && i)
839
            av_freep(&ctx->input_pads[i].name);
840
    }
841
    av_freep(&s->in);
842
}
843
844
#define OFFSET(x) offsetof(HeadphoneContext, x)
845
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
846
847
static const AVOption headphone_options[] = {
848
    { "map",       "set channels convolution mappings",  OFFSET(map),      AV_OPT_TYPE_STRING, {.str=NULL},            .flags = FLAGS },
849
    { "gain",      "set gain in dB",                     OFFSET(gain),     AV_OPT_TYPE_FLOAT,  {.dbl=0},     -20,  40, .flags = FLAGS },
850
    { "lfe",       "set lfe gain in dB",                 OFFSET(lfe_gain), AV_OPT_TYPE_FLOAT,  {.dbl=0},     -20,  40, .flags = FLAGS },
851
    { "type",      "set processing",                     OFFSET(type),     AV_OPT_TYPE_INT,    {.i64=1},       0,   1, .flags = FLAGS, "type" },
852
    { "time",      "time domain",                        0,                AV_OPT_TYPE_CONST,  {.i64=0},       0,   0, .flags = FLAGS, "type" },
853
    { "freq",      "frequency domain",                   0,                AV_OPT_TYPE_CONST,  {.i64=1},       0,   0, .flags = FLAGS, "type" },
854
    { "size",      "set frame size",                     OFFSET(size),     AV_OPT_TYPE_INT,    {.i64=1024},1024,96000, .flags = FLAGS },
855
    { "hrir",      "set hrir format",                    OFFSET(hrir_fmt), AV_OPT_TYPE_INT,    {.i64=HRIR_STEREO}, 0, 1, .flags = FLAGS, "hrir" },
856
    { "stereo",    "hrir files have exactly 2 channels", 0,                AV_OPT_TYPE_CONST,  {.i64=HRIR_STEREO}, 0, 0, .flags = FLAGS, "hrir" },
857
    { "multich",   "single multichannel hrir file",      0,                AV_OPT_TYPE_CONST,  {.i64=HRIR_MULTI},  0, 0, .flags = FLAGS, "hrir" },
858
    { NULL }
859
};
860
861
AVFILTER_DEFINE_CLASS(headphone);
862
863
static const AVFilterPad outputs[] = {
864
    {
865
        .name          = "default",
866
        .type          = AVMEDIA_TYPE_AUDIO,
867
        .config_props  = config_output,
868
    },
869
    { NULL }
870
};
871
872
AVFilter ff_af_headphone = {
873
    .name          = "headphone",
874
    .description   = NULL_IF_CONFIG_SMALL("Apply headphone binaural spatialization with HRTFs in additional streams."),
875
    .priv_size     = sizeof(HeadphoneContext),
876
    .priv_class    = &headphone_class,
877
    .init          = init,
878
    .uninit        = uninit,
879
    .query_formats = query_formats,
880
    .activate      = activate,
881
    .inputs        = NULL,
882
    .outputs       = outputs,
883
    .flags         = AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_DYNAMIC_INPUTS,
884
};