GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavfilter/af_firequalizer.c Lines: 283 526 53.8 %
Date: 2020-10-23 17:01:47 Branches: 132 337 39.2 %

Line Branch Exec Source
1
/*
2
 * Copyright (c) 2016 Muhammad Faiz <mfcc64@gmail.com>
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20
21
#include "libavutil/opt.h"
22
#include "libavutil/eval.h"
23
#include "libavutil/avassert.h"
24
#include "libavcodec/avfft.h"
25
#include "avfilter.h"
26
#include "internal.h"
27
#include "audio.h"
28
29
#define RDFT_BITS_MIN 4
30
#define RDFT_BITS_MAX 16
31
32
enum WindowFunc {
33
    WFUNC_RECTANGULAR,
34
    WFUNC_HANN,
35
    WFUNC_HAMMING,
36
    WFUNC_BLACKMAN,
37
    WFUNC_NUTTALL3,
38
    WFUNC_MNUTTALL3,
39
    WFUNC_NUTTALL,
40
    WFUNC_BNUTTALL,
41
    WFUNC_BHARRIS,
42
    WFUNC_TUKEY,
43
    NB_WFUNC
44
};
45
46
enum Scale {
47
    SCALE_LINLIN,
48
    SCALE_LINLOG,
49
    SCALE_LOGLIN,
50
    SCALE_LOGLOG,
51
    NB_SCALE
52
};
53
54
#define NB_GAIN_ENTRY_MAX 4096
55
typedef struct GainEntry {
56
    double  freq;
57
    double  gain;
58
} GainEntry;
59
60
typedef struct OverlapIndex {
61
    int buf_idx;
62
    int overlap_idx;
63
} OverlapIndex;
64
65
typedef struct FIREqualizerContext {
66
    const AVClass *class;
67
68
    RDFTContext   *analysis_rdft;
69
    RDFTContext   *analysis_irdft;
70
    RDFTContext   *rdft;
71
    RDFTContext   *irdft;
72
    FFTContext    *fft_ctx;
73
    RDFTContext   *cepstrum_rdft;
74
    RDFTContext   *cepstrum_irdft;
75
    int           analysis_rdft_len;
76
    int           rdft_len;
77
    int           cepstrum_len;
78
79
    float         *analysis_buf;
80
    float         *dump_buf;
81
    float         *kernel_tmp_buf;
82
    float         *kernel_buf;
83
    float         *cepstrum_buf;
84
    float         *conv_buf;
85
    OverlapIndex  *conv_idx;
86
    int           fir_len;
87
    int           nsamples_max;
88
    int64_t       next_pts;
89
    int           frame_nsamples_max;
90
    int           remaining;
91
92
    char          *gain_cmd;
93
    char          *gain_entry_cmd;
94
    const char    *gain;
95
    const char    *gain_entry;
96
    double        delay;
97
    double        accuracy;
98
    int           wfunc;
99
    int           fixed;
100
    int           multi;
101
    int           zero_phase;
102
    int           scale;
103
    char          *dumpfile;
104
    int           dumpscale;
105
    int           fft2;
106
    int           min_phase;
107
108
    int           nb_gain_entry;
109
    int           gain_entry_err;
110
    GainEntry     gain_entry_tbl[NB_GAIN_ENTRY_MAX];
111
} FIREqualizerContext;
112
113
#define OFFSET(x) offsetof(FIREqualizerContext, x)
114
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
115
#define TFLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
116
117
static const AVOption firequalizer_options[] = {
118
    { "gain", "set gain curve", OFFSET(gain), AV_OPT_TYPE_STRING, { .str = "gain_interpolate(f)" }, 0, 0, TFLAGS },
119
    { "gain_entry", "set gain entry", OFFSET(gain_entry), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, TFLAGS },
120
    { "delay", "set delay", OFFSET(delay), AV_OPT_TYPE_DOUBLE, { .dbl = 0.01 }, 0.0, 1e10, FLAGS },
121
    { "accuracy", "set accuracy", OFFSET(accuracy), AV_OPT_TYPE_DOUBLE, { .dbl = 5.0 }, 0.0, 1e10, FLAGS },
122
    { "wfunc", "set window function", OFFSET(wfunc), AV_OPT_TYPE_INT, { .i64 = WFUNC_HANN }, 0, NB_WFUNC-1, FLAGS, "wfunc" },
123
        { "rectangular", "rectangular window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_RECTANGULAR }, 0, 0, FLAGS, "wfunc" },
124
        { "hann", "hann window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HANN }, 0, 0, FLAGS, "wfunc" },
125
        { "hamming", "hamming window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HAMMING }, 0, 0, FLAGS, "wfunc" },
126
        { "blackman", "blackman window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BLACKMAN }, 0, 0, FLAGS, "wfunc" },
127
        { "nuttall3", "3-term nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL3 }, 0, 0, FLAGS, "wfunc" },
128
        { "mnuttall3", "minimum 3-term nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_MNUTTALL3 }, 0, 0, FLAGS, "wfunc" },
129
        { "nuttall", "nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL }, 0, 0, FLAGS, "wfunc" },
130
        { "bnuttall", "blackman-nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BNUTTALL }, 0, 0, FLAGS, "wfunc" },
131
        { "bharris", "blackman-harris window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BHARRIS }, 0, 0, FLAGS, "wfunc" },
132
        { "tukey", "tukey window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_TUKEY }, 0, 0, FLAGS, "wfunc" },
133
    { "fixed", "set fixed frame samples", OFFSET(fixed), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
134
    { "multi", "set multi channels mode", OFFSET(multi), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
135
    { "zero_phase", "set zero phase mode", OFFSET(zero_phase), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
136
    { "scale", "set gain scale", OFFSET(scale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, "scale" },
137
        { "linlin", "linear-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLIN }, 0, 0, FLAGS, "scale" },
138
        { "linlog", "linear-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLOG }, 0, 0, FLAGS, "scale" },
139
        { "loglin", "logarithmic-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLIN }, 0, 0, FLAGS, "scale" },
140
        { "loglog", "logarithmic-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLOG }, 0, 0, FLAGS, "scale" },
141
    { "dumpfile", "set dump file", OFFSET(dumpfile), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
142
    { "dumpscale", "set dump scale", OFFSET(dumpscale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, "scale" },
143
    { "fft2", "set 2-channels fft", OFFSET(fft2), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
144
    { "min_phase", "set minimum phase mode", OFFSET(min_phase), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
145
    { NULL }
146
};
147
148
AVFILTER_DEFINE_CLASS(firequalizer);
149
150
10
static void common_uninit(FIREqualizerContext *s)
151
{
152
10
    av_rdft_end(s->analysis_rdft);
153
10
    av_rdft_end(s->analysis_irdft);
154
10
    av_rdft_end(s->rdft);
155
10
    av_rdft_end(s->irdft);
156
10
    av_fft_end(s->fft_ctx);
157
10
    av_rdft_end(s->cepstrum_rdft);
158
10
    av_rdft_end(s->cepstrum_irdft);
159
10
    s->analysis_rdft = s->analysis_irdft = s->rdft = s->irdft = NULL;
160
10
    s->fft_ctx = NULL;
161
10
    s->cepstrum_rdft = NULL;
162
10
    s->cepstrum_irdft = NULL;
163
164
10
    av_freep(&s->analysis_buf);
165
10
    av_freep(&s->dump_buf);
166
10
    av_freep(&s->kernel_tmp_buf);
167
10
    av_freep(&s->kernel_buf);
168
10
    av_freep(&s->cepstrum_buf);
169
10
    av_freep(&s->conv_buf);
170
10
    av_freep(&s->conv_idx);
171
10
}
172
173
5
static av_cold void uninit(AVFilterContext *ctx)
174
{
175
5
    FIREqualizerContext *s = ctx->priv;
176
177
5
    common_uninit(s);
178
5
    av_freep(&s->gain_cmd);
179
5
    av_freep(&s->gain_entry_cmd);
180
5
}
181
182
5
static int query_formats(AVFilterContext *ctx)
183
{
184
    AVFilterChannelLayouts *layouts;
185
    AVFilterFormats *formats;
186
    static const enum AVSampleFormat sample_fmts[] = {
187
        AV_SAMPLE_FMT_FLTP,
188
        AV_SAMPLE_FMT_NONE
189
    };
190
    int ret;
191
192
5
    layouts = ff_all_channel_counts();
193
5
    if (!layouts)
194
        return AVERROR(ENOMEM);
195
5
    ret = ff_set_common_channel_layouts(ctx, layouts);
196
5
    if (ret < 0)
197
        return ret;
198
199
5
    formats = ff_make_format_list(sample_fmts);
200
5
    if (!formats)
201
        return AVERROR(ENOMEM);
202
5
    ret = ff_set_common_formats(ctx, formats);
203
5
    if (ret < 0)
204
        return ret;
205
206
5
    formats = ff_all_samplerates();
207
5
    if (!formats)
208
        return AVERROR(ENOMEM);
209
5
    return ff_set_common_samplerates(ctx, formats);
210
}
211
212
914
static void fast_convolute(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, float *av_restrict conv_buf,
213
                           OverlapIndex *av_restrict idx, float *av_restrict data, int nsamples)
214
{
215
914
    if (nsamples <= s->nsamples_max) {
216
760
        float *buf = conv_buf + idx->buf_idx * s->rdft_len;
217
760
        float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
218
760
        int center = s->fir_len/2;
219
        int k;
220
221
760
        memset(buf, 0, center * sizeof(*data));
222
760
        memcpy(buf + center, data, nsamples * sizeof(*data));
223
760
        memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*data));
224
760
        av_rdft_calc(s->rdft, buf);
225
226
760
        buf[0] *= kernel_buf[0];
227
760
        buf[1] *= kernel_buf[s->rdft_len/2];
228
1802240
        for (k = 1; k < s->rdft_len/2; k++) {
229
1801480
            buf[2*k] *= kernel_buf[k];
230
1801480
            buf[2*k+1] *= kernel_buf[k];
231
        }
232
233
760
        av_rdft_calc(s->irdft, buf);
234
1924014
        for (k = 0; k < s->rdft_len - idx->overlap_idx; k++)
235
1923254
            buf[k] += obuf[k];
236
760
        memcpy(data, buf, nsamples * sizeof(*data));
237
760
        idx->buf_idx = !idx->buf_idx;
238
760
        idx->overlap_idx = nsamples;
239
    } else {
240
522
        while (nsamples > s->nsamples_max * 2) {
241
368
            fast_convolute(s, kernel_buf, conv_buf, idx, data, s->nsamples_max);
242
368
            data += s->nsamples_max;
243
368
            nsamples -= s->nsamples_max;
244
        }
245
154
        fast_convolute(s, kernel_buf, conv_buf, idx, data, nsamples/2);
246
154
        fast_convolute(s, kernel_buf, conv_buf, idx, data + nsamples/2, nsamples - nsamples/2);
247
    }
248
914
}
249
250
static void fast_convolute_nonlinear(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf,
251
                                     float *av_restrict conv_buf, OverlapIndex *av_restrict idx,
252
                                     float *av_restrict data, int nsamples)
253
{
254
    if (nsamples <= s->nsamples_max) {
255
        float *buf = conv_buf + idx->buf_idx * s->rdft_len;
256
        float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
257
        int k;
258
259
        memcpy(buf, data, nsamples * sizeof(*data));
260
        memset(buf + nsamples, 0, (s->rdft_len - nsamples) * sizeof(*data));
261
        av_rdft_calc(s->rdft, buf);
262
263
        buf[0] *= kernel_buf[0];
264
        buf[1] *= kernel_buf[1];
265
        for (k = 2; k < s->rdft_len; k += 2) {
266
            float re, im;
267
            re = buf[k] * kernel_buf[k] - buf[k+1] * kernel_buf[k+1];
268
            im = buf[k] * kernel_buf[k+1] + buf[k+1] * kernel_buf[k];
269
            buf[k] = re;
270
            buf[k+1] = im;
271
        }
272
273
        av_rdft_calc(s->irdft, buf);
274
        for (k = 0; k < s->rdft_len - idx->overlap_idx; k++)
275
            buf[k] += obuf[k];
276
        memcpy(data, buf, nsamples * sizeof(*data));
277
        idx->buf_idx = !idx->buf_idx;
278
        idx->overlap_idx = nsamples;
279
    } else {
280
        while (nsamples > s->nsamples_max * 2) {
281
            fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data, s->nsamples_max);
282
            data += s->nsamples_max;
283
            nsamples -= s->nsamples_max;
284
        }
285
        fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data, nsamples/2);
286
        fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data + nsamples/2, nsamples - nsamples/2);
287
    }
288
}
289
290
561
static void fast_convolute2(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, FFTComplex *av_restrict conv_buf,
291
                            OverlapIndex *av_restrict idx, float *av_restrict data0, float *av_restrict data1, int nsamples)
292
{
293
561
    if (nsamples <= s->nsamples_max) {
294
523
        FFTComplex *buf = conv_buf + idx->buf_idx * s->rdft_len;
295
523
        FFTComplex *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
296
523
        int center = s->fir_len/2;
297
        int k;
298
        float tmp;
299
300
523
        memset(buf, 0, center * sizeof(*buf));
301
548245
        for (k = 0; k < nsamples; k++) {
302
547722
            buf[center+k].re = data0[k];
303
547722
            buf[center+k].im = data1[k];
304
        }
305
523
        memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*buf));
306
523
        av_fft_permute(s->fft_ctx, buf);
307
523
        av_fft_calc(s->fft_ctx, buf);
308
309
        /* swap re <-> im, do backward fft using forward fft_ctx */
310
        /* normalize with 0.5f */
311
523
        tmp = buf[0].re;
312
523
        buf[0].re = 0.5f * kernel_buf[0] * buf[0].im;
313
523
        buf[0].im = 0.5f * kernel_buf[0] * tmp;
314
1346560
        for (k = 1; k < s->rdft_len/2; k++) {
315
1346037
            int m = s->rdft_len - k;
316
1346037
            tmp = buf[k].re;
317
1346037
            buf[k].re = 0.5f * kernel_buf[k] * buf[k].im;
318
1346037
            buf[k].im = 0.5f * kernel_buf[k] * tmp;
319
1346037
            tmp = buf[m].re;
320
1346037
            buf[m].re = 0.5f * kernel_buf[k] * buf[m].im;
321
1346037
            buf[m].im = 0.5f * kernel_buf[k] * tmp;
322
        }
323
523
        tmp = buf[k].re;
324
523
        buf[k].re = 0.5f * kernel_buf[k] * buf[k].im;
325
523
        buf[k].im = 0.5f * kernel_buf[k] * tmp;
326
327
523
        av_fft_permute(s->fft_ctx, buf);
328
523
        av_fft_calc(s->fft_ctx, buf);
329
330
2147117
        for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) {
331
2146594
            buf[k].re += obuf[k].re;
332
2146594
            buf[k].im += obuf[k].im;
333
        }
334
335
        /* swapped re <-> im */
336
548245
        for (k = 0; k < nsamples; k++) {
337
547722
            data0[k] = buf[k].im;
338
547722
            data1[k] = buf[k].re;
339
        }
340
523
        idx->buf_idx = !idx->buf_idx;
341
523
        idx->overlap_idx = nsamples;
342
    } else {
343
220
        while (nsamples > s->nsamples_max * 2) {
344
182
            fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, s->nsamples_max);
345
182
            data0 += s->nsamples_max;
346
182
            data1 += s->nsamples_max;
347
182
            nsamples -= s->nsamples_max;
348
        }
349
38
        fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, nsamples/2);
350
38
        fast_convolute2(s, kernel_buf, conv_buf, idx, data0 + nsamples/2, data1 + nsamples/2, nsamples - nsamples/2);
351
    }
352
561
}
353
354
static void dump_fir(AVFilterContext *ctx, FILE *fp, int ch)
355
{
356
    FIREqualizerContext *s = ctx->priv;
357
    int rate = ctx->inputs[0]->sample_rate;
358
    int xlog = s->dumpscale == SCALE_LOGLIN || s->dumpscale == SCALE_LOGLOG;
359
    int ylog = s->dumpscale == SCALE_LINLOG || s->dumpscale == SCALE_LOGLOG;
360
    int x;
361
    int center = s->fir_len / 2;
362
    double delay = s->zero_phase ? 0.0 : (double) center / rate;
363
    double vx, ya, yb;
364
365
    if (!s->min_phase) {
366
        s->analysis_buf[0] *= s->rdft_len/2;
367
        for (x = 1; x <= center; x++) {
368
            s->analysis_buf[x] *= s->rdft_len/2;
369
            s->analysis_buf[s->analysis_rdft_len - x] *= s->rdft_len/2;
370
        }
371
    } else {
372
        for (x = 0; x < s->fir_len; x++)
373
            s->analysis_buf[x] *= s->rdft_len/2;
374
    }
375
376
    if (ch)
377
        fprintf(fp, "\n\n");
378
379
    fprintf(fp, "# time[%d] (time amplitude)\n", ch);
380
381
    if (!s->min_phase) {
382
    for (x = center; x > 0; x--)
383
        fprintf(fp, "%15.10f %15.10f\n", delay - (double) x / rate, (double) s->analysis_buf[s->analysis_rdft_len - x]);
384
385
    for (x = 0; x <= center; x++)
386
        fprintf(fp, "%15.10f %15.10f\n", delay + (double)x / rate , (double) s->analysis_buf[x]);
387
    } else {
388
        for (x = 0; x < s->fir_len; x++)
389
            fprintf(fp, "%15.10f %15.10f\n", (double)x / rate, (double) s->analysis_buf[x]);
390
    }
391
392
    av_rdft_calc(s->analysis_rdft, s->analysis_buf);
393
394
    fprintf(fp, "\n\n# freq[%d] (frequency desired_gain actual_gain)\n", ch);
395
396
    for (x = 0; x <= s->analysis_rdft_len/2; x++) {
397
        int i = (x == s->analysis_rdft_len/2) ? 1 : 2 * x;
398
        vx = (double)x * rate / s->analysis_rdft_len;
399
        if (xlog)
400
            vx = log2(0.05*vx);
401
        ya = s->dump_buf[i];
402
        yb = s->min_phase && (i > 1) ? hypotf(s->analysis_buf[i], s->analysis_buf[i+1]) : s->analysis_buf[i];
403
        if (s->min_phase)
404
            yb = fabs(yb);
405
        if (ylog) {
406
            ya = 20.0 * log10(fabs(ya));
407
            yb = 20.0 * log10(fabs(yb));
408
        }
409
        fprintf(fp, "%17.10f %17.10f %17.10f\n", vx, ya, yb);
410
    }
411
}
412
413
6
static double entry_func(void *p, double freq, double gain)
414
{
415
6
    AVFilterContext *ctx = p;
416
6
    FIREqualizerContext *s = ctx->priv;
417
418
6
    if (s->nb_gain_entry >= NB_GAIN_ENTRY_MAX) {
419
        av_log(ctx, AV_LOG_ERROR, "entry table overflow.\n");
420
        s->gain_entry_err = AVERROR(EINVAL);
421
        return 0;
422
    }
423
424
6
    if (isnan(freq)) {
425
        av_log(ctx, AV_LOG_ERROR, "nan frequency (%g, %g).\n", freq, gain);
426
        s->gain_entry_err = AVERROR(EINVAL);
427
        return 0;
428
    }
429
430

6
    if (s->nb_gain_entry > 0 && freq <= s->gain_entry_tbl[s->nb_gain_entry - 1].freq) {
431
        av_log(ctx, AV_LOG_ERROR, "unsorted frequency (%g, %g).\n", freq, gain);
432
        s->gain_entry_err = AVERROR(EINVAL);
433
        return 0;
434
    }
435
436
6
    s->gain_entry_tbl[s->nb_gain_entry].freq = freq;
437
6
    s->gain_entry_tbl[s->nb_gain_entry].gain = gain;
438
6
    s->nb_gain_entry++;
439
6
    return 0;
440
}
441
442
9660
static int gain_entry_compare(const void *key, const void *memb)
443
{
444
9660
    const double *freq = key;
445
9660
    const GainEntry *entry = memb;
446
447
9660
    if (*freq < entry[0].freq)
448
2972
        return -1;
449
6688
    if (*freq > entry[1].freq)
450
        return 1;
451
6688
    return 0;
452
}
453
454
16386
static double gain_interpolate_func(void *p, double freq)
455
{
456
16386
    AVFilterContext *ctx = p;
457
16386
    FIREqualizerContext *s = ctx->priv;
458
    GainEntry *res;
459
    double d0, d1, d;
460
461
16386
    if (isnan(freq))
462
        return freq;
463
464
16386
    if (!s->nb_gain_entry)
465
        return 0;
466
467
16386
    if (freq <= s->gain_entry_tbl[0].freq)
468
744
        return s->gain_entry_tbl[0].gain;
469
470
15642
    if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq)
471
8954
        return s->gain_entry_tbl[s->nb_gain_entry-1].gain;
472
473
6688
    res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare);
474
6688
    av_assert0(res);
475
476
6688
    d  = res[1].freq - res[0].freq;
477
6688
    d0 = freq - res[0].freq;
478
6688
    d1 = res[1].freq - freq;
479
480

6688
    if (d0 && d1)
481
6688
        return (d0 * res[1].gain + d1 * res[0].gain) / d;
482
483
    if (d0)
484
        return res[1].gain;
485
486
    return res[0].gain;
487
}
488
489
static double cubic_interpolate_func(void *p, double freq)
490
{
491
    AVFilterContext *ctx = p;
492
    FIREqualizerContext *s = ctx->priv;
493
    GainEntry *res;
494
    double x, x2, x3;
495
    double a, b, c, d;
496
    double m0, m1, m2, msum, unit;
497
498
    if (!s->nb_gain_entry)
499
        return 0;
500
501
    if (freq <= s->gain_entry_tbl[0].freq)
502
        return s->gain_entry_tbl[0].gain;
503
504
    if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq)
505
        return s->gain_entry_tbl[s->nb_gain_entry-1].gain;
506
507
    res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare);
508
    av_assert0(res);
509
510
    unit = res[1].freq - res[0].freq;
511
    m0 = res != s->gain_entry_tbl ?
512
         unit * (res[0].gain - res[-1].gain) / (res[0].freq - res[-1].freq) : 0;
513
    m1 = res[1].gain - res[0].gain;
514
    m2 = res != s->gain_entry_tbl + s->nb_gain_entry - 2 ?
515
         unit * (res[2].gain - res[1].gain) / (res[2].freq - res[1].freq) : 0;
516
517
    msum = fabs(m0) + fabs(m1);
518
    m0 = msum > 0 ? (fabs(m0) * m1 + fabs(m1) * m0) / msum : 0;
519
    msum = fabs(m1) + fabs(m2);
520
    m1 = msum > 0 ? (fabs(m1) * m2 + fabs(m2) * m1) / msum : 0;
521
522
    d = res[0].gain;
523
    c = m0;
524
    b = 3 * res[1].gain - m1 - 2 * c - 3 * d;
525
    a = res[1].gain - b - c - d;
526
527
    x = (freq - res[0].freq) / unit;
528
    x2 = x * x;
529
    x3 = x2 * x;
530
531
    return a * x3 + b * x2 + c * x + d;
532
}
533
534
static const char *const var_names[] = {
535
    "f",
536
    "sr",
537
    "ch",
538
    "chid",
539
    "chs",
540
    "chlayout",
541
    NULL
542
};
543
544
enum VarOffset {
545
    VAR_F,
546
    VAR_SR,
547
    VAR_CH,
548
    VAR_CHID,
549
    VAR_CHS,
550
    VAR_CHLAYOUT,
551
    VAR_NB
552
};
553
554
static void generate_min_phase_kernel(FIREqualizerContext *s, float *rdft_buf)
555
{
556
    int k, cepstrum_len = s->cepstrum_len, rdft_len = s->rdft_len;
557
    double norm = 2.0 / cepstrum_len;
558
    double minval = 1e-7 / rdft_len;
559
560
    memset(s->cepstrum_buf, 0, cepstrum_len * sizeof(*s->cepstrum_buf));
561
    memcpy(s->cepstrum_buf, rdft_buf, rdft_len/2 * sizeof(*rdft_buf));
562
    memcpy(s->cepstrum_buf + cepstrum_len - rdft_len/2, rdft_buf + rdft_len/2, rdft_len/2  * sizeof(*rdft_buf));
563
564
    av_rdft_calc(s->cepstrum_rdft, s->cepstrum_buf);
565
566
    s->cepstrum_buf[0] = log(FFMAX(s->cepstrum_buf[0], minval));
567
    s->cepstrum_buf[1] = log(FFMAX(s->cepstrum_buf[1], minval));
568
569
    for (k = 2; k < cepstrum_len; k += 2) {
570
        s->cepstrum_buf[k] = log(FFMAX(s->cepstrum_buf[k], minval));
571
        s->cepstrum_buf[k+1] = 0;
572
    }
573
574
    av_rdft_calc(s->cepstrum_irdft, s->cepstrum_buf);
575
576
    memset(s->cepstrum_buf + cepstrum_len/2 + 1, 0, (cepstrum_len/2 - 1) * sizeof(*s->cepstrum_buf));
577
    for (k = 1; k < cepstrum_len/2; k++)
578
        s->cepstrum_buf[k] *= 2;
579
580
    av_rdft_calc(s->cepstrum_rdft, s->cepstrum_buf);
581
582
    s->cepstrum_buf[0] = exp(s->cepstrum_buf[0] * norm) * norm;
583
    s->cepstrum_buf[1] = exp(s->cepstrum_buf[1] * norm) * norm;
584
    for (k = 2; k < cepstrum_len; k += 2) {
585
        double mag = exp(s->cepstrum_buf[k] * norm) * norm;
586
        double ph = s->cepstrum_buf[k+1] * norm;
587
        s->cepstrum_buf[k] = mag * cos(ph);
588
        s->cepstrum_buf[k+1] = mag * sin(ph);
589
    }
590
591
    av_rdft_calc(s->cepstrum_irdft, s->cepstrum_buf);
592
    memset(rdft_buf, 0, s->rdft_len * sizeof(*rdft_buf));
593
    memcpy(rdft_buf, s->cepstrum_buf, s->fir_len * sizeof(*rdft_buf));
594
595
    if (s->dumpfile) {
596
        memset(s->analysis_buf, 0, s->analysis_rdft_len * sizeof(*s->analysis_buf));
597
        memcpy(s->analysis_buf, s->cepstrum_buf, s->fir_len * sizeof(*s->analysis_buf));
598
    }
599
600
}
601
602
5
static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *gain_entry)
603
{
604
5
    FIREqualizerContext *s = ctx->priv;
605
5
    AVFilterLink *inlink = ctx->inputs[0];
606
5
    const char *gain_entry_func_names[] = { "entry", NULL };
607
5
    const char *gain_func_names[] = { "gain_interpolate", "cubic_interpolate", NULL };
608
5
    double (*gain_entry_funcs[])(void *, double, double) = { entry_func, NULL };
609
5
    double (*gain_funcs[])(void *, double) = { gain_interpolate_func, cubic_interpolate_func, NULL };
610
    double vars[VAR_NB];
611
    AVExpr *gain_expr;
612
    int ret, k, center, ch;
613

5
    int xlog = s->scale == SCALE_LOGLIN || s->scale == SCALE_LOGLOG;
614

5
    int ylog = s->scale == SCALE_LINLOG || s->scale == SCALE_LOGLOG;
615
5
    FILE *dump_fp = NULL;
616
617
5
    s->nb_gain_entry = 0;
618
5
    s->gain_entry_err = 0;
619
5
    if (gain_entry) {
620
2
        double result = 0.0;
621
2
        ret = av_expr_parse_and_eval(&result, gain_entry, NULL, NULL, NULL, NULL,
622
                                     gain_entry_func_names, gain_entry_funcs, ctx, 0, ctx);
623
2
        if (ret < 0)
624
            return ret;
625
2
        if (s->gain_entry_err < 0)
626
            return s->gain_entry_err;
627
    }
628
629
5
    av_log(ctx, AV_LOG_DEBUG, "nb_gain_entry = %d.\n", s->nb_gain_entry);
630
631
5
    ret = av_expr_parse(&gain_expr, gain, var_names,
632
                        gain_func_names, gain_funcs, NULL, NULL, 0, ctx);
633
5
    if (ret < 0)
634
        return ret;
635
636


5
    if (s->dumpfile && (!s->dump_buf || !s->analysis_rdft || !(dump_fp = fopen(s->dumpfile, "w"))))
637
        av_log(ctx, AV_LOG_WARNING, "dumping failed.\n");
638
639
5
    vars[VAR_CHS] = inlink->channels;
640
5
    vars[VAR_CHLAYOUT] = inlink->channel_layout;
641
5
    vars[VAR_SR] = inlink->sample_rate;
642
9
    for (ch = 0; ch < inlink->channels; ch++) {
643
7
        float *rdft_buf = s->kernel_tmp_buf + ch * s->rdft_len;
644
        double result;
645
7
        vars[VAR_CH] = ch;
646
7
        vars[VAR_CHID] = av_channel_layout_extract_channel(inlink->channel_layout, ch);
647
7
        vars[VAR_F] = 0.0;
648
7
        if (xlog)
649
            vars[VAR_F] = log2(0.05 * vars[VAR_F]);
650
7
        result = av_expr_eval(gain_expr, vars, ctx);
651
7
        s->analysis_buf[0] = ylog ? pow(10.0, 0.05 * result) : result;
652
653
7
        vars[VAR_F] = 0.5 * inlink->sample_rate;
654
7
        if (xlog)
655
            vars[VAR_F] = log2(0.05 * vars[VAR_F]);
656
7
        result = av_expr_eval(gain_expr, vars, ctx);
657
7
        s->analysis_buf[1] = ylog ? pow(10.0, 0.05 * result) : result;
658
659
57344
        for (k = 1; k < s->analysis_rdft_len/2; k++) {
660
57337
            vars[VAR_F] = k * ((double)inlink->sample_rate /(double)s->analysis_rdft_len);
661
57337
            if (xlog)
662
                vars[VAR_F] = log2(0.05 * vars[VAR_F]);
663
57337
            result = av_expr_eval(gain_expr, vars, ctx);
664

57337
            s->analysis_buf[2*k] = ylog ? pow(10.0, 0.05 * result) : s->min_phase ? fabs(result) : result;
665
57337
            s->analysis_buf[2*k+1] = 0.0;
666
        }
667
668
7
        if (s->dump_buf)
669
            memcpy(s->dump_buf, s->analysis_buf, s->analysis_rdft_len * sizeof(*s->analysis_buf));
670
671
7
        av_rdft_calc(s->analysis_irdft, s->analysis_buf);
672
7
        center = s->fir_len / 2;
673
674
16331
        for (k = 0; k <= center; k++) {
675
16324
            double u = k * (M_PI/center);
676
            double win;
677


16324
            switch (s->wfunc) {
678
            case WFUNC_RECTANGULAR:
679
                win = 1.0;
680
                break;
681
7502
            case WFUNC_HANN:
682
7502
                win = 0.5 + 0.5 * cos(u);
683
7502
                break;
684
            case WFUNC_HAMMING:
685
                win = 0.53836 + 0.46164 * cos(u);
686
                break;
687
            case WFUNC_BLACKMAN:
688
                win = 0.42 + 0.5 * cos(u) + 0.08 * cos(2*u);
689
                break;
690
            case WFUNC_NUTTALL3:
691
                win = 0.40897 + 0.5 * cos(u) + 0.09103 * cos(2*u);
692
                break;
693
            case WFUNC_MNUTTALL3:
694
                win = 0.4243801 + 0.4973406 * cos(u) + 0.0782793 * cos(2*u);
695
                break;
696
8822
            case WFUNC_NUTTALL:
697
8822
                win = 0.355768 + 0.487396 * cos(u) + 0.144232 * cos(2*u) + 0.012604 * cos(3*u);
698
8822
                break;
699
            case WFUNC_BNUTTALL:
700
                win = 0.3635819 + 0.4891775 * cos(u) + 0.1365995 * cos(2*u) + 0.0106411 * cos(3*u);
701
                break;
702
            case WFUNC_BHARRIS:
703
                win = 0.35875 + 0.48829 * cos(u) + 0.14128 * cos(2*u) + 0.01168 * cos(3*u);
704
                break;
705
            case WFUNC_TUKEY:
706
                win = (u <= 0.5 * M_PI) ? 1.0 : (0.5 + 0.5 * cos(2*u - M_PI));
707
                break;
708
            default:
709
                av_assert0(0);
710
            }
711
16324
            s->analysis_buf[k] *= (2.0/s->analysis_rdft_len) * (2.0/s->rdft_len) * win;
712
16324
            if (k)
713
16317
                s->analysis_buf[s->analysis_rdft_len - k] = s->analysis_buf[k];
714
        }
715
716
7
        memset(s->analysis_buf + center + 1, 0, (s->analysis_rdft_len - s->fir_len) * sizeof(*s->analysis_buf));
717
7
        memcpy(rdft_buf, s->analysis_buf, s->rdft_len/2 * sizeof(*s->analysis_buf));
718
7
        memcpy(rdft_buf + s->rdft_len/2, s->analysis_buf + s->analysis_rdft_len - s->rdft_len/2, s->rdft_len/2 * sizeof(*s->analysis_buf));
719
7
        if (s->min_phase)
720
            generate_min_phase_kernel(s, rdft_buf);
721
7
        av_rdft_calc(s->rdft, rdft_buf);
722
723
61447
        for (k = 0; k < s->rdft_len; k++) {
724

61440
            if (isnan(rdft_buf[k]) || isinf(rdft_buf[k])) {
725
                av_log(ctx, AV_LOG_ERROR, "filter kernel contains nan or infinity.\n");
726
                av_expr_free(gain_expr);
727
                if (dump_fp)
728
                    fclose(dump_fp);
729
                return AVERROR(EINVAL);
730
            }
731
        }
732
733
7
        if (!s->min_phase) {
734
7
            rdft_buf[s->rdft_len-1] = rdft_buf[1];
735
30727
            for (k = 0; k < s->rdft_len/2; k++)
736
30720
                rdft_buf[k] = rdft_buf[2*k];
737
7
            rdft_buf[s->rdft_len/2] = rdft_buf[s->rdft_len-1];
738
        }
739
740
7
        if (dump_fp)
741
            dump_fir(ctx, dump_fp, ch);
742
743
7
        if (!s->multi)
744
3
            break;
745
    }
746
747
5
    memcpy(s->kernel_buf, s->kernel_tmp_buf, (s->multi ? inlink->channels : 1) * s->rdft_len * sizeof(*s->kernel_buf));
748
5
    av_expr_free(gain_expr);
749
5
    if (dump_fp)
750
        fclose(dump_fp);
751
5
    return 0;
752
}
753
754
#define SELECT_GAIN(s) (s->gain_cmd ? s->gain_cmd : s->gain)
755
#define SELECT_GAIN_ENTRY(s) (s->gain_entry_cmd ? s->gain_entry_cmd : s->gain_entry)
756
757
5
static int config_input(AVFilterLink *inlink)
758
{
759
5
    AVFilterContext *ctx = inlink->dst;
760
5
    FIREqualizerContext *s = ctx->priv;
761
    int rdft_bits;
762
763
5
    common_uninit(s);
764
765
5
    s->next_pts = 0;
766
5
    s->frame_nsamples_max = 0;
767
768
5
    s->fir_len = FFMAX(2 * (int)(inlink->sample_rate * s->delay) + 1, 3);
769
5
    s->remaining = s->fir_len - 1;
770
771
47
    for (rdft_bits = RDFT_BITS_MIN; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) {
772
47
        s->rdft_len = 1 << rdft_bits;
773
47
        s->nsamples_max = s->rdft_len - s->fir_len + 1;
774
47
        if (s->nsamples_max * 2 >= s->fir_len)
775
5
            break;
776
    }
777
778
5
    if (rdft_bits > RDFT_BITS_MAX) {
779
        av_log(ctx, AV_LOG_ERROR, "too large delay, please decrease it.\n");
780
        return AVERROR(EINVAL);
781
    }
782
783

5
    if (!(s->rdft = av_rdft_init(rdft_bits, DFT_R2C)) || !(s->irdft = av_rdft_init(rdft_bits, IDFT_C2R)))
784
        return AVERROR(ENOMEM);
785
786


5
    if (s->fft2 && !s->multi && inlink->channels > 1 && !(s->fft_ctx = av_fft_init(rdft_bits, 0)))
787
        return AVERROR(ENOMEM);
788
789
5
    if (s->min_phase) {
790
        int cepstrum_bits = rdft_bits + 2;
791
        if (cepstrum_bits > RDFT_BITS_MAX) {
792
            av_log(ctx, AV_LOG_ERROR, "too large delay, please decrease it.\n");
793
            return AVERROR(EINVAL);
794
        }
795
796
        cepstrum_bits = FFMIN(RDFT_BITS_MAX, cepstrum_bits + 1);
797
        s->cepstrum_rdft = av_rdft_init(cepstrum_bits, DFT_R2C);
798
        s->cepstrum_irdft = av_rdft_init(cepstrum_bits, IDFT_C2R);
799
        if (!s->cepstrum_rdft || !s->cepstrum_irdft)
800
            return AVERROR(ENOMEM);
801
802
        s->cepstrum_len = 1 << cepstrum_bits;
803
        s->cepstrum_buf = av_malloc_array(s->cepstrum_len, sizeof(*s->cepstrum_buf));
804
        if (!s->cepstrum_buf)
805
            return AVERROR(ENOMEM);
806
    }
807
808
13
    for ( ; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) {
809
13
        s->analysis_rdft_len = 1 << rdft_bits;
810
13
        if (inlink->sample_rate <= s->accuracy * s->analysis_rdft_len)
811
5
            break;
812
    }
813
814
5
    if (rdft_bits > RDFT_BITS_MAX) {
815
        av_log(ctx, AV_LOG_ERROR, "too small accuracy, please increase it.\n");
816
        return AVERROR(EINVAL);
817
    }
818
819
5
    if (!(s->analysis_irdft = av_rdft_init(rdft_bits, IDFT_C2R)))
820
        return AVERROR(ENOMEM);
821
822
5
    if (s->dumpfile) {
823
        s->analysis_rdft = av_rdft_init(rdft_bits, DFT_R2C);
824
        s->dump_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->dump_buf));
825
    }
826
827
5
    s->analysis_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->analysis_buf));
828
5
    s->kernel_tmp_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->channels : 1), sizeof(*s->kernel_tmp_buf));
829
5
    s->kernel_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->channels : 1), sizeof(*s->kernel_buf));
830
5
    s->conv_buf   = av_calloc(2 * s->rdft_len * inlink->channels, sizeof(*s->conv_buf));
831
5
    s->conv_idx   = av_calloc(inlink->channels, sizeof(*s->conv_idx));
832


5
    if (!s->analysis_buf || !s->kernel_tmp_buf || !s->kernel_buf || !s->conv_buf || !s->conv_idx)
833
        return AVERROR(ENOMEM);
834
835
5
    av_log(ctx, AV_LOG_DEBUG, "sample_rate = %d, channels = %d, analysis_rdft_len = %d, rdft_len = %d, fir_len = %d, nsamples_max = %d.\n",
836
           inlink->sample_rate, inlink->channels, s->analysis_rdft_len, s->rdft_len, s->fir_len, s->nsamples_max);
837
838
5
    if (s->fixed)
839
1
        inlink->min_samples = inlink->max_samples = inlink->partial_buf_size = s->nsamples_max;
840
841

5
    return generate_kernel(ctx, SELECT_GAIN(s), SELECT_GAIN_ENTRY(s));
842
}
843
844
422
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
845
{
846
422
    AVFilterContext *ctx = inlink->dst;
847
422
    FIREqualizerContext *s = ctx->priv;
848
    int ch;
849
850
422
    if (!s->min_phase) {
851

725
        for (ch = 0; ch + 1 < inlink->channels && s->fft_ctx; ch += 2) {
852
303
            fast_convolute2(s, s->kernel_buf, (FFTComplex *)(s->conv_buf + 2 * ch * s->rdft_len),
853
303
                            s->conv_idx + ch, (float *) frame->extended_data[ch],
854
303
                            (float *) frame->extended_data[ch+1], frame->nb_samples);
855
        }
856
857
660
        for ( ; ch < inlink->channels; ch++) {
858
238
            fast_convolute(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0),
859
238
                        s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch,
860
238
                        (float *) frame->extended_data[ch], frame->nb_samples);
861
        }
862
    } else {
863
        for (ch = 0; ch < inlink->channels; ch++) {
864
            fast_convolute_nonlinear(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0),
865
                                     s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch,
866
                                     (float *) frame->extended_data[ch], frame->nb_samples);
867
        }
868
    }
869
870
422
    s->next_pts = AV_NOPTS_VALUE;
871
422
    if (frame->pts != AV_NOPTS_VALUE) {
872
422
        s->next_pts = frame->pts + av_rescale_q(frame->nb_samples, av_make_q(1, inlink->sample_rate), inlink->time_base);
873

422
        if (s->zero_phase && !s->min_phase)
874
38
            frame->pts -= av_rescale_q(s->fir_len/2, av_make_q(1, inlink->sample_rate), inlink->time_base);
875
    }
876
422
    s->frame_nsamples_max = FFMAX(s->frame_nsamples_max, frame->nb_samples);
877
422
    return ff_filter_frame(ctx->outputs[0], frame);
878
}
879
880
655
static int request_frame(AVFilterLink *outlink)
881
{
882
655
    AVFilterContext *ctx = outlink->src;
883
655
    FIREqualizerContext *s= ctx->priv;
884
    int ret;
885
886
655
    ret = ff_request_frame(ctx->inputs[0]);
887

655
    if (ret == AVERROR_EOF && s->remaining > 0 && s->frame_nsamples_max > 0) {
888
10
        AVFrame *frame = ff_get_audio_buffer(outlink, FFMIN(s->remaining, s->frame_nsamples_max));
889
890
10
        if (!frame)
891
            return AVERROR(ENOMEM);
892
893
10
        av_samples_set_silence(frame->extended_data, 0, frame->nb_samples, outlink->channels, frame->format);
894
10
        frame->pts = s->next_pts;
895
10
        s->remaining -= frame->nb_samples;
896
10
        ret = filter_frame(ctx->inputs[0], frame);
897
    }
898
899
655
    return ret;
900
}
901
902
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
903
                           char *res, int res_len, int flags)
904
{
905
    FIREqualizerContext *s = ctx->priv;
906
    int ret = AVERROR(ENOSYS);
907
908
    if (!strcmp(cmd, "gain")) {
909
        char *gain_cmd;
910
911
        if (SELECT_GAIN(s) && !strcmp(SELECT_GAIN(s), args)) {
912
            av_log(ctx, AV_LOG_DEBUG, "equal gain, do not rebuild.\n");
913
            return 0;
914
        }
915
916
        gain_cmd = av_strdup(args);
917
        if (!gain_cmd)
918
            return AVERROR(ENOMEM);
919
920
        ret = generate_kernel(ctx, gain_cmd, SELECT_GAIN_ENTRY(s));
921
        if (ret >= 0) {
922
            av_freep(&s->gain_cmd);
923
            s->gain_cmd = gain_cmd;
924
        } else {
925
            av_freep(&gain_cmd);
926
        }
927
    } else if (!strcmp(cmd, "gain_entry")) {
928
        char *gain_entry_cmd;
929
930
        if (SELECT_GAIN_ENTRY(s) && !strcmp(SELECT_GAIN_ENTRY(s), args)) {
931
            av_log(ctx, AV_LOG_DEBUG, "equal gain_entry, do not rebuild.\n");
932
            return 0;
933
        }
934
935
        gain_entry_cmd = av_strdup(args);
936
        if (!gain_entry_cmd)
937
            return AVERROR(ENOMEM);
938
939
        ret = generate_kernel(ctx, SELECT_GAIN(s), gain_entry_cmd);
940
        if (ret >= 0) {
941
            av_freep(&s->gain_entry_cmd);
942
            s->gain_entry_cmd = gain_entry_cmd;
943
        } else {
944
            av_freep(&gain_entry_cmd);
945
        }
946
    }
947
948
    return ret;
949
}
950
951
static const AVFilterPad firequalizer_inputs[] = {
952
    {
953
        .name           = "default",
954
        .config_props   = config_input,
955
        .filter_frame   = filter_frame,
956
        .type           = AVMEDIA_TYPE_AUDIO,
957
        .needs_writable = 1,
958
    },
959
    { NULL }
960
};
961
962
static const AVFilterPad firequalizer_outputs[] = {
963
    {
964
        .name           = "default",
965
        .request_frame  = request_frame,
966
        .type           = AVMEDIA_TYPE_AUDIO,
967
    },
968
    { NULL }
969
};
970
971
AVFilter ff_af_firequalizer = {
972
    .name               = "firequalizer",
973
    .description        = NULL_IF_CONFIG_SMALL("Finite Impulse Response Equalizer."),
974
    .uninit             = uninit,
975
    .query_formats      = query_formats,
976
    .process_command    = process_command,
977
    .priv_size          = sizeof(FIREqualizerContext),
978
    .inputs             = firequalizer_inputs,
979
    .outputs            = firequalizer_outputs,
980
    .priv_class         = &firequalizer_class,
981
};