GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavfilter/af_asupercut.c Lines: 0 153 0.0 %
Date: 2021-01-22 05:18:52 Branches: 0 73 0.0 %

Line Branch Exec Source
1
/*
2
 * Copyright (c) 2005 Boðaç Topaktaþ
3
 * Copyright (c) 2020 Paul B Mahol
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
#include "libavutil/channel_layout.h"
23
#include "libavutil/ffmath.h"
24
#include "libavutil/opt.h"
25
#include "avfilter.h"
26
#include "audio.h"
27
#include "formats.h"
28
29
typedef struct BiquadCoeffs {
30
    double a1, a2;
31
    double b0, b1, b2;
32
} BiquadCoeffs;
33
34
typedef struct ASuperCutContext {
35
    const AVClass *class;
36
37
    double cutoff;
38
    double level;
39
    double qfactor;
40
    int order;
41
42
    int filter_count;
43
    int bypass;
44
45
    BiquadCoeffs coeffs[10];
46
47
    AVFrame *w;
48
49
    int (*filter_channels)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
50
} ASuperCutContext;
51
52
static int query_formats(AVFilterContext *ctx)
53
{
54
    AVFilterFormats *formats = NULL;
55
    AVFilterChannelLayouts *layouts = NULL;
56
    static const enum AVSampleFormat sample_fmts[] = {
57
        AV_SAMPLE_FMT_FLTP,
58
        AV_SAMPLE_FMT_DBLP,
59
        AV_SAMPLE_FMT_NONE
60
    };
61
    int ret;
62
63
    formats = ff_make_format_list(sample_fmts);
64
    if (!formats)
65
        return AVERROR(ENOMEM);
66
    ret = ff_set_common_formats(ctx, formats);
67
    if (ret < 0)
68
        return ret;
69
70
    layouts = ff_all_channel_counts();
71
    if (!layouts)
72
        return AVERROR(ENOMEM);
73
74
    ret = ff_set_common_channel_layouts(ctx, layouts);
75
    if (ret < 0)
76
        return ret;
77
78
    formats = ff_all_samplerates();
79
    return ff_set_common_samplerates(ctx, formats);
80
}
81
82
static void calc_q_factors(int n, double *q)
83
{
84
    for (int i = 0; i < n / 2; i++)
85
        q[i] = 1. / (-2. * cos(M_PI * (2. * (i + 1) + n - 1.) / (2. * n)));
86
}
87
88
static int get_coeffs(AVFilterContext *ctx)
89
{
90
    ASuperCutContext *s = ctx->priv;
91
    AVFilterLink *inlink = ctx->inputs[0];
92
    double w0 = s->cutoff / inlink->sample_rate;
93
    double K = tan(M_PI * w0);
94
    double q[10];
95
96
    s->bypass = w0 >= 0.5;
97
    if (s->bypass)
98
        return 0;
99
100
    if (!strcmp(ctx->filter->name, "asubcut")) {
101
        s->filter_count = s->order / 2 + (s->order & 1);
102
103
        calc_q_factors(s->order, q);
104
105
        if (s->order & 1) {
106
            BiquadCoeffs *coeffs = &s->coeffs[0];
107
            double omega = 2. * tan(M_PI * w0);
108
109
            coeffs->b0 = 2. / (2. + omega);
110
            coeffs->b1 = -coeffs->b0;
111
            coeffs->b2 = 0.;
112
            coeffs->a1 = -(omega - 2.) / (2. + omega);
113
            coeffs->a2 = 0.;
114
        }
115
116
        for (int b = (s->order & 1); b < s->filter_count; b++) {
117
            BiquadCoeffs *coeffs = &s->coeffs[b];
118
            const int idx = b - (s->order & 1);
119
            double norm = 1.0 / (1.0 + K / q[idx] + K * K);
120
121
            coeffs->b0 = norm;
122
            coeffs->b1 = -2.0 * coeffs->b0;
123
            coeffs->b2 = coeffs->b0;
124
            coeffs->a1 = -2.0 * (K * K - 1.0) * norm;
125
            coeffs->a2 = -(1.0 - K / q[idx] + K * K) * norm;
126
        }
127
    } else if (!strcmp(ctx->filter->name, "asupercut")) {
128
        s->filter_count = s->order / 2 + (s->order & 1);
129
130
        calc_q_factors(s->order, q);
131
132
        if (s->order & 1) {
133
            BiquadCoeffs *coeffs = &s->coeffs[0];
134
            double omega = 2. * tan(M_PI * w0);
135
136
            coeffs->b0 = omega / (2. + omega);
137
            coeffs->b1 = coeffs->b0;
138
            coeffs->b2 = 0.;
139
            coeffs->a1 = -(omega - 2.) / (2. + omega);
140
            coeffs->a2 = 0.;
141
        }
142
143
        for (int b = (s->order & 1); b < s->filter_count; b++) {
144
            BiquadCoeffs *coeffs = &s->coeffs[b];
145
            const int idx = b - (s->order & 1);
146
            double norm = 1.0 / (1.0 + K / q[idx] + K * K);
147
148
            coeffs->b0 = K * K * norm;
149
            coeffs->b1 = 2.0 * coeffs->b0;
150
            coeffs->b2 = coeffs->b0;
151
            coeffs->a1 = -2.0 * (K * K - 1.0) * norm;
152
            coeffs->a2 = -(1.0 - K / q[idx] + K * K) * norm;
153
        }
154
    } else if (!strcmp(ctx->filter->name, "asuperpass")) {
155
        double alpha, beta, gamma, theta;
156
        double theta_0 = 2. * M_PI * (s->cutoff / inlink->sample_rate);
157
        double d_E;
158
159
        s->filter_count = s->order / 2;
160
        d_E = (2. * tan(theta_0 / (2. * s->qfactor))) / sin(theta_0);
161
162
        for (int b = 0; b < s->filter_count; b += 2) {
163
            double D = 2. * sin(((b + 1) * M_PI) / (2. * s->filter_count));
164
            double A = (1. + pow((d_E / 2.), 2)) / (D * d_E / 2.);
165
            double d = sqrt((d_E * D) / (A + sqrt(A * A - 1.)));
166
            double B = D * (d_E / 2.) / d;
167
            double W = B + sqrt(B * B - 1.);
168
169
            for (int j = 0; j < 2; j++) {
170
                BiquadCoeffs *coeffs = &s->coeffs[b + j];
171
172
                if (j == 1)
173
                    theta = 2. * atan(tan(theta_0 / 2.) / W);
174
                else
175
                    theta = 2. * atan(W * tan(theta_0 / 2.));
176
177
                beta = 0.5 * ((1. - (d / 2.) * sin(theta)) / (1. + (d / 2.) * sin(theta)));
178
                gamma = (0.5 + beta) * cos(theta);
179
                alpha = 0.5 * (0.5 - beta) * sqrt(1. + pow((W - (1. / W)) / d, 2.));
180
181
                coeffs->a1 =  2. * gamma;
182
                coeffs->a2 = -2. * beta;
183
                coeffs->b0 =  2. * alpha;
184
                coeffs->b1 =  0.;
185
                coeffs->b2 = -2. * alpha;
186
            }
187
        }
188
    } else if (!strcmp(ctx->filter->name, "asuperstop")) {
189
        double alpha, beta, gamma, theta;
190
        double theta_0 = 2. * M_PI * (s->cutoff / inlink->sample_rate);
191
        double d_E;
192
193
        s->filter_count = s->order / 2;
194
        d_E = (2. * tan(theta_0 / (2. * s->qfactor))) / sin(theta_0);
195
196
        for (int b = 0; b < s->filter_count; b += 2) {
197
            double D = 2. * sin(((b + 1) * M_PI) / (2. * s->filter_count));
198
            double A = (1. + pow((d_E / 2.), 2)) / (D * d_E / 2.);
199
            double d = sqrt((d_E * D) / (A + sqrt(A * A - 1.)));
200
            double B = D * (d_E / 2.) / d;
201
            double W = B + sqrt(B * B - 1.);
202
203
            for (int j = 0; j < 2; j++) {
204
                BiquadCoeffs *coeffs = &s->coeffs[b + j];
205
206
                if (j == 1)
207
                    theta = 2. * atan(tan(theta_0 / 2.) / W);
208
                else
209
                    theta = 2. * atan(W * tan(theta_0 / 2.));
210
211
                beta = 0.5 * ((1. - (d / 2.) * sin(theta)) / (1. + (d / 2.) * sin(theta)));
212
                gamma = (0.5 + beta) * cos(theta);
213
                alpha = 0.5 * (0.5 + beta) * ((1. - cos(theta)) / (1. - cos(theta_0)));
214
215
                coeffs->a1 =  2. * gamma;
216
                coeffs->a2 = -2. * beta;
217
                coeffs->b0 =  2. * alpha;
218
                coeffs->b1 = -4. * alpha * cos(theta_0);
219
                coeffs->b2 =  2. * alpha;
220
            }
221
        }
222
    }
223
224
    return 0;
225
}
226
227
typedef struct ThreadData {
228
    AVFrame *in, *out;
229
} ThreadData;
230
231
#define FILTER(name, type)                                          \
232
static int filter_channels_## name(AVFilterContext *ctx, void *arg, \
233
                                   int jobnr, int nb_jobs)          \
234
{                                                                   \
235
    ASuperCutContext *s = ctx->priv;                                \
236
    ThreadData *td = arg;                                           \
237
    AVFrame *out = td->out;                                         \
238
    AVFrame *in = td->in;                                           \
239
    const int start = (in->channels * jobnr) / nb_jobs;             \
240
    const int end = (in->channels * (jobnr+1)) / nb_jobs;           \
241
    const double level = s->level;                                  \
242
                                                                    \
243
    for (int ch = start; ch < end; ch++) {                          \
244
        const type *src = (const type *)in->extended_data[ch];      \
245
        type *dst = (type *)out->extended_data[ch];                 \
246
                                                                    \
247
        for (int b = 0; b < s->filter_count; b++) {                 \
248
            BiquadCoeffs *coeffs = &s->coeffs[b];                   \
249
            const type a1 = coeffs->a1;                             \
250
            const type a2 = coeffs->a2;                             \
251
            const type b0 = coeffs->b0;                             \
252
            const type b1 = coeffs->b1;                             \
253
            const type b2 = coeffs->b2;                             \
254
            type *w = ((type *)s->w->extended_data[ch]) + b * 2;    \
255
                                                                    \
256
            for (int n = 0; n < in->nb_samples; n++) {              \
257
                type sin = b ? dst[n] : src[n] * level;             \
258
                type sout = sin * b0 + w[0];                        \
259
                                                                    \
260
                w[0] = b1 * sin + w[1] + a1 * sout;                 \
261
                w[1] = b2 * sin + a2 * sout;                        \
262
                                                                    \
263
                dst[n] = sout;                                      \
264
            }                                                       \
265
        }                                                           \
266
    }                                                               \
267
                                                                    \
268
    return 0;                                                       \
269
}
270
271
FILTER(fltp, float)
272
FILTER(dblp, double)
273
274
static int config_input(AVFilterLink *inlink)
275
{
276
    AVFilterContext *ctx = inlink->dst;
277
    ASuperCutContext *s = ctx->priv;
278
279
    switch (inlink->format) {
280
    case AV_SAMPLE_FMT_FLTP: s->filter_channels = filter_channels_fltp; break;
281
    case AV_SAMPLE_FMT_DBLP: s->filter_channels = filter_channels_dblp; break;
282
    }
283
284
    s->w = ff_get_audio_buffer(inlink, 2 * 10);
285
    if (!s->w)
286
        return AVERROR(ENOMEM);
287
288
    return get_coeffs(ctx);
289
}
290
291
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
292
{
293
    AVFilterContext *ctx = inlink->dst;
294
    ASuperCutContext *s = ctx->priv;
295
    AVFilterLink *outlink = ctx->outputs[0];
296
    ThreadData td;
297
    AVFrame *out;
298
299
    if (s->bypass)
300
        return ff_filter_frame(outlink, in);
301
302
    if (av_frame_is_writable(in)) {
303
        out = in;
304
    } else {
305
        out = ff_get_audio_buffer(outlink, in->nb_samples);
306
        if (!out) {
307
            av_frame_free(&in);
308
            return AVERROR(ENOMEM);
309
        }
310
        av_frame_copy_props(out, in);
311
    }
312
313
    td.in = in; td.out = out;
314
    ctx->internal->execute(ctx, s->filter_channels, &td, NULL, FFMIN(inlink->channels,
315
                                                               ff_filter_get_nb_threads(ctx)));
316
317
    if (out != in)
318
        av_frame_free(&in);
319
    return ff_filter_frame(outlink, out);
320
}
321
322
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
323
                           char *res, int res_len, int flags)
324
{
325
    int ret;
326
327
    ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
328
    if (ret < 0)
329
        return ret;
330
331
    return get_coeffs(ctx);
332
}
333
334
static av_cold void uninit(AVFilterContext *ctx)
335
{
336
    ASuperCutContext *s = ctx->priv;
337
338
    av_frame_free(&s->w);
339
}
340
341
#define OFFSET(x) offsetof(ASuperCutContext, x)
342
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
343
344
static const AVOption asupercut_options[] = {
345
    { "cutoff", "set cutoff frequency", OFFSET(cutoff), AV_OPT_TYPE_DOUBLE, {.dbl=20000}, 20000, 192000, FLAGS },
346
    { "order",  "set filter order",     OFFSET(order),  AV_OPT_TYPE_INT,    {.i64=10},        3,     20, FLAGS },
347
    { "level",  "set input level",      OFFSET(level),  AV_OPT_TYPE_DOUBLE, {.dbl=1.},        0.,    1., FLAGS },
348
    { NULL }
349
};
350
351
AVFILTER_DEFINE_CLASS(asupercut);
352
353
static const AVFilterPad inputs[] = {
354
    {
355
        .name         = "default",
356
        .type         = AVMEDIA_TYPE_AUDIO,
357
        .filter_frame = filter_frame,
358
        .config_props = config_input,
359
    },
360
    { NULL }
361
};
362
363
static const AVFilterPad outputs[] = {
364
    {
365
        .name = "default",
366
        .type = AVMEDIA_TYPE_AUDIO,
367
    },
368
    { NULL }
369
};
370
371
AVFilter ff_af_asupercut = {
372
    .name            = "asupercut",
373
    .description     = NULL_IF_CONFIG_SMALL("Cut super frequencies."),
374
    .query_formats   = query_formats,
375
    .priv_size       = sizeof(ASuperCutContext),
376
    .priv_class      = &asupercut_class,
377
    .uninit          = uninit,
378
    .inputs          = inputs,
379
    .outputs         = outputs,
380
    .process_command = process_command,
381
    .flags           = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
382
                       AVFILTER_FLAG_SLICE_THREADS,
383
};
384
385
static const AVOption asubcut_options[] = {
386
    { "cutoff", "set cutoff frequency", OFFSET(cutoff), AV_OPT_TYPE_DOUBLE, {.dbl=20},  2, 200, FLAGS },
387
    { "order",  "set filter order",     OFFSET(order),  AV_OPT_TYPE_INT,    {.i64=10},  3,  20, FLAGS },
388
    { "level",  "set input level",      OFFSET(level),  AV_OPT_TYPE_DOUBLE, {.dbl=1.}, 0.,  1., FLAGS },
389
    { NULL }
390
};
391
392
AVFILTER_DEFINE_CLASS(asubcut);
393
394
AVFilter ff_af_asubcut = {
395
    .name            = "asubcut",
396
    .description     = NULL_IF_CONFIG_SMALL("Cut subwoofer frequencies."),
397
    .query_formats   = query_formats,
398
    .priv_size       = sizeof(ASuperCutContext),
399
    .priv_class      = &asubcut_class,
400
    .uninit          = uninit,
401
    .inputs          = inputs,
402
    .outputs         = outputs,
403
    .process_command = process_command,
404
    .flags           = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
405
                       AVFILTER_FLAG_SLICE_THREADS,
406
};
407
408
static const AVOption asuperpass_asuperstop_options[] = {
409
    { "centerf","set center frequency", OFFSET(cutoff), AV_OPT_TYPE_DOUBLE, {.dbl=1000}, 2, 999999, FLAGS },
410
    { "order",  "set filter order",     OFFSET(order),  AV_OPT_TYPE_INT,    {.i64=4},    4,     20, FLAGS },
411
    { "qfactor","set Q-factor",         OFFSET(qfactor),AV_OPT_TYPE_DOUBLE, {.dbl=1.},0.01,   100., FLAGS },
412
    { "level",  "set input level",      OFFSET(level),  AV_OPT_TYPE_DOUBLE, {.dbl=1.},   0.,    2., FLAGS },
413
    { NULL }
414
};
415
416
#define asuperpass_options asuperpass_asuperstop_options
417
AVFILTER_DEFINE_CLASS(asuperpass);
418
419
AVFilter ff_af_asuperpass = {
420
    .name            = "asuperpass",
421
    .description     = NULL_IF_CONFIG_SMALL("Apply high order Butterworth band-pass filter."),
422
    .query_formats   = query_formats,
423
    .priv_size       = sizeof(ASuperCutContext),
424
    .priv_class      = &asuperpass_class,
425
    .uninit          = uninit,
426
    .inputs          = inputs,
427
    .outputs         = outputs,
428
    .process_command = process_command,
429
    .flags           = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
430
                       AVFILTER_FLAG_SLICE_THREADS,
431
};
432
433
#define asuperstop_options asuperpass_asuperstop_options
434
AVFILTER_DEFINE_CLASS(asuperstop);
435
436
AVFilter ff_af_asuperstop = {
437
    .name            = "asuperstop",
438
    .description     = NULL_IF_CONFIG_SMALL("Apply high order Butterworth band-stop filter."),
439
    .query_formats   = query_formats,
440
    .priv_size       = sizeof(ASuperCutContext),
441
    .priv_class      = &asuperstop_class,
442
    .uninit          = uninit,
443
    .inputs          = inputs,
444
    .outputs         = outputs,
445
    .process_command = process_command,
446
    .flags           = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
447
                       AVFILTER_FLAG_SLICE_THREADS,
448
};