GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavfilter/af_afade.c Lines: 140 273 51.3 %
Date: 2021-04-14 23:45:22 Branches: 71 212 33.5 %

Line Branch Exec Source
1
/*
2
 * Copyright (c) 2013-2015 Paul B Mahol
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20
21
/**
22
 * @file
23
 * fade audio filter
24
 */
25
26
#include "libavutil/opt.h"
27
#include "audio.h"
28
#include "avfilter.h"
29
#include "filters.h"
30
#include "internal.h"
31
32
typedef struct AudioFadeContext {
33
    const AVClass *class;
34
    int type;
35
    int curve, curve2;
36
    int64_t nb_samples;
37
    int64_t start_sample;
38
    int64_t duration;
39
    int64_t start_time;
40
    int overlap;
41
    int cf0_eof;
42
    int crossfade_is_over;
43
    int64_t pts;
44
45
    void (*fade_samples)(uint8_t **dst, uint8_t * const *src,
46
                         int nb_samples, int channels, int direction,
47
                         int64_t start, int64_t range, int curve);
48
    void (*crossfade_samples)(uint8_t **dst, uint8_t * const *cf0,
49
                              uint8_t * const *cf1,
50
                              int nb_samples, int channels,
51
                              int curve0, int curve1);
52
} AudioFadeContext;
53
54
enum CurveType { NONE = -1, TRI, QSIN, ESIN, HSIN, LOG, IPAR, QUA, CUB, SQU, CBR, PAR, EXP, IQSIN, IHSIN, DESE, DESI, LOSI, SINC, ISINC, NB_CURVES };
55
56
#define OFFSET(x) offsetof(AudioFadeContext, x)
57
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
58
#define TFLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
59
60
7
static int query_formats(AVFilterContext *ctx)
61
{
62
    AVFilterFormats *formats;
63
    AVFilterChannelLayouts *layouts;
64
    static const enum AVSampleFormat sample_fmts[] = {
65
        AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P,
66
        AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32P,
67
        AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP,
68
        AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP,
69
        AV_SAMPLE_FMT_NONE
70
    };
71
    int ret;
72
73
7
    layouts = ff_all_channel_counts();
74
7
    if (!layouts)
75
        return AVERROR(ENOMEM);
76
7
    ret = ff_set_common_channel_layouts(ctx, layouts);
77
7
    if (ret < 0)
78
        return ret;
79
80
7
    formats = ff_make_format_list(sample_fmts);
81
7
    if (!formats)
82
        return AVERROR(ENOMEM);
83
7
    ret = ff_set_common_formats(ctx, formats);
84
7
    if (ret < 0)
85
        return ret;
86
87
7
    formats = ff_all_samplerates();
88
7
    if (!formats)
89
        return AVERROR(ENOMEM);
90
7
    return ff_set_common_samplerates(ctx, formats);
91
}
92
93
732432
static double fade_gain(int curve, int64_t index, int64_t range)
94
{
95
#define CUBE(a) ((a)*(a)*(a))
96
    double gain;
97
98
732432
    gain = av_clipd(1.0 * index / range, 0, 1.0);
99
100





732432
    switch (curve) {
101
89088
    case QSIN:
102
89088
        gain = sin(gain * M_PI / 2.0);
103
89088
        break;
104
89088
    case IQSIN:
105
        /* 0.6... = 2 / M_PI */
106
89088
        gain = 0.6366197723675814 * asin(gain);
107
89088
        break;
108
89088
    case ESIN:
109
89088
        gain = 1.0 - cos(M_PI / 4.0 * (CUBE(2.0*gain - 1) + 1));
110
89088
        break;
111
89088
    case HSIN:
112
89088
        gain = (1.0 - cos(gain * M_PI)) / 2.0;
113
89088
        break;
114
    case IHSIN:
115
        /* 0.3... = 1 / M_PI */
116
        gain = 0.3183098861837907 * acos(1 - 2 * gain);
117
        break;
118
177288
    case EXP:
119
        /* -11.5... = 5*ln(0.1) */
120
177288
        gain = exp(-11.512925464970227 * (1 - gain));
121
177288
        break;
122
198792
    case LOG:
123
198792
        gain = av_clipd(1 + 0.2 * log10(gain), 0, 1.0);
124
198792
        break;
125
    case PAR:
126
        gain = 1 - sqrt(1 - gain);
127
        break;
128
    case IPAR:
129
        gain = (1 - (1 - gain) * (1 - gain));
130
        break;
131
    case QUA:
132
        gain *= gain;
133
        break;
134
    case CUB:
135
        gain = CUBE(gain);
136
        break;
137
    case SQU:
138
        gain = sqrt(gain);
139
        break;
140
    case CBR:
141
        gain = cbrt(gain);
142
        break;
143
    case DESE:
144
        gain = gain <= 0.5 ? cbrt(2 * gain) / 2: 1 - cbrt(2 * (1 - gain)) / 2;
145
        break;
146
    case DESI:
147
        gain = gain <= 0.5 ? CUBE(2 * gain) / 2: 1 - CUBE(2 * (1 - gain)) / 2;
148
        break;
149
    case LOSI: {
150
                   const double a = 1. / (1. - 0.787) - 1;
151
                   double A = 1. / (1.0 + exp(0 -((gain-0.5) * a * 2.0)));
152
                   double B = 1. / (1.0 + exp(a));
153
                   double C = 1. / (1.0 + exp(0-a));
154
                   gain = (A - B) / (C - B);
155
               }
156
        break;
157
    case SINC:
158
        gain = gain >= 1.0 ? 1.0 : sin(M_PI * (1.0 - gain)) / (M_PI * (1.0 - gain));
159
        break;
160
    case ISINC:
161
        gain = gain <= 0.0 ? 0.0 : 1.0 - sin(M_PI * gain) / (M_PI * gain);
162
        break;
163
    case NONE:
164
        gain = 1.0;
165
        break;
166
    }
167
168
732432
    return gain;
169
}
170
171
#define FADE_PLANAR(name, type)                                             \
172
static void fade_samples_## name ##p(uint8_t **dst, uint8_t * const *src,   \
173
                                     int nb_samples, int channels, int dir, \
174
                                     int64_t start, int64_t range, int curve) \
175
{                                                                           \
176
    int i, c;                                                               \
177
                                                                            \
178
    for (i = 0; i < nb_samples; i++) {                                      \
179
        double gain = fade_gain(curve, start + i * dir, range);             \
180
        for (c = 0; c < channels; c++) {                                    \
181
            type *d = (type *)dst[c];                                       \
182
            const type *s = (type *)src[c];                                 \
183
                                                                            \
184
            d[i] = s[i] * gain;                                             \
185
        }                                                                   \
186
    }                                                                       \
187
}
188
189
#define FADE(name, type)                                                    \
190
static void fade_samples_## name (uint8_t **dst, uint8_t * const *src,      \
191
                                  int nb_samples, int channels, int dir,    \
192
                                  int64_t start, int64_t range, int curve)  \
193
{                                                                           \
194
    type *d = (type *)dst[0];                                               \
195
    const type *s = (type *)src[0];                                         \
196
    int i, c, k = 0;                                                        \
197
                                                                            \
198
    for (i = 0; i < nb_samples; i++) {                                      \
199
        double gain = fade_gain(curve, start + i * dir, range);             \
200
        for (c = 0; c < channels; c++, k++)                                 \
201
            d[k] = s[k] * gain;                                             \
202
    }                                                                       \
203
}
204
205
FADE_PLANAR(dbl, double)
206
FADE_PLANAR(flt, float)
207
FADE_PLANAR(s16, int16_t)
208
FADE_PLANAR(s32, int32_t)
209
210
FADE(dbl, double)
211
FADE(flt, float)
212

1668639
FADE(s16, int16_t)
213
FADE(s32, int32_t)
214
215
7
static int config_output(AVFilterLink *outlink)
216
{
217
7
    AVFilterContext *ctx = outlink->src;
218
7
    AudioFadeContext *s  = ctx->priv;
219
220


7
    switch (outlink->format) {
221
    case AV_SAMPLE_FMT_DBL:  s->fade_samples = fade_samples_dbl;  break;
222
    case AV_SAMPLE_FMT_DBLP: s->fade_samples = fade_samples_dblp; break;
223
    case AV_SAMPLE_FMT_FLT:  s->fade_samples = fade_samples_flt;  break;
224
    case AV_SAMPLE_FMT_FLTP: s->fade_samples = fade_samples_fltp; break;
225
7
    case AV_SAMPLE_FMT_S16:  s->fade_samples = fade_samples_s16;  break;
226
    case AV_SAMPLE_FMT_S16P: s->fade_samples = fade_samples_s16p; break;
227
    case AV_SAMPLE_FMT_S32:  s->fade_samples = fade_samples_s32;  break;
228
    case AV_SAMPLE_FMT_S32P: s->fade_samples = fade_samples_s32p; break;
229
    }
230
231
7
    if (s->duration)
232
7
        s->nb_samples = av_rescale(s->duration, outlink->sample_rate, AV_TIME_BASE);
233
7
    s->duration = 0;
234
7
    if (s->start_time)
235
        s->start_sample = av_rescale(s->start_time, outlink->sample_rate, AV_TIME_BASE);
236
7
    s->start_time = 0;
237
238
7
    return 0;
239
}
240
241
#if CONFIG_AFADE_FILTER
242
243
static const AVOption afade_options[] = {
244
    { "type",         "set the fade direction",                      OFFSET(type),         AV_OPT_TYPE_INT,    {.i64 = 0    }, 0, 1, TFLAGS, "type" },
245
    { "t",            "set the fade direction",                      OFFSET(type),         AV_OPT_TYPE_INT,    {.i64 = 0    }, 0, 1, TFLAGS, "type" },
246
    { "in",           "fade-in",                                     0,                    AV_OPT_TYPE_CONST,  {.i64 = 0    }, 0, 0, TFLAGS, "type" },
247
    { "out",          "fade-out",                                    0,                    AV_OPT_TYPE_CONST,  {.i64 = 1    }, 0, 0, TFLAGS, "type" },
248
    { "start_sample", "set number of first sample to start fading",  OFFSET(start_sample), AV_OPT_TYPE_INT64,  {.i64 = 0    }, 0, INT64_MAX, TFLAGS },
249
    { "ss",           "set number of first sample to start fading",  OFFSET(start_sample), AV_OPT_TYPE_INT64,  {.i64 = 0    }, 0, INT64_MAX, TFLAGS },
250
    { "nb_samples",   "set number of samples for fade duration",     OFFSET(nb_samples),   AV_OPT_TYPE_INT64,  {.i64 = 44100}, 1, INT64_MAX, TFLAGS },
251
    { "ns",           "set number of samples for fade duration",     OFFSET(nb_samples),   AV_OPT_TYPE_INT64,  {.i64 = 44100}, 1, INT64_MAX, TFLAGS },
252
    { "start_time",   "set time to start fading",                    OFFSET(start_time),   AV_OPT_TYPE_DURATION, {.i64 = 0 },  0, INT64_MAX, TFLAGS },
253
    { "st",           "set time to start fading",                    OFFSET(start_time),   AV_OPT_TYPE_DURATION, {.i64 = 0 },  0, INT64_MAX, TFLAGS },
254
    { "duration",     "set fade duration",                           OFFSET(duration),     AV_OPT_TYPE_DURATION, {.i64 = 0 },  0, INT64_MAX, TFLAGS },
255
    { "d",            "set fade duration",                           OFFSET(duration),     AV_OPT_TYPE_DURATION, {.i64 = 0 },  0, INT64_MAX, TFLAGS },
256
    { "curve",        "set fade curve type",                         OFFSET(curve),        AV_OPT_TYPE_INT,    {.i64 = TRI  }, NONE, NB_CURVES - 1, TFLAGS, "curve" },
257
    { "c",            "set fade curve type",                         OFFSET(curve),        AV_OPT_TYPE_INT,    {.i64 = TRI  }, NONE, NB_CURVES - 1, TFLAGS, "curve" },
258
    { "nofade",       "no fade; keep audio as-is",                   0,                    AV_OPT_TYPE_CONST,  {.i64 = NONE }, 0, 0, TFLAGS, "curve" },
259
    { "tri",          "linear slope",                                0,                    AV_OPT_TYPE_CONST,  {.i64 = TRI  }, 0, 0, TFLAGS, "curve" },
260
    { "qsin",         "quarter of sine wave",                        0,                    AV_OPT_TYPE_CONST,  {.i64 = QSIN }, 0, 0, TFLAGS, "curve" },
261
    { "esin",         "exponential sine wave",                       0,                    AV_OPT_TYPE_CONST,  {.i64 = ESIN }, 0, 0, TFLAGS, "curve" },
262
    { "hsin",         "half of sine wave",                           0,                    AV_OPT_TYPE_CONST,  {.i64 = HSIN }, 0, 0, TFLAGS, "curve" },
263
    { "log",          "logarithmic",                                 0,                    AV_OPT_TYPE_CONST,  {.i64 = LOG  }, 0, 0, TFLAGS, "curve" },
264
    { "ipar",         "inverted parabola",                           0,                    AV_OPT_TYPE_CONST,  {.i64 = IPAR }, 0, 0, TFLAGS, "curve" },
265
    { "qua",          "quadratic",                                   0,                    AV_OPT_TYPE_CONST,  {.i64 = QUA  }, 0, 0, TFLAGS, "curve" },
266
    { "cub",          "cubic",                                       0,                    AV_OPT_TYPE_CONST,  {.i64 = CUB  }, 0, 0, TFLAGS, "curve" },
267
    { "squ",          "square root",                                 0,                    AV_OPT_TYPE_CONST,  {.i64 = SQU  }, 0, 0, TFLAGS, "curve" },
268
    { "cbr",          "cubic root",                                  0,                    AV_OPT_TYPE_CONST,  {.i64 = CBR  }, 0, 0, TFLAGS, "curve" },
269
    { "par",          "parabola",                                    0,                    AV_OPT_TYPE_CONST,  {.i64 = PAR  }, 0, 0, TFLAGS, "curve" },
270
    { "exp",          "exponential",                                 0,                    AV_OPT_TYPE_CONST,  {.i64 = EXP  }, 0, 0, TFLAGS, "curve" },
271
    { "iqsin",        "inverted quarter of sine wave",               0,                    AV_OPT_TYPE_CONST,  {.i64 = IQSIN}, 0, 0, TFLAGS, "curve" },
272
    { "ihsin",        "inverted half of sine wave",                  0,                    AV_OPT_TYPE_CONST,  {.i64 = IHSIN}, 0, 0, TFLAGS, "curve" },
273
    { "dese",         "double-exponential seat",                     0,                    AV_OPT_TYPE_CONST,  {.i64 = DESE }, 0, 0, TFLAGS, "curve" },
274
    { "desi",         "double-exponential sigmoid",                  0,                    AV_OPT_TYPE_CONST,  {.i64 = DESI }, 0, 0, TFLAGS, "curve" },
275
    { "losi",         "logistic sigmoid",                            0,                    AV_OPT_TYPE_CONST,  {.i64 = LOSI }, 0, 0, TFLAGS, "curve" },
276
    { "sinc",         "sine cardinal function",                      0,                    AV_OPT_TYPE_CONST,  {.i64 = SINC }, 0, 0, TFLAGS, "curve" },
277
    { "isinc",        "inverted sine cardinal function",             0,                    AV_OPT_TYPE_CONST,  {.i64 = ISINC}, 0, 0, TFLAGS, "curve" },
278
    { NULL }
279
};
280
281
AVFILTER_DEFINE_CLASS(afade);
282
283
6
static av_cold int init(AVFilterContext *ctx)
284
{
285
6
    AudioFadeContext *s = ctx->priv;
286
287
6
    if (INT64_MAX - s->nb_samples < s->start_sample)
288
        return AVERROR(EINVAL);
289
290
6
    return 0;
291
}
292
293
1554
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
294
{
295
1554
    AudioFadeContext *s     = inlink->dst->priv;
296
1554
    AVFilterLink *outlink   = inlink->dst->outputs[0];
297
1554
    int nb_samples          = buf->nb_samples;
298
    AVFrame *out_buf;
299
1554
    int64_t cur_sample = av_rescale_q(buf->pts, inlink->time_base, (AVRational){1, inlink->sample_rate});
300
301

1554
    if ((!s->type && (s->start_sample + s->nb_samples < cur_sample)) ||
302

543
        ( s->type && (cur_sample + nb_samples < s->start_sample)))
303
1011
        return ff_filter_frame(outlink, buf);
304
305
543
    if (av_frame_is_writable(buf)) {
306
543
        out_buf = buf;
307
    } else {
308
        out_buf = ff_get_audio_buffer(outlink, nb_samples);
309
        if (!out_buf)
310
            return AVERROR(ENOMEM);
311
        av_frame_copy_props(out_buf, buf);
312
    }
313
314

543
    if ((!s->type && (cur_sample + nb_samples < s->start_sample)) ||
315

543
        ( s->type && (s->start_sample + s->nb_samples < cur_sample))) {
316
        av_samples_set_silence(out_buf->extended_data, 0, nb_samples,
317
                               out_buf->channels, out_buf->format);
318
    } else {
319
        int64_t start;
320
321
543
        if (!s->type)
322
543
            start = cur_sample - s->start_sample;
323
        else
324
            start = s->start_sample + s->nb_samples - cur_sample;
325
326
543
        s->fade_samples(out_buf->extended_data, buf->extended_data,
327
543
                        nb_samples, buf->channels,
328
543
                        s->type ? -1 : 1, start,
329
                        s->nb_samples, s->curve);
330
    }
331
332
543
    if (buf != out_buf)
333
        av_frame_free(&buf);
334
335
543
    return ff_filter_frame(outlink, out_buf);
336
}
337
338
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
339
                           char *res, int res_len, int flags)
340
{
341
    int ret;
342
343
    ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
344
    if (ret < 0)
345
        return ret;
346
347
    return config_output(ctx->outputs[0]);
348
}
349
350
static const AVFilterPad avfilter_af_afade_inputs[] = {
351
    {
352
        .name         = "default",
353
        .type         = AVMEDIA_TYPE_AUDIO,
354
        .filter_frame = filter_frame,
355
    },
356
    { NULL }
357
};
358
359
static const AVFilterPad avfilter_af_afade_outputs[] = {
360
    {
361
        .name         = "default",
362
        .type         = AVMEDIA_TYPE_AUDIO,
363
        .config_props = config_output,
364
    },
365
    { NULL }
366
};
367
368
AVFilter ff_af_afade = {
369
    .name          = "afade",
370
    .description   = NULL_IF_CONFIG_SMALL("Fade in/out input audio."),
371
    .query_formats = query_formats,
372
    .priv_size     = sizeof(AudioFadeContext),
373
    .init          = init,
374
    .inputs        = avfilter_af_afade_inputs,
375
    .outputs       = avfilter_af_afade_outputs,
376
    .priv_class    = &afade_class,
377
    .process_command = process_command,
378
    .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
379
};
380
381
#endif /* CONFIG_AFADE_FILTER */
382
383
#if CONFIG_ACROSSFADE_FILTER
384
385
static const AVOption acrossfade_options[] = {
386
    { "nb_samples",   "set number of samples for cross fade duration", OFFSET(nb_samples),   AV_OPT_TYPE_INT,    {.i64 = 44100}, 1, INT32_MAX/10, FLAGS },
387
    { "ns",           "set number of samples for cross fade duration", OFFSET(nb_samples),   AV_OPT_TYPE_INT,    {.i64 = 44100}, 1, INT32_MAX/10, FLAGS },
388
    { "duration",     "set cross fade duration",                       OFFSET(duration),     AV_OPT_TYPE_DURATION, {.i64 = 0 },  0, 60000000, FLAGS },
389
    { "d",            "set cross fade duration",                       OFFSET(duration),     AV_OPT_TYPE_DURATION, {.i64 = 0 },  0, 60000000, FLAGS },
390
    { "overlap",      "overlap 1st stream end with 2nd stream start",  OFFSET(overlap),      AV_OPT_TYPE_BOOL,   {.i64 = 1    }, 0,  1, FLAGS },
391
    { "o",            "overlap 1st stream end with 2nd stream start",  OFFSET(overlap),      AV_OPT_TYPE_BOOL,   {.i64 = 1    }, 0,  1, FLAGS },
392
    { "curve1",       "set fade curve type for 1st stream",            OFFSET(curve),        AV_OPT_TYPE_INT,    {.i64 = TRI  }, NONE, NB_CURVES - 1, FLAGS, "curve" },
393
    { "c1",           "set fade curve type for 1st stream",            OFFSET(curve),        AV_OPT_TYPE_INT,    {.i64 = TRI  }, NONE, NB_CURVES - 1, FLAGS, "curve" },
394
    {     "nofade",   "no fade; keep audio as-is",                     0,                    AV_OPT_TYPE_CONST,  {.i64 = NONE }, 0, 0, FLAGS, "curve" },
395
    {     "tri",      "linear slope",                                  0,                    AV_OPT_TYPE_CONST,  {.i64 = TRI  }, 0, 0, FLAGS, "curve" },
396
    {     "qsin",     "quarter of sine wave",                          0,                    AV_OPT_TYPE_CONST,  {.i64 = QSIN }, 0, 0, FLAGS, "curve" },
397
    {     "esin",     "exponential sine wave",                         0,                    AV_OPT_TYPE_CONST,  {.i64 = ESIN }, 0, 0, FLAGS, "curve" },
398
    {     "hsin",     "half of sine wave",                             0,                    AV_OPT_TYPE_CONST,  {.i64 = HSIN }, 0, 0, FLAGS, "curve" },
399
    {     "log",      "logarithmic",                                   0,                    AV_OPT_TYPE_CONST,  {.i64 = LOG  }, 0, 0, FLAGS, "curve" },
400
    {     "ipar",     "inverted parabola",                             0,                    AV_OPT_TYPE_CONST,  {.i64 = IPAR }, 0, 0, FLAGS, "curve" },
401
    {     "qua",      "quadratic",                                     0,                    AV_OPT_TYPE_CONST,  {.i64 = QUA  }, 0, 0, FLAGS, "curve" },
402
    {     "cub",      "cubic",                                         0,                    AV_OPT_TYPE_CONST,  {.i64 = CUB  }, 0, 0, FLAGS, "curve" },
403
    {     "squ",      "square root",                                   0,                    AV_OPT_TYPE_CONST,  {.i64 = SQU  }, 0, 0, FLAGS, "curve" },
404
    {     "cbr",      "cubic root",                                    0,                    AV_OPT_TYPE_CONST,  {.i64 = CBR  }, 0, 0, FLAGS, "curve" },
405
    {     "par",      "parabola",                                      0,                    AV_OPT_TYPE_CONST,  {.i64 = PAR  }, 0, 0, FLAGS, "curve" },
406
    {     "exp",      "exponential",                                   0,                    AV_OPT_TYPE_CONST,  {.i64 = EXP  }, 0, 0, FLAGS, "curve" },
407
    {     "iqsin",    "inverted quarter of sine wave",                 0,                    AV_OPT_TYPE_CONST,  {.i64 = IQSIN}, 0, 0, FLAGS, "curve" },
408
    {     "ihsin",    "inverted half of sine wave",                    0,                    AV_OPT_TYPE_CONST,  {.i64 = IHSIN}, 0, 0, FLAGS, "curve" },
409
    {     "dese",     "double-exponential seat",                       0,                    AV_OPT_TYPE_CONST,  {.i64 = DESE }, 0, 0, FLAGS, "curve" },
410
    {     "desi",     "double-exponential sigmoid",                    0,                    AV_OPT_TYPE_CONST,  {.i64 = DESI }, 0, 0, FLAGS, "curve" },
411
    {     "losi",     "logistic sigmoid",                              0,                    AV_OPT_TYPE_CONST,  {.i64 = LOSI }, 0, 0, FLAGS, "curve" },
412
    {     "sinc",     "sine cardinal function",                        0,                    AV_OPT_TYPE_CONST,  {.i64 = SINC }, 0, 0, FLAGS, "curve" },
413
    {     "isinc",    "inverted sine cardinal function",               0,                    AV_OPT_TYPE_CONST,  {.i64 = ISINC}, 0, 0, FLAGS, "curve" },
414
    { "curve2",       "set fade curve type for 2nd stream",            OFFSET(curve2),       AV_OPT_TYPE_INT,    {.i64 = TRI  }, NONE, NB_CURVES - 1, FLAGS, "curve" },
415
    { "c2",           "set fade curve type for 2nd stream",            OFFSET(curve2),       AV_OPT_TYPE_INT,    {.i64 = TRI  }, NONE, NB_CURVES - 1, FLAGS, "curve" },
416
    { NULL }
417
};
418
419
AVFILTER_DEFINE_CLASS(acrossfade);
420
421
#define CROSSFADE_PLANAR(name, type)                                           \
422
static void crossfade_samples_## name ##p(uint8_t **dst, uint8_t * const *cf0, \
423
                                          uint8_t * const *cf1,                \
424
                                          int nb_samples, int channels,        \
425
                                          int curve0, int curve1)              \
426
{                                                                              \
427
    int i, c;                                                                  \
428
                                                                               \
429
    for (i = 0; i < nb_samples; i++) {                                         \
430
        double gain0 = fade_gain(curve0, nb_samples - 1 - i, nb_samples);      \
431
        double gain1 = fade_gain(curve1, i, nb_samples);                       \
432
        for (c = 0; c < channels; c++) {                                       \
433
            type *d = (type *)dst[c];                                          \
434
            const type *s0 = (type *)cf0[c];                                   \
435
            const type *s1 = (type *)cf1[c];                                   \
436
                                                                               \
437
            d[i] = s0[i] * gain0 + s1[i] * gain1;                              \
438
        }                                                                      \
439
    }                                                                          \
440
}
441
442
#define CROSSFADE(name, type)                                               \
443
static void crossfade_samples_## name (uint8_t **dst, uint8_t * const *cf0, \
444
                                       uint8_t * const *cf1,                \
445
                                       int nb_samples, int channels,        \
446
                                       int curve0, int curve1)              \
447
{                                                                           \
448
    type *d = (type *)dst[0];                                               \
449
    const type *s0 = (type *)cf0[0];                                        \
450
    const type *s1 = (type *)cf1[0];                                        \
451
    int i, c, k = 0;                                                        \
452
                                                                            \
453
    for (i = 0; i < nb_samples; i++) {                                      \
454
        double gain0 = fade_gain(curve0, nb_samples - 1 - i, nb_samples);   \
455
        double gain1 = fade_gain(curve1, i, nb_samples);                    \
456
        for (c = 0; c < channels; c++, k++)                                 \
457
            d[k] = s0[k] * gain0 + s1[k] * gain1;                           \
458
    }                                                                       \
459
}
460
461
CROSSFADE_PLANAR(dbl, double)
462
CROSSFADE_PLANAR(flt, float)
463
CROSSFADE_PLANAR(s16, int16_t)
464
CROSSFADE_PLANAR(s32, int32_t)
465
466
CROSSFADE(dbl, double)
467
CROSSFADE(flt, float)
468

264601
CROSSFADE(s16, int16_t)
469
CROSSFADE(s32, int32_t)
470
471
1170
static int activate(AVFilterContext *ctx)
472
{
473
1170
    AudioFadeContext *s   = ctx->priv;
474
1170
    AVFilterLink *outlink = ctx->outputs[0];
475
1170
    AVFrame *in = NULL, *out, *cf[2] = { NULL };
476
1170
    int ret = 0, nb_samples, status;
477
    int64_t pts;
478
479

1172
    FF_FILTER_FORWARD_STATUS_BACK_ALL(outlink, ctx);
480
481
1169
    if (s->crossfade_is_over) {
482
649
        ret = ff_inlink_consume_frame(ctx->inputs[1], &in);
483
649
        if (ret > 0) {
484
324
            in->pts = s->pts;
485
324
            s->pts += av_rescale_q(in->nb_samples,
486
324
                      (AVRational){ 1, outlink->sample_rate }, outlink->time_base);
487
324
            return ff_filter_frame(outlink, in);
488
325
        } else if (ret < 0) {
489
            return ret;
490
325
        } else if (ff_inlink_acknowledge_status(ctx->inputs[1], &status, &pts)) {
491
1
            ff_outlink_set_status(ctx->outputs[0], status, pts);
492
1
            return 0;
493
324
        } else if (!ret) {
494
324
            if (ff_outlink_frame_wanted(ctx->outputs[0])) {
495
324
                ff_inlink_request_frame(ctx->inputs[1]);
496
324
                return 0;
497
            }
498
        }
499
    }
500
501
520
    if (ff_inlink_queued_samples(ctx->inputs[0]) > s->nb_samples) {
502
173
        nb_samples = ff_inlink_queued_samples(ctx->inputs[0]) - s->nb_samples;
503
173
        if (nb_samples > 0) {
504
173
            ret = ff_inlink_consume_samples(ctx->inputs[0], nb_samples, nb_samples, &in);
505
173
            if (ret < 0) {
506
                return ret;
507
            }
508
        }
509
173
        in->pts = s->pts;
510
173
        s->pts += av_rescale_q(in->nb_samples,
511
173
            (AVRational){ 1, outlink->sample_rate }, outlink->time_base);
512
173
        return ff_filter_frame(outlink, in);
513
347
    } else if (ff_inlink_queued_samples(ctx->inputs[0]) >= s->nb_samples &&
514

260
               ff_inlink_queued_samples(ctx->inputs[1]) >= s->nb_samples && s->cf0_eof) {
515
1
        if (s->overlap) {
516
1
            out = ff_get_audio_buffer(outlink, s->nb_samples);
517
1
            if (!out)
518
                return AVERROR(ENOMEM);
519
520
1
            ret = ff_inlink_consume_samples(ctx->inputs[0], s->nb_samples, s->nb_samples, &cf[0]);
521
1
            if (ret < 0) {
522
                av_frame_free(&out);
523
                return ret;
524
            }
525
526
1
            ret = ff_inlink_consume_samples(ctx->inputs[1], s->nb_samples, s->nb_samples, &cf[1]);
527
1
            if (ret < 0) {
528
                av_frame_free(&out);
529
                return ret;
530
            }
531
532
1
            s->crossfade_samples(out->extended_data, cf[0]->extended_data,
533
1
                                 cf[1]->extended_data,
534
1
                                 s->nb_samples, out->channels,
535
                                 s->curve, s->curve2);
536
1
            out->pts = s->pts;
537
1
            s->pts += av_rescale_q(s->nb_samples,
538
1
                (AVRational){ 1, outlink->sample_rate }, outlink->time_base);
539
1
            s->crossfade_is_over = 1;
540
1
            av_frame_free(&cf[0]);
541
1
            av_frame_free(&cf[1]);
542
1
            return ff_filter_frame(outlink, out);
543
        } else {
544
            out = ff_get_audio_buffer(outlink, s->nb_samples);
545
            if (!out)
546
                return AVERROR(ENOMEM);
547
548
            ret = ff_inlink_consume_samples(ctx->inputs[0], s->nb_samples, s->nb_samples, &cf[0]);
549
            if (ret < 0) {
550
                av_frame_free(&out);
551
                return ret;
552
            }
553
554
            s->fade_samples(out->extended_data, cf[0]->extended_data, s->nb_samples,
555
                            outlink->channels, -1, s->nb_samples - 1, s->nb_samples, s->curve);
556
            out->pts = s->pts;
557
            s->pts += av_rescale_q(s->nb_samples,
558
                (AVRational){ 1, outlink->sample_rate }, outlink->time_base);
559
            av_frame_free(&cf[0]);
560
            ret = ff_filter_frame(outlink, out);
561
            if (ret < 0)
562
                return ret;
563
564
            out = ff_get_audio_buffer(outlink, s->nb_samples);
565
            if (!out)
566
                return AVERROR(ENOMEM);
567
568
            ret = ff_inlink_consume_samples(ctx->inputs[1], s->nb_samples, s->nb_samples, &cf[1]);
569
            if (ret < 0) {
570
                av_frame_free(&out);
571
                return ret;
572
            }
573
574
            s->fade_samples(out->extended_data, cf[1]->extended_data, s->nb_samples,
575
                            outlink->channels, 1, 0, s->nb_samples, s->curve2);
576
            out->pts = s->pts;
577
            s->pts += av_rescale_q(s->nb_samples,
578
                (AVRational){ 1, outlink->sample_rate }, outlink->time_base);
579
            s->crossfade_is_over = 1;
580
            av_frame_free(&cf[1]);
581
            return ff_filter_frame(outlink, out);
582
        }
583
346
    } else if (ff_outlink_frame_wanted(ctx->outputs[0])) {
584

345
        if (!s->cf0_eof && ff_outlink_get_status(ctx->inputs[0])) {
585
1
            s->cf0_eof = 1;
586
        }
587
345
        if (ff_outlink_get_status(ctx->inputs[1])) {
588
            ff_outlink_set_status(ctx->outputs[0], AVERROR_EOF, AV_NOPTS_VALUE);
589
            return 0;
590
        }
591
345
        if (!s->cf0_eof)
592
259
            ff_inlink_request_frame(ctx->inputs[0]);
593
        else
594
86
            ff_inlink_request_frame(ctx->inputs[1]);
595
345
        return 0;
596
    }
597
598
1
    return ret;
599
}
600
601
1
static int acrossfade_config_output(AVFilterLink *outlink)
602
{
603
1
    AVFilterContext *ctx = outlink->src;
604
1
    AudioFadeContext *s  = ctx->priv;
605
606
1
    if (ctx->inputs[0]->sample_rate != ctx->inputs[1]->sample_rate) {
607
        av_log(ctx, AV_LOG_ERROR,
608
               "Inputs must have the same sample rate "
609
               "%d for in0 vs %d for in1\n",
610
               ctx->inputs[0]->sample_rate, ctx->inputs[1]->sample_rate);
611
        return AVERROR(EINVAL);
612
    }
613
614
1
    outlink->sample_rate = ctx->inputs[0]->sample_rate;
615
1
    outlink->time_base   = ctx->inputs[0]->time_base;
616
1
    outlink->channel_layout = ctx->inputs[0]->channel_layout;
617
1
    outlink->channels = ctx->inputs[0]->channels;
618
619


1
    switch (outlink->format) {
620
    case AV_SAMPLE_FMT_DBL:  s->crossfade_samples = crossfade_samples_dbl;  break;
621
    case AV_SAMPLE_FMT_DBLP: s->crossfade_samples = crossfade_samples_dblp; break;
622
    case AV_SAMPLE_FMT_FLT:  s->crossfade_samples = crossfade_samples_flt;  break;
623
    case AV_SAMPLE_FMT_FLTP: s->crossfade_samples = crossfade_samples_fltp; break;
624
1
    case AV_SAMPLE_FMT_S16:  s->crossfade_samples = crossfade_samples_s16;  break;
625
    case AV_SAMPLE_FMT_S16P: s->crossfade_samples = crossfade_samples_s16p; break;
626
    case AV_SAMPLE_FMT_S32:  s->crossfade_samples = crossfade_samples_s32;  break;
627
    case AV_SAMPLE_FMT_S32P: s->crossfade_samples = crossfade_samples_s32p; break;
628
    }
629
630
1
    config_output(outlink);
631
632
1
    return 0;
633
}
634
635
static const AVFilterPad avfilter_af_acrossfade_inputs[] = {
636
    {
637
        .name         = "crossfade0",
638
        .type         = AVMEDIA_TYPE_AUDIO,
639
    },
640
    {
641
        .name         = "crossfade1",
642
        .type         = AVMEDIA_TYPE_AUDIO,
643
    },
644
    { NULL }
645
};
646
647
static const AVFilterPad avfilter_af_acrossfade_outputs[] = {
648
    {
649
        .name          = "default",
650
        .type          = AVMEDIA_TYPE_AUDIO,
651
        .config_props  = acrossfade_config_output,
652
    },
653
    { NULL }
654
};
655
656
AVFilter ff_af_acrossfade = {
657
    .name          = "acrossfade",
658
    .description   = NULL_IF_CONFIG_SMALL("Cross fade two input audio streams."),
659
    .query_formats = query_formats,
660
    .priv_size     = sizeof(AudioFadeContext),
661
    .activate      = activate,
662
    .priv_class    = &acrossfade_class,
663
    .inputs        = avfilter_af_acrossfade_inputs,
664
    .outputs       = avfilter_af_acrossfade_outputs,
665
};
666
667
#endif /* CONFIG_ACROSSFADE_FILTER */