1 |
|
|
/* |
2 |
|
|
* Wmapro compatible decoder |
3 |
|
|
* Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion |
4 |
|
|
* Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson |
5 |
|
|
* |
6 |
|
|
* This file is part of FFmpeg. |
7 |
|
|
* |
8 |
|
|
* FFmpeg is free software; you can redistribute it and/or |
9 |
|
|
* modify it under the terms of the GNU Lesser General Public |
10 |
|
|
* License as published by the Free Software Foundation; either |
11 |
|
|
* version 2.1 of the License, or (at your option) any later version. |
12 |
|
|
* |
13 |
|
|
* FFmpeg is distributed in the hope that it will be useful, |
14 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
16 |
|
|
* Lesser General Public License for more details. |
17 |
|
|
* |
18 |
|
|
* You should have received a copy of the GNU Lesser General Public |
19 |
|
|
* License along with FFmpeg; if not, write to the Free Software |
20 |
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
21 |
|
|
*/ |
22 |
|
|
|
23 |
|
|
/** |
24 |
|
|
* @file |
25 |
|
|
* @brief wmapro decoder implementation |
26 |
|
|
* Wmapro is an MDCT based codec comparable to wma standard or AAC. |
27 |
|
|
* The decoding therefore consists of the following steps: |
28 |
|
|
* - bitstream decoding |
29 |
|
|
* - reconstruction of per-channel data |
30 |
|
|
* - rescaling and inverse quantization |
31 |
|
|
* - IMDCT |
32 |
|
|
* - windowing and overlapp-add |
33 |
|
|
* |
34 |
|
|
* The compressed wmapro bitstream is split into individual packets. |
35 |
|
|
* Every such packet contains one or more wma frames. |
36 |
|
|
* The compressed frames may have a variable length and frames may |
37 |
|
|
* cross packet boundaries. |
38 |
|
|
* Common to all wmapro frames is the number of samples that are stored in |
39 |
|
|
* a frame. |
40 |
|
|
* The number of samples and a few other decode flags are stored |
41 |
|
|
* as extradata that has to be passed to the decoder. |
42 |
|
|
* |
43 |
|
|
* The wmapro frames themselves are again split into a variable number of |
44 |
|
|
* subframes. Every subframe contains the data for 2^N time domain samples |
45 |
|
|
* where N varies between 7 and 12. |
46 |
|
|
* |
47 |
|
|
* Example wmapro bitstream (in samples): |
48 |
|
|
* |
49 |
|
|
* || packet 0 || packet 1 || packet 2 packets |
50 |
|
|
* --------------------------------------------------- |
51 |
|
|
* || frame 0 || frame 1 || frame 2 || frames |
52 |
|
|
* --------------------------------------------------- |
53 |
|
|
* || | | || | | | || || subframes of channel 0 |
54 |
|
|
* --------------------------------------------------- |
55 |
|
|
* || | | || | | | || || subframes of channel 1 |
56 |
|
|
* --------------------------------------------------- |
57 |
|
|
* |
58 |
|
|
* The frame layouts for the individual channels of a wma frame does not need |
59 |
|
|
* to be the same. |
60 |
|
|
* |
61 |
|
|
* However, if the offsets and lengths of several subframes of a frame are the |
62 |
|
|
* same, the subframes of the channels can be grouped. |
63 |
|
|
* Every group may then use special coding techniques like M/S stereo coding |
64 |
|
|
* to improve the compression ratio. These channel transformations do not |
65 |
|
|
* need to be applied to a whole subframe. Instead, they can also work on |
66 |
|
|
* individual scale factor bands (see below). |
67 |
|
|
* The coefficients that carry the audio signal in the frequency domain |
68 |
|
|
* are transmitted as huffman-coded vectors with 4, 2 and 1 elements. |
69 |
|
|
* In addition to that, the encoder can switch to a runlevel coding scheme |
70 |
|
|
* by transmitting subframe_length / 128 zero coefficients. |
71 |
|
|
* |
72 |
|
|
* Before the audio signal can be converted to the time domain, the |
73 |
|
|
* coefficients have to be rescaled and inverse quantized. |
74 |
|
|
* A subframe is therefore split into several scale factor bands that get |
75 |
|
|
* scaled individually. |
76 |
|
|
* Scale factors are submitted for every frame but they might be shared |
77 |
|
|
* between the subframes of a channel. Scale factors are initially DPCM-coded. |
78 |
|
|
* Once scale factors are shared, the differences are transmitted as runlevel |
79 |
|
|
* codes. |
80 |
|
|
* Every subframe length and offset combination in the frame layout shares a |
81 |
|
|
* common quantization factor that can be adjusted for every channel by a |
82 |
|
|
* modifier. |
83 |
|
|
* After the inverse quantization, the coefficients get processed by an IMDCT. |
84 |
|
|
* The resulting values are then windowed with a sine window and the first half |
85 |
|
|
* of the values are added to the second half of the output from the previous |
86 |
|
|
* subframe in order to reconstruct the output samples. |
87 |
|
|
*/ |
88 |
|
|
|
89 |
|
|
#include <inttypes.h> |
90 |
|
|
|
91 |
|
|
#include "libavutil/ffmath.h" |
92 |
|
|
#include "libavutil/float_dsp.h" |
93 |
|
|
#include "libavutil/intfloat.h" |
94 |
|
|
#include "libavutil/intreadwrite.h" |
95 |
|
|
#include "libavutil/mem_internal.h" |
96 |
|
|
|
97 |
|
|
#include "avcodec.h" |
98 |
|
|
#include "internal.h" |
99 |
|
|
#include "get_bits.h" |
100 |
|
|
#include "put_bits.h" |
101 |
|
|
#include "wmaprodata.h" |
102 |
|
|
#include "sinewin.h" |
103 |
|
|
#include "wma.h" |
104 |
|
|
#include "wma_common.h" |
105 |
|
|
|
106 |
|
|
/** current decoder limitations */ |
107 |
|
|
#define WMAPRO_MAX_CHANNELS 8 ///< max number of handled channels |
108 |
|
|
#define MAX_SUBFRAMES 32 ///< max number of subframes per channel |
109 |
|
|
#define MAX_BANDS 29 ///< max number of scale factor bands |
110 |
|
|
#define MAX_FRAMESIZE 32768 ///< maximum compressed frame size |
111 |
|
|
#define XMA_MAX_STREAMS 8 |
112 |
|
|
#define XMA_MAX_CHANNELS_STREAM 2 |
113 |
|
|
#define XMA_MAX_CHANNELS (XMA_MAX_STREAMS * XMA_MAX_CHANNELS_STREAM) |
114 |
|
|
|
115 |
|
|
#define WMAPRO_BLOCK_MIN_BITS 6 ///< log2 of min block size |
116 |
|
|
#define WMAPRO_BLOCK_MAX_BITS 13 ///< log2 of max block size |
117 |
|
|
#define WMAPRO_BLOCK_MIN_SIZE (1 << WMAPRO_BLOCK_MIN_BITS) ///< minimum block size |
118 |
|
|
#define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS) ///< maximum block size |
119 |
|
|
#define WMAPRO_BLOCK_SIZES (WMAPRO_BLOCK_MAX_BITS - WMAPRO_BLOCK_MIN_BITS + 1) ///< possible block sizes |
120 |
|
|
|
121 |
|
|
|
122 |
|
|
#define VLCBITS 9 |
123 |
|
|
#define SCALEVLCBITS 8 |
124 |
|
|
#define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS) |
125 |
|
|
#define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS) |
126 |
|
|
#define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS) |
127 |
|
|
#define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS) |
128 |
|
|
#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS) |
129 |
|
|
|
130 |
|
|
static VLC sf_vlc; ///< scale factor DPCM vlc |
131 |
|
|
static VLC sf_rl_vlc; ///< scale factor run length vlc |
132 |
|
|
static VLC vec4_vlc; ///< 4 coefficients per symbol |
133 |
|
|
static VLC vec2_vlc; ///< 2 coefficients per symbol |
134 |
|
|
static VLC vec1_vlc; ///< 1 coefficient per symbol |
135 |
|
|
static VLC coef_vlc[2]; ///< coefficient run length vlc codes |
136 |
|
|
static float sin64[33]; ///< sine table for decorrelation |
137 |
|
|
|
138 |
|
|
/** |
139 |
|
|
* @brief frame specific decoder context for a single channel |
140 |
|
|
*/ |
141 |
|
|
typedef struct WMAProChannelCtx { |
142 |
|
|
int16_t prev_block_len; ///< length of the previous block |
143 |
|
|
uint8_t transmit_coefs; |
144 |
|
|
uint8_t num_subframes; |
145 |
|
|
uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples |
146 |
|
|
uint16_t subframe_offset[MAX_SUBFRAMES]; ///< subframe positions in the current frame |
147 |
|
|
uint8_t cur_subframe; ///< current subframe number |
148 |
|
|
uint16_t decoded_samples; ///< number of already processed samples |
149 |
|
|
uint8_t grouped; ///< channel is part of a group |
150 |
|
|
int quant_step; ///< quantization step for the current subframe |
151 |
|
|
int8_t reuse_sf; ///< share scale factors between subframes |
152 |
|
|
int8_t scale_factor_step; ///< scaling step for the current subframe |
153 |
|
|
int max_scale_factor; ///< maximum scale factor for the current subframe |
154 |
|
|
int saved_scale_factors[2][MAX_BANDS]; ///< resampled and (previously) transmitted scale factor values |
155 |
|
|
int8_t scale_factor_idx; ///< index for the transmitted scale factor values (used for resampling) |
156 |
|
|
int* scale_factors; ///< pointer to the scale factor values used for decoding |
157 |
|
|
uint8_t table_idx; ///< index in sf_offsets for the scale factor reference block |
158 |
|
|
float* coeffs; ///< pointer to the subframe decode buffer |
159 |
|
|
uint16_t num_vec_coeffs; ///< number of vector coded coefficients |
160 |
|
|
DECLARE_ALIGNED(32, float, out)[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]; ///< output buffer |
161 |
|
|
} WMAProChannelCtx; |
162 |
|
|
|
163 |
|
|
/** |
164 |
|
|
* @brief channel group for channel transformations |
165 |
|
|
*/ |
166 |
|
|
typedef struct WMAProChannelGrp { |
167 |
|
|
uint8_t num_channels; ///< number of channels in the group |
168 |
|
|
int8_t transform; ///< transform on / off |
169 |
|
|
int8_t transform_band[MAX_BANDS]; ///< controls if the transform is enabled for a certain band |
170 |
|
|
float decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS]; |
171 |
|
|
float* channel_data[WMAPRO_MAX_CHANNELS]; ///< transformation coefficients |
172 |
|
|
} WMAProChannelGrp; |
173 |
|
|
|
174 |
|
|
/** |
175 |
|
|
* @brief main decoder context |
176 |
|
|
*/ |
177 |
|
|
typedef struct WMAProDecodeCtx { |
178 |
|
|
/* generic decoder variables */ |
179 |
|
|
AVCodecContext* avctx; ///< codec context for av_log |
180 |
|
|
AVFloatDSPContext *fdsp; |
181 |
|
|
uint8_t frame_data[MAX_FRAMESIZE + |
182 |
|
|
AV_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data |
183 |
|
|
PutBitContext pb; ///< context for filling the frame_data buffer |
184 |
|
|
FFTContext mdct_ctx[WMAPRO_BLOCK_SIZES]; ///< MDCT context per block size |
185 |
|
|
DECLARE_ALIGNED(32, float, tmp)[WMAPRO_BLOCK_MAX_SIZE]; ///< IMDCT output buffer |
186 |
|
|
const float* windows[WMAPRO_BLOCK_SIZES]; ///< windows for the different block sizes |
187 |
|
|
|
188 |
|
|
/* frame size dependent frame information (set during initialization) */ |
189 |
|
|
uint32_t decode_flags; ///< used compression features |
190 |
|
|
uint8_t len_prefix; ///< frame is prefixed with its length |
191 |
|
|
uint8_t dynamic_range_compression; ///< frame contains DRC data |
192 |
|
|
uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0]) |
193 |
|
|
uint16_t samples_per_frame; ///< number of samples to output |
194 |
|
|
uint16_t log2_frame_size; |
195 |
|
|
int8_t lfe_channel; ///< lfe channel index |
196 |
|
|
uint8_t max_num_subframes; |
197 |
|
|
uint8_t subframe_len_bits; ///< number of bits used for the subframe length |
198 |
|
|
uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1 |
199 |
|
|
uint16_t min_samples_per_subframe; |
200 |
|
|
int8_t num_sfb[WMAPRO_BLOCK_SIZES]; ///< scale factor bands per block size |
201 |
|
|
int16_t sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor band offsets (multiples of 4) |
202 |
|
|
int8_t sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix |
203 |
|
|
int16_t subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values |
204 |
|
|
|
205 |
|
|
/* packet decode state */ |
206 |
|
|
GetBitContext pgb; ///< bitstream reader context for the packet |
207 |
|
|
int next_packet_start; ///< start offset of the next wma packet in the demuxer packet |
208 |
|
|
uint8_t packet_offset; ///< frame offset in the packet |
209 |
|
|
uint8_t packet_sequence_number; ///< current packet number |
210 |
|
|
int num_saved_bits; ///< saved number of bits |
211 |
|
|
int frame_offset; ///< frame offset in the bit reservoir |
212 |
|
|
int subframe_offset; ///< subframe offset in the bit reservoir |
213 |
|
|
uint8_t packet_loss; ///< set in case of bitstream error |
214 |
|
|
uint8_t packet_done; ///< set when a packet is fully decoded |
215 |
|
|
uint8_t eof_done; ///< set when EOF reached and extra subframe is written (XMA1/2) |
216 |
|
|
|
217 |
|
|
/* frame decode state */ |
218 |
|
|
uint32_t frame_num; ///< current frame number (not used for decoding) |
219 |
|
|
GetBitContext gb; ///< bitstream reader context |
220 |
|
|
int buf_bit_size; ///< buffer size in bits |
221 |
|
|
uint8_t drc_gain; ///< gain for the DRC tool |
222 |
|
|
int8_t skip_frame; ///< skip output step |
223 |
|
|
int8_t parsed_all_subframes; ///< all subframes decoded? |
224 |
|
|
uint8_t skip_packets; ///< packets to skip to find next packet in a stream (XMA1/2) |
225 |
|
|
|
226 |
|
|
/* subframe/block decode state */ |
227 |
|
|
int16_t subframe_len; ///< current subframe length |
228 |
|
|
int8_t nb_channels; ///< number of channels in stream (XMA1/2) |
229 |
|
|
int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe |
230 |
|
|
int8_t channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS]; |
231 |
|
|
int8_t num_bands; ///< number of scale factor bands |
232 |
|
|
int8_t transmit_num_vec_coeffs; ///< number of vector coded coefficients is part of the bitstream |
233 |
|
|
int16_t* cur_sfb_offsets; ///< sfb offsets for the current block |
234 |
|
|
uint8_t table_idx; ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables |
235 |
|
|
int8_t esc_len; ///< length of escaped coefficients |
236 |
|
|
|
237 |
|
|
uint8_t num_chgroups; ///< number of channel groups |
238 |
|
|
WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS]; ///< channel group information |
239 |
|
|
|
240 |
|
|
WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS]; ///< per channel data |
241 |
|
|
} WMAProDecodeCtx; |
242 |
|
|
|
243 |
|
|
typedef struct XMADecodeCtx { |
244 |
|
|
WMAProDecodeCtx xma[XMA_MAX_STREAMS]; |
245 |
|
|
AVFrame *frames[XMA_MAX_STREAMS]; |
246 |
|
|
int current_stream; |
247 |
|
|
int num_streams; |
248 |
|
|
float samples[XMA_MAX_CHANNELS][512 * 64]; |
249 |
|
|
int offset[XMA_MAX_STREAMS]; |
250 |
|
|
int start_channel[XMA_MAX_STREAMS]; |
251 |
|
|
} XMADecodeCtx; |
252 |
|
|
|
253 |
|
|
/** |
254 |
|
|
*@brief helper function to print the most important members of the context |
255 |
|
|
*@param s context |
256 |
|
|
*/ |
257 |
|
|
static av_cold void dump_context(WMAProDecodeCtx *s) |
258 |
|
|
{ |
259 |
|
|
#define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b); |
260 |
|
|
#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %"PRIx32"\n", a, b); |
261 |
|
|
|
262 |
|
|
PRINT("ed sample bit depth", s->bits_per_sample); |
263 |
|
|
PRINT_HEX("ed decode flags", s->decode_flags); |
264 |
|
|
PRINT("samples per frame", s->samples_per_frame); |
265 |
|
|
PRINT("log2 frame size", s->log2_frame_size); |
266 |
|
|
PRINT("max num subframes", s->max_num_subframes); |
267 |
|
|
PRINT("len prefix", s->len_prefix); |
268 |
|
|
PRINT("num channels", s->nb_channels); |
269 |
|
|
} |
270 |
|
|
|
271 |
|
|
/** |
272 |
|
|
*@brief Uninitialize the decoder and free all resources. |
273 |
|
|
*@param avctx codec context |
274 |
|
|
*@return 0 on success, < 0 otherwise |
275 |
|
|
*/ |
276 |
|
8 |
static av_cold int decode_end(WMAProDecodeCtx *s) |
277 |
|
|
{ |
278 |
|
|
int i; |
279 |
|
|
|
280 |
|
8 |
av_freep(&s->fdsp); |
281 |
|
|
|
282 |
✓✓ |
72 |
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) |
283 |
|
64 |
ff_mdct_end(&s->mdct_ctx[i]); |
284 |
|
|
|
285 |
|
8 |
return 0; |
286 |
|
|
} |
287 |
|
|
|
288 |
|
8 |
static av_cold int wmapro_decode_end(AVCodecContext *avctx) |
289 |
|
|
{ |
290 |
|
8 |
WMAProDecodeCtx *s = avctx->priv_data; |
291 |
|
|
|
292 |
|
8 |
decode_end(s); |
293 |
|
|
|
294 |
|
8 |
return 0; |
295 |
|
|
} |
296 |
|
|
|
297 |
|
40 |
static av_cold int get_rate(AVCodecContext *avctx) |
298 |
|
|
{ |
299 |
✗✓ |
40 |
if (avctx->codec_id != AV_CODEC_ID_WMAPRO) { // XXX: is this really only for XMA? |
300 |
|
|
if (avctx->sample_rate > 44100) |
301 |
|
|
return 48000; |
302 |
|
|
else if (avctx->sample_rate > 32000) |
303 |
|
|
return 44100; |
304 |
|
|
else if (avctx->sample_rate > 24000) |
305 |
|
|
return 32000; |
306 |
|
|
return 24000; |
307 |
|
|
} |
308 |
|
|
|
309 |
|
40 |
return avctx->sample_rate; |
310 |
|
|
} |
311 |
|
|
|
312 |
|
|
/** |
313 |
|
|
*@brief Initialize the decoder. |
314 |
|
|
*@param avctx codec context |
315 |
|
|
*@return 0 on success, -1 otherwise |
316 |
|
|
*/ |
317 |
|
8 |
static av_cold int decode_init(WMAProDecodeCtx *s, AVCodecContext *avctx, int num_stream) |
318 |
|
|
{ |
319 |
|
8 |
uint8_t *edata_ptr = avctx->extradata; |
320 |
|
|
unsigned int channel_mask; |
321 |
|
|
int i, bits; |
322 |
|
|
int log2_max_num_subframes; |
323 |
|
|
int num_possible_block_sizes; |
324 |
|
|
|
325 |
✓✗✗✓
|
8 |
if (avctx->codec_id == AV_CODEC_ID_XMA1 || avctx->codec_id == AV_CODEC_ID_XMA2) |
326 |
|
|
avctx->block_align = 2048; |
327 |
|
|
|
328 |
✗✓ |
8 |
if (!avctx->block_align) { |
329 |
|
|
av_log(avctx, AV_LOG_ERROR, "block_align is not set\n"); |
330 |
|
|
return AVERROR(EINVAL); |
331 |
|
|
} |
332 |
|
|
|
333 |
|
8 |
s->avctx = avctx; |
334 |
|
|
|
335 |
|
8 |
init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); |
336 |
|
|
|
337 |
|
8 |
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; |
338 |
|
|
|
339 |
|
|
/** dump the extradata */ |
340 |
|
8 |
av_log(avctx, AV_LOG_DEBUG, "extradata:\n"); |
341 |
✓✓ |
152 |
for (i = 0; i < avctx->extradata_size; i++) |
342 |
|
144 |
av_log(avctx, AV_LOG_DEBUG, "[%x] ", avctx->extradata[i]); |
343 |
|
8 |
av_log(avctx, AV_LOG_DEBUG, "\n"); |
344 |
|
|
|
345 |
✗✓✗✗
|
8 |
if (avctx->codec_id == AV_CODEC_ID_XMA2 && avctx->extradata_size == 34) { /* XMA2WAVEFORMATEX */ |
346 |
|
|
s->decode_flags = 0x10d6; |
347 |
|
|
s->bits_per_sample = 16; |
348 |
|
|
channel_mask = 0; //AV_RL32(edata_ptr+2); /* not always in expected order */ |
349 |
|
|
if ((num_stream+1) * XMA_MAX_CHANNELS_STREAM > avctx->channels) /* stream config is 2ch + 2ch + ... + 1/2ch */ |
350 |
|
|
s->nb_channels = 1; |
351 |
|
|
else |
352 |
|
|
s->nb_channels = 2; |
353 |
✗✓ |
8 |
} else if (avctx->codec_id == AV_CODEC_ID_XMA2) { /* XMA2WAVEFORMAT */ |
354 |
|
|
s->decode_flags = 0x10d6; |
355 |
|
|
s->bits_per_sample = 16; |
356 |
|
|
channel_mask = 0; /* would need to aggregate from all streams */ |
357 |
|
|
s->nb_channels = edata_ptr[32 + ((edata_ptr[0]==3)?0:8) + 4*num_stream + 0]; /* nth stream config */ |
358 |
✗✓ |
8 |
} else if (avctx->codec_id == AV_CODEC_ID_XMA1) { /* XMAWAVEFORMAT */ |
359 |
|
|
s->decode_flags = 0x10d6; |
360 |
|
|
s->bits_per_sample = 16; |
361 |
|
|
channel_mask = 0; /* would need to aggregate from all streams */ |
362 |
|
|
s->nb_channels = edata_ptr[8 + 20*num_stream + 17]; /* nth stream config */ |
363 |
✓✗✓✗
|
8 |
} else if (avctx->codec_id == AV_CODEC_ID_WMAPRO && avctx->extradata_size >= 18) { |
364 |
|
8 |
s->decode_flags = AV_RL16(edata_ptr+14); |
365 |
|
8 |
channel_mask = AV_RL32(edata_ptr+2); |
366 |
|
8 |
s->bits_per_sample = AV_RL16(edata_ptr); |
367 |
|
8 |
s->nb_channels = avctx->channels; |
368 |
|
|
|
369 |
✓✗✗✓
|
8 |
if (s->bits_per_sample > 32 || s->bits_per_sample < 1) { |
370 |
|
|
avpriv_request_sample(avctx, "bits per sample is %d", s->bits_per_sample); |
371 |
|
|
return AVERROR_PATCHWELCOME; |
372 |
|
|
} |
373 |
|
|
} else { |
374 |
|
|
avpriv_request_sample(avctx, "Unknown extradata size"); |
375 |
|
|
return AVERROR_PATCHWELCOME; |
376 |
|
|
} |
377 |
|
|
|
378 |
|
|
/** generic init */ |
379 |
|
8 |
s->log2_frame_size = av_log2(avctx->block_align) + 4; |
380 |
✗✓ |
8 |
if (s->log2_frame_size > 25) { |
381 |
|
|
avpriv_request_sample(avctx, "Large block align"); |
382 |
|
|
return AVERROR_PATCHWELCOME; |
383 |
|
|
} |
384 |
|
|
|
385 |
|
|
/** frame info */ |
386 |
✗✓ |
8 |
if (avctx->codec_id != AV_CODEC_ID_WMAPRO) |
387 |
|
|
s->skip_frame = 0; |
388 |
|
|
else |
389 |
|
8 |
s->skip_frame = 1; /* skip first frame */ |
390 |
|
|
|
391 |
|
8 |
s->packet_loss = 1; |
392 |
|
8 |
s->len_prefix = (s->decode_flags & 0x40); |
393 |
|
|
|
394 |
|
|
/** get frame len */ |
395 |
✓✗ |
8 |
if (avctx->codec_id == AV_CODEC_ID_WMAPRO) { |
396 |
|
8 |
bits = ff_wma_get_frame_len_bits(avctx->sample_rate, 3, s->decode_flags); |
397 |
✗✓ |
8 |
if (bits > WMAPRO_BLOCK_MAX_BITS) { |
398 |
|
|
avpriv_request_sample(avctx, "14-bit block sizes"); |
399 |
|
|
return AVERROR_PATCHWELCOME; |
400 |
|
|
} |
401 |
|
8 |
s->samples_per_frame = 1 << bits; |
402 |
|
|
} else { |
403 |
|
|
s->samples_per_frame = 512; |
404 |
|
|
} |
405 |
|
|
|
406 |
|
|
/** subframe info */ |
407 |
|
8 |
log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3); |
408 |
|
8 |
s->max_num_subframes = 1 << log2_max_num_subframes; |
409 |
✗✓✗✗
|
8 |
if (s->max_num_subframes == 16 || s->max_num_subframes == 4) |
410 |
|
8 |
s->max_subframe_len_bit = 1; |
411 |
|
8 |
s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1; |
412 |
|
|
|
413 |
|
8 |
num_possible_block_sizes = log2_max_num_subframes + 1; |
414 |
|
8 |
s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes; |
415 |
|
8 |
s->dynamic_range_compression = (s->decode_flags & 0x80); |
416 |
|
|
|
417 |
✗✓ |
8 |
if (s->max_num_subframes > MAX_SUBFRAMES) { |
418 |
|
|
av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %"PRId8"\n", |
419 |
|
|
s->max_num_subframes); |
420 |
|
|
return AVERROR_INVALIDDATA; |
421 |
|
|
} |
422 |
|
|
|
423 |
✗✓ |
8 |
if (s->min_samples_per_subframe < WMAPRO_BLOCK_MIN_SIZE) { |
424 |
|
|
av_log(avctx, AV_LOG_ERROR, "min_samples_per_subframe of %d too small\n", |
425 |
|
|
s->min_samples_per_subframe); |
426 |
|
|
return AVERROR_INVALIDDATA; |
427 |
|
|
} |
428 |
|
|
|
429 |
✗✓ |
8 |
if (s->avctx->sample_rate <= 0) { |
430 |
|
|
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n"); |
431 |
|
|
return AVERROR_INVALIDDATA; |
432 |
|
|
} |
433 |
|
|
|
434 |
✗✓ |
8 |
if (s->nb_channels <= 0) { |
435 |
|
|
av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n", |
436 |
|
|
s->nb_channels); |
437 |
|
|
return AVERROR_INVALIDDATA; |
438 |
✗✓✗✗
|
8 |
} else if (avctx->codec_id != AV_CODEC_ID_WMAPRO && s->nb_channels > XMA_MAX_CHANNELS_STREAM) { |
439 |
|
|
av_log(avctx, AV_LOG_ERROR, "invalid number of channels per XMA stream %d\n", |
440 |
|
|
s->nb_channels); |
441 |
|
|
return AVERROR_INVALIDDATA; |
442 |
✓✗✗✓
|
8 |
} else if (s->nb_channels > WMAPRO_MAX_CHANNELS || s->nb_channels > avctx->channels) { |
443 |
|
|
avpriv_request_sample(avctx, |
444 |
|
|
"More than %d channels", WMAPRO_MAX_CHANNELS); |
445 |
|
|
return AVERROR_PATCHWELCOME; |
446 |
|
|
} |
447 |
|
|
|
448 |
|
|
/** init previous block len */ |
449 |
✓✓ |
32 |
for (i = 0; i < s->nb_channels; i++) |
450 |
|
24 |
s->channel[i].prev_block_len = s->samples_per_frame; |
451 |
|
|
|
452 |
|
|
/** extract lfe channel position */ |
453 |
|
8 |
s->lfe_channel = -1; |
454 |
|
|
|
455 |
✓✓ |
8 |
if (channel_mask & 8) { |
456 |
|
|
unsigned int mask; |
457 |
✓✓ |
10 |
for (mask = 1; mask < 16; mask <<= 1) { |
458 |
✓✗ |
8 |
if (channel_mask & mask) |
459 |
|
8 |
++s->lfe_channel; |
460 |
|
|
} |
461 |
|
|
} |
462 |
|
|
|
463 |
|
8 |
INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE, |
464 |
|
|
scale_huffbits, 1, 1, |
465 |
|
|
scale_huffcodes, 2, 2, 616); |
466 |
|
|
|
467 |
|
8 |
INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE, |
468 |
|
|
scale_rl_huffbits, 1, 1, |
469 |
|
|
scale_rl_huffcodes, 4, 4, 1406); |
470 |
|
|
|
471 |
|
8 |
INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE, |
472 |
|
|
coef0_huffbits, 1, 1, |
473 |
|
|
coef0_huffcodes, 4, 4, 2108); |
474 |
|
|
|
475 |
|
8 |
INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE, |
476 |
|
|
coef1_huffbits, 1, 1, |
477 |
|
|
coef1_huffcodes, 4, 4, 3912); |
478 |
|
|
|
479 |
|
8 |
INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE, |
480 |
|
|
vec4_huffbits, 1, 1, |
481 |
|
|
vec4_huffcodes, 2, 2, 604); |
482 |
|
|
|
483 |
|
8 |
INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE, |
484 |
|
|
vec2_huffbits, 1, 1, |
485 |
|
|
vec2_huffcodes, 2, 2, 562); |
486 |
|
|
|
487 |
|
8 |
INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE, |
488 |
|
|
vec1_huffbits, 1, 1, |
489 |
|
|
vec1_huffcodes, 2, 2, 562); |
490 |
|
|
|
491 |
|
|
/** calculate number of scale factor bands and their offsets |
492 |
|
|
for every possible block size */ |
493 |
✓✓ |
48 |
for (i = 0; i < num_possible_block_sizes; i++) { |
494 |
|
40 |
int subframe_len = s->samples_per_frame >> i; |
495 |
|
|
int x; |
496 |
|
40 |
int band = 1; |
497 |
|
40 |
int rate = get_rate(avctx); |
498 |
|
|
|
499 |
|
40 |
s->sfb_offsets[i][0] = 0; |
500 |
|
|
|
501 |
✓✗✓✗
|
1040 |
for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) { |
502 |
|
1040 |
int offset = (subframe_len * 2 * critical_freq[x]) / rate + 2; |
503 |
|
1040 |
offset &= ~3; |
504 |
✓✓ |
1040 |
if (offset > s->sfb_offsets[i][band - 1]) |
505 |
|
860 |
s->sfb_offsets[i][band++] = offset; |
506 |
|
|
|
507 |
✓✓ |
1040 |
if (offset >= subframe_len) |
508 |
|
40 |
break; |
509 |
|
|
} |
510 |
|
40 |
s->sfb_offsets[i][band - 1] = subframe_len; |
511 |
|
40 |
s->num_sfb[i] = band - 1; |
512 |
✗✓ |
40 |
if (s->num_sfb[i] <= 0) { |
513 |
|
|
av_log(avctx, AV_LOG_ERROR, "num_sfb invalid\n"); |
514 |
|
|
return AVERROR_INVALIDDATA; |
515 |
|
|
} |
516 |
|
|
} |
517 |
|
|
|
518 |
|
|
|
519 |
|
|
/** Scale factors can be shared between blocks of different size |
520 |
|
|
as every block has a different scale factor band layout. |
521 |
|
|
The matrix sf_offsets is needed to find the correct scale factor. |
522 |
|
|
*/ |
523 |
|
|
|
524 |
✓✓ |
48 |
for (i = 0; i < num_possible_block_sizes; i++) { |
525 |
|
|
int b; |
526 |
✓✓ |
900 |
for (b = 0; b < s->num_sfb[i]; b++) { |
527 |
|
|
int x; |
528 |
|
860 |
int offset = ((s->sfb_offsets[i][b] |
529 |
|
860 |
+ s->sfb_offsets[i][b + 1] - 1) << i) >> 1; |
530 |
✓✓ |
5160 |
for (x = 0; x < num_possible_block_sizes; x++) { |
531 |
|
4300 |
int v = 0; |
532 |
✓✓ |
48176 |
while (s->sfb_offsets[x][v + 1] << x < offset) { |
533 |
|
43876 |
v++; |
534 |
✗✓ |
43876 |
av_assert0(v < MAX_BANDS); |
535 |
|
|
} |
536 |
|
4300 |
s->sf_offsets[i][x][b] = v; |
537 |
|
|
} |
538 |
|
|
} |
539 |
|
|
} |
540 |
|
|
|
541 |
|
8 |
s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); |
542 |
✗✓ |
8 |
if (!s->fdsp) |
543 |
|
|
return AVERROR(ENOMEM); |
544 |
|
|
|
545 |
|
|
/** init MDCT, FIXME: only init needed sizes */ |
546 |
✓✓ |
72 |
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) |
547 |
|
64 |
ff_mdct_init(&s->mdct_ctx[i], WMAPRO_BLOCK_MIN_BITS+1+i, 1, |
548 |
|
64 |
1.0 / (1 << (WMAPRO_BLOCK_MIN_BITS + i - 1)) |
549 |
|
64 |
/ (1ll << (s->bits_per_sample - 1))); |
550 |
|
|
|
551 |
|
|
/** init MDCT windows: simple sine window */ |
552 |
✓✓ |
72 |
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) { |
553 |
|
64 |
const int win_idx = WMAPRO_BLOCK_MAX_BITS - i; |
554 |
|
64 |
ff_init_ff_sine_windows(win_idx); |
555 |
|
64 |
s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx]; |
556 |
|
|
} |
557 |
|
|
|
558 |
|
|
/** calculate subwoofer cutoff values */ |
559 |
✓✓ |
48 |
for (i = 0; i < num_possible_block_sizes; i++) { |
560 |
|
40 |
int block_size = s->samples_per_frame >> i; |
561 |
|
40 |
int cutoff = (440*block_size + 3LL * (s->avctx->sample_rate >> 1) - 1) |
562 |
|
40 |
/ s->avctx->sample_rate; |
563 |
|
40 |
s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size); |
564 |
|
|
} |
565 |
|
|
|
566 |
|
|
/** calculate sine values for the decorrelation matrix */ |
567 |
✓✓ |
272 |
for (i = 0; i < 33; i++) |
568 |
|
264 |
sin64[i] = sin(i*M_PI / 64.0); |
569 |
|
|
|
570 |
✗✓ |
8 |
if (avctx->debug & FF_DEBUG_BITSTREAM) |
571 |
|
|
dump_context(s); |
572 |
|
|
|
573 |
|
8 |
avctx->channel_layout = channel_mask; |
574 |
|
|
|
575 |
|
8 |
return 0; |
576 |
|
|
} |
577 |
|
|
|
578 |
|
|
/** |
579 |
|
|
*@brief Initialize the decoder. |
580 |
|
|
*@param avctx codec context |
581 |
|
|
*@return 0 on success, -1 otherwise |
582 |
|
|
*/ |
583 |
|
8 |
static av_cold int wmapro_decode_init(AVCodecContext *avctx) |
584 |
|
|
{ |
585 |
|
8 |
WMAProDecodeCtx *s = avctx->priv_data; |
586 |
|
|
|
587 |
|
8 |
return decode_init(s, avctx, 0); |
588 |
|
|
} |
589 |
|
|
|
590 |
|
|
/** |
591 |
|
|
*@brief Decode the subframe length. |
592 |
|
|
*@param s context |
593 |
|
|
*@param offset sample offset in the frame |
594 |
|
|
*@return decoded subframe length on success, < 0 in case of an error |
595 |
|
|
*/ |
596 |
|
527 |
static int decode_subframe_length(WMAProDecodeCtx *s, int offset) |
597 |
|
|
{ |
598 |
|
527 |
int frame_len_shift = 0; |
599 |
|
|
int subframe_len; |
600 |
|
|
|
601 |
|
|
/** no need to read from the bitstream when only one length is possible */ |
602 |
✓✓ |
527 |
if (offset == s->samples_per_frame - s->min_samples_per_subframe) |
603 |
|
9 |
return s->min_samples_per_subframe; |
604 |
|
|
|
605 |
✗✓ |
518 |
if (get_bits_left(&s->gb) < 1) |
606 |
|
|
return AVERROR_INVALIDDATA; |
607 |
|
|
|
608 |
|
|
/** 1 bit indicates if the subframe is of maximum length */ |
609 |
✓✗ |
518 |
if (s->max_subframe_len_bit) { |
610 |
✓✓ |
518 |
if (get_bits1(&s->gb)) |
611 |
|
279 |
frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1); |
612 |
|
|
} else |
613 |
|
|
frame_len_shift = get_bits(&s->gb, s->subframe_len_bits); |
614 |
|
|
|
615 |
|
518 |
subframe_len = s->samples_per_frame >> frame_len_shift; |
616 |
|
|
|
617 |
|
|
/** sanity check the length */ |
618 |
✓✗ |
518 |
if (subframe_len < s->min_samples_per_subframe || |
619 |
✗✓ |
518 |
subframe_len > s->samples_per_frame) { |
620 |
|
|
av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n", |
621 |
|
|
subframe_len); |
622 |
|
|
return AVERROR_INVALIDDATA; |
623 |
|
|
} |
624 |
|
518 |
return subframe_len; |
625 |
|
|
} |
626 |
|
|
|
627 |
|
|
/** |
628 |
|
|
*@brief Decode how the data in the frame is split into subframes. |
629 |
|
|
* Every WMA frame contains the encoded data for a fixed number of |
630 |
|
|
* samples per channel. The data for every channel might be split |
631 |
|
|
* into several subframes. This function will reconstruct the list of |
632 |
|
|
* subframes for every channel. |
633 |
|
|
* |
634 |
|
|
* If the subframes are not evenly split, the algorithm estimates the |
635 |
|
|
* channels with the lowest number of total samples. |
636 |
|
|
* Afterwards, for each of these channels a bit is read from the |
637 |
|
|
* bitstream that indicates if the channel contains a subframe with the |
638 |
|
|
* next subframe size that is going to be read from the bitstream or not. |
639 |
|
|
* If a channel contains such a subframe, the subframe size gets added to |
640 |
|
|
* the channel's subframe list. |
641 |
|
|
* The algorithm repeats these steps until the frame is properly divided |
642 |
|
|
* between the individual channels. |
643 |
|
|
* |
644 |
|
|
*@param s context |
645 |
|
|
*@return 0 on success, < 0 in case of an error |
646 |
|
|
*/ |
647 |
|
257 |
static int decode_tilehdr(WMAProDecodeCtx *s) |
648 |
|
|
{ |
649 |
|
257 |
uint16_t num_samples[WMAPRO_MAX_CHANNELS] = { 0 };/**< sum of samples for all currently known subframes of a channel */ |
650 |
|
|
uint8_t contains_subframe[WMAPRO_MAX_CHANNELS]; /**< flag indicating if a channel contains the current subframe */ |
651 |
|
257 |
int channels_for_cur_subframe = s->nb_channels; /**< number of channels that contain the current subframe */ |
652 |
|
257 |
int fixed_channel_layout = 0; /**< flag indicating that all channels use the same subframe offsets and sizes */ |
653 |
|
257 |
int min_channel_len = 0; /**< smallest sum of samples (channels with this length will be processed first) */ |
654 |
|
|
int c; |
655 |
|
|
|
656 |
|
|
/* Should never consume more than 3073 bits (256 iterations for the |
657 |
|
|
* while loop when always the minimum amount of 128 samples is subtracted |
658 |
|
|
* from missing samples in the 8 channel case). |
659 |
|
|
* 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4) |
660 |
|
|
*/ |
661 |
|
|
|
662 |
|
|
/** reset tiling information */ |
663 |
✓✓ |
1183 |
for (c = 0; c < s->nb_channels; c++) |
664 |
|
926 |
s->channel[c].num_subframes = 0; |
665 |
|
|
|
666 |
✓✗✓✓
|
257 |
if (s->max_num_subframes == 1 || get_bits1(&s->gb)) |
667 |
|
225 |
fixed_channel_layout = 1; |
668 |
|
|
|
669 |
|
|
/** loop until the frame data is split between the subframes */ |
670 |
|
|
do { |
671 |
|
|
int subframe_len; |
672 |
|
|
|
673 |
|
|
/** check which channels contain the subframe */ |
674 |
✓✓ |
2813 |
for (c = 0; c < s->nb_channels; c++) { |
675 |
✓✓ |
2286 |
if (num_samples[c] == min_channel_len) { |
676 |
✓✓✓✓
|
1277 |
if (fixed_channel_layout || channels_for_cur_subframe == 1 || |
677 |
✗✓ |
224 |
(min_channel_len == s->samples_per_frame - s->min_samples_per_subframe)) |
678 |
|
1053 |
contains_subframe[c] = 1; |
679 |
|
|
else |
680 |
|
224 |
contains_subframe[c] = get_bits1(&s->gb); |
681 |
|
|
} else |
682 |
|
1009 |
contains_subframe[c] = 0; |
683 |
|
|
} |
684 |
|
|
|
685 |
|
|
/** get subframe length, subframe_len == 0 is not allowed */ |
686 |
✗✓ |
527 |
if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0) |
687 |
|
|
return AVERROR_INVALIDDATA; |
688 |
|
|
|
689 |
|
|
/** add subframes to the individual channels and find new min_channel_len */ |
690 |
|
527 |
min_channel_len += subframe_len; |
691 |
✓✓ |
2813 |
for (c = 0; c < s->nb_channels; c++) { |
692 |
|
2286 |
WMAProChannelCtx* chan = &s->channel[c]; |
693 |
|
|
|
694 |
✓✓ |
2286 |
if (contains_subframe[c]) { |
695 |
✗✓ |
1234 |
if (chan->num_subframes >= MAX_SUBFRAMES) { |
696 |
|
|
av_log(s->avctx, AV_LOG_ERROR, |
697 |
|
|
"broken frame: num subframes > 31\n"); |
698 |
|
|
return AVERROR_INVALIDDATA; |
699 |
|
|
} |
700 |
|
1234 |
chan->subframe_len[chan->num_subframes] = subframe_len; |
701 |
|
1234 |
num_samples[c] += subframe_len; |
702 |
|
1234 |
++chan->num_subframes; |
703 |
✗✓ |
1234 |
if (num_samples[c] > s->samples_per_frame) { |
704 |
|
|
av_log(s->avctx, AV_LOG_ERROR, "broken frame: " |
705 |
|
|
"channel len > samples_per_frame\n"); |
706 |
|
|
return AVERROR_INVALIDDATA; |
707 |
|
|
} |
708 |
✓✓ |
1052 |
} else if (num_samples[c] <= min_channel_len) { |
709 |
✓✓ |
211 |
if (num_samples[c] < min_channel_len) { |
710 |
|
43 |
channels_for_cur_subframe = 0; |
711 |
|
43 |
min_channel_len = num_samples[c]; |
712 |
|
|
} |
713 |
|
211 |
++channels_for_cur_subframe; |
714 |
|
|
} |
715 |
|
|
} |
716 |
✓✓ |
527 |
} while (min_channel_len < s->samples_per_frame); |
717 |
|
|
|
718 |
✓✓ |
1183 |
for (c = 0; c < s->nb_channels; c++) { |
719 |
|
|
int i; |
720 |
|
926 |
int offset = 0; |
721 |
✓✓ |
2160 |
for (i = 0; i < s->channel[c].num_subframes; i++) { |
722 |
|
|
ff_dlog(s->avctx, "frame[%"PRIu32"] channel[%i] subframe[%i]" |
723 |
|
|
" len %i\n", s->frame_num, c, i, |
724 |
|
|
s->channel[c].subframe_len[i]); |
725 |
|
1234 |
s->channel[c].subframe_offset[i] = offset; |
726 |
|
1234 |
offset += s->channel[c].subframe_len[i]; |
727 |
|
|
} |
728 |
|
|
} |
729 |
|
|
|
730 |
|
257 |
return 0; |
731 |
|
|
} |
732 |
|
|
|
733 |
|
|
/** |
734 |
|
|
*@brief Calculate a decorrelation matrix from the bitstream parameters. |
735 |
|
|
*@param s codec context |
736 |
|
|
*@param chgroup channel group for which the matrix needs to be calculated |
737 |
|
|
*/ |
738 |
|
79 |
static void decode_decorrelation_matrix(WMAProDecodeCtx *s, |
739 |
|
|
WMAProChannelGrp *chgroup) |
740 |
|
|
{ |
741 |
|
|
int i; |
742 |
|
79 |
int offset = 0; |
743 |
|
|
int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS]; |
744 |
|
79 |
memset(chgroup->decorrelation_matrix, 0, s->nb_channels * |
745 |
|
79 |
s->nb_channels * sizeof(*chgroup->decorrelation_matrix)); |
746 |
|
|
|
747 |
✓✓ |
316 |
for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++) |
748 |
|
237 |
rotation_offset[i] = get_bits(&s->gb, 6); |
749 |
|
|
|
750 |
✓✓ |
316 |
for (i = 0; i < chgroup->num_channels; i++) |
751 |
|
237 |
chgroup->decorrelation_matrix[chgroup->num_channels * i + i] = |
752 |
✓✗ |
237 |
get_bits1(&s->gb) ? 1.0 : -1.0; |
753 |
|
|
|
754 |
✓✓ |
237 |
for (i = 1; i < chgroup->num_channels; i++) { |
755 |
|
|
int x; |
756 |
✓✓ |
395 |
for (x = 0; x < i; x++) { |
757 |
|
|
int y; |
758 |
✓✓ |
869 |
for (y = 0; y < i + 1; y++) { |
759 |
|
632 |
float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y]; |
760 |
|
632 |
float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y]; |
761 |
|
632 |
int n = rotation_offset[offset + x]; |
762 |
|
|
float sinv; |
763 |
|
|
float cosv; |
764 |
|
|
|
765 |
✓✓ |
632 |
if (n < 32) { |
766 |
|
442 |
sinv = sin64[n]; |
767 |
|
442 |
cosv = sin64[32 - n]; |
768 |
|
|
} else { |
769 |
|
190 |
sinv = sin64[64 - n]; |
770 |
|
190 |
cosv = -sin64[n - 32]; |
771 |
|
|
} |
772 |
|
|
|
773 |
|
632 |
chgroup->decorrelation_matrix[y + x * chgroup->num_channels] = |
774 |
|
632 |
(v1 * sinv) - (v2 * cosv); |
775 |
|
632 |
chgroup->decorrelation_matrix[y + i * chgroup->num_channels] = |
776 |
|
632 |
(v1 * cosv) + (v2 * sinv); |
777 |
|
|
} |
778 |
|
|
} |
779 |
|
158 |
offset += i; |
780 |
|
|
} |
781 |
|
79 |
} |
782 |
|
|
|
783 |
|
|
/** |
784 |
|
|
*@brief Decode channel transformation parameters |
785 |
|
|
*@param s codec context |
786 |
|
|
*@return >= 0 in case of success, < 0 in case of bitstream errors |
787 |
|
|
*/ |
788 |
|
527 |
static int decode_channel_transform(WMAProDecodeCtx* s) |
789 |
|
|
{ |
790 |
|
|
int i; |
791 |
|
|
/* should never consume more than 1921 bits for the 8 channel case |
792 |
|
|
* 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS |
793 |
|
|
* + MAX_CHANNELS + MAX_BANDS + 1) |
794 |
|
|
*/ |
795 |
|
|
|
796 |
|
|
/** in the one channel case channel transforms are pointless */ |
797 |
|
527 |
s->num_chgroups = 0; |
798 |
✓✗ |
527 |
if (s->nb_channels > 1) { |
799 |
|
527 |
int remaining_channels = s->channels_for_cur_subframe; |
800 |
|
|
|
801 |
✗✓ |
527 |
if (get_bits1(&s->gb)) { |
802 |
|
|
avpriv_request_sample(s->avctx, |
803 |
|
|
"Channel transform bit"); |
804 |
|
|
return AVERROR_PATCHWELCOME; |
805 |
|
|
} |
806 |
|
|
|
807 |
✓✓ |
1156 |
for (s->num_chgroups = 0; remaining_channels && |
808 |
✓✗ |
629 |
s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) { |
809 |
|
629 |
WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups]; |
810 |
|
629 |
float** channel_data = chgroup->channel_data; |
811 |
|
629 |
chgroup->num_channels = 0; |
812 |
|
629 |
chgroup->transform = 0; |
813 |
|
|
|
814 |
|
|
/** decode channel mask */ |
815 |
✓✓ |
629 |
if (remaining_channels > 2) { |
816 |
✓✓ |
1217 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
817 |
|
1035 |
int channel_idx = s->channel_indexes_for_cur_subframe[i]; |
818 |
✓✓ |
1035 |
if (!s->channel[channel_idx].grouped |
819 |
✓✓ |
819 |
&& get_bits1(&s->gb)) { |
820 |
|
536 |
++chgroup->num_channels; |
821 |
|
536 |
s->channel[channel_idx].grouped = 1; |
822 |
|
536 |
*channel_data++ = s->channel[channel_idx].coeffs; |
823 |
|
|
} |
824 |
|
|
} |
825 |
|
|
} else { |
826 |
|
447 |
chgroup->num_channels = remaining_channels; |
827 |
✓✓ |
1222 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
828 |
|
775 |
int channel_idx = s->channel_indexes_for_cur_subframe[i]; |
829 |
✓✓ |
775 |
if (!s->channel[channel_idx].grouped) |
830 |
|
698 |
*channel_data++ = s->channel[channel_idx].coeffs; |
831 |
|
775 |
s->channel[channel_idx].grouped = 1; |
832 |
|
|
} |
833 |
|
|
} |
834 |
|
|
|
835 |
|
|
/** decode transform type */ |
836 |
✓✓ |
629 |
if (chgroup->num_channels == 2) { |
837 |
✓✓ |
276 |
if (get_bits1(&s->gb)) { |
838 |
✗✓ |
38 |
if (get_bits1(&s->gb)) { |
839 |
|
|
avpriv_request_sample(s->avctx, |
840 |
|
|
"Unknown channel transform type"); |
841 |
|
|
return AVERROR_PATCHWELCOME; |
842 |
|
|
} |
843 |
|
|
} else { |
844 |
|
238 |
chgroup->transform = 1; |
845 |
✓✓ |
238 |
if (s->nb_channels == 2) { |
846 |
|
215 |
chgroup->decorrelation_matrix[0] = 1.0; |
847 |
|
215 |
chgroup->decorrelation_matrix[1] = -1.0; |
848 |
|
215 |
chgroup->decorrelation_matrix[2] = 1.0; |
849 |
|
215 |
chgroup->decorrelation_matrix[3] = 1.0; |
850 |
|
|
} else { |
851 |
|
|
/** cos(pi/4) */ |
852 |
|
23 |
chgroup->decorrelation_matrix[0] = 0.70703125; |
853 |
|
23 |
chgroup->decorrelation_matrix[1] = -0.70703125; |
854 |
|
23 |
chgroup->decorrelation_matrix[2] = 0.70703125; |
855 |
|
23 |
chgroup->decorrelation_matrix[3] = 0.70703125; |
856 |
|
|
} |
857 |
|
|
} |
858 |
✓✓ |
353 |
} else if (chgroup->num_channels > 2) { |
859 |
✓✓ |
157 |
if (get_bits1(&s->gb)) { |
860 |
|
79 |
chgroup->transform = 1; |
861 |
✓✗ |
79 |
if (get_bits1(&s->gb)) { |
862 |
|
79 |
decode_decorrelation_matrix(s, chgroup); |
863 |
|
|
} else { |
864 |
|
|
/** FIXME: more than 6 coupled channels not supported */ |
865 |
|
|
if (chgroup->num_channels > 6) { |
866 |
|
|
avpriv_request_sample(s->avctx, |
867 |
|
|
"Coupled channels > 6"); |
868 |
|
|
} else { |
869 |
|
|
memcpy(chgroup->decorrelation_matrix, |
870 |
|
|
default_decorrelation[chgroup->num_channels], |
871 |
|
|
chgroup->num_channels * chgroup->num_channels * |
872 |
|
|
sizeof(*chgroup->decorrelation_matrix)); |
873 |
|
|
} |
874 |
|
|
} |
875 |
|
|
} |
876 |
|
|
} |
877 |
|
|
|
878 |
|
|
/** decode transform on / off */ |
879 |
✓✓ |
629 |
if (chgroup->transform) { |
880 |
✗✓ |
317 |
if (!get_bits1(&s->gb)) { |
881 |
|
|
int i; |
882 |
|
|
/** transform can be enabled for individual bands */ |
883 |
|
|
for (i = 0; i < s->num_bands; i++) { |
884 |
|
|
chgroup->transform_band[i] = get_bits1(&s->gb); |
885 |
|
|
} |
886 |
|
|
} else { |
887 |
|
317 |
memset(chgroup->transform_band, 1, s->num_bands); |
888 |
|
|
} |
889 |
|
|
} |
890 |
|
629 |
remaining_channels -= chgroup->num_channels; |
891 |
|
|
} |
892 |
|
|
} |
893 |
|
527 |
return 0; |
894 |
|
|
} |
895 |
|
|
|
896 |
|
|
/** |
897 |
|
|
*@brief Extract the coefficients from the bitstream. |
898 |
|
|
*@param s codec context |
899 |
|
|
*@param c current channel number |
900 |
|
|
*@return 0 on success, < 0 in case of bitstream errors |
901 |
|
|
*/ |
902 |
|
1038 |
static int decode_coeffs(WMAProDecodeCtx *s, int c) |
903 |
|
|
{ |
904 |
|
|
/* Integers 0..15 as single-precision floats. The table saves a |
905 |
|
|
costly int to float conversion, and storing the values as |
906 |
|
|
integers allows fast sign-flipping. */ |
907 |
|
|
static const uint32_t fval_tab[16] = { |
908 |
|
|
0x00000000, 0x3f800000, 0x40000000, 0x40400000, |
909 |
|
|
0x40800000, 0x40a00000, 0x40c00000, 0x40e00000, |
910 |
|
|
0x41000000, 0x41100000, 0x41200000, 0x41300000, |
911 |
|
|
0x41400000, 0x41500000, 0x41600000, 0x41700000, |
912 |
|
|
}; |
913 |
|
|
int vlctable; |
914 |
|
|
VLC* vlc; |
915 |
|
1038 |
WMAProChannelCtx* ci = &s->channel[c]; |
916 |
|
1038 |
int rl_mode = 0; |
917 |
|
1038 |
int cur_coeff = 0; |
918 |
|
1038 |
int num_zeros = 0; |
919 |
|
|
const uint16_t* run; |
920 |
|
|
const float* level; |
921 |
|
|
|
922 |
|
|
ff_dlog(s->avctx, "decode coefficients for channel %i\n", c); |
923 |
|
|
|
924 |
|
1038 |
vlctable = get_bits1(&s->gb); |
925 |
|
1038 |
vlc = &coef_vlc[vlctable]; |
926 |
|
|
|
927 |
✓✓ |
1038 |
if (vlctable) { |
928 |
|
321 |
run = coef1_run; |
929 |
|
321 |
level = coef1_level; |
930 |
|
|
} else { |
931 |
|
717 |
run = coef0_run; |
932 |
|
717 |
level = coef0_level; |
933 |
|
|
} |
934 |
|
|
|
935 |
|
|
/** decode vector coefficients (consumes up to 167 bits per iteration for |
936 |
|
|
4 vector coded large values) */ |
937 |
✓✗✓✓
|
39251 |
while ((s->transmit_num_vec_coeffs || !rl_mode) && |
938 |
✓✗ |
38213 |
(cur_coeff + 3 < ci->num_vec_coeffs)) { |
939 |
|
|
uint32_t vals[4]; |
940 |
|
|
int i; |
941 |
|
|
unsigned int idx; |
942 |
|
|
|
943 |
|
38213 |
idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH); |
944 |
|
|
|
945 |
✓✓ |
38213 |
if (idx == HUFF_VEC4_SIZE - 1) { |
946 |
✓✓ |
65430 |
for (i = 0; i < 4; i += 2) { |
947 |
|
43620 |
idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH); |
948 |
✓✓ |
43620 |
if (idx == HUFF_VEC2_SIZE - 1) { |
949 |
|
|
uint32_t v0, v1; |
950 |
|
20544 |
v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); |
951 |
✓✓ |
20544 |
if (v0 == HUFF_VEC1_SIZE - 1) |
952 |
|
1608 |
v0 += ff_wma_get_large_val(&s->gb); |
953 |
|
20544 |
v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); |
954 |
✓✓ |
20544 |
if (v1 == HUFF_VEC1_SIZE - 1) |
955 |
|
1665 |
v1 += ff_wma_get_large_val(&s->gb); |
956 |
|
20544 |
vals[i ] = av_float2int(v0); |
957 |
|
20544 |
vals[i+1] = av_float2int(v1); |
958 |
|
|
} else { |
959 |
|
23076 |
vals[i] = fval_tab[symbol_to_vec2[idx] >> 4 ]; |
960 |
|
23076 |
vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF]; |
961 |
|
|
} |
962 |
|
|
} |
963 |
|
|
} else { |
964 |
|
16403 |
vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12 ]; |
965 |
|
16403 |
vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF]; |
966 |
|
16403 |
vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF]; |
967 |
|
16403 |
vals[3] = fval_tab[ symbol_to_vec4[idx] & 0xF]; |
968 |
|
|
} |
969 |
|
|
|
970 |
|
|
/** decode sign */ |
971 |
✓✓ |
191065 |
for (i = 0; i < 4; i++) { |
972 |
✓✓ |
152852 |
if (vals[i]) { |
973 |
|
111800 |
uint32_t sign = get_bits1(&s->gb) - 1; |
974 |
|
111800 |
AV_WN32A(&ci->coeffs[cur_coeff], vals[i] ^ sign << 31); |
975 |
|
111800 |
num_zeros = 0; |
976 |
|
|
} else { |
977 |
|
41052 |
ci->coeffs[cur_coeff] = 0; |
978 |
|
|
/** switch to run level mode when subframe_len / 128 zeros |
979 |
|
|
were found in a row */ |
980 |
|
41052 |
rl_mode |= (++num_zeros > s->subframe_len >> 8); |
981 |
|
|
} |
982 |
|
152852 |
++cur_coeff; |
983 |
|
|
} |
984 |
|
|
} |
985 |
|
|
|
986 |
|
|
/** decode run level coded coefficients */ |
987 |
✓✗ |
1038 |
if (cur_coeff < s->subframe_len) { |
988 |
|
1038 |
memset(&ci->coeffs[cur_coeff], 0, |
989 |
|
1038 |
sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff)); |
990 |
✗✓ |
1038 |
if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc, |
991 |
|
1038 |
level, run, 1, ci->coeffs, |
992 |
|
1038 |
cur_coeff, s->subframe_len, |
993 |
|
1038 |
s->subframe_len, s->esc_len, 0)) |
994 |
|
|
return AVERROR_INVALIDDATA; |
995 |
|
|
} |
996 |
|
|
|
997 |
|
1038 |
return 0; |
998 |
|
|
} |
999 |
|
|
|
1000 |
|
|
/** |
1001 |
|
|
*@brief Extract scale factors from the bitstream. |
1002 |
|
|
*@param s codec context |
1003 |
|
|
*@return 0 on success, < 0 in case of bitstream errors |
1004 |
|
|
*/ |
1005 |
|
521 |
static int decode_scale_factors(WMAProDecodeCtx* s) |
1006 |
|
|
{ |
1007 |
|
|
int i; |
1008 |
|
|
|
1009 |
|
|
/** should never consume more than 5344 bits |
1010 |
|
|
* MAX_CHANNELS * (1 + MAX_BANDS * 23) |
1011 |
|
|
*/ |
1012 |
|
|
|
1013 |
✓✓ |
1745 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1014 |
|
1224 |
int c = s->channel_indexes_for_cur_subframe[i]; |
1015 |
|
|
int* sf; |
1016 |
|
|
int* sf_end; |
1017 |
|
1224 |
s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx]; |
1018 |
|
1224 |
sf_end = s->channel[c].scale_factors + s->num_bands; |
1019 |
|
|
|
1020 |
|
|
/** resample scale factors for the new block size |
1021 |
|
|
* as the scale factors might need to be resampled several times |
1022 |
|
|
* before some new values are transmitted, a backup of the last |
1023 |
|
|
* transmitted scale factors is kept in saved_scale_factors |
1024 |
|
|
*/ |
1025 |
✓✓ |
1224 |
if (s->channel[c].reuse_sf) { |
1026 |
|
298 |
const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx]; |
1027 |
|
|
int b; |
1028 |
✓✓ |
5471 |
for (b = 0; b < s->num_bands; b++) |
1029 |
|
5173 |
s->channel[c].scale_factors[b] = |
1030 |
|
5173 |
s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++]; |
1031 |
|
|
} |
1032 |
|
|
|
1033 |
✓✓✓✓
|
1224 |
if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) { |
1034 |
|
|
|
1035 |
✓✓ |
1206 |
if (!s->channel[c].reuse_sf) { |
1036 |
|
|
int val; |
1037 |
|
|
/** decode DPCM coded scale factors */ |
1038 |
|
926 |
s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1; |
1039 |
|
926 |
val = 45 / s->channel[c].scale_factor_step; |
1040 |
✓✓ |
24757 |
for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) { |
1041 |
|
23831 |
val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60; |
1042 |
|
23831 |
*sf = val; |
1043 |
|
|
} |
1044 |
|
|
} else { |
1045 |
|
|
int i; |
1046 |
|
|
/** run level decode differences to the resampled factors */ |
1047 |
✓✗ |
1904 |
for (i = 0; i < s->num_bands; i++) { |
1048 |
|
|
int idx; |
1049 |
|
|
int skip; |
1050 |
|
|
int val; |
1051 |
|
|
int sign; |
1052 |
|
|
|
1053 |
|
1904 |
idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH); |
1054 |
|
|
|
1055 |
✓✓ |
1904 |
if (!idx) { |
1056 |
|
41 |
uint32_t code = get_bits(&s->gb, 14); |
1057 |
|
41 |
val = code >> 6; |
1058 |
|
41 |
sign = (code & 1) - 1; |
1059 |
|
41 |
skip = (code & 0x3f) >> 1; |
1060 |
✓✓ |
1863 |
} else if (idx == 1) { |
1061 |
|
280 |
break; |
1062 |
|
|
} else { |
1063 |
|
1583 |
skip = scale_rl_run[idx]; |
1064 |
|
1583 |
val = scale_rl_level[idx]; |
1065 |
|
1583 |
sign = get_bits1(&s->gb)-1; |
1066 |
|
|
} |
1067 |
|
|
|
1068 |
|
1624 |
i += skip; |
1069 |
✗✓ |
1624 |
if (i >= s->num_bands) { |
1070 |
|
|
av_log(s->avctx, AV_LOG_ERROR, |
1071 |
|
|
"invalid scale factor coding\n"); |
1072 |
|
|
return AVERROR_INVALIDDATA; |
1073 |
|
|
} |
1074 |
|
1624 |
s->channel[c].scale_factors[i] += (val ^ sign) - sign; |
1075 |
|
|
} |
1076 |
|
|
} |
1077 |
|
|
/** swap buffers */ |
1078 |
|
1206 |
s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx; |
1079 |
|
1206 |
s->channel[c].table_idx = s->table_idx; |
1080 |
|
1206 |
s->channel[c].reuse_sf = 1; |
1081 |
|
|
} |
1082 |
|
|
|
1083 |
|
|
/** calculate new scale factor maximum */ |
1084 |
|
1224 |
s->channel[c].max_scale_factor = s->channel[c].scale_factors[0]; |
1085 |
✓✓ |
29004 |
for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) { |
1086 |
|
27780 |
s->channel[c].max_scale_factor = |
1087 |
|
27780 |
FFMAX(s->channel[c].max_scale_factor, *sf); |
1088 |
|
|
} |
1089 |
|
|
|
1090 |
|
|
} |
1091 |
|
521 |
return 0; |
1092 |
|
|
} |
1093 |
|
|
|
1094 |
|
|
/** |
1095 |
|
|
*@brief Reconstruct the individual channel data. |
1096 |
|
|
*@param s codec context |
1097 |
|
|
*/ |
1098 |
|
521 |
static void inverse_channel_transform(WMAProDecodeCtx *s) |
1099 |
|
|
{ |
1100 |
|
|
int i; |
1101 |
|
|
|
1102 |
✓✓ |
1144 |
for (i = 0; i < s->num_chgroups; i++) { |
1103 |
✓✓ |
623 |
if (s->chgroup[i].transform) { |
1104 |
|
|
float data[WMAPRO_MAX_CHANNELS]; |
1105 |
|
317 |
const int num_channels = s->chgroup[i].num_channels; |
1106 |
|
317 |
float** ch_data = s->chgroup[i].channel_data; |
1107 |
|
317 |
float** ch_end = ch_data + num_channels; |
1108 |
|
317 |
const int8_t* tb = s->chgroup[i].transform_band; |
1109 |
|
|
int16_t* sfb; |
1110 |
|
|
|
1111 |
|
|
/** multichannel decorrelation */ |
1112 |
|
317 |
for (sfb = s->cur_sfb_offsets; |
1113 |
✓✓ |
8013 |
sfb < s->cur_sfb_offsets + s->num_bands; sfb++) { |
1114 |
|
|
int y; |
1115 |
✓✗ |
7696 |
if (*tb++ == 1) { |
1116 |
|
|
/** multiply values with the decorrelation_matrix */ |
1117 |
✓✓ |
530064 |
for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) { |
1118 |
|
522368 |
const float* mat = s->chgroup[i].decorrelation_matrix; |
1119 |
|
522368 |
const float* data_end = data + num_channels; |
1120 |
|
522368 |
float* data_ptr = data; |
1121 |
|
|
float** ch; |
1122 |
|
|
|
1123 |
✓✓ |
1728896 |
for (ch = ch_data; ch < ch_end; ch++) |
1124 |
|
1206528 |
*data_ptr++ = (*ch)[y]; |
1125 |
|
|
|
1126 |
✓✓ |
1728896 |
for (ch = ch_data; ch < ch_end; ch++) { |
1127 |
|
1206528 |
float sum = 0; |
1128 |
|
1206528 |
data_ptr = data; |
1129 |
✓✓ |
4104960 |
while (data_ptr < data_end) |
1130 |
|
2898432 |
sum += *data_ptr++ * *mat++; |
1131 |
|
|
|
1132 |
|
1206528 |
(*ch)[y] = sum; |
1133 |
|
|
} |
1134 |
|
|
} |
1135 |
|
|
} else if (s->nb_channels == 2) { |
1136 |
|
|
int len = FFMIN(sfb[1], s->subframe_len) - sfb[0]; |
1137 |
|
|
s->fdsp->vector_fmul_scalar(ch_data[0] + sfb[0], |
1138 |
|
|
ch_data[0] + sfb[0], |
1139 |
|
|
181.0 / 128, len); |
1140 |
|
|
s->fdsp->vector_fmul_scalar(ch_data[1] + sfb[0], |
1141 |
|
|
ch_data[1] + sfb[0], |
1142 |
|
|
181.0 / 128, len); |
1143 |
|
|
} |
1144 |
|
|
} |
1145 |
|
|
} |
1146 |
|
|
} |
1147 |
|
521 |
} |
1148 |
|
|
|
1149 |
|
|
/** |
1150 |
|
|
*@brief Apply sine window and reconstruct the output buffer. |
1151 |
|
|
*@param s codec context |
1152 |
|
|
*/ |
1153 |
|
527 |
static void wmapro_window(WMAProDecodeCtx *s) |
1154 |
|
|
{ |
1155 |
|
|
int i; |
1156 |
✓✓ |
1761 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1157 |
|
1234 |
int c = s->channel_indexes_for_cur_subframe[i]; |
1158 |
|
|
const float* window; |
1159 |
|
1234 |
int winlen = s->channel[c].prev_block_len; |
1160 |
|
1234 |
float* start = s->channel[c].coeffs - (winlen >> 1); |
1161 |
|
|
|
1162 |
✓✓ |
1234 |
if (s->subframe_len < winlen) { |
1163 |
|
142 |
start += (winlen - s->subframe_len) >> 1; |
1164 |
|
142 |
winlen = s->subframe_len; |
1165 |
|
|
} |
1166 |
|
|
|
1167 |
|
1234 |
window = s->windows[av_log2(winlen) - WMAPRO_BLOCK_MIN_BITS]; |
1168 |
|
|
|
1169 |
|
1234 |
winlen >>= 1; |
1170 |
|
|
|
1171 |
|
1234 |
s->fdsp->vector_fmul_window(start, start, start + winlen, |
1172 |
|
|
window, winlen); |
1173 |
|
|
|
1174 |
|
1234 |
s->channel[c].prev_block_len = s->subframe_len; |
1175 |
|
|
} |
1176 |
|
527 |
} |
1177 |
|
|
|
1178 |
|
|
/** |
1179 |
|
|
*@brief Decode a single subframe (block). |
1180 |
|
|
*@param s codec context |
1181 |
|
|
*@return 0 on success, < 0 when decoding failed |
1182 |
|
|
*/ |
1183 |
|
527 |
static int decode_subframe(WMAProDecodeCtx *s) |
1184 |
|
|
{ |
1185 |
|
527 |
int offset = s->samples_per_frame; |
1186 |
|
527 |
int subframe_len = s->samples_per_frame; |
1187 |
|
|
int i; |
1188 |
|
527 |
int total_samples = s->samples_per_frame * s->nb_channels; |
1189 |
|
527 |
int transmit_coeffs = 0; |
1190 |
|
|
int cur_subwoofer_cutoff; |
1191 |
|
|
|
1192 |
|
527 |
s->subframe_offset = get_bits_count(&s->gb); |
1193 |
|
|
|
1194 |
|
|
/** reset channel context and find the next block offset and size |
1195 |
|
|
== the next block of the channel with the smallest number of |
1196 |
|
|
decoded samples |
1197 |
|
|
*/ |
1198 |
✓✓ |
2813 |
for (i = 0; i < s->nb_channels; i++) { |
1199 |
|
2286 |
s->channel[i].grouped = 0; |
1200 |
✓✓ |
2286 |
if (offset > s->channel[i].decoded_samples) { |
1201 |
|
539 |
offset = s->channel[i].decoded_samples; |
1202 |
|
539 |
subframe_len = |
1203 |
|
539 |
s->channel[i].subframe_len[s->channel[i].cur_subframe]; |
1204 |
|
|
} |
1205 |
|
|
} |
1206 |
|
|
|
1207 |
|
|
ff_dlog(s->avctx, |
1208 |
|
|
"processing subframe with offset %i len %i\n", offset, subframe_len); |
1209 |
|
|
|
1210 |
|
|
/** get a list of all channels that contain the estimated block */ |
1211 |
|
527 |
s->channels_for_cur_subframe = 0; |
1212 |
✓✓ |
2813 |
for (i = 0; i < s->nb_channels; i++) { |
1213 |
|
2286 |
const int cur_subframe = s->channel[i].cur_subframe; |
1214 |
|
|
/** subtract already processed samples */ |
1215 |
|
2286 |
total_samples -= s->channel[i].decoded_samples; |
1216 |
|
|
|
1217 |
|
|
/** and count if there are multiple subframes that match our profile */ |
1218 |
✓✓ |
2286 |
if (offset == s->channel[i].decoded_samples && |
1219 |
✓✓ |
1277 |
subframe_len == s->channel[i].subframe_len[cur_subframe]) { |
1220 |
|
1234 |
total_samples -= s->channel[i].subframe_len[cur_subframe]; |
1221 |
|
1234 |
s->channel[i].decoded_samples += |
1222 |
|
1234 |
s->channel[i].subframe_len[cur_subframe]; |
1223 |
|
1234 |
s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i; |
1224 |
|
1234 |
++s->channels_for_cur_subframe; |
1225 |
|
|
} |
1226 |
|
|
} |
1227 |
|
|
|
1228 |
|
|
/** check if the frame will be complete after processing the |
1229 |
|
|
estimated block */ |
1230 |
✓✓ |
527 |
if (!total_samples) |
1231 |
|
257 |
s->parsed_all_subframes = 1; |
1232 |
|
|
|
1233 |
|
|
|
1234 |
|
|
ff_dlog(s->avctx, "subframe is part of %i channels\n", |
1235 |
|
|
s->channels_for_cur_subframe); |
1236 |
|
|
|
1237 |
|
|
/** calculate number of scale factor bands and their offsets */ |
1238 |
|
527 |
s->table_idx = av_log2(s->samples_per_frame/subframe_len); |
1239 |
|
527 |
s->num_bands = s->num_sfb[s->table_idx]; |
1240 |
|
527 |
s->cur_sfb_offsets = s->sfb_offsets[s->table_idx]; |
1241 |
|
527 |
cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx]; |
1242 |
|
|
|
1243 |
|
|
/** configure the decoder for the current subframe */ |
1244 |
|
527 |
offset += s->samples_per_frame >> 1; |
1245 |
|
|
|
1246 |
✓✓ |
1761 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1247 |
|
1234 |
int c = s->channel_indexes_for_cur_subframe[i]; |
1248 |
|
|
|
1249 |
|
1234 |
s->channel[c].coeffs = &s->channel[c].out[offset]; |
1250 |
|
|
} |
1251 |
|
|
|
1252 |
|
527 |
s->subframe_len = subframe_len; |
1253 |
|
527 |
s->esc_len = av_log2(s->subframe_len - 1) + 1; |
1254 |
|
|
|
1255 |
|
|
/** skip extended header if any */ |
1256 |
✓✓ |
527 |
if (get_bits1(&s->gb)) { |
1257 |
|
|
int num_fill_bits; |
1258 |
✓✗ |
158 |
if (!(num_fill_bits = get_bits(&s->gb, 2))) { |
1259 |
|
158 |
int len = get_bits(&s->gb, 4); |
1260 |
|
158 |
num_fill_bits = get_bitsz(&s->gb, len) + 1; |
1261 |
|
|
} |
1262 |
|
|
|
1263 |
✓✗ |
158 |
if (num_fill_bits >= 0) { |
1264 |
✗✓ |
158 |
if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) { |
1265 |
|
|
av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n"); |
1266 |
|
|
return AVERROR_INVALIDDATA; |
1267 |
|
|
} |
1268 |
|
|
|
1269 |
|
158 |
skip_bits_long(&s->gb, num_fill_bits); |
1270 |
|
|
} |
1271 |
|
|
} |
1272 |
|
|
|
1273 |
|
|
/** no idea for what the following bit is used */ |
1274 |
✗✓ |
527 |
if (get_bits1(&s->gb)) { |
1275 |
|
|
avpriv_request_sample(s->avctx, "Reserved bit"); |
1276 |
|
|
return AVERROR_PATCHWELCOME; |
1277 |
|
|
} |
1278 |
|
|
|
1279 |
|
|
|
1280 |
✗✓ |
527 |
if (decode_channel_transform(s) < 0) |
1281 |
|
|
return AVERROR_INVALIDDATA; |
1282 |
|
|
|
1283 |
|
|
|
1284 |
✓✓ |
1761 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1285 |
|
1234 |
int c = s->channel_indexes_for_cur_subframe[i]; |
1286 |
✓✓ |
1234 |
if ((s->channel[c].transmit_coefs = get_bits1(&s->gb))) |
1287 |
|
1038 |
transmit_coeffs = 1; |
1288 |
|
|
} |
1289 |
|
|
|
1290 |
✗✓ |
527 |
av_assert0(s->subframe_len <= WMAPRO_BLOCK_MAX_SIZE); |
1291 |
✓✓ |
527 |
if (transmit_coeffs) { |
1292 |
|
|
int step; |
1293 |
|
521 |
int quant_step = 90 * s->bits_per_sample >> 4; |
1294 |
|
|
|
1295 |
|
|
/** decode number of vector coded coefficients */ |
1296 |
✗✓ |
521 |
if ((s->transmit_num_vec_coeffs = get_bits1(&s->gb))) { |
1297 |
|
|
int num_bits = av_log2((s->subframe_len + 3)/4) + 1; |
1298 |
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1299 |
|
|
int c = s->channel_indexes_for_cur_subframe[i]; |
1300 |
|
|
int num_vec_coeffs = get_bits(&s->gb, num_bits) << 2; |
1301 |
|
|
if (num_vec_coeffs > s->subframe_len) { |
1302 |
|
|
av_log(s->avctx, AV_LOG_ERROR, "num_vec_coeffs %d is too large\n", num_vec_coeffs); |
1303 |
|
|
return AVERROR_INVALIDDATA; |
1304 |
|
|
} |
1305 |
|
|
av_assert0(num_vec_coeffs + offset <= FF_ARRAY_ELEMS(s->channel[c].out)); |
1306 |
|
|
s->channel[c].num_vec_coeffs = num_vec_coeffs; |
1307 |
|
|
} |
1308 |
|
|
} else { |
1309 |
✓✓ |
1745 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1310 |
|
1224 |
int c = s->channel_indexes_for_cur_subframe[i]; |
1311 |
|
1224 |
s->channel[c].num_vec_coeffs = s->subframe_len; |
1312 |
|
|
} |
1313 |
|
|
} |
1314 |
|
|
/** decode quantization step */ |
1315 |
|
521 |
step = get_sbits(&s->gb, 6); |
1316 |
|
521 |
quant_step += step; |
1317 |
✓✓✗✓
|
521 |
if (step == -32 || step == 31) { |
1318 |
✗✓ |
23 |
const int sign = (step == 31) - 1; |
1319 |
|
23 |
int quant = 0; |
1320 |
✓✗ |
23 |
while (get_bits_count(&s->gb) + 5 < s->num_saved_bits && |
1321 |
✗✓ |
23 |
(step = get_bits(&s->gb, 5)) == 31) { |
1322 |
|
|
quant += 31; |
1323 |
|
|
} |
1324 |
|
23 |
quant_step += ((quant + step) ^ sign) - sign; |
1325 |
|
|
} |
1326 |
✗✓ |
521 |
if (quant_step < 0) { |
1327 |
|
|
av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n"); |
1328 |
|
|
} |
1329 |
|
|
|
1330 |
|
|
/** decode quantization step modifiers for every channel */ |
1331 |
|
|
|
1332 |
✓✓ |
521 |
if (s->channels_for_cur_subframe == 1) { |
1333 |
|
194 |
s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step; |
1334 |
|
|
} else { |
1335 |
|
327 |
int modifier_len = get_bits(&s->gb, 3); |
1336 |
✓✓ |
1357 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1337 |
|
1030 |
int c = s->channel_indexes_for_cur_subframe[i]; |
1338 |
|
1030 |
s->channel[c].quant_step = quant_step; |
1339 |
✓✓ |
1030 |
if (get_bits1(&s->gb)) { |
1340 |
✓✓ |
511 |
if (modifier_len) { |
1341 |
|
458 |
s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1; |
1342 |
|
|
} else |
1343 |
|
53 |
++s->channel[c].quant_step; |
1344 |
|
|
} |
1345 |
|
|
} |
1346 |
|
|
} |
1347 |
|
|
|
1348 |
|
|
/** decode scale factors */ |
1349 |
✗✓ |
521 |
if (decode_scale_factors(s) < 0) |
1350 |
|
|
return AVERROR_INVALIDDATA; |
1351 |
|
|
} |
1352 |
|
|
|
1353 |
|
|
ff_dlog(s->avctx, "BITSTREAM: subframe header length was %i\n", |
1354 |
|
|
get_bits_count(&s->gb) - s->subframe_offset); |
1355 |
|
|
|
1356 |
|
|
/** parse coefficients */ |
1357 |
✓✓ |
1761 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1358 |
|
1234 |
int c = s->channel_indexes_for_cur_subframe[i]; |
1359 |
✓✓ |
1234 |
if (s->channel[c].transmit_coefs && |
1360 |
✓✗ |
1038 |
get_bits_count(&s->gb) < s->num_saved_bits) { |
1361 |
|
1038 |
decode_coeffs(s, c); |
1362 |
|
|
} else |
1363 |
|
196 |
memset(s->channel[c].coeffs, 0, |
1364 |
|
|
sizeof(*s->channel[c].coeffs) * subframe_len); |
1365 |
|
|
} |
1366 |
|
|
|
1367 |
|
|
ff_dlog(s->avctx, "BITSTREAM: subframe length was %i\n", |
1368 |
|
|
get_bits_count(&s->gb) - s->subframe_offset); |
1369 |
|
|
|
1370 |
✓✓ |
527 |
if (transmit_coeffs) { |
1371 |
|
521 |
FFTContext *mdct = &s->mdct_ctx[av_log2(subframe_len) - WMAPRO_BLOCK_MIN_BITS]; |
1372 |
|
|
/** reconstruct the per channel data */ |
1373 |
|
521 |
inverse_channel_transform(s); |
1374 |
✓✓ |
1745 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1375 |
|
1224 |
int c = s->channel_indexes_for_cur_subframe[i]; |
1376 |
|
1224 |
const int* sf = s->channel[c].scale_factors; |
1377 |
|
|
int b; |
1378 |
|
|
|
1379 |
✓✓ |
1224 |
if (c == s->lfe_channel) |
1380 |
|
103 |
memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) * |
1381 |
|
103 |
(subframe_len - cur_subwoofer_cutoff)); |
1382 |
|
|
|
1383 |
|
|
/** inverse quantization and rescaling */ |
1384 |
✓✓ |
30228 |
for (b = 0; b < s->num_bands; b++) { |
1385 |
|
29004 |
const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len); |
1386 |
|
29004 |
const int exp = s->channel[c].quant_step - |
1387 |
|
29004 |
(s->channel[c].max_scale_factor - *sf++) * |
1388 |
|
29004 |
s->channel[c].scale_factor_step; |
1389 |
|
29004 |
const float quant = ff_exp10(exp / 20.0); |
1390 |
|
29004 |
int start = s->cur_sfb_offsets[b]; |
1391 |
|
29004 |
s->fdsp->vector_fmul_scalar(s->tmp + start, |
1392 |
|
29004 |
s->channel[c].coeffs + start, |
1393 |
|
|
quant, end - start); |
1394 |
|
|
} |
1395 |
|
|
|
1396 |
|
|
/** apply imdct (imdct_half == DCTIV with reverse) */ |
1397 |
|
1224 |
mdct->imdct_half(mdct, s->channel[c].coeffs, s->tmp); |
1398 |
|
|
} |
1399 |
|
|
} |
1400 |
|
|
|
1401 |
|
|
/** window and overlapp-add */ |
1402 |
|
527 |
wmapro_window(s); |
1403 |
|
|
|
1404 |
|
|
/** handled one subframe */ |
1405 |
✓✓ |
1761 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1406 |
|
1234 |
int c = s->channel_indexes_for_cur_subframe[i]; |
1407 |
✗✓ |
1234 |
if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) { |
1408 |
|
|
av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n"); |
1409 |
|
|
return AVERROR_INVALIDDATA; |
1410 |
|
|
} |
1411 |
|
1234 |
++s->channel[c].cur_subframe; |
1412 |
|
|
} |
1413 |
|
|
|
1414 |
|
527 |
return 0; |
1415 |
|
|
} |
1416 |
|
|
|
1417 |
|
|
/** |
1418 |
|
|
*@brief Decode one WMA frame. |
1419 |
|
|
*@param s codec context |
1420 |
|
|
*@return 0 if the trailer bit indicates that this is the last frame, |
1421 |
|
|
* 1 if there are additional frames |
1422 |
|
|
*/ |
1423 |
|
257 |
static int decode_frame(WMAProDecodeCtx *s, AVFrame *frame, int *got_frame_ptr) |
1424 |
|
|
{ |
1425 |
|
257 |
GetBitContext* gb = &s->gb; |
1426 |
|
257 |
int more_frames = 0; |
1427 |
|
257 |
int len = 0; |
1428 |
|
|
int i; |
1429 |
|
|
|
1430 |
|
|
/** get frame length */ |
1431 |
✓✗ |
257 |
if (s->len_prefix) |
1432 |
|
257 |
len = get_bits(gb, s->log2_frame_size); |
1433 |
|
|
|
1434 |
|
|
ff_dlog(s->avctx, "decoding frame with length %x\n", len); |
1435 |
|
|
|
1436 |
|
|
/** decode tile information */ |
1437 |
✗✓ |
257 |
if (decode_tilehdr(s)) { |
1438 |
|
|
s->packet_loss = 1; |
1439 |
|
|
return 0; |
1440 |
|
|
} |
1441 |
|
|
|
1442 |
|
|
/** read postproc transform */ |
1443 |
✓✗✗✓
|
257 |
if (s->nb_channels > 1 && get_bits1(gb)) { |
1444 |
|
|
if (get_bits1(gb)) { |
1445 |
|
|
for (i = 0; i < s->nb_channels * s->nb_channels; i++) |
1446 |
|
|
skip_bits(gb, 4); |
1447 |
|
|
} |
1448 |
|
|
} |
1449 |
|
|
|
1450 |
|
|
/** read drc info */ |
1451 |
✓✗ |
257 |
if (s->dynamic_range_compression) { |
1452 |
|
257 |
s->drc_gain = get_bits(gb, 8); |
1453 |
|
|
ff_dlog(s->avctx, "drc_gain %i\n", s->drc_gain); |
1454 |
|
|
} |
1455 |
|
|
|
1456 |
|
|
/** no idea what these are for, might be the number of samples |
1457 |
|
|
that need to be skipped at the beginning or end of a stream */ |
1458 |
✓✓ |
257 |
if (get_bits1(gb)) { |
1459 |
|
|
int av_unused skip; |
1460 |
|
|
|
1461 |
|
|
/** usually true for the first frame */ |
1462 |
✓✓ |
4 |
if (get_bits1(gb)) { |
1463 |
|
3 |
skip = get_bits(gb, av_log2(s->samples_per_frame * 2)); |
1464 |
|
|
ff_dlog(s->avctx, "start skip: %i\n", skip); |
1465 |
|
|
} |
1466 |
|
|
|
1467 |
|
|
/** sometimes true for the last frame */ |
1468 |
✓✓ |
4 |
if (get_bits1(gb)) { |
1469 |
|
1 |
skip = get_bits(gb, av_log2(s->samples_per_frame * 2)); |
1470 |
|
|
ff_dlog(s->avctx, "end skip: %i\n", skip); |
1471 |
|
|
} |
1472 |
|
|
|
1473 |
|
|
} |
1474 |
|
|
|
1475 |
|
|
ff_dlog(s->avctx, "BITSTREAM: frame header length was %i\n", |
1476 |
|
|
get_bits_count(gb) - s->frame_offset); |
1477 |
|
|
|
1478 |
|
|
/** reset subframe states */ |
1479 |
|
257 |
s->parsed_all_subframes = 0; |
1480 |
✓✓ |
1183 |
for (i = 0; i < s->nb_channels; i++) { |
1481 |
|
926 |
s->channel[i].decoded_samples = 0; |
1482 |
|
926 |
s->channel[i].cur_subframe = 0; |
1483 |
|
926 |
s->channel[i].reuse_sf = 0; |
1484 |
|
|
} |
1485 |
|
|
|
1486 |
|
|
/** decode all subframes */ |
1487 |
✓✓ |
784 |
while (!s->parsed_all_subframes) { |
1488 |
✗✓ |
527 |
if (decode_subframe(s) < 0) { |
1489 |
|
|
s->packet_loss = 1; |
1490 |
|
|
return 0; |
1491 |
|
|
} |
1492 |
|
|
} |
1493 |
|
|
|
1494 |
|
|
/** copy samples to the output buffer */ |
1495 |
✓✓ |
1183 |
for (i = 0; i < s->nb_channels; i++) |
1496 |
|
926 |
memcpy(frame->extended_data[i], s->channel[i].out, |
1497 |
|
926 |
s->samples_per_frame * sizeof(*s->channel[i].out)); |
1498 |
|
|
|
1499 |
✓✓ |
1183 |
for (i = 0; i < s->nb_channels; i++) { |
1500 |
|
|
/** reuse second half of the IMDCT output for the next frame */ |
1501 |
|
926 |
memcpy(&s->channel[i].out[0], |
1502 |
|
926 |
&s->channel[i].out[s->samples_per_frame], |
1503 |
|
926 |
s->samples_per_frame * sizeof(*s->channel[i].out) >> 1); |
1504 |
|
|
} |
1505 |
|
|
|
1506 |
✓✓ |
257 |
if (s->skip_frame) { |
1507 |
|
3 |
s->skip_frame = 0; |
1508 |
|
3 |
*got_frame_ptr = 0; |
1509 |
|
3 |
av_frame_unref(frame); |
1510 |
|
|
} else { |
1511 |
|
254 |
*got_frame_ptr = 1; |
1512 |
|
|
} |
1513 |
|
|
|
1514 |
✓✗ |
257 |
if (s->len_prefix) { |
1515 |
✗✓ |
257 |
if (len != (get_bits_count(gb) - s->frame_offset) + 2) { |
1516 |
|
|
/** FIXME: not sure if this is always an error */ |
1517 |
|
|
av_log(s->avctx, AV_LOG_ERROR, |
1518 |
|
|
"frame[%"PRIu32"] would have to skip %i bits\n", |
1519 |
|
|
s->frame_num, |
1520 |
|
|
len - (get_bits_count(gb) - s->frame_offset) - 1); |
1521 |
|
|
s->packet_loss = 1; |
1522 |
|
|
return 0; |
1523 |
|
|
} |
1524 |
|
|
|
1525 |
|
|
/** skip the rest of the frame data */ |
1526 |
|
257 |
skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1); |
1527 |
|
|
} else { |
1528 |
|
|
while (get_bits_count(gb) < s->num_saved_bits && get_bits1(gb) == 0) { |
1529 |
|
|
} |
1530 |
|
|
} |
1531 |
|
|
|
1532 |
|
|
/** decode trailer bit */ |
1533 |
|
257 |
more_frames = get_bits1(gb); |
1534 |
|
|
|
1535 |
|
257 |
++s->frame_num; |
1536 |
|
257 |
return more_frames; |
1537 |
|
|
} |
1538 |
|
|
|
1539 |
|
|
/** |
1540 |
|
|
*@brief Calculate remaining input buffer length. |
1541 |
|
|
*@param s codec context |
1542 |
|
|
*@param gb bitstream reader context |
1543 |
|
|
*@return remaining size in bits |
1544 |
|
|
*/ |
1545 |
|
849 |
static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb) |
1546 |
|
|
{ |
1547 |
|
849 |
return s->buf_bit_size - get_bits_count(gb); |
1548 |
|
|
} |
1549 |
|
|
|
1550 |
|
|
/** |
1551 |
|
|
*@brief Fill the bit reservoir with a (partial) frame. |
1552 |
|
|
*@param s codec context |
1553 |
|
|
*@param gb bitstream reader context |
1554 |
|
|
*@param len length of the partial frame |
1555 |
|
|
*@param append decides whether to reset the buffer or not |
1556 |
|
|
*/ |
1557 |
|
281 |
static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len, |
1558 |
|
|
int append) |
1559 |
|
|
{ |
1560 |
|
|
int buflen; |
1561 |
|
|
|
1562 |
|
|
/** when the frame data does not need to be concatenated, the input buffer |
1563 |
|
|
is reset and additional bits from the previous frame are copied |
1564 |
|
|
and skipped later so that a fast byte copy is possible */ |
1565 |
|
|
|
1566 |
✓✓ |
281 |
if (!append) { |
1567 |
|
260 |
s->frame_offset = get_bits_count(gb) & 7; |
1568 |
|
260 |
s->num_saved_bits = s->frame_offset; |
1569 |
|
260 |
init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); |
1570 |
|
260 |
buflen = (s->num_saved_bits + len + 7) >> 3; |
1571 |
|
|
} else |
1572 |
|
21 |
buflen = (put_bits_count(&s->pb) + len + 7) >> 3; |
1573 |
|
|
|
1574 |
✓✗✗✓
|
281 |
if (len <= 0 || buflen > MAX_FRAMESIZE) { |
1575 |
|
|
avpriv_request_sample(s->avctx, "Too small input buffer"); |
1576 |
|
|
s->packet_loss = 1; |
1577 |
|
|
return; |
1578 |
|
|
} |
1579 |
|
|
|
1580 |
✗✓ |
281 |
av_assert0(len <= put_bits_left(&s->pb)); |
1581 |
|
|
|
1582 |
|
281 |
s->num_saved_bits += len; |
1583 |
✓✓ |
281 |
if (!append) { |
1584 |
|
260 |
ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), |
1585 |
|
|
s->num_saved_bits); |
1586 |
|
|
} else { |
1587 |
|
21 |
int align = 8 - (get_bits_count(gb) & 7); |
1588 |
|
21 |
align = FFMIN(align, len); |
1589 |
|
21 |
put_bits(&s->pb, align, get_bits(gb, align)); |
1590 |
|
21 |
len -= align; |
1591 |
|
21 |
ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len); |
1592 |
|
|
} |
1593 |
|
281 |
skip_bits_long(gb, len); |
1594 |
|
|
|
1595 |
|
|
{ |
1596 |
|
281 |
PutBitContext tmp = s->pb; |
1597 |
|
281 |
flush_put_bits(&tmp); |
1598 |
|
|
} |
1599 |
|
|
|
1600 |
|
281 |
init_get_bits(&s->gb, s->frame_data, s->num_saved_bits); |
1601 |
|
281 |
skip_bits(&s->gb, s->frame_offset); |
1602 |
|
|
} |
1603 |
|
|
|
1604 |
|
283 |
static int decode_packet(AVCodecContext *avctx, WMAProDecodeCtx *s, |
1605 |
|
|
void *data, int *got_frame_ptr, AVPacket *avpkt) |
1606 |
|
|
{ |
1607 |
|
283 |
GetBitContext* gb = &s->pgb; |
1608 |
|
283 |
const uint8_t* buf = avpkt->data; |
1609 |
|
283 |
int buf_size = avpkt->size; |
1610 |
|
|
int num_bits_prev_frame; |
1611 |
|
|
int packet_sequence_number; |
1612 |
|
|
|
1613 |
|
283 |
*got_frame_ptr = 0; |
1614 |
|
|
|
1615 |
✗✓ |
283 |
if (!buf_size) { |
1616 |
|
|
AVFrame *frame = data; |
1617 |
|
|
int i; |
1618 |
|
|
|
1619 |
|
|
/** Must output remaining samples after stream end. WMAPRO 5.1 created |
1620 |
|
|
* by XWMA encoder don't though (maybe only 1/2ch streams need it). */ |
1621 |
|
|
s->packet_done = 0; |
1622 |
|
|
if (s->eof_done) |
1623 |
|
|
return 0; |
1624 |
|
|
|
1625 |
|
|
/** clean output buffer and copy last IMDCT samples */ |
1626 |
|
|
for (i = 0; i < s->nb_channels; i++) { |
1627 |
|
|
memset(frame->extended_data[i], 0, |
1628 |
|
|
s->samples_per_frame * sizeof(*s->channel[i].out)); |
1629 |
|
|
|
1630 |
|
|
memcpy(frame->extended_data[i], s->channel[i].out, |
1631 |
|
|
s->samples_per_frame * sizeof(*s->channel[i].out) >> 1); |
1632 |
|
|
} |
1633 |
|
|
|
1634 |
|
|
/* TODO: XMA should output 128 samples only (instead of 512) and WMAPRO |
1635 |
|
|
* maybe 768 (with 2048), XMA needs changes in multi-stream handling though. */ |
1636 |
|
|
|
1637 |
|
|
s->eof_done = 1; |
1638 |
|
|
s->packet_done = 1; |
1639 |
|
|
*got_frame_ptr = 1; |
1640 |
|
|
return 0; |
1641 |
|
|
} |
1642 |
✓✓✓✓
|
283 |
else if (s->packet_done || s->packet_loss) { |
1643 |
|
24 |
s->packet_done = 0; |
1644 |
|
|
|
1645 |
|
|
/** sanity check for the buffer length */ |
1646 |
✓✗✗✓
|
24 |
if (avctx->codec_id == AV_CODEC_ID_WMAPRO && buf_size < avctx->block_align) { |
1647 |
|
|
av_log(avctx, AV_LOG_ERROR, "Input packet too small (%d < %d)\n", |
1648 |
|
|
buf_size, avctx->block_align); |
1649 |
|
|
s->packet_loss = 1; |
1650 |
|
|
return AVERROR_INVALIDDATA; |
1651 |
|
|
} |
1652 |
|
|
|
1653 |
✓✗ |
24 |
if (avctx->codec_id == AV_CODEC_ID_WMAPRO) { |
1654 |
|
24 |
s->next_packet_start = buf_size - avctx->block_align; |
1655 |
|
24 |
buf_size = avctx->block_align; |
1656 |
|
|
} else { |
1657 |
|
|
s->next_packet_start = buf_size - FFMIN(buf_size, avctx->block_align); |
1658 |
|
|
buf_size = FFMIN(buf_size, avctx->block_align); |
1659 |
|
|
} |
1660 |
|
24 |
s->buf_bit_size = buf_size << 3; |
1661 |
|
|
|
1662 |
|
|
/** parse packet header */ |
1663 |
|
24 |
init_get_bits(gb, buf, s->buf_bit_size); |
1664 |
✓✗ |
24 |
if (avctx->codec_id != AV_CODEC_ID_XMA2) { |
1665 |
|
24 |
packet_sequence_number = get_bits(gb, 4); |
1666 |
|
24 |
skip_bits(gb, 2); |
1667 |
|
|
} else { |
1668 |
|
|
int num_frames = get_bits(gb, 6); |
1669 |
|
|
ff_dlog(avctx, "packet[%d]: number of frames %d\n", avctx->frame_number, num_frames); |
1670 |
|
|
packet_sequence_number = 0; |
1671 |
|
|
} |
1672 |
|
|
|
1673 |
|
|
/** get number of bits that need to be added to the previous frame */ |
1674 |
|
24 |
num_bits_prev_frame = get_bits(gb, s->log2_frame_size); |
1675 |
✗✓ |
24 |
if (avctx->codec_id != AV_CODEC_ID_WMAPRO) { |
1676 |
|
|
skip_bits(gb, 3); |
1677 |
|
|
s->skip_packets = get_bits(gb, 8); |
1678 |
|
|
ff_dlog(avctx, "packet[%d]: skip packets %d\n", avctx->frame_number, s->skip_packets); |
1679 |
|
|
} |
1680 |
|
|
|
1681 |
|
|
ff_dlog(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number, |
1682 |
|
|
num_bits_prev_frame); |
1683 |
|
|
|
1684 |
|
|
/** check for packet loss */ |
1685 |
✓✗✓✓
|
24 |
if (avctx->codec_id == AV_CODEC_ID_WMAPRO && !s->packet_loss && |
1686 |
✗✓ |
21 |
((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) { |
1687 |
|
|
s->packet_loss = 1; |
1688 |
|
|
av_log(avctx, AV_LOG_ERROR, |
1689 |
|
|
"Packet loss detected! seq %"PRIx8" vs %x\n", |
1690 |
|
|
s->packet_sequence_number, packet_sequence_number); |
1691 |
|
|
} |
1692 |
|
24 |
s->packet_sequence_number = packet_sequence_number; |
1693 |
|
|
|
1694 |
✓✓ |
24 |
if (num_bits_prev_frame > 0) { |
1695 |
|
21 |
int remaining_packet_bits = s->buf_bit_size - get_bits_count(gb); |
1696 |
✗✓ |
21 |
if (num_bits_prev_frame >= remaining_packet_bits) { |
1697 |
|
|
num_bits_prev_frame = remaining_packet_bits; |
1698 |
|
|
s->packet_done = 1; |
1699 |
|
|
} |
1700 |
|
|
|
1701 |
|
|
/** append the previous frame data to the remaining data from the |
1702 |
|
|
previous packet to create a full frame */ |
1703 |
|
21 |
save_bits(s, gb, num_bits_prev_frame, 1); |
1704 |
|
|
ff_dlog(avctx, "accumulated %x bits of frame data\n", |
1705 |
|
|
s->num_saved_bits - s->frame_offset); |
1706 |
|
|
|
1707 |
|
|
/** decode the cross packet frame if it is valid */ |
1708 |
✓✗ |
21 |
if (!s->packet_loss) |
1709 |
|
21 |
decode_frame(s, data, got_frame_ptr); |
1710 |
|
3 |
} else if (s->num_saved_bits - s->frame_offset) { |
1711 |
|
|
ff_dlog(avctx, "ignoring %x previously saved bits\n", |
1712 |
|
|
s->num_saved_bits - s->frame_offset); |
1713 |
|
|
} |
1714 |
|
|
|
1715 |
✓✓ |
24 |
if (s->packet_loss) { |
1716 |
|
|
/** reset number of saved bits so that the decoder |
1717 |
|
|
does not start to decode incomplete frames in the |
1718 |
|
|
s->len_prefix == 0 case */ |
1719 |
|
3 |
s->num_saved_bits = 0; |
1720 |
|
3 |
s->packet_loss = 0; |
1721 |
|
|
} |
1722 |
|
|
} else { |
1723 |
|
|
int frame_size; |
1724 |
|
|
|
1725 |
✗✓ |
259 |
if (avpkt->size < s->next_packet_start) { |
1726 |
|
|
s->packet_loss = 1; |
1727 |
|
|
return AVERROR_INVALIDDATA; |
1728 |
|
|
} |
1729 |
|
|
|
1730 |
|
259 |
s->buf_bit_size = (avpkt->size - s->next_packet_start) << 3; |
1731 |
|
259 |
init_get_bits(gb, avpkt->data, s->buf_bit_size); |
1732 |
|
259 |
skip_bits(gb, s->packet_offset); |
1733 |
✓✗✓✗
|
259 |
if (s->len_prefix && remaining_bits(s, gb) > s->log2_frame_size && |
1734 |
✓✗✓✓
|
518 |
(frame_size = show_bits(gb, s->log2_frame_size)) && |
1735 |
|
259 |
frame_size <= remaining_bits(s, gb)) { |
1736 |
|
236 |
save_bits(s, gb, frame_size, 0); |
1737 |
✓✗ |
236 |
if (!s->packet_loss) |
1738 |
|
236 |
s->packet_done = !decode_frame(s, data, got_frame_ptr); |
1739 |
✗✓ |
23 |
} else if (!s->len_prefix |
1740 |
|
|
&& s->num_saved_bits > get_bits_count(&s->gb)) { |
1741 |
|
|
/** when the frames do not have a length prefix, we don't know |
1742 |
|
|
the compressed length of the individual frames |
1743 |
|
|
however, we know what part of a new packet belongs to the |
1744 |
|
|
previous frame |
1745 |
|
|
therefore we save the incoming packet first, then we append |
1746 |
|
|
the "previous frame" data from the next packet so that |
1747 |
|
|
we get a buffer that only contains full frames */ |
1748 |
|
|
s->packet_done = !decode_frame(s, data, got_frame_ptr); |
1749 |
|
|
} else { |
1750 |
|
23 |
s->packet_done = 1; |
1751 |
|
|
} |
1752 |
|
|
} |
1753 |
|
|
|
1754 |
✗✓ |
283 |
if (remaining_bits(s, gb) < 0) { |
1755 |
|
|
av_log(avctx, AV_LOG_ERROR, "Overread %d\n", -remaining_bits(s, gb)); |
1756 |
|
|
s->packet_loss = 1; |
1757 |
|
|
} |
1758 |
|
|
|
1759 |
✓✓✓✗ ✓✗ |
307 |
if (s->packet_done && !s->packet_loss && |
1760 |
|
24 |
remaining_bits(s, gb) > 0) { |
1761 |
|
|
/** save the rest of the data so that it can be decoded |
1762 |
|
|
with the next packet */ |
1763 |
|
24 |
save_bits(s, gb, remaining_bits(s, gb), 0); |
1764 |
|
|
} |
1765 |
|
|
|
1766 |
|
283 |
s->packet_offset = get_bits_count(gb) & 7; |
1767 |
✗✓ |
283 |
if (s->packet_loss) |
1768 |
|
|
return AVERROR_INVALIDDATA; |
1769 |
|
|
|
1770 |
|
283 |
return get_bits_count(gb) >> 3; |
1771 |
|
|
} |
1772 |
|
|
|
1773 |
|
|
/** |
1774 |
|
|
*@brief Decode a single WMA packet. |
1775 |
|
|
*@param avctx codec context |
1776 |
|
|
*@param data the output buffer |
1777 |
|
|
*@param avpkt input packet |
1778 |
|
|
*@return number of bytes that were read from the input buffer |
1779 |
|
|
*/ |
1780 |
|
283 |
static int wmapro_decode_packet(AVCodecContext *avctx, void *data, |
1781 |
|
|
int *got_frame_ptr, AVPacket *avpkt) |
1782 |
|
|
{ |
1783 |
|
283 |
WMAProDecodeCtx *s = avctx->priv_data; |
1784 |
|
283 |
AVFrame *frame = data; |
1785 |
|
|
int ret; |
1786 |
|
|
|
1787 |
|
|
/* get output buffer */ |
1788 |
|
283 |
frame->nb_samples = s->samples_per_frame; |
1789 |
✗✓ |
283 |
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) { |
1790 |
|
|
s->packet_loss = 1; |
1791 |
|
|
return 0; |
1792 |
|
|
} |
1793 |
|
|
|
1794 |
|
283 |
return decode_packet(avctx, s, data, got_frame_ptr, avpkt); |
1795 |
|
|
} |
1796 |
|
|
|
1797 |
|
|
static int xma_decode_packet(AVCodecContext *avctx, void *data, |
1798 |
|
|
int *got_frame_ptr, AVPacket *avpkt) |
1799 |
|
|
{ |
1800 |
|
|
XMADecodeCtx *s = avctx->priv_data; |
1801 |
|
|
int got_stream_frame_ptr = 0; |
1802 |
|
|
AVFrame *frame = data; |
1803 |
|
|
int i, ret, offset = INT_MAX; |
1804 |
|
|
|
1805 |
|
|
if (!s->frames[s->current_stream]->data[0]) { |
1806 |
|
|
s->frames[s->current_stream]->nb_samples = 512; |
1807 |
|
|
if ((ret = ff_get_buffer(avctx, s->frames[s->current_stream], 0)) < 0) { |
1808 |
|
|
return ret; |
1809 |
|
|
} |
1810 |
|
|
} |
1811 |
|
|
/* decode current stream packet */ |
1812 |
|
|
ret = decode_packet(avctx, &s->xma[s->current_stream], s->frames[s->current_stream], |
1813 |
|
|
&got_stream_frame_ptr, avpkt); |
1814 |
|
|
|
1815 |
|
|
if (got_stream_frame_ptr && s->offset[s->current_stream] >= 64) { |
1816 |
|
|
got_stream_frame_ptr = 0; |
1817 |
|
|
ret = AVERROR_INVALIDDATA; |
1818 |
|
|
} |
1819 |
|
|
|
1820 |
|
|
/* copy stream samples (1/2ch) to sample buffer (Nch) */ |
1821 |
|
|
if (got_stream_frame_ptr) { |
1822 |
|
|
int start_ch = s->start_channel[s->current_stream]; |
1823 |
|
|
memcpy(&s->samples[start_ch + 0][s->offset[s->current_stream] * 512], |
1824 |
|
|
s->frames[s->current_stream]->extended_data[0], 512 * 4); |
1825 |
|
|
if (s->xma[s->current_stream].nb_channels > 1) |
1826 |
|
|
memcpy(&s->samples[start_ch + 1][s->offset[s->current_stream] * 512], |
1827 |
|
|
s->frames[s->current_stream]->extended_data[1], 512 * 4); |
1828 |
|
|
s->offset[s->current_stream]++; |
1829 |
|
|
} else if (ret < 0) { |
1830 |
|
|
memset(s->offset, 0, sizeof(s->offset)); |
1831 |
|
|
s->current_stream = 0; |
1832 |
|
|
return ret; |
1833 |
|
|
} |
1834 |
|
|
|
1835 |
|
|
/* find next XMA packet's owner stream, and update. |
1836 |
|
|
* XMA streams find their packets following packet_skips |
1837 |
|
|
* (at start there is one packet per stream, then interleave non-linearly). */ |
1838 |
|
|
if (s->xma[s->current_stream].packet_done || |
1839 |
|
|
s->xma[s->current_stream].packet_loss) { |
1840 |
|
|
|
1841 |
|
|
/* select stream with 0 skip_packets (= uses next packet) */ |
1842 |
|
|
if (s->xma[s->current_stream].skip_packets != 0) { |
1843 |
|
|
int min[2]; |
1844 |
|
|
|
1845 |
|
|
min[0] = s->xma[0].skip_packets; |
1846 |
|
|
min[1] = i = 0; |
1847 |
|
|
|
1848 |
|
|
for (i = 1; i < s->num_streams; i++) { |
1849 |
|
|
if (s->xma[i].skip_packets < min[0]) { |
1850 |
|
|
min[0] = s->xma[i].skip_packets; |
1851 |
|
|
min[1] = i; |
1852 |
|
|
} |
1853 |
|
|
} |
1854 |
|
|
|
1855 |
|
|
s->current_stream = min[1]; |
1856 |
|
|
} |
1857 |
|
|
|
1858 |
|
|
/* all other streams skip next packet */ |
1859 |
|
|
for (i = 0; i < s->num_streams; i++) { |
1860 |
|
|
s->xma[i].skip_packets = FFMAX(0, s->xma[i].skip_packets - 1); |
1861 |
|
|
} |
1862 |
|
|
|
1863 |
|
|
/* copy samples from buffer to output if possible */ |
1864 |
|
|
for (i = 0; i < s->num_streams; i++) { |
1865 |
|
|
offset = FFMIN(offset, s->offset[i]); |
1866 |
|
|
} |
1867 |
|
|
if (offset > 0) { |
1868 |
|
|
int bret; |
1869 |
|
|
|
1870 |
|
|
frame->nb_samples = 512 * offset; |
1871 |
|
|
if ((bret = ff_get_buffer(avctx, frame, 0)) < 0) |
1872 |
|
|
return bret; |
1873 |
|
|
|
1874 |
|
|
/* copy samples buffer (Nch) to frame samples (Nch), move unconsumed samples */ |
1875 |
|
|
for (i = 0; i < s->num_streams; i++) { |
1876 |
|
|
int start_ch = s->start_channel[i]; |
1877 |
|
|
memcpy(frame->extended_data[start_ch + 0], s->samples[start_ch + 0], frame->nb_samples * 4); |
1878 |
|
|
if (s->xma[i].nb_channels > 1) |
1879 |
|
|
memcpy(frame->extended_data[start_ch + 1], s->samples[start_ch + 1], frame->nb_samples * 4); |
1880 |
|
|
|
1881 |
|
|
s->offset[i] -= offset; |
1882 |
|
|
if (s->offset[i]) { |
1883 |
|
|
memmove(s->samples[start_ch + 0], s->samples[start_ch + 0] + frame->nb_samples, s->offset[i] * 4 * 512); |
1884 |
|
|
if (s->xma[i].nb_channels > 1) |
1885 |
|
|
memmove(s->samples[start_ch + 1], s->samples[start_ch + 1] + frame->nb_samples, s->offset[i] * 4 * 512); |
1886 |
|
|
} |
1887 |
|
|
} |
1888 |
|
|
|
1889 |
|
|
*got_frame_ptr = 1; |
1890 |
|
|
} |
1891 |
|
|
} |
1892 |
|
|
|
1893 |
|
|
return ret; |
1894 |
|
|
} |
1895 |
|
|
|
1896 |
|
|
static av_cold int xma_decode_init(AVCodecContext *avctx) |
1897 |
|
|
{ |
1898 |
|
|
XMADecodeCtx *s = avctx->priv_data; |
1899 |
|
|
int i, ret, start_channels = 0; |
1900 |
|
|
|
1901 |
|
|
if (avctx->channels <= 0 || avctx->extradata_size == 0) |
1902 |
|
|
return AVERROR_INVALIDDATA; |
1903 |
|
|
|
1904 |
|
|
/* get stream config */ |
1905 |
|
|
if (avctx->codec_id == AV_CODEC_ID_XMA2 && avctx->extradata_size == 34) { /* XMA2WAVEFORMATEX */ |
1906 |
|
|
s->num_streams = (avctx->channels + 1) / 2; |
1907 |
|
|
} else if (avctx->codec_id == AV_CODEC_ID_XMA2 && avctx->extradata_size >= 2) { /* XMA2WAVEFORMAT */ |
1908 |
|
|
s->num_streams = avctx->extradata[1]; |
1909 |
|
|
if (avctx->extradata_size != (32 + ((avctx->extradata[0]==3)?0:8) + 4*s->num_streams)) { |
1910 |
|
|
av_log(avctx, AV_LOG_ERROR, "Incorrect XMA2 extradata size\n"); |
1911 |
|
|
s->num_streams = 0; |
1912 |
|
|
return AVERROR(EINVAL); |
1913 |
|
|
} |
1914 |
|
|
} else if (avctx->codec_id == AV_CODEC_ID_XMA1 && avctx->extradata_size >= 4) { /* XMAWAVEFORMAT */ |
1915 |
|
|
s->num_streams = avctx->extradata[4]; |
1916 |
|
|
if (avctx->extradata_size != (8 + 20*s->num_streams)) { |
1917 |
|
|
av_log(avctx, AV_LOG_ERROR, "Incorrect XMA1 extradata size\n"); |
1918 |
|
|
s->num_streams = 0; |
1919 |
|
|
return AVERROR(EINVAL); |
1920 |
|
|
} |
1921 |
|
|
} else { |
1922 |
|
|
av_log(avctx, AV_LOG_ERROR, "Incorrect XMA config\n"); |
1923 |
|
|
return AVERROR(EINVAL); |
1924 |
|
|
} |
1925 |
|
|
|
1926 |
|
|
/* encoder supports up to 64 streams / 64*2 channels (would have to alloc arrays) */ |
1927 |
|
|
if (avctx->channels > XMA_MAX_CHANNELS || s->num_streams > XMA_MAX_STREAMS || |
1928 |
|
|
s->num_streams <= 0 |
1929 |
|
|
) { |
1930 |
|
|
avpriv_request_sample(avctx, "More than %d channels in %d streams", XMA_MAX_CHANNELS, s->num_streams); |
1931 |
|
|
s->num_streams = 0; |
1932 |
|
|
return AVERROR_PATCHWELCOME; |
1933 |
|
|
} |
1934 |
|
|
|
1935 |
|
|
/* init all streams (several streams of 1/2ch make Nch files) */ |
1936 |
|
|
for (i = 0; i < s->num_streams; i++) { |
1937 |
|
|
ret = decode_init(&s->xma[i], avctx, i); |
1938 |
|
|
if (ret < 0) |
1939 |
|
|
return ret; |
1940 |
|
|
s->frames[i] = av_frame_alloc(); |
1941 |
|
|
if (!s->frames[i]) |
1942 |
|
|
return AVERROR(ENOMEM); |
1943 |
|
|
|
1944 |
|
|
s->start_channel[i] = start_channels; |
1945 |
|
|
start_channels += s->xma[i].nb_channels; |
1946 |
|
|
} |
1947 |
|
|
if (start_channels != avctx->channels) |
1948 |
|
|
return AVERROR_INVALIDDATA; |
1949 |
|
|
|
1950 |
|
|
return ret; |
1951 |
|
|
} |
1952 |
|
|
|
1953 |
|
|
static av_cold int xma_decode_end(AVCodecContext *avctx) |
1954 |
|
|
{ |
1955 |
|
|
XMADecodeCtx *s = avctx->priv_data; |
1956 |
|
|
int i; |
1957 |
|
|
|
1958 |
|
|
for (i = 0; i < s->num_streams; i++) { |
1959 |
|
|
decode_end(&s->xma[i]); |
1960 |
|
|
av_frame_free(&s->frames[i]); |
1961 |
|
|
} |
1962 |
|
|
s->num_streams = 0; |
1963 |
|
|
|
1964 |
|
|
return 0; |
1965 |
|
|
} |
1966 |
|
|
|
1967 |
|
|
static void flush(WMAProDecodeCtx *s) |
1968 |
|
|
{ |
1969 |
|
|
int i; |
1970 |
|
|
/** reset output buffer as a part of it is used during the windowing of a |
1971 |
|
|
new frame */ |
1972 |
|
|
for (i = 0; i < s->nb_channels; i++) |
1973 |
|
|
memset(s->channel[i].out, 0, s->samples_per_frame * |
1974 |
|
|
sizeof(*s->channel[i].out)); |
1975 |
|
|
s->packet_loss = 1; |
1976 |
|
|
s->skip_packets = 0; |
1977 |
|
|
s->eof_done = 0; |
1978 |
|
|
} |
1979 |
|
|
|
1980 |
|
|
|
1981 |
|
|
/** |
1982 |
|
|
*@brief Clear decoder buffers (for seeking). |
1983 |
|
|
*@param avctx codec context |
1984 |
|
|
*/ |
1985 |
|
|
static void wmapro_flush(AVCodecContext *avctx) |
1986 |
|
|
{ |
1987 |
|
|
WMAProDecodeCtx *s = avctx->priv_data; |
1988 |
|
|
|
1989 |
|
|
flush(s); |
1990 |
|
|
} |
1991 |
|
|
|
1992 |
|
|
static void xma_flush(AVCodecContext *avctx) |
1993 |
|
|
{ |
1994 |
|
|
XMADecodeCtx *s = avctx->priv_data; |
1995 |
|
|
int i; |
1996 |
|
|
|
1997 |
|
|
for (i = 0; i < s->num_streams; i++) |
1998 |
|
|
flush(&s->xma[i]); |
1999 |
|
|
|
2000 |
|
|
memset(s->offset, 0, sizeof(s->offset)); |
2001 |
|
|
s->current_stream = 0; |
2002 |
|
|
} |
2003 |
|
|
|
2004 |
|
|
|
2005 |
|
|
/** |
2006 |
|
|
*@brief wmapro decoder |
2007 |
|
|
*/ |
2008 |
|
|
AVCodec ff_wmapro_decoder = { |
2009 |
|
|
.name = "wmapro", |
2010 |
|
|
.long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"), |
2011 |
|
|
.type = AVMEDIA_TYPE_AUDIO, |
2012 |
|
|
.id = AV_CODEC_ID_WMAPRO, |
2013 |
|
|
.priv_data_size = sizeof(WMAProDecodeCtx), |
2014 |
|
|
.init = wmapro_decode_init, |
2015 |
|
|
.close = wmapro_decode_end, |
2016 |
|
|
.decode = wmapro_decode_packet, |
2017 |
|
|
.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1, |
2018 |
|
|
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
2019 |
|
|
.flush = wmapro_flush, |
2020 |
|
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, |
2021 |
|
|
AV_SAMPLE_FMT_NONE }, |
2022 |
|
|
}; |
2023 |
|
|
|
2024 |
|
|
AVCodec ff_xma1_decoder = { |
2025 |
|
|
.name = "xma1", |
2026 |
|
|
.long_name = NULL_IF_CONFIG_SMALL("Xbox Media Audio 1"), |
2027 |
|
|
.type = AVMEDIA_TYPE_AUDIO, |
2028 |
|
|
.id = AV_CODEC_ID_XMA1, |
2029 |
|
|
.priv_data_size = sizeof(XMADecodeCtx), |
2030 |
|
|
.init = xma_decode_init, |
2031 |
|
|
.close = xma_decode_end, |
2032 |
|
|
.decode = xma_decode_packet, |
2033 |
|
|
.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY, |
2034 |
|
|
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
2035 |
|
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, |
2036 |
|
|
AV_SAMPLE_FMT_NONE }, |
2037 |
|
|
}; |
2038 |
|
|
|
2039 |
|
|
AVCodec ff_xma2_decoder = { |
2040 |
|
|
.name = "xma2", |
2041 |
|
|
.long_name = NULL_IF_CONFIG_SMALL("Xbox Media Audio 2"), |
2042 |
|
|
.type = AVMEDIA_TYPE_AUDIO, |
2043 |
|
|
.id = AV_CODEC_ID_XMA2, |
2044 |
|
|
.priv_data_size = sizeof(XMADecodeCtx), |
2045 |
|
|
.init = xma_decode_init, |
2046 |
|
|
.close = xma_decode_end, |
2047 |
|
|
.decode = xma_decode_packet, |
2048 |
|
|
.flush = xma_flush, |
2049 |
|
|
.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY, |
2050 |
|
|
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
2051 |
|
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, |
2052 |
|
|
AV_SAMPLE_FMT_NONE }, |
2053 |
|
|
}; |