GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/vc2enc.c Lines: 522 600 87.0 %
Date: 2020-09-25 23:16:12 Branches: 183 270 67.8 %

Line Branch Exec Source
1
/*
2
 * Copyright (C) 2016 Open Broadcast Systems Ltd.
3
 * Author        2016 Rostislav Pehlivanov <atomnuker@gmail.com>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
#include "libavutil/pixdesc.h"
23
#include "libavutil/opt.h"
24
#include "dirac.h"
25
#include "put_bits.h"
26
#include "internal.h"
27
#include "version.h"
28
29
#include "vc2enc_dwt.h"
30
#include "diractab.h"
31
32
/* The limited size resolution of each slice forces us to do this */
33
#define SSIZE_ROUND(b) (FFALIGN((b), s->size_scaler) + 4 + s->prefix_bytes)
34
35
/* Decides the cutoff point in # of slices to distribute the leftover bytes */
36
#define SLICE_REDIST_TOTAL 150
37
38
typedef struct VC2BaseVideoFormat {
39
    enum AVPixelFormat pix_fmt;
40
    AVRational time_base;
41
    int width, height, interlaced, level;
42
    const char *name;
43
} VC2BaseVideoFormat;
44
45
static const VC2BaseVideoFormat base_video_fmts[] = {
46
    { 0 }, /* Custom format, here just to make indexing equal to base_vf */
47
    { AV_PIX_FMT_YUV420P,   { 1001, 15000 },  176,  120, 0, 1,     "QSIF525" },
48
    { AV_PIX_FMT_YUV420P,   {    2,    25 },  176,  144, 0, 1,     "QCIF"    },
49
    { AV_PIX_FMT_YUV420P,   { 1001, 15000 },  352,  240, 0, 1,     "SIF525"  },
50
    { AV_PIX_FMT_YUV420P,   {    2,    25 },  352,  288, 0, 1,     "CIF"     },
51
    { AV_PIX_FMT_YUV420P,   { 1001, 15000 },  704,  480, 0, 1,     "4SIF525" },
52
    { AV_PIX_FMT_YUV420P,   {    2,    25 },  704,  576, 0, 1,     "4CIF"    },
53
54
    { AV_PIX_FMT_YUV422P10, { 1001, 30000 },  720,  480, 1, 2,   "SD480I-60" },
55
    { AV_PIX_FMT_YUV422P10, {    1,    25 },  720,  576, 1, 2,   "SD576I-50" },
56
57
    { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 1280,  720, 0, 3,  "HD720P-60"  },
58
    { AV_PIX_FMT_YUV422P10, {    1,    50 }, 1280,  720, 0, 3,  "HD720P-50"  },
59
    { AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 1920, 1080, 1, 3,  "HD1080I-60" },
60
    { AV_PIX_FMT_YUV422P10, {    1,    25 }, 1920, 1080, 1, 3,  "HD1080I-50" },
61
    { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 1920, 1080, 0, 3,  "HD1080P-60" },
62
    { AV_PIX_FMT_YUV422P10, {    1,    50 }, 1920, 1080, 0, 3,  "HD1080P-50" },
63
64
    { AV_PIX_FMT_YUV444P12, {    1,    24 }, 2048, 1080, 0, 4,        "DC2K" },
65
    { AV_PIX_FMT_YUV444P12, {    1,    24 }, 4096, 2160, 0, 5,        "DC4K" },
66
67
    { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 3840, 2160, 0, 6, "UHDTV 4K-60" },
68
    { AV_PIX_FMT_YUV422P10, {    1,    50 }, 3840, 2160, 0, 6, "UHDTV 4K-50" },
69
70
    { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 7680, 4320, 0, 7, "UHDTV 8K-60" },
71
    { AV_PIX_FMT_YUV422P10, {    1,    50 }, 7680, 4320, 0, 7, "UHDTV 8K-50" },
72
73
    { AV_PIX_FMT_YUV422P10, { 1001, 24000 }, 1920, 1080, 0, 3,  "HD1080P-24" },
74
    { AV_PIX_FMT_YUV422P10, { 1001, 30000 },  720,  486, 1, 2,  "SD Pro486"  },
75
};
76
static const int base_video_fmts_len = FF_ARRAY_ELEMS(base_video_fmts);
77
78
enum VC2_QM {
79
    VC2_QM_DEF = 0,
80
    VC2_QM_COL,
81
    VC2_QM_FLAT,
82
83
    VC2_QM_NB
84
};
85
86
typedef struct SubBand {
87
    dwtcoef *buf;
88
    ptrdiff_t stride;
89
    int width;
90
    int height;
91
} SubBand;
92
93
typedef struct Plane {
94
    SubBand band[MAX_DWT_LEVELS][4];
95
    dwtcoef *coef_buf;
96
    int width;
97
    int height;
98
    int dwt_width;
99
    int dwt_height;
100
    ptrdiff_t coef_stride;
101
} Plane;
102
103
typedef struct SliceArgs {
104
    PutBitContext pb;
105
    int cache[DIRAC_MAX_QUANT_INDEX];
106
    void *ctx;
107
    int x;
108
    int y;
109
    int quant_idx;
110
    int bits_ceil;
111
    int bits_floor;
112
    int bytes;
113
} SliceArgs;
114
115
typedef struct TransformArgs {
116
    void *ctx;
117
    Plane *plane;
118
    void *idata;
119
    ptrdiff_t istride;
120
    int field;
121
    VC2TransformContext t;
122
} TransformArgs;
123
124
typedef struct VC2EncContext {
125
    AVClass *av_class;
126
    PutBitContext pb;
127
    Plane plane[3];
128
    AVCodecContext *avctx;
129
    DiracVersionInfo ver;
130
131
    SliceArgs *slice_args;
132
    TransformArgs transform_args[3];
133
134
    /* For conversion from unsigned pixel values to signed */
135
    int diff_offset;
136
    int bpp;
137
    int bpp_idx;
138
139
    /* Picture number */
140
    uint32_t picture_number;
141
142
    /* Base video format */
143
    int base_vf;
144
    int level;
145
    int profile;
146
147
    /* Quantization matrix */
148
    uint8_t quant[MAX_DWT_LEVELS][4];
149
    int custom_quant_matrix;
150
151
    /* Division LUT */
152
    uint32_t qmagic_lut[116][2];
153
154
    int num_x; /* #slices horizontally */
155
    int num_y; /* #slices vertically */
156
    int prefix_bytes;
157
    int size_scaler;
158
    int chroma_x_shift;
159
    int chroma_y_shift;
160
161
    /* Rate control stuff */
162
    int frame_max_bytes;
163
    int slice_max_bytes;
164
    int slice_min_bytes;
165
    int q_ceil;
166
    int q_avg;
167
168
    /* Options */
169
    double tolerance;
170
    int wavelet_idx;
171
    int wavelet_depth;
172
    int strict_compliance;
173
    int slice_height;
174
    int slice_width;
175
    int interlaced;
176
    enum VC2_QM quant_matrix;
177
178
    /* Parse code state */
179
    uint32_t next_parse_offset;
180
    enum DiracParseCodes last_parse_code;
181
} VC2EncContext;
182
183
35739495
static av_always_inline void put_vc2_ue_uint(PutBitContext *pb, uint32_t val)
184
{
185
    int i;
186
35739495
    int pbits = 0, bits = 0, topbit = 1, maxval = 1;
187
188
35739495
    if (!val++) {
189
3422589
        put_bits(pb, 1, 1);
190
3422589
        return;
191
    }
192
193
155685392
    while (val > maxval) {
194
123368486
        topbit <<= 1;
195
123368486
        maxval <<= 1;
196
123368486
        maxval |=  1;
197
    }
198
199
32316906
    bits = ff_log2(topbit);
200
201
155685392
    for (i = 0; i < bits; i++) {
202
123368486
        topbit >>= 1;
203
123368486
        pbits <<= 2;
204
123368486
        if (val & topbit)
205
55341066
            pbits |= 0x1;
206
    }
207
208
32316906
    put_bits(pb, bits*2 + 1, (pbits << 1) | 1);
209
}
210
211
35735040
static av_always_inline int count_vc2_ue_uint(uint32_t val)
212
{
213
35735040
    int topbit = 1, maxval = 1;
214
215
35735040
    if (!val++)
216
3420429
        return 1;
217
218
155675552
    while (val > maxval) {
219
123360941
        topbit <<= 1;
220
123360941
        maxval <<= 1;
221
123360941
        maxval |=  1;
222
    }
223
224
32314611
    return ff_log2(topbit)*2 + 1;
225
}
226
227
/* VC-2 10.4 - parse_info() */
228
660
static void encode_parse_info(VC2EncContext *s, enum DiracParseCodes pcode)
229
{
230
    uint32_t cur_pos, dist;
231
232
660
    avpriv_align_put_bits(&s->pb);
233
234
660
    cur_pos = put_bits_count(&s->pb) >> 3;
235
236
    /* Magic string */
237
660
    avpriv_put_string(&s->pb, "BBCD", 0);
238
239
    /* Parse code */
240
660
    put_bits(&s->pb, 8, pcode);
241
242
    /* Next parse offset */
243
660
    dist = cur_pos - s->next_parse_offset;
244
660
    AV_WB32(s->pb.buf + s->next_parse_offset + 5, dist);
245
660
    s->next_parse_offset = cur_pos;
246
660
    put_bits32(&s->pb, pcode == DIRAC_PCODE_END_SEQ ? 13 : 0);
247
248
    /* Last parse offset */
249
660
    put_bits32(&s->pb, s->last_parse_code == DIRAC_PCODE_END_SEQ ? 13 : dist);
250
251
660
    s->last_parse_code = pcode;
252
660
}
253
254
/* VC-2 11.1 - parse_parameters()
255
 * The level dictates what the decoder should expect in terms of resolution
256
 * and allows it to quickly reject whatever it can't support. Remember,
257
 * this codec kinda targets cheapo FPGAs without much memory. Unfortunately
258
 * it also limits us greatly in our choice of formats, hence the flag to disable
259
 * strict_compliance */
260
165
static void encode_parse_params(VC2EncContext *s)
261
{
262
165
    put_vc2_ue_uint(&s->pb, s->ver.major); /* VC-2 demands this to be 2 */
263
165
    put_vc2_ue_uint(&s->pb, s->ver.minor); /* ^^ and this to be 0       */
264
165
    put_vc2_ue_uint(&s->pb, s->profile);   /* 3 to signal HQ profile    */
265
165
    put_vc2_ue_uint(&s->pb, s->level);     /* 3 - 1080/720, 6 - 4K      */
266
165
}
267
268
/* VC-2 11.3 - frame_size() */
269
165
static void encode_frame_size(VC2EncContext *s)
270
{
271
165
    put_bits(&s->pb, 1, !s->strict_compliance);
272
165
    if (!s->strict_compliance) {
273
165
        AVCodecContext *avctx = s->avctx;
274
165
        put_vc2_ue_uint(&s->pb, avctx->width);
275
165
        put_vc2_ue_uint(&s->pb, avctx->height);
276
    }
277
165
}
278
279
/* VC-2 11.3.3 - color_diff_sampling_format() */
280
165
static void encode_sample_fmt(VC2EncContext *s)
281
{
282
165
    put_bits(&s->pb, 1, !s->strict_compliance);
283
165
    if (!s->strict_compliance) {
284
        int idx;
285

165
        if (s->chroma_x_shift == 1 && s->chroma_y_shift == 0)
286
75
            idx = 1; /* 422 */
287

90
        else if (s->chroma_x_shift == 1 && s->chroma_y_shift == 1)
288
45
            idx = 2; /* 420 */
289
        else
290
45
            idx = 0; /* 444 */
291
165
        put_vc2_ue_uint(&s->pb, idx);
292
    }
293
165
}
294
295
/* VC-2 11.3.4 - scan_format() */
296
165
static void encode_scan_format(VC2EncContext *s)
297
{
298
165
    put_bits(&s->pb, 1, !s->strict_compliance);
299
165
    if (!s->strict_compliance)
300
165
        put_vc2_ue_uint(&s->pb, s->interlaced);
301
165
}
302
303
/* VC-2 11.3.5 - frame_rate() */
304
165
static void encode_frame_rate(VC2EncContext *s)
305
{
306
165
    put_bits(&s->pb, 1, !s->strict_compliance);
307
165
    if (!s->strict_compliance) {
308
165
        AVCodecContext *avctx = s->avctx;
309
165
        put_vc2_ue_uint(&s->pb, 0);
310
165
        put_vc2_ue_uint(&s->pb, avctx->time_base.den);
311
165
        put_vc2_ue_uint(&s->pb, avctx->time_base.num);
312
    }
313
165
}
314
315
/* VC-2 11.3.6 - aspect_ratio() */
316
165
static void encode_aspect_ratio(VC2EncContext *s)
317
{
318
165
    put_bits(&s->pb, 1, !s->strict_compliance);
319
165
    if (!s->strict_compliance) {
320
165
        AVCodecContext *avctx = s->avctx;
321
165
        put_vc2_ue_uint(&s->pb, 0);
322
165
        put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.num);
323
165
        put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.den);
324
    }
325
165
}
326
327
/* VC-2 11.3.7 - clean_area() */
328
165
static void encode_clean_area(VC2EncContext *s)
329
{
330
165
    put_bits(&s->pb, 1, 0);
331
165
}
332
333
/* VC-2 11.3.8 - signal_range() */
334
165
static void encode_signal_range(VC2EncContext *s)
335
{
336
165
    put_bits(&s->pb, 1, !s->strict_compliance);
337
165
    if (!s->strict_compliance)
338
165
        put_vc2_ue_uint(&s->pb, s->bpp_idx);
339
165
}
340
341
/* VC-2 11.3.9 - color_spec() */
342
165
static void encode_color_spec(VC2EncContext *s)
343
{
344
165
    AVCodecContext *avctx = s->avctx;
345
165
    put_bits(&s->pb, 1, !s->strict_compliance);
346
165
    if (!s->strict_compliance) {
347
        int val;
348
165
        put_vc2_ue_uint(&s->pb, 0);
349
350
        /* primaries */
351
165
        put_bits(&s->pb, 1, 1);
352
165
        if (avctx->color_primaries == AVCOL_PRI_BT470BG)
353
            val = 2;
354
165
        else if (avctx->color_primaries == AVCOL_PRI_SMPTE170M)
355
            val = 1;
356
165
        else if (avctx->color_primaries == AVCOL_PRI_SMPTE240M)
357
            val = 1;
358
        else
359
165
            val = 0;
360
165
        put_vc2_ue_uint(&s->pb, val);
361
362
        /* color matrix */
363
165
        put_bits(&s->pb, 1, 1);
364
165
        if (avctx->colorspace == AVCOL_SPC_RGB)
365
            val = 3;
366
165
        else if (avctx->colorspace == AVCOL_SPC_YCOCG)
367
            val = 2;
368
165
        else if (avctx->colorspace == AVCOL_SPC_BT470BG)
369
            val = 1;
370
        else
371
165
            val = 0;
372
165
        put_vc2_ue_uint(&s->pb, val);
373
374
        /* transfer function */
375
165
        put_bits(&s->pb, 1, 1);
376
165
        if (avctx->color_trc == AVCOL_TRC_LINEAR)
377
            val = 2;
378
165
        else if (avctx->color_trc == AVCOL_TRC_BT1361_ECG)
379
            val = 1;
380
        else
381
165
            val = 0;
382
165
        put_vc2_ue_uint(&s->pb, val);
383
    }
384
165
}
385
386
/* VC-2 11.3 - source_parameters() */
387
165
static void encode_source_params(VC2EncContext *s)
388
{
389
165
    encode_frame_size(s);
390
165
    encode_sample_fmt(s);
391
165
    encode_scan_format(s);
392
165
    encode_frame_rate(s);
393
165
    encode_aspect_ratio(s);
394
165
    encode_clean_area(s);
395
165
    encode_signal_range(s);
396
165
    encode_color_spec(s);
397
165
}
398
399
/* VC-2 11 - sequence_header() */
400
165
static void encode_seq_header(VC2EncContext *s)
401
{
402
165
    avpriv_align_put_bits(&s->pb);
403
165
    encode_parse_params(s);
404
165
    put_vc2_ue_uint(&s->pb, s->base_vf);
405
165
    encode_source_params(s);
406
165
    put_vc2_ue_uint(&s->pb, s->interlaced); /* Frames or fields coding */
407
165
}
408
409
/* VC-2 12.1 - picture_header() */
410
165
static void encode_picture_header(VC2EncContext *s)
411
{
412
165
    avpriv_align_put_bits(&s->pb);
413
165
    put_bits32(&s->pb, s->picture_number++);
414
165
}
415
416
/* VC-2 12.3.4.1 - slice_parameters() */
417
165
static void encode_slice_params(VC2EncContext *s)
418
{
419
165
    put_vc2_ue_uint(&s->pb, s->num_x);
420
165
    put_vc2_ue_uint(&s->pb, s->num_y);
421
165
    put_vc2_ue_uint(&s->pb, s->prefix_bytes);
422
165
    put_vc2_ue_uint(&s->pb, s->size_scaler);
423
165
}
424
425
/* 1st idx = LL, second - vertical, third - horizontal, fourth - total */
426
const uint8_t vc2_qm_col_tab[][4] = {
427
    {20,  9, 15,  4},
428
    { 0,  6,  6,  4},
429
    { 0,  3,  3,  5},
430
    { 0,  3,  5,  1},
431
    { 0, 11, 10, 11}
432
};
433
434
const uint8_t vc2_qm_flat_tab[][4] = {
435
    { 0,  0,  0,  0},
436
    { 0,  0,  0,  0},
437
    { 0,  0,  0,  0},
438
    { 0,  0,  0,  0},
439
    { 0,  0,  0,  0}
440
};
441
442
165
static void init_quant_matrix(VC2EncContext *s)
443
{
444
    int level, orientation;
445
446

165
    if (s->wavelet_depth <= 4 && s->quant_matrix == VC2_QM_DEF) {
447
165
        s->custom_quant_matrix = 0;
448
825
        for (level = 0; level < s->wavelet_depth; level++) {
449
660
            s->quant[level][0] = ff_dirac_default_qmat[s->wavelet_idx][level][0];
450
660
            s->quant[level][1] = ff_dirac_default_qmat[s->wavelet_idx][level][1];
451
660
            s->quant[level][2] = ff_dirac_default_qmat[s->wavelet_idx][level][2];
452
660
            s->quant[level][3] = ff_dirac_default_qmat[s->wavelet_idx][level][3];
453
        }
454
165
        return;
455
    }
456
457
    s->custom_quant_matrix = 1;
458
459
    if (s->quant_matrix == VC2_QM_DEF) {
460
        for (level = 0; level < s->wavelet_depth; level++) {
461
            for (orientation = 0; orientation < 4; orientation++) {
462
                if (level <= 3)
463
                    s->quant[level][orientation] = ff_dirac_default_qmat[s->wavelet_idx][level][orientation];
464
                else
465
                    s->quant[level][orientation] = vc2_qm_col_tab[level][orientation];
466
            }
467
        }
468
    } else if (s->quant_matrix == VC2_QM_COL) {
469
        for (level = 0; level < s->wavelet_depth; level++) {
470
            for (orientation = 0; orientation < 4; orientation++) {
471
                s->quant[level][orientation] = vc2_qm_col_tab[level][orientation];
472
            }
473
        }
474
    } else {
475
        for (level = 0; level < s->wavelet_depth; level++) {
476
            for (orientation = 0; orientation < 4; orientation++) {
477
                s->quant[level][orientation] = vc2_qm_flat_tab[level][orientation];
478
            }
479
        }
480
    }
481
}
482
483
/* VC-2 12.3.4.2 - quant_matrix() */
484
165
static void encode_quant_matrix(VC2EncContext *s)
485
{
486
    int level;
487
165
    put_bits(&s->pb, 1, s->custom_quant_matrix);
488
165
    if (s->custom_quant_matrix) {
489
        put_vc2_ue_uint(&s->pb, s->quant[0][0]);
490
        for (level = 0; level < s->wavelet_depth; level++) {
491
            put_vc2_ue_uint(&s->pb, s->quant[level][1]);
492
            put_vc2_ue_uint(&s->pb, s->quant[level][2]);
493
            put_vc2_ue_uint(&s->pb, s->quant[level][3]);
494
        }
495
    }
496
165
}
497
498
/* VC-2 12.3 - transform_parameters() */
499
165
static void encode_transform_params(VC2EncContext *s)
500
{
501
165
    put_vc2_ue_uint(&s->pb, s->wavelet_idx);
502
165
    put_vc2_ue_uint(&s->pb, s->wavelet_depth);
503
504
165
    encode_slice_params(s);
505
165
    encode_quant_matrix(s);
506
165
}
507
508
/* VC-2 12.2 - wavelet_transform() */
509
165
static void encode_wavelet_transform(VC2EncContext *s)
510
{
511
165
    encode_transform_params(s);
512
165
    avpriv_align_put_bits(&s->pb);
513
165
}
514
515
/* VC-2 12 - picture_parse() */
516
165
static void encode_picture_start(VC2EncContext *s)
517
{
518
165
    avpriv_align_put_bits(&s->pb);
519
165
    encode_picture_header(s);
520
165
    avpriv_align_put_bits(&s->pb);
521
165
    encode_wavelet_transform(s);
522
165
}
523
524
#define QUANT(c, mul, add, shift) (((mul) * (c) + (add)) >> (shift))
525
526
/* VC-2 13.5.5.2 - slice_band() */
527
1274130
static void encode_subband(VC2EncContext *s, PutBitContext *pb, int sx, int sy,
528
                           SubBand *b, int quant)
529
{
530
    int x, y;
531
532
1274130
    const int left   = b->width  * (sx+0) / s->num_x;
533
1274130
    const int right  = b->width  * (sx+1) / s->num_x;
534
1274130
    const int top    = b->height * (sy+0) / s->num_y;
535
1274130
    const int bottom = b->height * (sy+1) / s->num_y;
536
537
1274130
    dwtcoef *coeff = b->buf + top * b->stride;
538
1274130
    const uint64_t q_m = ((uint64_t)(s->qmagic_lut[quant][0])) << 2;
539
1274130
    const uint64_t q_a = s->qmagic_lut[quant][1];
540
1274130
    const int q_s = av_log2(ff_dirac_qscale_tab[quant]) + 32;
541
542
5372730
    for (y = top; y < bottom; y++) {
543
39833640
        for (x = left; x < right; x++) {
544
35735040
            uint32_t c_abs = QUANT(FFABS(coeff[x]), q_m, q_a, q_s);
545
35735040
            put_vc2_ue_uint(pb, c_abs);
546
35735040
            if (c_abs)
547
32314611
                put_bits(pb, 1, coeff[x] < 0);
548
        }
549
4098600
        coeff += b->stride;
550
    }
551
1274130
}
552
553
130680
static int count_hq_slice(SliceArgs *slice, int quant_idx)
554
{
555
    int x, y;
556
    uint8_t quants[MAX_DWT_LEVELS][4];
557
130680
    int bits = 0, p, level, orientation;
558
130680
    VC2EncContext *s = slice->ctx;
559
560
130680
    if (slice->cache[quant_idx])
561
98010
        return slice->cache[quant_idx];
562
563
32670
    bits += 8*s->prefix_bytes;
564
32670
    bits += 8; /* quant_idx */
565
566
163350
    for (level = 0; level < s->wavelet_depth; level++)
567
555390
        for (orientation = !!level; orientation < 4; orientation++)
568
424710
            quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0);
569
570
130680
    for (p = 0; p < 3; p++) {
571
        int bytes_start, bytes_len, pad_s, pad_c;
572
98010
        bytes_start = bits >> 3;
573
98010
        bits += 8;
574
490050
        for (level = 0; level < s->wavelet_depth; level++) {
575
1666170
            for (orientation = !!level; orientation < 4; orientation++) {
576
1274130
                SubBand *b = &s->plane[p].band[level][orientation];
577
578
1274130
                const int q_idx = quants[level][orientation];
579
1274130
                const uint64_t q_m = ((uint64_t)s->qmagic_lut[q_idx][0]) << 2;
580
1274130
                const uint64_t q_a = s->qmagic_lut[q_idx][1];
581
1274130
                const int q_s = av_log2(ff_dirac_qscale_tab[q_idx]) + 32;
582
583
1274130
                const int left   = b->width  * slice->x    / s->num_x;
584
1274130
                const int right  = b->width  *(slice->x+1) / s->num_x;
585
1274130
                const int top    = b->height * slice->y    / s->num_y;
586
1274130
                const int bottom = b->height *(slice->y+1) / s->num_y;
587
588
1274130
                dwtcoef *buf = b->buf + top * b->stride;
589
590
5372730
                for (y = top; y < bottom; y++) {
591
39833640
                    for (x = left; x < right; x++) {
592
35735040
                        uint32_t c_abs = QUANT(FFABS(buf[x]), q_m, q_a, q_s);
593
35735040
                        bits += count_vc2_ue_uint(c_abs);
594
35735040
                        bits += !!c_abs;
595
                    }
596
4098600
                    buf += b->stride;
597
                }
598
            }
599
        }
600
98010
        bits += FFALIGN(bits, 8) - bits;
601
98010
        bytes_len = (bits >> 3) - bytes_start - 1;
602
98010
        pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler;
603
98010
        pad_c = (pad_s*s->size_scaler) - bytes_len;
604
98010
        bits += pad_c*8;
605
    }
606
607
32670
    slice->cache[quant_idx] = bits;
608
609
32670
    return bits;
610
}
611
612
/* Approaches the best possible quantizer asymptotically, its kinda exaustive
613
 * but we have a LUT to get the coefficient size in bits. Guaranteed to never
614
 * overshoot, which is apparently very important when streaming */
615
32670
static int rate_control(AVCodecContext *avctx, void *arg)
616
{
617
32670
    SliceArgs *slice_dat = arg;
618
32670
    VC2EncContext *s = slice_dat->ctx;
619
32670
    const int top = slice_dat->bits_ceil;
620
32670
    const int bottom = slice_dat->bits_floor;
621
32670
    int quant_buf[2] = {-1, -1};
622
32670
    int quant = slice_dat->quant_idx, step = 1;
623
32670
    int bits_last, bits = count_hq_slice(slice_dat, quant);
624

98010
    while ((bits > top) || (bits < bottom)) {
625
98010
        const int signed_step = bits > top ? +step : -step;
626
98010
        quant  = av_clip(quant + signed_step, 0, s->q_ceil-1);
627
98010
        bits   = count_hq_slice(slice_dat, quant);
628
98010
        if (quant_buf[1] == quant) {
629
32670
            quant = FFMAX(quant_buf[0], quant);
630
32670
            bits  = quant == quant_buf[0] ? bits_last : bits;
631
32670
            break;
632
        }
633
65340
        step         = av_clip(step/2, 1, (s->q_ceil-1)/2);
634
65340
        quant_buf[1] = quant_buf[0];
635
65340
        quant_buf[0] = quant;
636
65340
        bits_last    = bits;
637
    }
638
32670
    slice_dat->quant_idx = av_clip(quant, 0, s->q_ceil-1);
639
32670
    slice_dat->bytes = SSIZE_ROUND(bits >> 3);
640
32670
    return 0;
641
}
642
643
165
static int calc_slice_sizes(VC2EncContext *s)
644
{
645
165
    int i, j, slice_x, slice_y, bytes_left = 0;
646
165
    int bytes_top[SLICE_REDIST_TOTAL] = {0};
647
165
    int64_t total_bytes_needed = 0;
648
165
    int slice_redist_range = FFMIN(SLICE_REDIST_TOTAL, s->num_x*s->num_y);
649
165
    SliceArgs *enc_args = s->slice_args;
650
165
    SliceArgs *top_loc[SLICE_REDIST_TOTAL] = {NULL};
651
652
165
    init_quant_matrix(s);
653
654
3135
    for (slice_y = 0; slice_y < s->num_y; slice_y++) {
655
35640
        for (slice_x = 0; slice_x < s->num_x; slice_x++) {
656
32670
            SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x];
657
32670
            args->ctx = s;
658
32670
            args->x   = slice_x;
659
32670
            args->y   = slice_y;
660
32670
            args->bits_ceil  = s->slice_max_bytes << 3;
661
32670
            args->bits_floor = s->slice_min_bytes << 3;
662
32670
            memset(args->cache, 0, s->q_ceil*sizeof(*args->cache));
663
        }
664
    }
665
666
    /* First pass - determine baseline slice sizes w.r.t. max_slice_size */
667
165
    s->avctx->execute(s->avctx, rate_control, enc_args, NULL, s->num_x*s->num_y,
668
                      sizeof(SliceArgs));
669
670
32835
    for (i = 0; i < s->num_x*s->num_y; i++) {
671
32670
        SliceArgs *args = &enc_args[i];
672
32670
        bytes_left += args->bytes;
673
1155403
        for (j = 0; j < slice_redist_range; j++) {
674
1155403
            if (args->bytes > bytes_top[j]) {
675
32670
                bytes_top[j] = args->bytes;
676
32670
                top_loc[j]   = args;
677
32670
                break;
678
            }
679
        }
680
    }
681
682
165
    bytes_left = s->frame_max_bytes - bytes_left;
683
684
    /* Second pass - distribute leftover bytes */
685
165
    while (bytes_left > 0) {
686
165
        int distributed = 0;
687
165
        for (i = 0; i < slice_redist_range; i++) {
688
            SliceArgs *args;
689
            int bits, bytes, diff, prev_bytes, new_idx;
690
165
            if (bytes_left <= 0)
691
                break;
692

165
            if (!top_loc[i] || !top_loc[i]->quant_idx)
693
                break;
694
            args = top_loc[i];
695
            prev_bytes = args->bytes;
696
            new_idx = FFMAX(args->quant_idx - 1, 0);
697
            bits  = count_hq_slice(args, new_idx);
698
            bytes = SSIZE_ROUND(bits >> 3);
699
            diff  = bytes - prev_bytes;
700
            if ((bytes_left - diff) > 0) {
701
                args->quant_idx = new_idx;
702
                args->bytes = bytes;
703
                bytes_left -= diff;
704
                distributed++;
705
            }
706
        }
707
165
        if (!distributed)
708
165
            break;
709
    }
710
711
32835
    for (i = 0; i < s->num_x*s->num_y; i++) {
712
32670
        SliceArgs *args = &enc_args[i];
713
32670
        total_bytes_needed += args->bytes;
714
32670
        s->q_avg = (s->q_avg + args->quant_idx)/2;
715
    }
716
717
165
    return total_bytes_needed;
718
}
719
720
/* VC-2 13.5.3 - hq_slice */
721
32670
static int encode_hq_slice(AVCodecContext *avctx, void *arg)
722
{
723
32670
    SliceArgs *slice_dat = arg;
724
32670
    VC2EncContext *s = slice_dat->ctx;
725
32670
    PutBitContext *pb = &slice_dat->pb;
726
32670
    const int slice_x = slice_dat->x;
727
32670
    const int slice_y = slice_dat->y;
728
32670
    const int quant_idx = slice_dat->quant_idx;
729
32670
    const int slice_bytes_max = slice_dat->bytes;
730
    uint8_t quants[MAX_DWT_LEVELS][4];
731
    int p, level, orientation;
732
733
    /* The reference decoder ignores it, and its typical length is 0 */
734
32670
    memset(put_bits_ptr(pb), 0, s->prefix_bytes);
735
32670
    skip_put_bytes(pb, s->prefix_bytes);
736
737
32670
    put_bits(pb, 8, quant_idx);
738
739
    /* Slice quantization (slice_quantizers() in the specs) */
740
163350
    for (level = 0; level < s->wavelet_depth; level++)
741
555390
        for (orientation = !!level; orientation < 4; orientation++)
742
424710
            quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0);
743
744
    /* Luma + 2 Chroma planes */
745
130680
    for (p = 0; p < 3; p++) {
746
        int bytes_start, bytes_len, pad_s, pad_c;
747
98010
        bytes_start = put_bits_count(pb) >> 3;
748
98010
        put_bits(pb, 8, 0);
749
490050
        for (level = 0; level < s->wavelet_depth; level++) {
750
1666170
            for (orientation = !!level; orientation < 4; orientation++) {
751
1274130
                encode_subband(s, pb, slice_x, slice_y,
752
                               &s->plane[p].band[level][orientation],
753
1274130
                               quants[level][orientation]);
754
            }
755
        }
756
98010
        avpriv_align_put_bits(pb);
757
98010
        bytes_len = (put_bits_count(pb) >> 3) - bytes_start - 1;
758
98010
        if (p == 2) {
759
32670
            int len_diff = slice_bytes_max - (put_bits_count(pb) >> 3);
760
32670
            pad_s = FFALIGN((bytes_len + len_diff), s->size_scaler)/s->size_scaler;
761
32670
            pad_c = (pad_s*s->size_scaler) - bytes_len;
762
        } else {
763
65340
            pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler;
764
65340
            pad_c = (pad_s*s->size_scaler) - bytes_len;
765
        }
766
98010
        pb->buf[bytes_start] = pad_s;
767
98010
        flush_put_bits(pb);
768
        /* vc2-reference uses that padding that decodes to '0' coeffs */
769
98010
        memset(put_bits_ptr(pb), 0xFF, pad_c);
770
98010
        skip_put_bytes(pb, pad_c);
771
    }
772
773
32670
    return 0;
774
}
775
776
/* VC-2 13.5.1 - low_delay_transform_data() */
777
165
static int encode_slices(VC2EncContext *s)
778
{
779
    uint8_t *buf;
780
165
    int slice_x, slice_y, skip = 0;
781
165
    SliceArgs *enc_args = s->slice_args;
782
783
165
    flush_put_bits(&s->pb);
784
165
    buf = put_bits_ptr(&s->pb);
785
786
3135
    for (slice_y = 0; slice_y < s->num_y; slice_y++) {
787
35640
        for (slice_x = 0; slice_x < s->num_x; slice_x++) {
788
32670
            SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x];
789
32670
            init_put_bits(&args->pb, buf + skip, args->bytes+s->prefix_bytes);
790
32670
            skip += args->bytes;
791
        }
792
    }
793
794
165
    s->avctx->execute(s->avctx, encode_hq_slice, enc_args, NULL, s->num_x*s->num_y,
795
                      sizeof(SliceArgs));
796
797
165
    skip_put_bytes(&s->pb, skip);
798
799
165
    return 0;
800
}
801
802
/*
803
 * Transform basics for a 3 level transform
804
 * |---------------------------------------------------------------------|
805
 * |  LL-0  | HL-0  |                 |                                  |
806
 * |--------|-------|      HL-1       |                                  |
807
 * |  LH-0  | HH-0  |                 |                                  |
808
 * |----------------|-----------------|              HL-2                |
809
 * |                |                 |                                  |
810
 * |     LH-1       |      HH-1       |                                  |
811
 * |                |                 |                                  |
812
 * |----------------------------------|----------------------------------|
813
 * |                                  |                                  |
814
 * |                                  |                                  |
815
 * |                                  |                                  |
816
 * |              LH-2                |              HH-2                |
817
 * |                                  |                                  |
818
 * |                                  |                                  |
819
 * |                                  |                                  |
820
 * |---------------------------------------------------------------------|
821
 *
822
 * DWT transforms are generally applied by splitting the image in two vertically
823
 * and applying a low pass transform on the left part and a corresponding high
824
 * pass transform on the right hand side. This is known as the horizontal filter
825
 * stage.
826
 * After that, the same operation is performed except the image is divided
827
 * horizontally, with the high pass on the lower and the low pass on the higher
828
 * side.
829
 * Therefore, you're left with 4 subdivisions - known as  low-low, low-high,
830
 * high-low and high-high. They're referred to as orientations in the decoder
831
 * and encoder.
832
 *
833
 * The LL (low-low) area contains the original image downsampled by the amount
834
 * of levels. The rest of the areas can be thought as the details needed
835
 * to restore the image perfectly to its original size.
836
 */
837
495
static int dwt_plane(AVCodecContext *avctx, void *arg)
838
{
839
495
    TransformArgs *transform_dat = arg;
840
495
    VC2EncContext *s = transform_dat->ctx;
841
495
    const void *frame_data = transform_dat->idata;
842
495
    const ptrdiff_t linesize = transform_dat->istride;
843
495
    const int field = transform_dat->field;
844
495
    const Plane *p = transform_dat->plane;
845
495
    VC2TransformContext *t = &transform_dat->t;
846
495
    dwtcoef *buf = p->coef_buf;
847
495
    const int idx = s->wavelet_idx;
848
495
    const int skip = 1 + s->interlaced;
849
850
    int x, y, level, offset;
851
495
    ptrdiff_t pix_stride = linesize >> (s->bpp - 1);
852
853
495
    if (field == 1) {
854
        offset = 0;
855
        pix_stride <<= 1;
856
495
    } else if (field == 2) {
857
        offset = pix_stride;
858
        pix_stride <<= 1;
859
    } else {
860
495
        offset = 0;
861
    }
862
863
495
    if (s->bpp == 1) {
864
135
        const uint8_t *pix = (const uint8_t *)frame_data + offset;
865
34695
        for (y = 0; y < p->height*skip; y+=skip) {
866
9918720
            for (x = 0; x < p->width; x++) {
867
9884160
                buf[x] = pix[x] - s->diff_offset;
868
            }
869
34560
            memset(&buf[x], 0, (p->coef_stride - p->width)*sizeof(dwtcoef));
870
34560
            buf += p->coef_stride;
871
34560
            pix += pix_stride;
872
        }
873
    } else {
874
360
        const uint16_t *pix = (const uint16_t *)frame_data + offset;
875
95400
        for (y = 0; y < p->height*skip; y+=skip) {
876
25945920
            for (x = 0; x < p->width; x++) {
877
25850880
                buf[x] = pix[x] - s->diff_offset;
878
            }
879
95040
            memset(&buf[x], 0, (p->coef_stride - p->width)*sizeof(dwtcoef));
880
95040
            buf += p->coef_stride;
881
95040
            pix += pix_stride;
882
        }
883
    }
884
885
495
    memset(buf, 0, p->coef_stride * (p->dwt_height - p->height) * sizeof(dwtcoef));
886
887
2475
    for (level = s->wavelet_depth-1; level >= 0; level--) {
888
1980
        const SubBand *b = &p->band[level][0];
889
1980
        t->vc2_subband_dwt[idx](t, p->coef_buf, p->coef_stride,
890
                                b->width, b->height);
891
    }
892
893
495
    return 0;
894
}
895
896
165
static int encode_frame(VC2EncContext *s, AVPacket *avpkt, const AVFrame *frame,
897
                        const char *aux_data, const int header_size, int field)
898
{
899
    int i, ret;
900
    int64_t max_frame_bytes;
901
902
     /* Threaded DWT transform */
903
660
    for (i = 0; i < 3; i++) {
904
495
        s->transform_args[i].ctx   = s;
905
495
        s->transform_args[i].field = field;
906
495
        s->transform_args[i].plane = &s->plane[i];
907
495
        s->transform_args[i].idata = frame->data[i];
908
495
        s->transform_args[i].istride = frame->linesize[i];
909
    }
910
165
    s->avctx->execute(s->avctx, dwt_plane, s->transform_args, NULL, 3,
911
                      sizeof(TransformArgs));
912
913
    /* Calculate per-slice quantizers and sizes */
914
165
    max_frame_bytes = header_size + calc_slice_sizes(s);
915
916
165
    if (field < 2) {
917
165
        ret = ff_alloc_packet2(s->avctx, avpkt,
918
165
                               max_frame_bytes << s->interlaced,
919
165
                               max_frame_bytes << s->interlaced);
920
165
        if (ret) {
921
            av_log(s->avctx, AV_LOG_ERROR, "Error getting output packet.\n");
922
            return ret;
923
        }
924
165
        init_put_bits(&s->pb, avpkt->data, avpkt->size);
925
    }
926
927
    /* Sequence header */
928
165
    encode_parse_info(s, DIRAC_PCODE_SEQ_HEADER);
929
165
    encode_seq_header(s);
930
931
    /* Encoder version */
932
165
    if (aux_data) {
933
165
        encode_parse_info(s, DIRAC_PCODE_AUX);
934
165
        avpriv_put_string(&s->pb, aux_data, 1);
935
    }
936
937
    /* Picture header */
938
165
    encode_parse_info(s, DIRAC_PCODE_PICTURE_HQ);
939
165
    encode_picture_start(s);
940
941
    /* Encode slices */
942
165
    encode_slices(s);
943
944
    /* End sequence */
945
165
    encode_parse_info(s, DIRAC_PCODE_END_SEQ);
946
947
165
    return 0;
948
}
949
950
165
static av_cold int vc2_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
951
                                      const AVFrame *frame, int *got_packet)
952
{
953
165
    int ret = 0;
954
165
    int slice_ceil, sig_size = 256;
955
165
    VC2EncContext *s = avctx->priv_data;
956
165
    const int bitexact = avctx->flags & AV_CODEC_FLAG_BITEXACT;
957
165
    const char *aux_data = bitexact ? "Lavc" : LIBAVCODEC_IDENT;
958
165
    const int aux_data_size = bitexact ? sizeof("Lavc") : sizeof(LIBAVCODEC_IDENT);
959
165
    const int header_size = 100 + aux_data_size;
960
165
    int64_t r_bitrate = avctx->bit_rate >> (s->interlaced);
961
962
165
    s->avctx = avctx;
963
165
    s->size_scaler = 2;
964
165
    s->prefix_bytes = 0;
965
165
    s->last_parse_code = 0;
966
165
    s->next_parse_offset = 0;
967
968
    /* Rate control */
969
165
    s->frame_max_bytes = (av_rescale(r_bitrate, s->avctx->time_base.num,
970
165
                                     s->avctx->time_base.den) >> 3) - header_size;
971
165
    s->slice_max_bytes = slice_ceil = av_rescale(s->frame_max_bytes, 1, s->num_x*s->num_y);
972
973
    /* Find an appropriate size scaler */
974
1155
    while (sig_size > 255) {
975
990
        int r_size = SSIZE_ROUND(s->slice_max_bytes);
976
990
        if (r_size > slice_ceil) {
977
825
            s->slice_max_bytes -= r_size - slice_ceil;
978
825
            r_size = SSIZE_ROUND(s->slice_max_bytes);
979
        }
980
990
        sig_size = r_size/s->size_scaler; /* Signalled slize size */
981
990
        s->size_scaler <<= 1;
982
    }
983
984
165
    s->slice_min_bytes = s->slice_max_bytes - s->slice_max_bytes*(s->tolerance/100.0f);
985
986
165
    ret = encode_frame(s, avpkt, frame, aux_data, header_size, s->interlaced);
987
165
    if (ret)
988
        return ret;
989
165
    if (s->interlaced) {
990
        ret = encode_frame(s, avpkt, frame, aux_data, header_size, 2);
991
        if (ret)
992
            return ret;
993
    }
994
995
165
    flush_put_bits(&s->pb);
996
165
    avpkt->size = put_bits_count(&s->pb) >> 3;
997
998
165
    *got_packet = 1;
999
1000
165
    return 0;
1001
}
1002
1003
33
static av_cold int vc2_encode_end(AVCodecContext *avctx)
1004
{
1005
    int i;
1006
33
    VC2EncContext *s = avctx->priv_data;
1007
1008
33
    av_log(avctx, AV_LOG_INFO, "Qavg: %i\n", s->q_avg);
1009
1010
132
    for (i = 0; i < 3; i++) {
1011
99
        ff_vc2enc_free_transforms(&s->transform_args[i].t);
1012
99
        av_freep(&s->plane[i].coef_buf);
1013
    }
1014
1015
33
    av_freep(&s->slice_args);
1016
1017
33
    return 0;
1018
}
1019
1020
33
static av_cold int vc2_encode_init(AVCodecContext *avctx)
1021
{
1022
    Plane *p;
1023
    SubBand *b;
1024
    int i, level, o, shift, ret;
1025
33
    const AVPixFmtDescriptor *fmt = av_pix_fmt_desc_get(avctx->pix_fmt);
1026
33
    const int depth = fmt->comp[0].depth;
1027
33
    VC2EncContext *s = avctx->priv_data;
1028
1029
33
    s->picture_number = 0;
1030
1031
    /* Total allowed quantization range */
1032
33
    s->q_ceil    = DIRAC_MAX_QUANT_INDEX;
1033
1034
33
    s->ver.major = 2;
1035
33
    s->ver.minor = 0;
1036
33
    s->profile   = 3;
1037
33
    s->level     = 3;
1038
1039
33
    s->base_vf   = -1;
1040
33
    s->strict_compliance = 1;
1041
1042
33
    s->q_avg = 0;
1043
33
    s->slice_max_bytes = 0;
1044
33
    s->slice_min_bytes = 0;
1045
1046
    /* Mark unknown as progressive */
1047
33
    s->interlaced = !((avctx->field_order == AV_FIELD_UNKNOWN) ||
1048
                      (avctx->field_order == AV_FIELD_PROGRESSIVE));
1049
1050
792
    for (i = 0; i < base_video_fmts_len; i++) {
1051
759
        const VC2BaseVideoFormat *fmt = &base_video_fmts[i];
1052
759
        if (avctx->pix_fmt != fmt->pix_fmt)
1053
606
            continue;
1054
153
        if (avctx->time_base.num != fmt->time_base.num)
1055
93
            continue;
1056
60
        if (avctx->time_base.den != fmt->time_base.den)
1057
42
            continue;
1058
18
        if (avctx->width != fmt->width)
1059
18
            continue;
1060
        if (avctx->height != fmt->height)
1061
            continue;
1062
        if (s->interlaced != fmt->interlaced)
1063
            continue;
1064
        s->base_vf = i;
1065
        s->level   = base_video_fmts[i].level;
1066
        break;
1067
    }
1068
1069
33
    if (s->interlaced)
1070
        av_log(avctx, AV_LOG_WARNING, "Interlacing enabled!\n");
1071
1072
33
    if ((s->slice_width  & (s->slice_width  - 1)) ||
1073
33
        (s->slice_height & (s->slice_height - 1))) {
1074
        av_log(avctx, AV_LOG_ERROR, "Slice size is not a power of two!\n");
1075
        return AVERROR_UNKNOWN;
1076
    }
1077
1078
33
    if ((s->slice_width > avctx->width) ||
1079
33
        (s->slice_height > avctx->height)) {
1080
        av_log(avctx, AV_LOG_ERROR, "Slice size is bigger than the image!\n");
1081
        return AVERROR_UNKNOWN;
1082
    }
1083
1084
33
    if (s->base_vf <= 0) {
1085
33
        if (avctx->strict_std_compliance < FF_COMPLIANCE_STRICT) {
1086
33
            s->strict_compliance = s->base_vf = 0;
1087
33
            av_log(avctx, AV_LOG_WARNING, "Format does not strictly comply with VC2 specs\n");
1088
        } else {
1089
            av_log(avctx, AV_LOG_WARNING, "Given format does not strictly comply with "
1090
                   "the specifications, decrease strictness to use it.\n");
1091
            return AVERROR_UNKNOWN;
1092
        }
1093
    } else {
1094
        av_log(avctx, AV_LOG_INFO, "Selected base video format = %i (%s)\n",
1095
               s->base_vf, base_video_fmts[s->base_vf].name);
1096
    }
1097
1098
    /* Chroma subsampling */
1099
33
    ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
1100
33
    if (ret)
1101
        return ret;
1102
1103
    /* Bit depth and color range index */
1104

33
    if (depth == 8 && avctx->color_range == AVCOL_RANGE_JPEG) {
1105
        s->bpp = 1;
1106
        s->bpp_idx = 1;
1107
        s->diff_offset = 128;
1108

33
    } else if (depth == 8 && (avctx->color_range == AVCOL_RANGE_MPEG ||
1109
9
               avctx->color_range == AVCOL_RANGE_UNSPECIFIED)) {
1110
9
        s->bpp = 1;
1111
9
        s->bpp_idx = 2;
1112
9
        s->diff_offset = 128;
1113
24
    } else if (depth == 10) {
1114
15
        s->bpp = 2;
1115
15
        s->bpp_idx = 3;
1116
15
        s->diff_offset = 512;
1117
    } else {
1118
9
        s->bpp = 2;
1119
9
        s->bpp_idx = 4;
1120
9
        s->diff_offset = 2048;
1121
    }
1122
1123
    /* Planes initialization */
1124
132
    for (i = 0; i < 3; i++) {
1125
        int w, h;
1126
99
        p = &s->plane[i];
1127
99
        p->width      = avctx->width  >> (i ? s->chroma_x_shift : 0);
1128
99
        p->height     = avctx->height >> (i ? s->chroma_y_shift : 0);
1129
99
        if (s->interlaced)
1130
            p->height >>= 1;
1131
99
        p->dwt_width  = w = FFALIGN(p->width,  (1 << s->wavelet_depth));
1132
99
        p->dwt_height = h = FFALIGN(p->height, (1 << s->wavelet_depth));
1133
99
        p->coef_stride = FFALIGN(p->dwt_width, 32);
1134
99
        p->coef_buf = av_mallocz(p->coef_stride*p->dwt_height*sizeof(dwtcoef));
1135
99
        if (!p->coef_buf)
1136
            goto alloc_fail;
1137
495
        for (level = s->wavelet_depth-1; level >= 0; level--) {
1138
396
            w = w >> 1;
1139
396
            h = h >> 1;
1140
1980
            for (o = 0; o < 4; o++) {
1141
1584
                b = &p->band[level][o];
1142
1584
                b->width  = w;
1143
1584
                b->height = h;
1144
1584
                b->stride = p->coef_stride;
1145
1584
                shift = (o > 1)*b->height*b->stride + (o & 1)*b->width;
1146
1584
                b->buf = p->coef_buf + shift;
1147
            }
1148
        }
1149
1150
        /* DWT init */
1151
99
        if (ff_vc2enc_init_transforms(&s->transform_args[i].t,
1152
99
                                      s->plane[i].coef_stride,
1153
                                      s->plane[i].dwt_height,
1154
                                      s->slice_width, s->slice_height))
1155
            goto alloc_fail;
1156
    }
1157
1158
    /* Slices */
1159
33
    s->num_x = s->plane[0].dwt_width/s->slice_width;
1160
33
    s->num_y = s->plane[0].dwt_height/s->slice_height;
1161
1162
33
    s->slice_args = av_calloc(s->num_x*s->num_y, sizeof(SliceArgs));
1163
33
    if (!s->slice_args)
1164
        goto alloc_fail;
1165
1166
3861
    for (i = 0; i < 116; i++) {
1167
3828
        const uint64_t qf = ff_dirac_qscale_tab[i];
1168
3828
        const uint32_t m = av_log2(qf);
1169
3828
        const uint32_t t = (1ULL << (m + 32)) / qf;
1170
3828
        const uint32_t r = (t*qf + qf) & UINT32_MAX;
1171
3828
        if (!(qf & (qf - 1))) {
1172
957
            s->qmagic_lut[i][0] = 0xFFFFFFFF;
1173
957
            s->qmagic_lut[i][1] = 0xFFFFFFFF;
1174
2871
        } else if (r <= 1 << m) {
1175
2145
            s->qmagic_lut[i][0] = t + 1;
1176
2145
            s->qmagic_lut[i][1] = 0;
1177
        } else {
1178
726
            s->qmagic_lut[i][0] = t;
1179
726
            s->qmagic_lut[i][1] = t;
1180
        }
1181
    }
1182
1183
33
    return 0;
1184
1185
alloc_fail:
1186
    vc2_encode_end(avctx);
1187
    av_log(avctx, AV_LOG_ERROR, "Unable to allocate memory!\n");
1188
    return AVERROR(ENOMEM);
1189
}
1190
1191
#define VC2ENC_FLAGS (AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
1192
static const AVOption vc2enc_options[] = {
1193
    {"tolerance",     "Max undershoot in percent", offsetof(VC2EncContext, tolerance), AV_OPT_TYPE_DOUBLE, {.dbl = 5.0f}, 0.0f, 45.0f, VC2ENC_FLAGS, "tolerance"},
1194
    {"slice_width",   "Slice width",  offsetof(VC2EncContext, slice_width), AV_OPT_TYPE_INT, {.i64 = 32}, 32, 1024, VC2ENC_FLAGS, "slice_width"},
1195
    {"slice_height",  "Slice height", offsetof(VC2EncContext, slice_height), AV_OPT_TYPE_INT, {.i64 = 16}, 8, 1024, VC2ENC_FLAGS, "slice_height"},
1196
    {"wavelet_depth", "Transform depth", offsetof(VC2EncContext, wavelet_depth), AV_OPT_TYPE_INT, {.i64 = 4}, 1, 5, VC2ENC_FLAGS, "wavelet_depth"},
1197
    {"wavelet_type",  "Transform type",  offsetof(VC2EncContext, wavelet_idx), AV_OPT_TYPE_INT, {.i64 = VC2_TRANSFORM_9_7}, 0, VC2_TRANSFORMS_NB, VC2ENC_FLAGS, "wavelet_idx"},
1198
        {"9_7",          "Deslauriers-Dubuc (9,7)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_9_7},    INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
1199
        {"5_3",          "LeGall (5,3)",            0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_5_3},    INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
1200
        {"haar",         "Haar (with shift)",       0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_HAAR_S}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
1201
        {"haar_noshift", "Haar (without shift)",    0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_HAAR},   INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
1202
    {"qm", "Custom quantization matrix", offsetof(VC2EncContext, quant_matrix), AV_OPT_TYPE_INT, {.i64 = VC2_QM_DEF}, 0, VC2_QM_NB, VC2ENC_FLAGS, "quant_matrix"},
1203
        {"default",   "Default from the specifications", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_DEF}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
1204
        {"color",     "Prevents low bitrate discoloration", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_COL}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
1205
        {"flat",      "Optimize for PSNR", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_FLAT}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
1206
    {NULL}
1207
};
1208
1209
static const AVClass vc2enc_class = {
1210
    .class_name = "SMPTE VC-2 encoder",
1211
    .category = AV_CLASS_CATEGORY_ENCODER,
1212
    .option = vc2enc_options,
1213
    .item_name = av_default_item_name,
1214
    .version = LIBAVUTIL_VERSION_INT
1215
};
1216
1217
static const AVCodecDefault vc2enc_defaults[] = {
1218
    { "b",              "600000000"   },
1219
    { NULL },
1220
};
1221
1222
static const enum AVPixelFormat allowed_pix_fmts[] = {
1223
    AV_PIX_FMT_YUV420P,   AV_PIX_FMT_YUV422P,   AV_PIX_FMT_YUV444P,
1224
    AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
1225
    AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12,
1226
    AV_PIX_FMT_NONE
1227
};
1228
1229
AVCodec ff_vc2_encoder = {
1230
    .name           = "vc2",
1231
    .long_name      = NULL_IF_CONFIG_SMALL("SMPTE VC-2"),
1232
    .type           = AVMEDIA_TYPE_VIDEO,
1233
    .id             = AV_CODEC_ID_DIRAC,
1234
    .priv_data_size = sizeof(VC2EncContext),
1235
    .init           = vc2_encode_init,
1236
    .close          = vc2_encode_end,
1237
    .capabilities   = AV_CODEC_CAP_SLICE_THREADS,
1238
    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
1239
    .encode2        = vc2_encode_frame,
1240
    .priv_class     = &vc2enc_class,
1241
    .defaults       = vc2enc_defaults,
1242
    .pix_fmts       = allowed_pix_fmts
1243
};