GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/utvideoenc.c Lines: 251 304 82.6 %
Date: 2020-09-25 23:16:12 Branches: 105 139 75.5 %

Line Branch Exec Source
1
/*
2
 * Ut Video encoder
3
 * Copyright (c) 2012 Jan Ekström
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * Ut Video encoder
25
 */
26
27
#include "libavutil/imgutils.h"
28
#include "libavutil/intreadwrite.h"
29
#include "libavutil/opt.h"
30
31
#include "avcodec.h"
32
#include "internal.h"
33
#include "bswapdsp.h"
34
#include "bytestream.h"
35
#include "put_bits.h"
36
#include "mathops.h"
37
#include "utvideo.h"
38
#include "huffman.h"
39
40
/* Compare huffentry symbols */
41
3154892
static int huff_cmp_sym(const void *a, const void *b)
42
{
43
3154892
    const HuffEntry *aa = a, *bb = b;
44
3154892
    return aa->sym - bb->sym;
45
}
46
47
135
static av_cold int utvideo_encode_close(AVCodecContext *avctx)
48
{
49
135
    UtvideoContext *c = avctx->priv_data;
50
    int i;
51
52
135
    av_freep(&c->slice_bits);
53
675
    for (i = 0; i < 4; i++)
54
540
        av_freep(&c->slice_buffer[i]);
55
56
135
    return 0;
57
}
58
59
135
static av_cold int utvideo_encode_init(AVCodecContext *avctx)
60
{
61
135
    UtvideoContext *c = avctx->priv_data;
62
    int i, subsampled_height;
63
    uint32_t original_format;
64
65
135
    c->avctx           = avctx;
66
135
    c->frame_info_size = 4;
67
135
    c->slice_stride    = FFALIGN(avctx->width, 32);
68
69

135
    switch (avctx->pix_fmt) {
70
27
    case AV_PIX_FMT_GBRP:
71
27
        c->planes        = 3;
72
27
        avctx->codec_tag = MKTAG('U', 'L', 'R', 'G');
73
27
        original_format  = UTVIDEO_RGB;
74
27
        break;
75
27
    case AV_PIX_FMT_GBRAP:
76
27
        c->planes        = 4;
77
27
        avctx->codec_tag = MKTAG('U', 'L', 'R', 'A');
78
27
        original_format  = UTVIDEO_RGBA;
79
27
        avctx->bits_per_coded_sample = 32;
80
27
        break;
81
27
    case AV_PIX_FMT_YUV420P:
82

27
        if (avctx->width & 1 || avctx->height & 1) {
83
            av_log(avctx, AV_LOG_ERROR,
84
                   "4:2:0 video requires even width and height.\n");
85
            return AVERROR_INVALIDDATA;
86
        }
87
27
        c->planes        = 3;
88
27
        if (avctx->colorspace == AVCOL_SPC_BT709)
89
            avctx->codec_tag = MKTAG('U', 'L', 'H', '0');
90
        else
91
27
            avctx->codec_tag = MKTAG('U', 'L', 'Y', '0');
92
27
        original_format  = UTVIDEO_420;
93
27
        break;
94
27
    case AV_PIX_FMT_YUV422P:
95
27
        if (avctx->width & 1) {
96
            av_log(avctx, AV_LOG_ERROR,
97
                   "4:2:2 video requires even width.\n");
98
            return AVERROR_INVALIDDATA;
99
        }
100
27
        c->planes        = 3;
101
27
        if (avctx->colorspace == AVCOL_SPC_BT709)
102
            avctx->codec_tag = MKTAG('U', 'L', 'H', '2');
103
        else
104
27
            avctx->codec_tag = MKTAG('U', 'L', 'Y', '2');
105
27
        original_format  = UTVIDEO_422;
106
27
        break;
107
27
    case AV_PIX_FMT_YUV444P:
108
27
        c->planes        = 3;
109
27
        if (avctx->colorspace == AVCOL_SPC_BT709)
110
            avctx->codec_tag = MKTAG('U', 'L', 'H', '4');
111
        else
112
27
            avctx->codec_tag = MKTAG('U', 'L', 'Y', '4');
113
27
        original_format  = UTVIDEO_444;
114
27
        break;
115
    default:
116
        av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
117
               avctx->pix_fmt);
118
        return AVERROR_INVALIDDATA;
119
    }
120
121
135
    ff_bswapdsp_init(&c->bdsp);
122
135
    ff_llvidencdsp_init(&c->llvidencdsp);
123
124
#if FF_API_PRIVATE_OPT
125
FF_DISABLE_DEPRECATION_WARNINGS
126
    /* Check the prediction method, and error out if unsupported */
127

135
    if (avctx->prediction_method < 0 || avctx->prediction_method > 4) {
128
        av_log(avctx, AV_LOG_WARNING,
129
               "Prediction method %d is not supported in Ut Video.\n",
130
               avctx->prediction_method);
131
        return AVERROR_OPTION_NOT_FOUND;
132
    }
133
134
135
    if (avctx->prediction_method == FF_PRED_PLANE) {
135
        av_log(avctx, AV_LOG_ERROR,
136
               "Plane prediction is not supported in Ut Video.\n");
137
        return AVERROR_OPTION_NOT_FOUND;
138
    }
139
140
    /* Convert from libavcodec prediction type to Ut Video's */
141
135
    if (avctx->prediction_method)
142
        c->frame_pred = ff_ut_pred_order[avctx->prediction_method];
143
FF_ENABLE_DEPRECATION_WARNINGS
144
#endif
145
146
135
    if (c->frame_pred == PRED_GRADIENT) {
147
        av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n");
148
        return AVERROR_OPTION_NOT_FOUND;
149
    }
150
151
    /*
152
     * Check the asked slice count for obviously invalid
153
     * values (> 256 or negative).
154
     */
155

135
    if (avctx->slices > 256 || avctx->slices < 0) {
156
        av_log(avctx, AV_LOG_ERROR,
157
               "Slice count %d is not supported in Ut Video (theoretical range is 0-256).\n",
158
               avctx->slices);
159
        return AVERROR(EINVAL);
160
    }
161
162
    /* Check that the slice count is not larger than the subsampled height */
163
135
    subsampled_height = avctx->height >> av_pix_fmt_desc_get(avctx->pix_fmt)->log2_chroma_h;
164
135
    if (avctx->slices > subsampled_height) {
165
        av_log(avctx, AV_LOG_ERROR,
166
               "Slice count %d is larger than the subsampling-applied height %d.\n",
167
               avctx->slices, subsampled_height);
168
        return AVERROR(EINVAL);
169
    }
170
171
    /* extradata size is 4 * 32 bits */
172
135
    avctx->extradata_size = 16;
173
174
135
    avctx->extradata = av_mallocz(avctx->extradata_size +
175
                                  AV_INPUT_BUFFER_PADDING_SIZE);
176
177
135
    if (!avctx->extradata) {
178
        av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
179
        utvideo_encode_close(avctx);
180
        return AVERROR(ENOMEM);
181
    }
182
183
567
    for (i = 0; i < c->planes; i++) {
184
432
        c->slice_buffer[i] = av_malloc(c->slice_stride * (avctx->height + 2) +
185
                                       AV_INPUT_BUFFER_PADDING_SIZE);
186
432
        if (!c->slice_buffer[i]) {
187
            av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n");
188
            utvideo_encode_close(avctx);
189
            return AVERROR(ENOMEM);
190
        }
191
    }
192
193
    /*
194
     * Set the version of the encoder.
195
     * Last byte is "implementation ID", which is
196
     * obtained from the creator of the format.
197
     * Libavcodec has been assigned with the ID 0xF0.
198
     */
199
135
    AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0));
200
201
    /*
202
     * Set the "original format"
203
     * Not used for anything during decoding.
204
     */
205
135
    AV_WL32(avctx->extradata + 4, original_format);
206
207
    /* Write 4 as the 'frame info size' */
208
135
    AV_WL32(avctx->extradata + 8, c->frame_info_size);
209
210
    /*
211
     * Set how many slices are going to be used.
212
     * By default uses multiple slices depending on the subsampled height.
213
     * This enables multithreading in the official decoder.
214
     */
215
135
    if (!avctx->slices) {
216
        c->slices = subsampled_height / 120;
217
218
        if (!c->slices)
219
            c->slices = 1;
220
        else if (c->slices > 256)
221
            c->slices = 256;
222
    } else {
223
135
        c->slices = avctx->slices;
224
    }
225
226
    /* Set compression mode */
227
135
    c->compression = COMP_HUFF;
228
229
    /*
230
     * Set the encoding flags:
231
     * - Slice count minus 1
232
     * - Interlaced encoding mode flag, set to zero for now.
233
     * - Compression mode (none/huff)
234
     * And write the flags.
235
     */
236
135
    c->flags  = (c->slices - 1) << 24;
237
135
    c->flags |= 0 << 11; // bit field to signal interlaced encoding mode
238
135
    c->flags |= c->compression;
239
240
135
    AV_WL32(avctx->extradata + 12, c->flags);
241
242
135
    return 0;
243
}
244
245
300
static void mangle_rgb_planes(uint8_t *dst[4], ptrdiff_t dst_stride,
246
                              uint8_t *const src[4], int planes, const int stride[4],
247
                              int width, int height)
248
{
249
    int i, j;
250
300
    int k = 2 * dst_stride;
251
300
    const uint8_t *sg = src[0];
252
300
    const uint8_t *sb = src[1];
253
300
    const uint8_t *sr = src[2];
254
300
    const uint8_t *sa = src[3];
255
    unsigned int g;
256
257
86700
    for (j = 0; j < height; j++) {
258
86400
        if (planes == 3) {
259
15249600
            for (i = 0; i < width; i++) {
260
15206400
                g         = sg[i];
261
15206400
                dst[0][k] = g;
262
15206400
                g        += 0x80;
263
15206400
                dst[1][k] = sb[i] - g;
264
15206400
                dst[2][k] = sr[i] - g;
265
15206400
                k++;
266
            }
267
        } else {
268
15249600
            for (i = 0; i < width; i++) {
269
15206400
                g         = sg[i];
270
15206400
                dst[0][k] = g;
271
15206400
                g        += 0x80;
272
15206400
                dst[1][k] = sb[i] - g;
273
15206400
                dst[2][k] = sr[i] - g;
274
15206400
                dst[3][k] = sa[i];
275
15206400
                k++;
276
            }
277
43200
            sa += stride[3];
278
        }
279
86400
        k += dst_stride - width;
280
86400
        sg += stride[0];
281
86400
        sb += stride[1];
282
86400
        sr += stride[2];
283
    }
284
300
}
285
286
#undef A
287
#undef B
288
289
/* Write data to a plane with median prediction */
290
800
static void median_predict(UtvideoContext *c, uint8_t *src, uint8_t *dst,
291
                           ptrdiff_t stride, int width, int height)
292
{
293
    int i, j;
294
    int A, B;
295
    uint8_t prev;
296
297
    /* First line uses left neighbour prediction */
298
800
    prev = 0x80; /* Set the initial value */
299
247200
    for (i = 0; i < width; i++) {
300
246400
        *dst++ = src[i] - prev;
301
246400
        prev   = src[i];
302
    }
303
304
800
    if (height == 1)
305
        return;
306
307
800
    src += stride;
308
309
    /*
310
     * Second line uses top prediction for the first sample,
311
     * and median for the rest.
312
     */
313
800
    A = B = 0;
314
315
    /* Rest of the coded part uses median prediction */
316
216000
    for (j = 1; j < height; j++) {
317
215200
        c->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &A, &B);
318
215200
        dst += width;
319
215200
        src += stride;
320
    }
321
}
322
323
/* Count the usage of values in a plane */
324
2400
static void count_usage(uint8_t *src, int width,
325
                        int height, uint64_t *counts)
326
{
327
    int i, j;
328
329
650400
    for (j = 0; j < height; j++) {
330
205934400
        for (i = 0; i < width; i++) {
331
205286400
            counts[src[i]]++;
332
        }
333
648000
        src += width;
334
    }
335
2400
}
336
337
/* Calculate the actual huffman codes from the code lengths */
338
2350
static void calculate_codes(HuffEntry *he)
339
{
340
    int last, i;
341
    uint32_t code;
342
343
2350
    qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
344
345
2350
    last = 255;
346

86041
    while (he[last].len == 255 && last)
347
83691
        last--;
348
349
2350
    code = 1;
350
520259
    for (i = last; i >= 0; i--) {
351
517909
        he[i].code  = code >> (32 - he[i].len);
352
517909
        code       += 0x80000000u >> (he[i].len - 1);
353
    }
354
355
2350
    qsort(he, 256, sizeof(*he), huff_cmp_sym);
356
2350
}
357
358
/* Write huffman bit codes to a memory block */
359
2350
static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size,
360
                            int width, int height, HuffEntry *he)
361
{
362
    PutBitContext pb;
363
    int i, j;
364
    int count;
365
366
2350
    init_put_bits(&pb, dst, dst_size);
367
368
    /* Write the codes */
369
635950
    for (j = 0; j < height; j++) {
370
200851200
        for (i = 0; i < width; i++)
371
200217600
            put_bits(&pb, he[src[i]].len, he[src[i]].code);
372
373
633600
        src += width;
374
    }
375
376
    /* Pad output to a 32-bit boundary */
377
2350
    count = put_bits_count(&pb) & 0x1F;
378
379
2350
    if (count)
380
2170
        put_bits(&pb, 32 - count, 0);
381
382
    /* Get the amount of bits written */
383
2350
    count = put_bits_count(&pb);
384
385
    /* Flush the rest with zeroes */
386
2350
    flush_put_bits(&pb);
387
388
2350
    return count;
389
}
390
391
2400
static int encode_plane(AVCodecContext *avctx, uint8_t *src,
392
                        uint8_t *dst, ptrdiff_t stride, int plane_no,
393
                        int width, int height, PutByteContext *pb)
394
{
395
2400
    UtvideoContext *c        = avctx->priv_data;
396
    uint8_t  lengths[256];
397
2400
    uint64_t counts[256]     = { 0 };
398
399
    HuffEntry he[256];
400
401
2400
    uint32_t offset = 0, slice_len = 0;
402

2400
    const int cmask = ~(!plane_no && avctx->pix_fmt == AV_PIX_FMT_YUV420P);
403
2400
    int      i, sstart, send = 0;
404
    int      symbol;
405
    int      ret;
406
407
    /* Do prediction / make planes */
408

2400
    switch (c->frame_pred) {
409
800
    case PRED_NONE:
410
1600
        for (i = 0; i < c->slices; i++) {
411
800
            sstart = send;
412
800
            send   = height * (i + 1) / c->slices & cmask;
413
800
            av_image_copy_plane(dst + sstart * width, width,
414
800
                                src + sstart * stride, stride,
415
                                width, send - sstart);
416
        }
417
800
        break;
418
800
    case PRED_LEFT:
419
1600
        for (i = 0; i < c->slices; i++) {
420
800
            sstart = send;
421
800
            send   = height * (i + 1) / c->slices & cmask;
422
800
            c->llvidencdsp.sub_left_predict(dst + sstart * width, src + sstart * stride, stride, width, send - sstart);
423
        }
424
800
        break;
425
800
    case PRED_MEDIAN:
426
1600
        for (i = 0; i < c->slices; i++) {
427
800
            sstart = send;
428
800
            send   = height * (i + 1) / c->slices & cmask;
429
800
            median_predict(c, src + sstart * stride, dst + sstart * width,
430
                           stride, width, send - sstart);
431
        }
432
800
        break;
433
    default:
434
        av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n",
435
               c->frame_pred);
436
        return AVERROR_OPTION_NOT_FOUND;
437
    }
438
439
    /* Count the usage of values */
440
2400
    count_usage(dst, width, height, counts);
441
442
    /* Check for a special case where only one symbol was used */
443
16840
    for (symbol = 0; symbol < 256; symbol++) {
444
        /* If non-zero count is found, see if it matches width * height */
445
16840
        if (counts[symbol]) {
446
            /* Special case if only one symbol was used */
447
2400
            if (counts[symbol] == width * (int64_t)height) {
448
                /*
449
                 * Write a zero for the single symbol
450
                 * used in the plane, else 0xFF.
451
                 */
452
12850
                for (i = 0; i < 256; i++) {
453
12800
                    if (i == symbol)
454
50
                        bytestream2_put_byte(pb, 0);
455
                    else
456
12750
                        bytestream2_put_byte(pb, 0xFF);
457
                }
458
459
                /* Write zeroes for lengths */
460
100
                for (i = 0; i < c->slices; i++)
461
50
                    bytestream2_put_le32(pb, 0);
462
463
                /* And that's all for that plane folks */
464
50
                return 0;
465
            }
466
2350
            break;
467
        }
468
    }
469
470
    /* Calculate huffman lengths */
471
2350
    if ((ret = ff_huff_gen_len_table(lengths, counts, 256, 1)) < 0)
472
        return ret;
473
474
    /*
475
     * Write the plane's header into the output packet:
476
     * - huffman code lengths (256 bytes)
477
     * - slice end offsets (gotten from the slice lengths)
478
     */
479
603950
    for (i = 0; i < 256; i++) {
480
601600
        bytestream2_put_byte(pb, lengths[i]);
481
482
601600
        he[i].len = lengths[i];
483
601600
        he[i].sym = i;
484
    }
485
486
    /* Calculate the huffman codes themselves */
487
2350
    calculate_codes(he);
488
489
2350
    send = 0;
490
4700
    for (i = 0; i < c->slices; i++) {
491
2350
        sstart  = send;
492
2350
        send    = height * (i + 1) / c->slices & cmask;
493
494
        /*
495
         * Write the huffman codes to a buffer,
496
         * get the offset in bits and convert to bytes.
497
         */
498
4700
        offset += write_huff_codes(dst + sstart * width, c->slice_bits,
499
2350
                                   width * height + 4, width,
500
2350
                                   send - sstart, he) >> 3;
501
502
2350
        slice_len = offset - slice_len;
503
504
        /* Byteswap the written huffman codes */
505
2350
        c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
506
2350
                          (uint32_t *) c->slice_bits,
507
2350
                          slice_len >> 2);
508
509
        /* Write the offset to the stream */
510
2350
        bytestream2_put_le32(pb, offset);
511
512
        /* Seek to the data part of the packet */
513
2350
        bytestream2_seek_p(pb, 4 * (c->slices - i - 1) +
514
2350
                           offset - slice_len, SEEK_CUR);
515
516
        /* Write the slices' data into the output packet */
517
2350
        bytestream2_put_buffer(pb, c->slice_bits, slice_len);
518
519
        /* Seek back to the slice offsets */
520
2350
        bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset,
521
                           SEEK_CUR);
522
523
2350
        slice_len = offset;
524
    }
525
526
    /* And at the end seek to the end of written slice(s) */
527
2350
    bytestream2_seek_p(pb, offset, SEEK_CUR);
528
529
2350
    return 0;
530
}
531
532
750
static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
533
                                const AVFrame *pic, int *got_packet)
534
{
535
750
    UtvideoContext *c = avctx->priv_data;
536
    PutByteContext pb;
537
538
    uint32_t frame_info;
539
540
    uint8_t *dst;
541
542
750
    int width = avctx->width, height = avctx->height;
543
750
    int i, ret = 0;
544
545
    /* Allocate a new packet if needed, and set it to the pointer dst */
546
750
    ret = ff_alloc_packet2(avctx, pkt, (256 + 4 * c->slices + width * height) *
547
750
                           c->planes + 4, 0);
548
549
750
    if (ret < 0)
550
        return ret;
551
552
750
    dst = pkt->data;
553
554
750
    bytestream2_init_writer(&pb, dst, pkt->size);
555
556
750
    av_fast_padded_malloc(&c->slice_bits, &c->slice_bits_size, width * height + 4);
557
558
750
    if (!c->slice_bits) {
559
        av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n");
560
        return AVERROR(ENOMEM);
561
    }
562
563
    /* In case of RGB, mangle the planes to Ut Video's format */
564

750
    if (avctx->pix_fmt == AV_PIX_FMT_GBRAP || avctx->pix_fmt == AV_PIX_FMT_GBRP)
565
300
        mangle_rgb_planes(c->slice_buffer, c->slice_stride, pic->data,
566
300
                          c->planes, pic->linesize, width, height);
567
568
    /* Deal with the planes */
569

750
    switch (avctx->pix_fmt) {
570
300
    case AV_PIX_FMT_GBRP:
571
    case AV_PIX_FMT_GBRAP:
572
1350
        for (i = 0; i < c->planes; i++) {
573
1050
            ret = encode_plane(avctx, c->slice_buffer[i] + 2 * c->slice_stride,
574
                               c->slice_buffer[i], c->slice_stride, i,
575
                               width, height, &pb);
576
577
1050
            if (ret) {
578
                av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
579
                return ret;
580
            }
581
        }
582
300
        break;
583
150
    case AV_PIX_FMT_YUV444P:
584
600
        for (i = 0; i < c->planes; i++) {
585
450
            ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
586
450
                               pic->linesize[i], i, width, height, &pb);
587
588
450
            if (ret) {
589
                av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
590
                return ret;
591
            }
592
        }
593
150
        break;
594
150
    case AV_PIX_FMT_YUV422P:
595
600
        for (i = 0; i < c->planes; i++) {
596
450
            ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
597
450
                               pic->linesize[i], i, width >> !!i, height, &pb);
598
599
450
            if (ret) {
600
                av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
601
                return ret;
602
            }
603
        }
604
150
        break;
605
150
    case AV_PIX_FMT_YUV420P:
606
600
        for (i = 0; i < c->planes; i++) {
607
450
            ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
608
450
                               pic->linesize[i], i, width >> !!i, height >> !!i,
609
                               &pb);
610
611
450
            if (ret) {
612
                av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
613
                return ret;
614
            }
615
        }
616
150
        break;
617
    default:
618
        av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
619
               avctx->pix_fmt);
620
        return AVERROR_INVALIDDATA;
621
    }
622
623
    /*
624
     * Write frame information (LE 32-bit unsigned)
625
     * into the output packet.
626
     * Contains the prediction method.
627
     */
628
750
    frame_info = c->frame_pred << 8;
629
750
    bytestream2_put_le32(&pb, frame_info);
630
631
    /*
632
     * At least currently Ut Video is IDR only.
633
     * Set flags accordingly.
634
     */
635
#if FF_API_CODED_FRAME
636
FF_DISABLE_DEPRECATION_WARNINGS
637
750
    avctx->coded_frame->key_frame = 1;
638
750
    avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
639
FF_ENABLE_DEPRECATION_WARNINGS
640
#endif
641
642
750
    pkt->size   = bytestream2_tell_p(&pb);
643
750
    pkt->flags |= AV_PKT_FLAG_KEY;
644
645
    /* Packet should be done */
646
750
    *got_packet = 1;
647
648
750
    return 0;
649
}
650
651
#define OFFSET(x) offsetof(UtvideoContext, x)
652
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
653
static const AVOption options[] = {
654
{ "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, { .i64 = PRED_LEFT }, PRED_NONE, PRED_MEDIAN, VE, "pred" },
655
    { "none",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_NONE }, INT_MIN, INT_MAX, VE, "pred" },
656
    { "left",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_LEFT }, INT_MIN, INT_MAX, VE, "pred" },
657
    { "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_GRADIENT }, INT_MIN, INT_MAX, VE, "pred" },
658
    { "median",   NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_MEDIAN }, INT_MIN, INT_MAX, VE, "pred" },
659
660
    { NULL},
661
};
662
663
static const AVClass utvideo_class = {
664
    .class_name = "utvideo",
665
    .item_name  = av_default_item_name,
666
    .option     = options,
667
    .version    = LIBAVUTIL_VERSION_INT,
668
};
669
670
AVCodec ff_utvideo_encoder = {
671
    .name           = "utvideo",
672
    .long_name      = NULL_IF_CONFIG_SMALL("Ut Video"),
673
    .type           = AVMEDIA_TYPE_VIDEO,
674
    .id             = AV_CODEC_ID_UTVIDEO,
675
    .priv_data_size = sizeof(UtvideoContext),
676
    .priv_class     = &utvideo_class,
677
    .init           = utvideo_encode_init,
678
    .encode2        = utvideo_encode_frame,
679
    .close          = utvideo_encode_close,
680
    .capabilities   = AV_CODEC_CAP_FRAME_THREADS,
681
    .pix_fmts       = (const enum AVPixelFormat[]) {
682
                          AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P,
683
                          AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_NONE
684
                      },
685
};