GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/utvideoenc.c Lines: 252 305 82.6 %
Date: 2021-04-14 23:45:22 Branches: 105 139 75.5 %

Line Branch Exec Source
1
/*
2
 * Ut Video encoder
3
 * Copyright (c) 2012 Jan Ekström
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * Ut Video encoder
25
 */
26
27
#include "libavutil/imgutils.h"
28
#include "libavutil/intreadwrite.h"
29
#include "libavutil/opt.h"
30
31
#include "avcodec.h"
32
#include "internal.h"
33
#include "bswapdsp.h"
34
#include "bytestream.h"
35
#include "put_bits.h"
36
#include "mathops.h"
37
#include "utvideo.h"
38
#include "huffman.h"
39
40
typedef struct HuffEntry {
41
    uint16_t sym;
42
    uint8_t  len;
43
    uint32_t code;
44
} HuffEntry;
45
46
#if FF_API_PRIVATE_OPT
47
static const int ut_pred_order[5] = {
48
    PRED_LEFT, PRED_MEDIAN, PRED_MEDIAN, PRED_NONE, PRED_GRADIENT
49
};
50
#endif
51
52
/* Compare huffman tree nodes */
53
3199615
static int ut_huff_cmp_len(const void *a, const void *b)
54
{
55
3199615
    const HuffEntry *aa = a, *bb = b;
56
3199615
    return (aa->len - bb->len)*256 + aa->sym - bb->sym;
57
}
58
59
/* Compare huffentry symbols */
60
3154892
static int huff_cmp_sym(const void *a, const void *b)
61
{
62
3154892
    const HuffEntry *aa = a, *bb = b;
63
3154892
    return aa->sym - bb->sym;
64
}
65
66
135
static av_cold int utvideo_encode_close(AVCodecContext *avctx)
67
{
68
135
    UtvideoContext *c = avctx->priv_data;
69
    int i;
70
71
135
    av_freep(&c->slice_bits);
72
675
    for (i = 0; i < 4; i++)
73
540
        av_freep(&c->slice_buffer[i]);
74
75
135
    return 0;
76
}
77
78
135
static av_cold int utvideo_encode_init(AVCodecContext *avctx)
79
{
80
135
    UtvideoContext *c = avctx->priv_data;
81
    int i, subsampled_height;
82
    uint32_t original_format;
83
84
135
    c->avctx           = avctx;
85
135
    c->frame_info_size = 4;
86
135
    c->slice_stride    = FFALIGN(avctx->width, 32);
87
88

135
    switch (avctx->pix_fmt) {
89
27
    case AV_PIX_FMT_GBRP:
90
27
        c->planes        = 3;
91
27
        avctx->codec_tag = MKTAG('U', 'L', 'R', 'G');
92
27
        original_format  = UTVIDEO_RGB;
93
27
        break;
94
27
    case AV_PIX_FMT_GBRAP:
95
27
        c->planes        = 4;
96
27
        avctx->codec_tag = MKTAG('U', 'L', 'R', 'A');
97
27
        original_format  = UTVIDEO_RGBA;
98
27
        avctx->bits_per_coded_sample = 32;
99
27
        break;
100
27
    case AV_PIX_FMT_YUV420P:
101

27
        if (avctx->width & 1 || avctx->height & 1) {
102
            av_log(avctx, AV_LOG_ERROR,
103
                   "4:2:0 video requires even width and height.\n");
104
            return AVERROR_INVALIDDATA;
105
        }
106
27
        c->planes        = 3;
107
27
        if (avctx->colorspace == AVCOL_SPC_BT709)
108
            avctx->codec_tag = MKTAG('U', 'L', 'H', '0');
109
        else
110
27
            avctx->codec_tag = MKTAG('U', 'L', 'Y', '0');
111
27
        original_format  = UTVIDEO_420;
112
27
        break;
113
27
    case AV_PIX_FMT_YUV422P:
114
27
        if (avctx->width & 1) {
115
            av_log(avctx, AV_LOG_ERROR,
116
                   "4:2:2 video requires even width.\n");
117
            return AVERROR_INVALIDDATA;
118
        }
119
27
        c->planes        = 3;
120
27
        if (avctx->colorspace == AVCOL_SPC_BT709)
121
            avctx->codec_tag = MKTAG('U', 'L', 'H', '2');
122
        else
123
27
            avctx->codec_tag = MKTAG('U', 'L', 'Y', '2');
124
27
        original_format  = UTVIDEO_422;
125
27
        break;
126
27
    case AV_PIX_FMT_YUV444P:
127
27
        c->planes        = 3;
128
27
        if (avctx->colorspace == AVCOL_SPC_BT709)
129
            avctx->codec_tag = MKTAG('U', 'L', 'H', '4');
130
        else
131
27
            avctx->codec_tag = MKTAG('U', 'L', 'Y', '4');
132
27
        original_format  = UTVIDEO_444;
133
27
        break;
134
    default:
135
        av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
136
               avctx->pix_fmt);
137
        return AVERROR_INVALIDDATA;
138
    }
139
140
135
    ff_bswapdsp_init(&c->bdsp);
141
135
    ff_llvidencdsp_init(&c->llvidencdsp);
142
143
#if FF_API_PRIVATE_OPT
144
FF_DISABLE_DEPRECATION_WARNINGS
145
    /* Check the prediction method, and error out if unsupported */
146

135
    if (avctx->prediction_method < 0 || avctx->prediction_method > 4) {
147
        av_log(avctx, AV_LOG_WARNING,
148
               "Prediction method %d is not supported in Ut Video.\n",
149
               avctx->prediction_method);
150
        return AVERROR_OPTION_NOT_FOUND;
151
    }
152
153
135
    if (avctx->prediction_method == FF_PRED_PLANE) {
154
        av_log(avctx, AV_LOG_ERROR,
155
               "Plane prediction is not supported in Ut Video.\n");
156
        return AVERROR_OPTION_NOT_FOUND;
157
    }
158
159
    /* Convert from libavcodec prediction type to Ut Video's */
160
135
    if (avctx->prediction_method)
161
        c->frame_pred = ut_pred_order[avctx->prediction_method];
162
FF_ENABLE_DEPRECATION_WARNINGS
163
#endif
164
165
135
    if (c->frame_pred == PRED_GRADIENT) {
166
        av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n");
167
        return AVERROR_OPTION_NOT_FOUND;
168
    }
169
170
    /*
171
     * Check the asked slice count for obviously invalid
172
     * values (> 256 or negative).
173
     */
174

135
    if (avctx->slices > 256 || avctx->slices < 0) {
175
        av_log(avctx, AV_LOG_ERROR,
176
               "Slice count %d is not supported in Ut Video (theoretical range is 0-256).\n",
177
               avctx->slices);
178
        return AVERROR(EINVAL);
179
    }
180
181
    /* Check that the slice count is not larger than the subsampled height */
182
135
    subsampled_height = avctx->height >> av_pix_fmt_desc_get(avctx->pix_fmt)->log2_chroma_h;
183
135
    if (avctx->slices > subsampled_height) {
184
        av_log(avctx, AV_LOG_ERROR,
185
               "Slice count %d is larger than the subsampling-applied height %d.\n",
186
               avctx->slices, subsampled_height);
187
        return AVERROR(EINVAL);
188
    }
189
190
    /* extradata size is 4 * 32 bits */
191
135
    avctx->extradata_size = 16;
192
193
135
    avctx->extradata = av_mallocz(avctx->extradata_size +
194
                                  AV_INPUT_BUFFER_PADDING_SIZE);
195
196
135
    if (!avctx->extradata) {
197
        av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
198
        utvideo_encode_close(avctx);
199
        return AVERROR(ENOMEM);
200
    }
201
202
567
    for (i = 0; i < c->planes; i++) {
203
432
        c->slice_buffer[i] = av_malloc(c->slice_stride * (avctx->height + 2) +
204
                                       AV_INPUT_BUFFER_PADDING_SIZE);
205
432
        if (!c->slice_buffer[i]) {
206
            av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n");
207
            utvideo_encode_close(avctx);
208
            return AVERROR(ENOMEM);
209
        }
210
    }
211
212
    /*
213
     * Set the version of the encoder.
214
     * Last byte is "implementation ID", which is
215
     * obtained from the creator of the format.
216
     * Libavcodec has been assigned with the ID 0xF0.
217
     */
218
135
    AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0));
219
220
    /*
221
     * Set the "original format"
222
     * Not used for anything during decoding.
223
     */
224
135
    AV_WL32(avctx->extradata + 4, original_format);
225
226
    /* Write 4 as the 'frame info size' */
227
135
    AV_WL32(avctx->extradata + 8, c->frame_info_size);
228
229
    /*
230
     * Set how many slices are going to be used.
231
     * By default uses multiple slices depending on the subsampled height.
232
     * This enables multithreading in the official decoder.
233
     */
234
135
    if (!avctx->slices) {
235
        c->slices = subsampled_height / 120;
236
237
        if (!c->slices)
238
            c->slices = 1;
239
        else if (c->slices > 256)
240
            c->slices = 256;
241
    } else {
242
135
        c->slices = avctx->slices;
243
    }
244
245
    /* Set compression mode */
246
135
    c->compression = COMP_HUFF;
247
248
    /*
249
     * Set the encoding flags:
250
     * - Slice count minus 1
251
     * - Interlaced encoding mode flag, set to zero for now.
252
     * - Compression mode (none/huff)
253
     * And write the flags.
254
     */
255
135
    c->flags  = (c->slices - 1) << 24;
256
135
    c->flags |= 0 << 11; // bit field to signal interlaced encoding mode
257
135
    c->flags |= c->compression;
258
259
135
    AV_WL32(avctx->extradata + 12, c->flags);
260
261
135
    return 0;
262
}
263
264
300
static void mangle_rgb_planes(uint8_t *dst[4], ptrdiff_t dst_stride,
265
                              uint8_t *const src[4], int planes, const int stride[4],
266
                              int width, int height)
267
{
268
    int i, j;
269
300
    int k = 2 * dst_stride;
270
300
    const uint8_t *sg = src[0];
271
300
    const uint8_t *sb = src[1];
272
300
    const uint8_t *sr = src[2];
273
300
    const uint8_t *sa = src[3];
274
    unsigned int g;
275
276
86700
    for (j = 0; j < height; j++) {
277
86400
        if (planes == 3) {
278
15249600
            for (i = 0; i < width; i++) {
279
15206400
                g         = sg[i];
280
15206400
                dst[0][k] = g;
281
15206400
                g        += 0x80;
282
15206400
                dst[1][k] = sb[i] - g;
283
15206400
                dst[2][k] = sr[i] - g;
284
15206400
                k++;
285
            }
286
        } else {
287
15249600
            for (i = 0; i < width; i++) {
288
15206400
                g         = sg[i];
289
15206400
                dst[0][k] = g;
290
15206400
                g        += 0x80;
291
15206400
                dst[1][k] = sb[i] - g;
292
15206400
                dst[2][k] = sr[i] - g;
293
15206400
                dst[3][k] = sa[i];
294
15206400
                k++;
295
            }
296
43200
            sa += stride[3];
297
        }
298
86400
        k += dst_stride - width;
299
86400
        sg += stride[0];
300
86400
        sb += stride[1];
301
86400
        sr += stride[2];
302
    }
303
300
}
304
305
#undef A
306
#undef B
307
308
/* Write data to a plane with median prediction */
309
800
static void median_predict(UtvideoContext *c, uint8_t *src, uint8_t *dst,
310
                           ptrdiff_t stride, int width, int height)
311
{
312
    int i, j;
313
    int A, B;
314
    uint8_t prev;
315
316
    /* First line uses left neighbour prediction */
317
800
    prev = 0x80; /* Set the initial value */
318
247200
    for (i = 0; i < width; i++) {
319
246400
        *dst++ = src[i] - prev;
320
246400
        prev   = src[i];
321
    }
322
323
800
    if (height == 1)
324
        return;
325
326
800
    src += stride;
327
328
    /*
329
     * Second line uses top prediction for the first sample,
330
     * and median for the rest.
331
     */
332
800
    A = B = 0;
333
334
    /* Rest of the coded part uses median prediction */
335
216000
    for (j = 1; j < height; j++) {
336
215200
        c->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &A, &B);
337
215200
        dst += width;
338
215200
        src += stride;
339
    }
340
}
341
342
/* Count the usage of values in a plane */
343
2400
static void count_usage(uint8_t *src, int width,
344
                        int height, uint64_t *counts)
345
{
346
    int i, j;
347
348
650400
    for (j = 0; j < height; j++) {
349
205934400
        for (i = 0; i < width; i++) {
350
205286400
            counts[src[i]]++;
351
        }
352
648000
        src += width;
353
    }
354
2400
}
355
356
/* Calculate the actual huffman codes from the code lengths */
357
2350
static void calculate_codes(HuffEntry *he)
358
{
359
    int last, i;
360
    uint32_t code;
361
362
2350
    qsort(he, 256, sizeof(*he), ut_huff_cmp_len);
363
364
2350
    last = 255;
365

86041
    while (he[last].len == 255 && last)
366
83691
        last--;
367
368
2350
    code = 0;
369
520259
    for (i = last; i >= 0; i--) {
370
517909
        he[i].code  = code >> (32 - he[i].len);
371
517909
        code       += 0x80000000u >> (he[i].len - 1);
372
    }
373
374
2350
    qsort(he, 256, sizeof(*he), huff_cmp_sym);
375
2350
}
376
377
/* Write huffman bit codes to a memory block */
378
2350
static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size,
379
                            int width, int height, HuffEntry *he)
380
{
381
    PutBitContext pb;
382
    int i, j;
383
    int count;
384
385
2350
    init_put_bits(&pb, dst, dst_size);
386
387
    /* Write the codes */
388
635950
    for (j = 0; j < height; j++) {
389
200851200
        for (i = 0; i < width; i++)
390
200217600
            put_bits(&pb, he[src[i]].len, he[src[i]].code);
391
392
633600
        src += width;
393
    }
394
395
    /* Pad output to a 32-bit boundary */
396
2350
    count = put_bits_count(&pb) & 0x1F;
397
398
2350
    if (count)
399
2170
        put_bits(&pb, 32 - count, 0);
400
401
    /* Flush the rest with zeroes */
402
2350
    flush_put_bits(&pb);
403
404
    /* Return the amount of bytes written */
405
2350
    return put_bytes_output(&pb);
406
}
407
408
2400
static int encode_plane(AVCodecContext *avctx, uint8_t *src,
409
                        uint8_t *dst, ptrdiff_t stride, int plane_no,
410
                        int width, int height, PutByteContext *pb)
411
{
412
2400
    UtvideoContext *c        = avctx->priv_data;
413
    uint8_t  lengths[256];
414
2400
    uint64_t counts[256]     = { 0 };
415
416
    HuffEntry he[256];
417
418
2400
    uint32_t offset = 0, slice_len = 0;
419

2400
    const int cmask = ~(!plane_no && avctx->pix_fmt == AV_PIX_FMT_YUV420P);
420
2400
    int      i, sstart, send = 0;
421
    int      symbol;
422
    int      ret;
423
424
    /* Do prediction / make planes */
425

2400
    switch (c->frame_pred) {
426
800
    case PRED_NONE:
427
1600
        for (i = 0; i < c->slices; i++) {
428
800
            sstart = send;
429
800
            send   = height * (i + 1) / c->slices & cmask;
430
800
            av_image_copy_plane(dst + sstart * width, width,
431
800
                                src + sstart * stride, stride,
432
                                width, send - sstart);
433
        }
434
800
        break;
435
800
    case PRED_LEFT:
436
1600
        for (i = 0; i < c->slices; i++) {
437
800
            sstart = send;
438
800
            send   = height * (i + 1) / c->slices & cmask;
439
800
            c->llvidencdsp.sub_left_predict(dst + sstart * width, src + sstart * stride, stride, width, send - sstart);
440
        }
441
800
        break;
442
800
    case PRED_MEDIAN:
443
1600
        for (i = 0; i < c->slices; i++) {
444
800
            sstart = send;
445
800
            send   = height * (i + 1) / c->slices & cmask;
446
800
            median_predict(c, src + sstart * stride, dst + sstart * width,
447
                           stride, width, send - sstart);
448
        }
449
800
        break;
450
    default:
451
        av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n",
452
               c->frame_pred);
453
        return AVERROR_OPTION_NOT_FOUND;
454
    }
455
456
    /* Count the usage of values */
457
2400
    count_usage(dst, width, height, counts);
458
459
    /* Check for a special case where only one symbol was used */
460
16840
    for (symbol = 0; symbol < 256; symbol++) {
461
        /* If non-zero count is found, see if it matches width * height */
462
16840
        if (counts[symbol]) {
463
            /* Special case if only one symbol was used */
464
2400
            if (counts[symbol] == width * (int64_t)height) {
465
                /*
466
                 * Write a zero for the single symbol
467
                 * used in the plane, else 0xFF.
468
                 */
469
12850
                for (i = 0; i < 256; i++) {
470
12800
                    if (i == symbol)
471
50
                        bytestream2_put_byte(pb, 0);
472
                    else
473
12750
                        bytestream2_put_byte(pb, 0xFF);
474
                }
475
476
                /* Write zeroes for lengths */
477
100
                for (i = 0; i < c->slices; i++)
478
50
                    bytestream2_put_le32(pb, 0);
479
480
                /* And that's all for that plane folks */
481
50
                return 0;
482
            }
483
2350
            break;
484
        }
485
    }
486
487
    /* Calculate huffman lengths */
488
2350
    if ((ret = ff_huff_gen_len_table(lengths, counts, 256, 1)) < 0)
489
        return ret;
490
491
    /*
492
     * Write the plane's header into the output packet:
493
     * - huffman code lengths (256 bytes)
494
     * - slice end offsets (gotten from the slice lengths)
495
     */
496
603950
    for (i = 0; i < 256; i++) {
497
601600
        bytestream2_put_byte(pb, lengths[i]);
498
499
601600
        he[i].len = lengths[i];
500
601600
        he[i].sym = i;
501
    }
502
503
    /* Calculate the huffman codes themselves */
504
2350
    calculate_codes(he);
505
506
2350
    send = 0;
507
4700
    for (i = 0; i < c->slices; i++) {
508
2350
        sstart  = send;
509
2350
        send    = height * (i + 1) / c->slices & cmask;
510
511
        /*
512
         * Write the huffman codes to a buffer,
513
         * get the offset in bytes.
514
         */
515
4700
        offset += write_huff_codes(dst + sstart * width, c->slice_bits,
516
2350
                                   width * height + 4, width,
517
                                   send - sstart, he);
518
519
2350
        slice_len = offset - slice_len;
520
521
        /* Byteswap the written huffman codes */
522
2350
        c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
523
2350
                          (uint32_t *) c->slice_bits,
524
2350
                          slice_len >> 2);
525
526
        /* Write the offset to the stream */
527
2350
        bytestream2_put_le32(pb, offset);
528
529
        /* Seek to the data part of the packet */
530
2350
        bytestream2_seek_p(pb, 4 * (c->slices - i - 1) +
531
2350
                           offset - slice_len, SEEK_CUR);
532
533
        /* Write the slices' data into the output packet */
534
2350
        bytestream2_put_buffer(pb, c->slice_bits, slice_len);
535
536
        /* Seek back to the slice offsets */
537
2350
        bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset,
538
                           SEEK_CUR);
539
540
2350
        slice_len = offset;
541
    }
542
543
    /* And at the end seek to the end of written slice(s) */
544
2350
    bytestream2_seek_p(pb, offset, SEEK_CUR);
545
546
2350
    return 0;
547
}
548
549
750
static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
550
                                const AVFrame *pic, int *got_packet)
551
{
552
750
    UtvideoContext *c = avctx->priv_data;
553
    PutByteContext pb;
554
555
    uint32_t frame_info;
556
557
    uint8_t *dst;
558
559
750
    int width = avctx->width, height = avctx->height;
560
750
    int i, ret = 0;
561
562
    /* Allocate a new packet if needed, and set it to the pointer dst */
563
750
    ret = ff_alloc_packet2(avctx, pkt, (256 + 4 * c->slices + width * height) *
564
750
                           c->planes + 4, 0);
565
566
750
    if (ret < 0)
567
        return ret;
568
569
750
    dst = pkt->data;
570
571
750
    bytestream2_init_writer(&pb, dst, pkt->size);
572
573
750
    av_fast_padded_malloc(&c->slice_bits, &c->slice_bits_size, width * height + 4);
574
575
750
    if (!c->slice_bits) {
576
        av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n");
577
        return AVERROR(ENOMEM);
578
    }
579
580
    /* In case of RGB, mangle the planes to Ut Video's format */
581

750
    if (avctx->pix_fmt == AV_PIX_FMT_GBRAP || avctx->pix_fmt == AV_PIX_FMT_GBRP)
582
300
        mangle_rgb_planes(c->slice_buffer, c->slice_stride, pic->data,
583
300
                          c->planes, pic->linesize, width, height);
584
585
    /* Deal with the planes */
586

750
    switch (avctx->pix_fmt) {
587
300
    case AV_PIX_FMT_GBRP:
588
    case AV_PIX_FMT_GBRAP:
589
1350
        for (i = 0; i < c->planes; i++) {
590
1050
            ret = encode_plane(avctx, c->slice_buffer[i] + 2 * c->slice_stride,
591
                               c->slice_buffer[i], c->slice_stride, i,
592
                               width, height, &pb);
593
594
1050
            if (ret) {
595
                av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
596
                return ret;
597
            }
598
        }
599
300
        break;
600
150
    case AV_PIX_FMT_YUV444P:
601
600
        for (i = 0; i < c->planes; i++) {
602
450
            ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
603
450
                               pic->linesize[i], i, width, height, &pb);
604
605
450
            if (ret) {
606
                av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
607
                return ret;
608
            }
609
        }
610
150
        break;
611
150
    case AV_PIX_FMT_YUV422P:
612
600
        for (i = 0; i < c->planes; i++) {
613
450
            ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
614
450
                               pic->linesize[i], i, width >> !!i, height, &pb);
615
616
450
            if (ret) {
617
                av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
618
                return ret;
619
            }
620
        }
621
150
        break;
622
150
    case AV_PIX_FMT_YUV420P:
623
600
        for (i = 0; i < c->planes; i++) {
624
450
            ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
625
450
                               pic->linesize[i], i, width >> !!i, height >> !!i,
626
                               &pb);
627
628
450
            if (ret) {
629
                av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
630
                return ret;
631
            }
632
        }
633
150
        break;
634
    default:
635
        av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
636
               avctx->pix_fmt);
637
        return AVERROR_INVALIDDATA;
638
    }
639
640
    /*
641
     * Write frame information (LE 32-bit unsigned)
642
     * into the output packet.
643
     * Contains the prediction method.
644
     */
645
750
    frame_info = c->frame_pred << 8;
646
750
    bytestream2_put_le32(&pb, frame_info);
647
648
    /*
649
     * At least currently Ut Video is IDR only.
650
     * Set flags accordingly.
651
     */
652
#if FF_API_CODED_FRAME
653
FF_DISABLE_DEPRECATION_WARNINGS
654
750
    avctx->coded_frame->key_frame = 1;
655
750
    avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
656
FF_ENABLE_DEPRECATION_WARNINGS
657
#endif
658
659
750
    pkt->size   = bytestream2_tell_p(&pb);
660
750
    pkt->flags |= AV_PKT_FLAG_KEY;
661
662
    /* Packet should be done */
663
750
    *got_packet = 1;
664
665
750
    return 0;
666
}
667
668
#define OFFSET(x) offsetof(UtvideoContext, x)
669
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
670
static const AVOption options[] = {
671
{ "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, { .i64 = PRED_LEFT }, PRED_NONE, PRED_MEDIAN, VE, "pred" },
672
    { "none",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_NONE }, INT_MIN, INT_MAX, VE, "pred" },
673
    { "left",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_LEFT }, INT_MIN, INT_MAX, VE, "pred" },
674
    { "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_GRADIENT }, INT_MIN, INT_MAX, VE, "pred" },
675
    { "median",   NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_MEDIAN }, INT_MIN, INT_MAX, VE, "pred" },
676
677
    { NULL},
678
};
679
680
static const AVClass utvideo_class = {
681
    .class_name = "utvideo",
682
    .item_name  = av_default_item_name,
683
    .option     = options,
684
    .version    = LIBAVUTIL_VERSION_INT,
685
};
686
687
AVCodec ff_utvideo_encoder = {
688
    .name           = "utvideo",
689
    .long_name      = NULL_IF_CONFIG_SMALL("Ut Video"),
690
    .type           = AVMEDIA_TYPE_VIDEO,
691
    .id             = AV_CODEC_ID_UTVIDEO,
692
    .priv_data_size = sizeof(UtvideoContext),
693
    .priv_class     = &utvideo_class,
694
    .init           = utvideo_encode_init,
695
    .encode2        = utvideo_encode_frame,
696
    .close          = utvideo_encode_close,
697
    .capabilities   = AV_CODEC_CAP_FRAME_THREADS,
698
    .pix_fmts       = (const enum AVPixelFormat[]) {
699
                          AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P,
700
                          AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_NONE
701
                      },
702
};