GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/twinvq.c Lines: 396 426 93.0 %
Date: 2020-10-23 17:01:47 Branches: 144 176 81.8 %

Line Branch Exec Source
1
/*
2
 * TwinVQ decoder
3
 * Copyright (c) 2009 Vitor Sessak
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
#include <math.h>
23
#include <stdint.h>
24
25
#include "libavutil/channel_layout.h"
26
#include "libavutil/float_dsp.h"
27
#include "avcodec.h"
28
#include "fft.h"
29
#include "internal.h"
30
#include "lsp.h"
31
#include "sinewin.h"
32
#include "twinvq.h"
33
34
/**
35
 * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
36
 * spectrum pairs.
37
 *
38
 * @param lsp a vector of the cosine of the LSP values
39
 * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
40
 * @param order the order of the LSP (and the size of the *lsp buffer). Must
41
 *        be a multiple of four.
42
 * @return the LPC value
43
 *
44
 * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
45
 */
46
261594
static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
47
{
48
    int j;
49
261594
    float p         = 0.5f;
50
261594
    float q         = 0.5f;
51
261594
    float two_cos_w = 2.0f * cos_val;
52
53
1307970
    for (j = 0; j + 1 < order; j += 2 * 2) {
54
        // Unroll the loop once since order is a multiple of four
55
1046376
        q *= lsp[j]     - two_cos_w;
56
1046376
        p *= lsp[j + 1] - two_cos_w;
57
58
1046376
        q *= lsp[j + 2] - two_cos_w;
59
1046376
        p *= lsp[j + 3] - two_cos_w;
60
    }
61
62
261594
    p *= p * (2.0f - two_cos_w);
63
261594
    q *= q * (2.0f + two_cos_w);
64
65
261594
    return 0.5 / (p + q);
66
}
67
68
/**
69
 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
70
 */
71
1
static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc)
72
{
73
    int i;
74
1
    const TwinVQModeTab *mtab = tctx->mtab;
75
1
    int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
76
77
65
    for (i = 0; i < size_s / 2; i++) {
78
64
        float cos_i = tctx->cos_tabs[0][i];
79
64
        lpc[i]              = eval_lpc_spectrum(cos_vals,  cos_i, mtab->n_lsp);
80
64
        lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
81
    }
82
1
}
83
84
258879
static void interpolate(float *out, float v1, float v2, int size)
85
{
86
    int i;
87
258879
    float step = (v1 - v2) / (size + 1);
88
89
2554283
    for (i = 0; i < size; i++) {
90
2295404
        v2    += step;
91
2295404
        out[i] = v2;
92
    }
93
258879
}
94
95
261466
static inline float get_cos(int idx, int part, const float *cos_tab, int size)
96
{
97
87599
    return part ? -cos_tab[size - idx - 1]
98
261466
                :  cos_tab[idx];
99
}
100
101
/**
102
 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
103
 * Probably for speed reasons, the coefficients are evaluated as
104
 * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
105
 * where s is an evaluated value, i is a value interpolated from the others
106
 * and b might be either calculated or interpolated, depending on an
107
 * unexplained condition.
108
 *
109
 * @param step the size of a block "siiiibiiii"
110
 * @param in the cosine of the LSP data
111
 * @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI
112
 *        (negative cosine values)
113
 * @param size the size of the whole output
114
 */
115
5174
static inline void eval_lpcenv_or_interp(TwinVQContext *tctx,
116
                                         enum TwinVQFrameType ftype,
117
                                         float *out, const float *in,
118
                                         int size, int step, int part)
119
{
120
    int i;
121
5174
    const TwinVQModeTab *mtab = tctx->mtab;
122
5174
    const float *cos_tab      = tctx->cos_tabs[ftype];
123
124
    // Fill the 's'
125
264278
    for (i = 0; i < size; i += step)
126
259104
        out[i] =
127
259104
            eval_lpc_spectrum(in,
128
                              get_cos(i, part, cos_tab, size),
129
259104
                              mtab->n_lsp);
130
131
    // Fill the 'iiiibiiii'
132
253930
    for (i = step; i <= size - 2 * step; i += step) {
133
248756
        if (out[i + step] + out[i - step] > 1.95 * out[i] ||
134
3383
            out[i + step]                 >= out[i - step]) {
135
246394
            interpolate(out + i - step + 1, out[i], out[i - step], step - 1);
136
        } else {
137
4724
            out[i - step / 2] =
138
2362
                eval_lpc_spectrum(in,
139
2362
                                  get_cos(i - step / 2, part, cos_tab, size),
140
2362
                                  mtab->n_lsp);
141
2362
            interpolate(out + i - step + 1, out[i - step / 2],
142
2362
                        out[i - step], step / 2 - 1);
143
2362
            interpolate(out + i - step / 2 + 1, out[i],
144
2362
                        out[i - step / 2], step / 2 - 1);
145
        }
146
    }
147
148
5174
    interpolate(out + size - 2 * step + 1, out[size - step],
149
5174
                out[size - 2 * step], step - 1);
150
5174
}
151
152
2587
static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype,
153
                               const float *buf, float *lpc,
154
                               int size, int step)
155
{
156
2587
    eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0);
157
2587
    eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2,
158
                          2 * step, 1);
159
160
2587
    interpolate(lpc + size / 2 - step + 1, lpc[size / 2],
161
2587
                lpc[size / 2 - step], step);
162
163
2587
    twinvq_memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step],
164
2587
                        2 * step - 1);
165
2587
}
166
167
/**
168
 * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
169
 * bitstream, sum the corresponding vectors and write the result to *out
170
 * after permutation.
171
 */
172
5063
static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out,
173
                    enum TwinVQFrameType ftype,
174
                    const int16_t *cb0, const int16_t *cb1, int cb_len)
175
{
176
5063
    int pos = 0;
177
    int i, j;
178
179
165515
    for (i = 0; i < tctx->n_div[ftype]; i++) {
180
        int tmp0, tmp1;
181
160452
        int sign0 = 1;
182
160452
        int sign1 = 1;
183
        const int16_t *tab0, *tab1;
184
160452
        int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
185
160452
        int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
186
187
160452
        int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
188
160452
        tmp0 = *cb_bits++;
189
160452
        if (bits == 7) {
190
160452
            if (tmp0 & 0x40)
191
80716
                sign0 = -1;
192
160452
            tmp0 &= 0x3F;
193
        }
194
195
160452
        bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
196
160452
        tmp1 = *cb_bits++;
197
160452
        if (bits == 7) {
198
129957
            if (tmp1 & 0x40)
199
64827
                sign1 = -1;
200
129957
            tmp1 &= 0x3F;
201
        }
202
203
160452
        tab0 = cb0 + tmp0 * cb_len;
204
160452
        tab1 = cb1 + tmp1 * cb_len;
205
206
2899664
        for (j = 0; j < length; j++)
207
2739212
            out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] +
208
2739212
                                                sign1 * tab1[j];
209
210
160452
        pos += length;
211
    }
212
5063
}
213
214
2588
static void dec_gain(TwinVQContext *tctx,
215
                     enum TwinVQFrameType ftype, float *out)
216
{
217
2588
    const TwinVQModeTab   *mtab =  tctx->mtab;
218
2588
    const TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame];
219
    int i, j;
220
2588
    int sub        = mtab->fmode[ftype].sub;
221
2588
    float step     = TWINVQ_AMP_MAX     / ((1 << TWINVQ_GAIN_BITS)     - 1);
222
2588
    float sub_step = TWINVQ_SUB_AMP_MAX / ((1 << TWINVQ_SUB_GAIN_BITS) - 1);
223
224
2588
    if (ftype == TWINVQ_FT_LONG) {
225
4950
        for (i = 0; i < tctx->avctx->channels; i++)
226
2475
            out[i] = (1.0 / (1 << 13)) *
227
2475
                     twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
228
                                     TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
229
    } else {
230
226
        for (i = 0; i < tctx->avctx->channels; i++) {
231
113
            float val = (1.0 / (1 << 23)) *
232
113
                        twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
233
                                        TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
234
235
345
            for (j = 0; j < sub; j++)
236
232
                out[i * sub + j] =
237
232
                    val * twinvq_mulawinv(sub_step * 0.5 +
238
232
                                          sub_step * bits->sub_gain_bits[i * sub + j],
239
                                          TWINVQ_SUB_AMP_MAX, TWINVQ_MULAW_MU);
240
        }
241
    }
242
2588
}
243
244
/**
245
 * Rearrange the LSP coefficients so that they have a minimum distance of
246
 * min_dist. This function does it exactly as described in section of 3.2.4
247
 * of the G.729 specification (but interestingly is different from what the
248
 * reference decoder actually does).
249
 */
250
7764
static void rearrange_lsp(int order, float *lsp, float min_dist)
251
{
252
    int i;
253
7764
    float min_dist2 = min_dist * 0.5;
254
124224
    for (i = 1; i < order; i++)
255
116460
        if (lsp[i] - lsp[i - 1] < min_dist) {
256
            float avg = (lsp[i] + lsp[i - 1]) * 0.5;
257
258
            lsp[i - 1] = avg - min_dist2;
259
            lsp[i]     = avg + min_dist2;
260
        }
261
7764
}
262
263
2588
static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
264
                       int lpc_hist_idx, float *lsp, float *hist)
265
{
266
2588
    const TwinVQModeTab *mtab = tctx->mtab;
267
    int i, j;
268
269
2588
    const float *cb  = mtab->lspcodebook;
270
2588
    const float *cb2 = cb  + (1 << mtab->lsp_bit1) * mtab->n_lsp;
271
2588
    const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp;
272
273
5176
    const int8_t funny_rounding[4] = {
274
        -2,
275
2588
        mtab->lsp_split == 4 ? -2 : 1,
276
2588
        mtab->lsp_split == 4 ? -2 : 1,
277
        0
278
    };
279
280
2588
    j = 0;
281
10352
    for (i = 0; i < mtab->lsp_split; i++) {
282
7764
        int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) /
283
7764
                        mtab->lsp_split;
284
49172
        for (; j < chunk_end; j++)
285
41408
            lsp[j] = cb[lpc_idx1     * mtab->n_lsp + j] +
286
41408
                     cb2[lpc_idx2[i] * mtab->n_lsp + j];
287
    }
288
289
2588
    rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
290
291
43996
    for (i = 0; i < mtab->n_lsp; i++) {
292
41408
        float tmp1 = 1.0     - cb3[lpc_hist_idx * mtab->n_lsp + i];
293
41408
        float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i];
294
41408
        hist[i] = lsp[i];
295
41408
        lsp[i]  = lsp[i] * tmp1 + tmp2;
296
    }
297
298
2588
    rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
299
2588
    rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
300
2588
    ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
301
2588
}
302
303
2588
static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp,
304
                                 enum TwinVQFrameType ftype, float *lpc)
305
{
306
    int i;
307
2588
    int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
308
309
43996
    for (i = 0; i < tctx->mtab->n_lsp; i++)
310
41408
        lsp[i] = 2 * cos(lsp[i]);
311
312

2588
    switch (ftype) {
313
2475
    case TWINVQ_FT_LONG:
314
2475
        eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
315
2475
        break;
316
112
    case TWINVQ_FT_MEDIUM:
317
112
        eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
318
112
        break;
319
1
    case TWINVQ_FT_SHORT:
320
1
        eval_lpcenv(tctx, lsp, lpc);
321
1
        break;
322
    }
323
2588
}
324
325
static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 };
326
327
2588
static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype,
328
                             int wtype, float *in, float *prev, int ch)
329
{
330
2588
    FFTContext *mdct = &tctx->mdct_ctx[ftype];
331
2588
    const TwinVQModeTab *mtab = tctx->mtab;
332
2588
    int bsize = mtab->size / mtab->fmode[ftype].sub;
333
2588
    int size  = mtab->size;
334
2588
    float *buf1 = tctx->tmp_buf;
335
    int j, first_wsize, wsize; // Window size
336
2588
    float *out  = tctx->curr_frame + 2 * ch * mtab->size;
337
2588
    float *out2 = out;
338
    float *prev_buf;
339
2588
    int types_sizes[] = {
340
2588
        mtab->size /  mtab->fmode[TWINVQ_FT_LONG].sub,
341
2588
        mtab->size /  mtab->fmode[TWINVQ_FT_MEDIUM].sub,
342
2588
        mtab->size / (mtab->fmode[TWINVQ_FT_SHORT].sub * 2),
343
    };
344
345
2588
    wsize       = types_sizes[wtype_to_wsize[wtype]];
346
2588
    first_wsize = wsize;
347
2588
    prev_buf    = prev + (size - bsize) / 2;
348
349
5295
    for (j = 0; j < mtab->fmode[ftype].sub; j++) {
350
2707
        int sub_wtype = ftype == TWINVQ_FT_MEDIUM ? 8 : wtype;
351
352

2707
        if (!j && wtype == 4)
353
            sub_wtype = 4;
354

2707
        else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7)
355
            sub_wtype = 7;
356
357
2707
        wsize = types_sizes[wtype_to_wsize[sub_wtype]];
358
359
2707
        mdct->imdct_half(mdct, buf1 + bsize * j, in + bsize * j);
360
361
2707
        tctx->fdsp->vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2,
362
2707
                                      buf1 + bsize * j,
363
2707
                                      ff_sine_windows[av_log2(wsize)],
364
                                      wsize / 2);
365
2707
        out2 += wsize;
366
367
2707
        memcpy(out2, buf1 + bsize * j + wsize / 2,
368
2707
               (bsize - wsize / 2) * sizeof(float));
369
370
2707
        out2 += ftype == TWINVQ_FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize;
371
372
2707
        prev_buf = buf1 + bsize * j + bsize / 2;
373
    }
374
375
2588
    tctx->last_block_pos[ch] = (size + first_wsize) / 2;
376
2588
}
377
378
2588
static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype,
379
                         int wtype, float **out, int offset)
380
{
381
2588
    const TwinVQModeTab *mtab = tctx->mtab;
382
2588
    float *prev_buf           = tctx->prev_frame + tctx->last_block_pos[0];
383
    int size1, size2, i;
384
    float *out1, *out2;
385
386
5176
    for (i = 0; i < tctx->avctx->channels; i++)
387
2588
        imdct_and_window(tctx, ftype, wtype,
388
2588
                         tctx->spectrum + i * mtab->size,
389
2588
                         prev_buf + 2 * i * mtab->size,
390
                         i);
391
392
2588
    if (!out)
393
2
        return;
394
395
2586
    size2 = tctx->last_block_pos[0];
396
2586
    size1 = mtab->size - size2;
397
398
2586
    out1 = &out[0][0] + offset;
399
2586
    memcpy(out1,         prev_buf,         size1 * sizeof(*out1));
400
2586
    memcpy(out1 + size1, tctx->curr_frame, size2 * sizeof(*out1));
401
402
2586
    if (tctx->avctx->channels == 2) {
403
        out2 = &out[1][0] + offset;
404
        memcpy(out2, &prev_buf[2 * mtab->size],
405
               size1 * sizeof(*out2));
406
        memcpy(out2 + size1, &tctx->curr_frame[2 * mtab->size],
407
               size2 * sizeof(*out2));
408
        tctx->fdsp->butterflies_float(out1, out2, mtab->size);
409
    }
410
}
411
412
2588
static void read_and_decode_spectrum(TwinVQContext *tctx, float *out,
413
                                     enum TwinVQFrameType ftype)
414
{
415
2588
    const TwinVQModeTab *mtab = tctx->mtab;
416
2588
    TwinVQFrameData *bits     = &tctx->bits[tctx->cur_frame];
417
2588
    int channels              = tctx->avctx->channels;
418
2588
    int sub        = mtab->fmode[ftype].sub;
419
2588
    int block_size = mtab->size / sub;
420
    float gain[TWINVQ_CHANNELS_MAX * TWINVQ_SUBBLOCKS_MAX];
421
    float ppc_shape[TWINVQ_PPC_SHAPE_LEN_MAX * TWINVQ_CHANNELS_MAX * 4];
422
423
    int i, j;
424
425
2588
    dequant(tctx, bits->main_coeffs, out, ftype,
426
            mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
427
2588
            mtab->fmode[ftype].cb_len_read);
428
429
2588
    dec_gain(tctx, ftype, gain);
430
431
2588
    if (ftype == TWINVQ_FT_LONG) {
432
2475
        int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) /
433
2475
                       tctx->n_div[3];
434
2475
        dequant(tctx, bits->ppc_coeffs, ppc_shape,
435
                TWINVQ_FT_PPC, mtab->ppc_shape_cb,
436
2475
                mtab->ppc_shape_cb + cb_len_p * TWINVQ_PPC_SHAPE_CB_SIZE,
437
                cb_len_p);
438
    }
439
440
5176
    for (i = 0; i < channels; i++) {
441
2588
        float *chunk = out + mtab->size * i;
442
        float lsp[TWINVQ_LSP_COEFS_MAX];
443
444
5295
        for (j = 0; j < sub; j++) {
445
2707
            tctx->dec_bark_env(tctx, bits->bark1[i][j],
446
2707
                               bits->bark_use_hist[i][j], i,
447
2707
                               tctx->tmp_buf, gain[sub * i + j], ftype);
448
449
2707
            tctx->fdsp->vector_fmul(chunk + block_size * j,
450
2707
                                   chunk + block_size * j,
451
2707
                                   tctx->tmp_buf, block_size);
452
        }
453
454
2588
        if (ftype == TWINVQ_FT_LONG)
455
2475
            tctx->decode_ppc(tctx, bits->p_coef[i], bits->g_coef[i],
456
2475
                             ppc_shape + i * mtab->ppc_shape_len, chunk);
457
458
2588
        decode_lsp(tctx, bits->lpc_idx1[i], bits->lpc_idx2[i],
459
2588
                   bits->lpc_hist_idx[i], lsp, tctx->lsp_hist[i]);
460
461
2588
        dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
462
463
5295
        for (j = 0; j < mtab->fmode[ftype].sub; j++) {
464
2707
            tctx->fdsp->vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
465
2707
            chunk += block_size;
466
        }
467
    }
468
2588
}
469
470
const enum TwinVQFrameType ff_twinvq_wtype_to_ftype_table[] = {
471
    TWINVQ_FT_LONG,   TWINVQ_FT_LONG, TWINVQ_FT_SHORT, TWINVQ_FT_LONG,
472
    TWINVQ_FT_MEDIUM, TWINVQ_FT_LONG, TWINVQ_FT_LONG,  TWINVQ_FT_MEDIUM,
473
    TWINVQ_FT_MEDIUM
474
};
475
476
2588
int ff_twinvq_decode_frame(AVCodecContext *avctx, void *data,
477
                           int *got_frame_ptr, AVPacket *avpkt)
478
{
479
2588
    AVFrame *frame     = data;
480
2588
    const uint8_t *buf = avpkt->data;
481
2588
    int buf_size       = avpkt->size;
482
2588
    TwinVQContext *tctx = avctx->priv_data;
483
2588
    const TwinVQModeTab *mtab = tctx->mtab;
484
2588
    float **out = NULL;
485
    int ret;
486
487
    /* get output buffer */
488
2588
    if (tctx->discarded_packets >= 2) {
489
2586
        frame->nb_samples = mtab->size * tctx->frames_per_packet;
490
2586
        if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
491
            return ret;
492
2586
        out = (float **)frame->extended_data;
493
    }
494
495
2588
    if (buf_size < avctx->block_align) {
496
        av_log(avctx, AV_LOG_ERROR,
497
               "Frame too small (%d bytes). Truncated file?\n", buf_size);
498
        return AVERROR(EINVAL);
499
    }
500
501
2588
    if ((ret = tctx->read_bitstream(avctx, tctx, buf, buf_size)) < 0)
502
        return ret;
503
504
5176
    for (tctx->cur_frame = 0; tctx->cur_frame < tctx->frames_per_packet;
505
2588
         tctx->cur_frame++) {
506
2588
        read_and_decode_spectrum(tctx, tctx->spectrum,
507
2588
                                 tctx->bits[tctx->cur_frame].ftype);
508
509
2588
        imdct_output(tctx, tctx->bits[tctx->cur_frame].ftype,
510
2588
                     tctx->bits[tctx->cur_frame].window_type, out,
511
2588
                     tctx->cur_frame * mtab->size);
512
513
2588
        FFSWAP(float *, tctx->curr_frame, tctx->prev_frame);
514
    }
515
516
2588
    if (tctx->discarded_packets < 2) {
517
2
        tctx->discarded_packets++;
518
2
        *got_frame_ptr = 0;
519
2
        return buf_size;
520
    }
521
522
2586
    *got_frame_ptr = 1;
523
524
    // VQF can deliver packets 1 byte greater than block align
525
2586
    if (buf_size == avctx->block_align + 1)
526
2586
        return buf_size;
527
    return avctx->block_align;
528
}
529
530
/**
531
 * Init IMDCT and windowing tables
532
 */
533
3
static av_cold int init_mdct_win(TwinVQContext *tctx)
534
{
535
    int i, j, ret;
536
3
    const TwinVQModeTab *mtab = tctx->mtab;
537
3
    int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
538
3
    int size_m = mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub;
539
3
    int channels = tctx->avctx->channels;
540
3
    float norm = channels == 1 ? 2.0 : 1.0;
541
3
    int table_size = 2 * mtab->size * channels;
542
543
12
    for (i = 0; i < 3; i++) {
544
9
        int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub;
545
9
        if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
546
9
                                -sqrt(norm / bsize) / (1 << 15))))
547
            return ret;
548
    }
549
550
3
    if (!FF_ALLOC_TYPED_ARRAY(tctx->tmp_buf,    mtab->size) ||
551
3
        !FF_ALLOC_TYPED_ARRAY(tctx->spectrum,   table_size) ||
552
3
        !FF_ALLOC_TYPED_ARRAY(tctx->curr_frame, table_size) ||
553
3
        !FF_ALLOC_TYPED_ARRAY(tctx->prev_frame, table_size))
554
        return AVERROR(ENOMEM);
555
556
12
    for (i = 0; i < 3; i++) {
557
9
        int m       = 4 * mtab->size / mtab->fmode[i].sub;
558
9
        double freq = 2 * M_PI / m;
559
9
        if (!FF_ALLOC_TYPED_ARRAY(tctx->cos_tabs[i], m / 4))
560
            return AVERROR(ENOMEM);
561
2514
        for (j = 0; j <= m / 8; j++)
562
2505
            tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq);
563
2496
        for (j = 1; j < m / 8; j++)
564
2487
            tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j];
565
    }
566
567
3
    ff_init_ff_sine_windows(av_log2(size_m));
568
3
    ff_init_ff_sine_windows(av_log2(size_s / 2));
569
3
    ff_init_ff_sine_windows(av_log2(mtab->size));
570
571
3
    return 0;
572
}
573
574
/**
575
 * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
576
 * each line do a cyclic permutation, i.e.
577
 * abcdefghijklm -> defghijklmabc
578
 * where the amount to be shifted is evaluated depending on the column.
579
 */
580
12
static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
581
                              int block_size,
582
                              const uint8_t line_len[2], int length_div,
583
                              enum TwinVQFrameType ftype)
584
{
585
    int i, j;
586
587
198
    for (i = 0; i < line_len[0]; i++) {
588
        int shift;
589
590

186
        if (num_blocks == 1                                    ||
591

105
            (ftype == TWINVQ_FT_LONG && num_vect % num_blocks) ||
592
105
            (ftype != TWINVQ_FT_LONG && num_vect & 1)          ||
593
105
            i == line_len[1]) {
594
87
            shift = 0;
595
99
        } else if (ftype == TWINVQ_FT_LONG) {
596
            shift = i;
597
        } else
598
99
            shift = i * i;
599
600

9510
        for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++)
601
9324
            tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect;
602
    }
603
12
}
604
605
/**
606
 * Interpret the input data as in the following table:
607
 *
608
 * @verbatim
609
 *
610
 * abcdefgh
611
 * ijklmnop
612
 * qrstuvw
613
 * x123456
614
 *
615
 * @endverbatim
616
 *
617
 * and transpose it, giving the output
618
 * aiqxbjr1cks2dlt3emu4fvn5gow6hp
619
 */
620
12
static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
621
                           const uint8_t line_len[2], int length_div)
622
{
623
    int i, j;
624
12
    int cont = 0;
625
626
558
    for (i = 0; i < num_vect; i++)
627
9870
        for (j = 0; j < line_len[i >= length_div]; j++)
628
9324
            out[cont++] = in[j * num_vect + i];
629
12
}
630
631
12
static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
632
{
633
12
    int block_size = size / n_blocks;
634
    int i;
635
636
9336
    for (i = 0; i < size; i++)
637
9324
        out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
638
12
}
639
640
12
static av_cold void construct_perm_table(TwinVQContext *tctx,
641
                                         enum TwinVQFrameType ftype)
642
{
643
    int block_size, size;
644
12
    const TwinVQModeTab *mtab = tctx->mtab;
645
12
    int16_t *tmp_perm = (int16_t *)tctx->tmp_buf;
646
647
12
    if (ftype == TWINVQ_FT_PPC) {
648
3
        size       = tctx->avctx->channels;
649
3
        block_size = mtab->ppc_shape_len;
650
    } else {
651
9
        size       = tctx->avctx->channels * mtab->fmode[ftype].sub;
652
9
        block_size = mtab->size / mtab->fmode[ftype].sub;
653
    }
654
655
12
    permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
656
12
                      block_size, tctx->length[ftype],
657
12
                      tctx->length_change[ftype], ftype);
658
659
12
    transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
660
12
                   tctx->length[ftype], tctx->length_change[ftype]);
661
662
12
    linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
663
                size * block_size);
664
12
}
665
666
3
static av_cold void init_bitstream_params(TwinVQContext *tctx)
667
{
668
3
    const TwinVQModeTab *mtab = tctx->mtab;
669
3
    int n_ch                  = tctx->avctx->channels;
670
3
    int total_fr_bits         = tctx->avctx->bit_rate * mtab->size /
671
3
                                tctx->avctx->sample_rate;
672
673
3
    int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 +
674
3
                                     mtab->lsp_split * mtab->lsp_bit2);
675
676
3
    int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit +
677
3
                           mtab->ppc_period_bit);
678
679
    int bsize_no_main_cb[3], bse_bits[3], i;
680
    enum TwinVQFrameType frametype;
681
682
12
    for (i = 0; i < 3; i++)
683
        // +1 for history usage switch
684
9
        bse_bits[i] = n_ch *
685
9
                      (mtab->fmode[i].bark_n_coef *
686
9
                       mtab->fmode[i].bark_n_bit + 1);
687
688
3
    bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
689
3
                          TWINVQ_WINDOW_TYPE_BITS + n_ch * TWINVQ_GAIN_BITS;
690
691
9
    for (i = 0; i < 2; i++)
692
6
        bsize_no_main_cb[i] =
693
6
            lsp_bits_per_block + n_ch * TWINVQ_GAIN_BITS +
694
6
            TWINVQ_WINDOW_TYPE_BITS +
695
6
            mtab->fmode[i].sub * (bse_bits[i] + n_ch * TWINVQ_SUB_GAIN_BITS);
696
697

3
    if (tctx->codec == TWINVQ_CODEC_METASOUND && !tctx->is_6kbps) {
698
        bsize_no_main_cb[1] += 2;
699
        bsize_no_main_cb[2] += 2;
700
    }
701
702
    // The remaining bits are all used for the main spectrum coefficients
703
15
    for (i = 0; i < 4; i++) {
704
        int bit_size, vect_size;
705
        int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
706
12
        if (i == 3) {
707
3
            bit_size  = n_ch * mtab->ppc_shape_bit;
708
3
            vect_size = n_ch * mtab->ppc_shape_len;
709
        } else {
710
9
            bit_size  = total_fr_bits - bsize_no_main_cb[i];
711
9
            vect_size = n_ch * mtab->size;
712
        }
713
714
12
        tctx->n_div[i] = (bit_size + 13) / 14;
715
716
12
        rounded_up                     = (bit_size + tctx->n_div[i] - 1) /
717
12
                                         tctx->n_div[i];
718
12
        rounded_down                   = (bit_size) / tctx->n_div[i];
719
12
        num_rounded_down               = rounded_up * tctx->n_div[i] - bit_size;
720
12
        num_rounded_up                 = tctx->n_div[i] - num_rounded_down;
721
12
        tctx->bits_main_spec[0][i][0]  = (rounded_up + 1)   / 2;
722
12
        tctx->bits_main_spec[1][i][0]  =  rounded_up        / 2;
723
12
        tctx->bits_main_spec[0][i][1]  = (rounded_down + 1) / 2;
724
12
        tctx->bits_main_spec[1][i][1]  =  rounded_down      / 2;
725
12
        tctx->bits_main_spec_change[i] = num_rounded_up;
726
727
12
        rounded_up             = (vect_size + tctx->n_div[i] - 1) /
728
12
                                 tctx->n_div[i];
729
12
        rounded_down           = (vect_size) / tctx->n_div[i];
730
12
        num_rounded_down       = rounded_up * tctx->n_div[i] - vect_size;
731
12
        num_rounded_up         = tctx->n_div[i] - num_rounded_down;
732
12
        tctx->length[i][0]     = rounded_up;
733
12
        tctx->length[i][1]     = rounded_down;
734
12
        tctx->length_change[i] = num_rounded_up;
735
    }
736
737
15
    for (frametype = TWINVQ_FT_SHORT; frametype <= TWINVQ_FT_PPC; frametype++)
738
12
        construct_perm_table(tctx, frametype);
739
3
}
740
741
3
av_cold int ff_twinvq_decode_close(AVCodecContext *avctx)
742
{
743
3
    TwinVQContext *tctx = avctx->priv_data;
744
    int i;
745
746
12
    for (i = 0; i < 3; i++) {
747
9
        ff_mdct_end(&tctx->mdct_ctx[i]);
748
9
        av_freep(&tctx->cos_tabs[i]);
749
    }
750
751
3
    av_freep(&tctx->curr_frame);
752
3
    av_freep(&tctx->spectrum);
753
3
    av_freep(&tctx->prev_frame);
754
3
    av_freep(&tctx->tmp_buf);
755
3
    av_freep(&tctx->fdsp);
756
757
3
    return 0;
758
}
759
760
3
av_cold int ff_twinvq_decode_init(AVCodecContext *avctx)
761
{
762
    int ret;
763
3
    TwinVQContext *tctx = avctx->priv_data;
764
    int64_t frames_per_packet;
765
766
3
    tctx->avctx       = avctx;
767
3
    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
768
769
3
    if (!avctx->block_align) {
770
2
        avctx->block_align = tctx->frame_size + 7 >> 3;
771
    }
772
3
    frames_per_packet = avctx->block_align * 8LL / tctx->frame_size;
773
3
    if (frames_per_packet <= 0) {
774
        av_log(avctx, AV_LOG_ERROR, "Block align is %"PRId64" bits, expected %d\n",
775
               avctx->block_align * (int64_t)8, tctx->frame_size);
776
        return AVERROR_INVALIDDATA;
777
    }
778
3
    if (frames_per_packet > TWINVQ_MAX_FRAMES_PER_PACKET) {
779
        av_log(avctx, AV_LOG_ERROR, "Too many frames per packet (%"PRId64")\n",
780
               frames_per_packet);
781
        return AVERROR_INVALIDDATA;
782
    }
783
3
    tctx->frames_per_packet = frames_per_packet;
784
785
3
    tctx->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
786
3
    if (!tctx->fdsp) {
787
        ff_twinvq_decode_close(avctx);
788
        return AVERROR(ENOMEM);
789
    }
790
3
    if ((ret = init_mdct_win(tctx))) {
791
        av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
792
        ff_twinvq_decode_close(avctx);
793
        return ret;
794
    }
795
3
    init_bitstream_params(tctx);
796
797
3
    twinvq_memset_float(tctx->bark_hist[0][0], 0.1,
798
                        FF_ARRAY_ELEMS(tctx->bark_hist));
799
800
3
    return 0;
801
}