GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/sipr.c Lines: 203 213 95.3 %
Date: 2020-10-23 17:01:47 Branches: 90 100 90.0 %

Line Branch Exec Source
1
/*
2
 * SIPR / ACELP.NET decoder
3
 *
4
 * Copyright (c) 2008 Vladimir Voroshilov
5
 * Copyright (c) 2009 Vitor Sessak
6
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23
24
#include <math.h>
25
#include <stdint.h>
26
#include <string.h>
27
28
#include "libavutil/channel_layout.h"
29
#include "libavutil/float_dsp.h"
30
#include "libavutil/mathematics.h"
31
32
#define BITSTREAM_READER_LE
33
#include "avcodec.h"
34
#include "get_bits.h"
35
#include "internal.h"
36
#include "lsp.h"
37
#include "acelp_vectors.h"
38
#include "acelp_pitch_delay.h"
39
#include "acelp_filters.h"
40
#include "celp_filters.h"
41
42
#define MAX_SUBFRAME_COUNT   5
43
44
#include "sipr.h"
45
#include "siprdata.h"
46
47
typedef struct SiprModeParam {
48
    const char *mode_name;
49
    uint16_t bits_per_frame;
50
    uint8_t subframe_count;
51
    uint8_t frames_per_packet;
52
    float pitch_sharp_factor;
53
54
    /* bitstream parameters */
55
    uint8_t number_of_fc_indexes;
56
    uint8_t ma_predictor_bits;  ///< size in bits of the switched MA predictor
57
58
    /** size in bits of the i-th stage vector of quantizer */
59
    uint8_t vq_indexes_bits[5];
60
61
    /** size in bits of the adaptive-codebook index for every subframe */
62
    uint8_t pitch_delay_bits[5];
63
64
    uint8_t gp_index_bits;
65
    uint8_t fc_index_bits[10]; ///< size in bits of the fixed codebook indexes
66
    uint8_t gc_index_bits;     ///< size in bits of the gain  codebook indexes
67
} SiprModeParam;
68
69
static const SiprModeParam modes[MODE_COUNT] = {
70
    [MODE_16k] = {
71
        .mode_name          = "16k",
72
        .bits_per_frame     = 160,
73
        .subframe_count     = SUBFRAME_COUNT_16k,
74
        .frames_per_packet  = 1,
75
        .pitch_sharp_factor = 0.00,
76
77
        .number_of_fc_indexes = 10,
78
        .ma_predictor_bits    = 1,
79
        .vq_indexes_bits      = {7, 8, 7, 7, 7},
80
        .pitch_delay_bits     = {9, 6},
81
        .gp_index_bits        = 4,
82
        .fc_index_bits        = {4, 5, 4, 5, 4, 5, 4, 5, 4, 5},
83
        .gc_index_bits        = 5
84
    },
85
86
    [MODE_8k5] = {
87
        .mode_name          = "8k5",
88
        .bits_per_frame     = 152,
89
        .subframe_count     = 3,
90
        .frames_per_packet  = 1,
91
        .pitch_sharp_factor = 0.8,
92
93
        .number_of_fc_indexes = 3,
94
        .ma_predictor_bits    = 0,
95
        .vq_indexes_bits      = {6, 7, 7, 7, 5},
96
        .pitch_delay_bits     = {8, 5, 5},
97
        .gp_index_bits        = 0,
98
        .fc_index_bits        = {9, 9, 9},
99
        .gc_index_bits        = 7
100
    },
101
102
    [MODE_6k5] = {
103
        .mode_name          = "6k5",
104
        .bits_per_frame     = 232,
105
        .subframe_count     = 3,
106
        .frames_per_packet  = 2,
107
        .pitch_sharp_factor = 0.8,
108
109
        .number_of_fc_indexes = 3,
110
        .ma_predictor_bits    = 0,
111
        .vq_indexes_bits      = {6, 7, 7, 7, 5},
112
        .pitch_delay_bits     = {8, 5, 5},
113
        .gp_index_bits        = 0,
114
        .fc_index_bits        = {5, 5, 5},
115
        .gc_index_bits        = 7
116
    },
117
118
    [MODE_5k0] = {
119
        .mode_name          = "5k0",
120
        .bits_per_frame     = 296,
121
        .subframe_count     = 5,
122
        .frames_per_packet  = 2,
123
        .pitch_sharp_factor = 0.85,
124
125
        .number_of_fc_indexes = 1,
126
        .ma_predictor_bits    = 0,
127
        .vq_indexes_bits      = {6, 7, 7, 7, 5},
128
        .pitch_delay_bits     = {8, 5, 8, 5, 5},
129
        .gp_index_bits        = 0,
130
        .fc_index_bits        = {10},
131
        .gc_index_bits        = 7
132
    }
133
};
134
135
const float ff_pow_0_5[] = {
136
    1.0/(1 <<  1), 1.0/(1 <<  2), 1.0/(1 <<  3), 1.0/(1 <<  4),
137
    1.0/(1 <<  5), 1.0/(1 <<  6), 1.0/(1 <<  7), 1.0/(1 <<  8),
138
    1.0/(1 <<  9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12),
139
    1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16)
140
};
141
142
5184
static void dequant(float *out, const int *idx, const float * const cbs[])
143
{
144
    int i;
145
5184
    int stride  = 2;
146
5184
    int num_vec = 5;
147
148
31104
    for (i = 0; i < num_vec; i++)
149
25920
        memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float));
150
151
5184
}
152
153
5184
static void lsf_decode_fp(float *lsfnew, float *lsf_history,
154
                          const SiprParameters *parm)
155
{
156
    int i;
157
    float lsf_tmp[LP_FILTER_ORDER];
158
159
5184
    dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks);
160
161
57024
    for (i = 0; i < LP_FILTER_ORDER; i++)
162
51840
        lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i];
163
164
5184
    ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1);
165
166
    /* Note that a minimum distance is not enforced between the last value and
167
       the previous one, contrary to what is done in ff_acelp_reorder_lsf() */
168
5184
    ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1);
169
5184
    lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI);
170
171
5184
    memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history));
172
173
51840
    for (i = 0; i < LP_FILTER_ORDER - 1; i++)
174
46656
        lsfnew[i] = cos(lsfnew[i]);
175
5184
    lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI;
176
5184
}
177
178
/** Apply pitch lag to the fixed vector (AMR section 6.1.2). */
179
16896
static void pitch_sharpening(int pitch_lag_int, float beta,
180
                             float *fixed_vector)
181
{
182
    int i;
183
184
87840
    for (i = pitch_lag_int; i < SUBFR_SIZE; i++)
185
70944
        fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int];
186
16896
}
187
188
/**
189
 * Extract decoding parameters from the input bitstream.
190
 * @param parms          parameters structure
191
 * @param pgb            pointer to initialized GetBitContext structure
192
 */
193
8434
static void decode_parameters(SiprParameters* parms, GetBitContext *pgb,
194
                              const SiprModeParam *p)
195
{
196
    int i, j;
197
198
8434
    if (p->ma_predictor_bits)
199
3250
        parms->ma_pred_switch       = get_bits(pgb, p->ma_predictor_bits);
200
201
50604
    for (i = 0; i < 5; i++)
202
42170
        parms->vq_indexes[i]        = get_bits(pgb, p->vq_indexes_bits[i]);
203
204
31830
    for (i = 0; i < p->subframe_count; i++) {
205
23396
        parms->pitch_delay[i]       = get_bits(pgb, p->pitch_delay_bits[i]);
206
23396
        if (p->gp_index_bits)
207
6500
            parms->gp_index[i]      = get_bits(pgb, p->gp_index_bits);
208
209
132364
        for (j = 0; j < p->number_of_fc_indexes; j++)
210
108968
            parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]);
211
212
23396
        parms->gc_index[i]          = get_bits(pgb, p->gc_index_bits);
213
    }
214
8434
}
215
216
5184
static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az,
217
                           int num_subfr)
218
{
219
    double lsfint[LP_FILTER_ORDER];
220
    int i,j;
221
5184
    float t, t0 = 1.0 / num_subfr;
222
223
5184
    t = t0 * 0.5;
224
22080
    for (i = 0; i < num_subfr; i++) {
225
185856
        for (j = 0; j < LP_FILTER_ORDER; j++)
226
168960
            lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j];
227
228
16896
        ff_amrwb_lsp2lpc(lsfint, Az, LP_FILTER_ORDER);
229
16896
        Az += LP_FILTER_ORDER;
230
16896
        t += t0;
231
    }
232
5184
}
233
234
/**
235
 * Evaluate the adaptive impulse response.
236
 */
237
16896
static void eval_ir(const float *Az, int pitch_lag, float *freq,
238
                    float pitch_sharp_factor)
239
{
240
    float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1];
241
    int i;
242
243
16896
    tmp1[0] = 1.0;
244
185856
    for (i = 0; i < LP_FILTER_ORDER; i++) {
245
168960
        tmp1[i+1] = Az[i] * ff_pow_0_55[i];
246
168960
        tmp2[i  ] = Az[i] * ff_pow_0_7 [i];
247
    }
248
16896
    memset(tmp1 + 11, 0, 37 * sizeof(float));
249
250
16896
    ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE,
251
                                 LP_FILTER_ORDER);
252
253
16896
    pitch_sharpening(pitch_lag, pitch_sharp_factor, freq);
254
16896
}
255
256
/**
257
 * Evaluate the convolution of a vector with a sparse vector.
258
 */
259
16896
static void convolute_with_sparse(float *out, const AMRFixed *pulses,
260
                                  const float *shape, int length)
261
{
262
    int i, j;
263
264
16896
    memset(out, 0, length*sizeof(float));
265
76540
    for (i = 0; i < pulses->n; i++)
266
1636784
        for (j = pulses->x[i]; j < length; j++)
267
1577140
            out[j] += pulses->y[i] * shape[j - pulses->x[i]];
268
16896
}
269
270
/**
271
 * Apply postfilter, very similar to AMR one.
272
 */
273
3360
static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples)
274
{
275
    float buf[SUBFR_SIZE + LP_FILTER_ORDER];
276
3360
    float *pole_out = buf + LP_FILTER_ORDER;
277
    float lpc_n[LP_FILTER_ORDER];
278
    float lpc_d[LP_FILTER_ORDER];
279
    int i;
280
281
36960
    for (i = 0; i < LP_FILTER_ORDER; i++) {
282
33600
        lpc_d[i] = lpc[i] * ff_pow_0_75[i];
283
33600
        lpc_n[i] = lpc[i] * ff_pow_0_5 [i];
284
    };
285
286
3360
    memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem,
287
           LP_FILTER_ORDER*sizeof(float));
288
289
3360
    ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE,
290
                                 LP_FILTER_ORDER);
291
292
3360
    memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
293
           LP_FILTER_ORDER*sizeof(float));
294
295
3360
    ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE);
296
297
3360
    memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0,
298
           LP_FILTER_ORDER*sizeof(*pole_out));
299
300
3360
    memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
301
           LP_FILTER_ORDER*sizeof(*pole_out));
302
303
3360
    ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE,
304
                                      LP_FILTER_ORDER);
305
306
3360
}
307
308
16896
static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses,
309
                                SiprMode mode, int low_gain)
310
{
311
    int i;
312
313
16896
    switch (mode) {
314
10080
    case MODE_6k5:
315
40320
        for (i = 0; i < 3; i++) {
316
30240
            fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i;
317
30240
            fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1;
318
        }
319
10080
        fixed_sparse->n = 3;
320
10080
        break;
321
3456
    case MODE_8k5:
322
13824
        for (i = 0; i < 3; i++) {
323
10368
            fixed_sparse->x[2*i    ] = 3 * ((pulses[i] >> 4) & 0xf) + i;
324
10368
            fixed_sparse->x[2*i + 1] = 3 * ( pulses[i]       & 0xf) + i;
325
326
10368
            fixed_sparse->y[2*i    ] = (pulses[i] & 0x100) ? -1.0: 1.0;
327
328
10368
            fixed_sparse->y[2*i + 1] =
329
10368
                (fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ?
330
10368
                -fixed_sparse->y[2*i    ] : fixed_sparse->y[2*i];
331
        }
332
333
3456
        fixed_sparse->n = 6;
334
3456
        break;
335
3360
    case MODE_5k0:
336
    default:
337
3360
        if (low_gain) {
338
1948
            int offset = (pulses[0] & 0x200) ? 2 : 0;
339
1948
            int val = pulses[0];
340
341
7792
            for (i = 0; i < 3; i++) {
342
5844
                int index = (val & 0x7) * 6 + 4 - i*2;
343
344
5844
                fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1;
345
5844
                fixed_sparse->x[i] = index;
346
347
5844
                val >>= 3;
348
            }
349
1948
            fixed_sparse->n = 3;
350
        } else {
351
1412
            int pulse_subset = (pulses[0] >> 8) & 1;
352
353
1412
            fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset;
354
1412
            fixed_sparse->x[1] = ( pulses[0]       & 15) * 3 + pulse_subset + 1;
355
356
1412
            fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1;
357
1412
            fixed_sparse->y[1] = -fixed_sparse->y[0];
358
1412
            fixed_sparse->n = 2;
359
        }
360
3360
        break;
361
    }
362
16896
}
363
364
5184
static void decode_frame(SiprContext *ctx, SiprParameters *params,
365
                         float *out_data)
366
{
367
    int i, j;
368
5184
    int subframe_count = modes[ctx->mode].subframe_count;
369
5184
    int frame_size = subframe_count * SUBFR_SIZE;
370
    float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT];
371
    float *excitation;
372
    float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER];
373
    float lsf_new[LP_FILTER_ORDER];
374
5184
    float *impulse_response = ir_buf + LP_FILTER_ORDER;
375
5184
    float *synth = ctx->synth_buf + 16; // 16 instead of LP_FILTER_ORDER for
376
                                        // memory alignment
377
5184
    int t0_first = 0;
378
    AMRFixed fixed_cb;
379
380
5184
    memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float));
381
5184
    lsf_decode_fp(lsf_new, ctx->lsf_history, params);
382
383
5184
    sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count);
384
385
5184
    memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float));
386
387
5184
    excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL;
388
389
22080
    for (i = 0; i < subframe_count; i++) {
390
16896
        float *pAz = Az + i*LP_FILTER_ORDER;
391
        float fixed_vector[SUBFR_SIZE];
392
        int T0,T0_frac;
393
        float pitch_gain, gain_code, avg_energy;
394
395
16896
        ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i,
396
16896
                            ctx->mode == MODE_5k0, 6);
397
398

16896
        if (i == 0 || (i == 2 && ctx->mode == MODE_5k0))
399
5856
            t0_first = T0;
400
401
16896
        ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0),
402
                              ff_b60_sinc, 6,
403
16896
                              2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER,
404
                              SUBFR_SIZE);
405
406
16896
        decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode,
407
16896
                            ctx->past_pitch_gain < 0.8);
408
409
16896
        eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor);
410
411
16896
        convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response,
412
                              SUBFR_SIZE);
413
414
16896
        avg_energy = (0.01 + avpriv_scalarproduct_float_c(fixed_vector,
415
                                                          fixed_vector,
416
16896
                                                          SUBFR_SIZE)) /
417
                     SUBFR_SIZE;
418
419
16896
        ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0];
420
421
16896
        gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1],
422
16896
                                          avg_energy, ctx->energy_history,
423
                                          34 - 15.0/(0.05*M_LN10/M_LN2),
424
                                          pred);
425
426
16896
        ff_weighted_vector_sumf(excitation, excitation, fixed_vector,
427
                                pitch_gain, gain_code, SUBFR_SIZE);
428
429
16896
        pitch_gain *= 0.5 * pitch_gain;
430
16896
        pitch_gain = FFMIN(pitch_gain, 0.4);
431
432
16896
        ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain;
433
16896
        ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain);
434
16896
        gain_code *= ctx->gain_mem;
435
436
827904
        for (j = 0; j < SUBFR_SIZE; j++)
437
811008
            fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j];
438
439
16896
        if (ctx->mode == MODE_5k0) {
440
3360
            postfilter_5k0(ctx, pAz, fixed_vector);
441
442
3360
            ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
443
                                         pAz, excitation, SUBFR_SIZE,
444
                                         LP_FILTER_ORDER);
445
        }
446
447
16896
        ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector,
448
                                     SUBFR_SIZE, LP_FILTER_ORDER);
449
450
16896
        excitation += SUBFR_SIZE;
451
    }
452
453
5184
    memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER,
454
           LP_FILTER_ORDER * sizeof(float));
455
456
5184
    if (ctx->mode == MODE_5k0) {
457
4032
        for (i = 0; i < subframe_count; i++) {
458
3360
            float energy = avpriv_scalarproduct_float_c(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
459
3360
                                                        ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
460
                                                        SUBFR_SIZE);
461
3360
            ff_adaptive_gain_control(&synth[i * SUBFR_SIZE],
462
3360
                                     &synth[i * SUBFR_SIZE], energy,
463
                                     SUBFR_SIZE, 0.9, &ctx->postfilter_agc);
464
        }
465
466
672
        memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size,
467
               LP_FILTER_ORDER*sizeof(float));
468
    }
469
5184
    memmove(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL,
470
           (PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float));
471
472
5184
    ff_acelp_apply_order_2_transfer_function(out_data, synth,
473
5184
                                             (const float[2]) {-1.99997   , 1.000000000},
474
5184
                                             (const float[2]) {-1.93307352, 0.935891986},
475
                                             0.939805806,
476
5184
                                             ctx->highpass_filt_mem,
477
                                             frame_size);
478
5184
}
479
480
9
static av_cold int sipr_decoder_init(AVCodecContext * avctx)
481
{
482
9
    SiprContext *ctx = avctx->priv_data;
483
    int i;
484
485

9
    switch (avctx->block_align) {
486
2
    case 20: ctx->mode = MODE_16k; break;
487
3
    case 19: ctx->mode = MODE_8k5; break;
488
2
    case 29: ctx->mode = MODE_6k5; break;
489
2
    case 37: ctx->mode = MODE_5k0; break;
490
    default:
491
        if      (avctx->bit_rate > 12200) ctx->mode = MODE_16k;
492
        else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5;
493
        else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5;
494
        else                              ctx->mode = MODE_5k0;
495
        av_log(avctx, AV_LOG_WARNING,
496
               "Invalid block_align: %d. Mode %s guessed based on bitrate: %"PRId64"\n",
497
               avctx->block_align, modes[ctx->mode].mode_name, avctx->bit_rate);
498
    }
499
500
9
    av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name);
501
502
9
    if (ctx->mode == MODE_16k) {
503
2
        ff_sipr_init_16k(ctx);
504
2
        ctx->decode_frame = ff_sipr_decode_frame_16k;
505
    } else {
506
7
        ctx->decode_frame = decode_frame;
507
    }
508
509
99
    for (i = 0; i < LP_FILTER_ORDER; i++)
510
90
        ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1));
511
512
45
    for (i = 0; i < 4; i++)
513
36
        ctx->energy_history[i] = -14;
514
515
9
    avctx->channels       = 1;
516
9
    avctx->channel_layout = AV_CH_LAYOUT_MONO;
517
9
    avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
518
519
9
    return 0;
520
}
521
522
6418
static int sipr_decode_frame(AVCodecContext *avctx, void *data,
523
                             int *got_frame_ptr, AVPacket *avpkt)
524
{
525
6418
    SiprContext *ctx = avctx->priv_data;
526
6418
    AVFrame *frame   = data;
527
6418
    const uint8_t *buf=avpkt->data;
528
    SiprParameters parm;
529
6418
    const SiprModeParam *mode_par = &modes[ctx->mode];
530
    GetBitContext gb;
531
    float *samples;
532
6418
    int subframe_size = ctx->mode == MODE_16k ? L_SUBFR_16k : SUBFR_SIZE;
533
    int i, ret;
534
535
6418
    ctx->avctx = avctx;
536
6418
    if (avpkt->size < (mode_par->bits_per_frame >> 3)) {
537
        av_log(avctx, AV_LOG_ERROR,
538
               "Error processing packet: packet size (%d) too small\n",
539
               avpkt->size);
540
        return AVERROR_INVALIDDATA;
541
    }
542
543
    /* get output buffer */
544
6418
    frame->nb_samples = mode_par->frames_per_packet * subframe_size *
545
6418
                        mode_par->subframe_count;
546
6418
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
547
        return ret;
548
6418
    samples = (float *)frame->data[0];
549
550
6418
    init_get_bits(&gb, buf, mode_par->bits_per_frame);
551
552
14852
    for (i = 0; i < mode_par->frames_per_packet; i++) {
553
8434
        decode_parameters(&parm, &gb, mode_par);
554
555
8434
        ctx->decode_frame(ctx, &parm, samples);
556
557
8434
        samples += subframe_size * mode_par->subframe_count;
558
    }
559
560
6418
    *got_frame_ptr = 1;
561
562
6418
    return mode_par->bits_per_frame >> 3;
563
}
564
565
AVCodec ff_sipr_decoder = {
566
    .name           = "sipr",
567
    .long_name      = NULL_IF_CONFIG_SMALL("RealAudio SIPR / ACELP.NET"),
568
    .type           = AVMEDIA_TYPE_AUDIO,
569
    .id             = AV_CODEC_ID_SIPR,
570
    .priv_data_size = sizeof(SiprContext),
571
    .init           = sipr_decoder_init,
572
    .decode         = sipr_decode_frame,
573
    .capabilities   = AV_CODEC_CAP_DR1,
574
};