GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/opusenc_psy.c Lines: 0 361 0.0 %
Date: 2019-11-18 18:00:01 Branches: 0 176 0.0 %

Line Branch Exec Source
1
/*
2
 * Opus encoder
3
 * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
#include "opusenc_psy.h"
23
#include "opus_pvq.h"
24
#include "opustab.h"
25
#include "mdct15.h"
26
#include "libavutil/qsort.h"
27
28
static float pvq_band_cost(CeltPVQ *pvq, CeltFrame *f, OpusRangeCoder *rc, int band,
29
                           float *bits, float lambda)
30
{
31
    int i, b = 0;
32
    uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
33
    const int band_size = ff_celt_freq_range[band] << f->size;
34
    float buf[176 * 2], lowband_scratch[176], norm1[176], norm2[176];
35
    float dist, cost, err_x = 0.0f, err_y = 0.0f;
36
    float *X = buf;
37
    float *X_orig = f->block[0].coeffs + (ff_celt_freq_bands[band] << f->size);
38
    float *Y = (f->channels == 2) ? &buf[176] : NULL;
39
    float *Y_orig = f->block[1].coeffs + (ff_celt_freq_bands[band] << f->size);
40
    OPUS_RC_CHECKPOINT_SPAWN(rc);
41
42
    memcpy(X, X_orig, band_size*sizeof(float));
43
    if (Y)
44
        memcpy(Y, Y_orig, band_size*sizeof(float));
45
46
    f->remaining2 = ((f->framebits << 3) - f->anticollapse_needed) - opus_rc_tell_frac(rc) - 1;
47
    if (band <= f->coded_bands - 1) {
48
        int curr_balance = f->remaining / FFMIN(3, f->coded_bands - band);
49
        b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[band] + curr_balance), 14);
50
    }
51
52
    if (f->dual_stereo) {
53
        pvq->quant_band(pvq, f, rc, band, X, NULL, band_size, b / 2, f->blocks, NULL,
54
                        f->size, norm1, 0, 1.0f, lowband_scratch, cm[0]);
55
56
        pvq->quant_band(pvq, f, rc, band, Y, NULL, band_size, b / 2, f->blocks, NULL,
57
                        f->size, norm2, 0, 1.0f, lowband_scratch, cm[1]);
58
    } else {
59
        pvq->quant_band(pvq, f, rc, band, X, Y, band_size, b, f->blocks, NULL, f->size,
60
                        norm1, 0, 1.0f, lowband_scratch, cm[0] | cm[1]);
61
    }
62
63
    for (i = 0; i < band_size; i++) {
64
        err_x += (X[i] - X_orig[i])*(X[i] - X_orig[i]);
65
        if (Y)
66
            err_y += (Y[i] - Y_orig[i])*(Y[i] - Y_orig[i]);
67
    }
68
69
    dist = sqrtf(err_x) + sqrtf(err_y);
70
    cost = OPUS_RC_CHECKPOINT_BITS(rc)/8.0f;
71
    *bits += cost;
72
73
    OPUS_RC_CHECKPOINT_ROLLBACK(rc);
74
75
    return lambda*dist*cost;
76
}
77
78
/* Populate metrics without taking into consideration neighbouring steps */
79
static void step_collect_psy_metrics(OpusPsyContext *s, int index)
80
{
81
    int silence = 0, ch, i, j;
82
    OpusPsyStep *st = s->steps[index];
83
84
    st->index = index;
85
86
    for (ch = 0; ch < s->avctx->channels; ch++) {
87
        const int lap_size = (1 << s->bsize_analysis);
88
        for (i = 1; i <= FFMIN(lap_size, index); i++) {
89
            const int offset = i*120;
90
            AVFrame *cur = ff_bufqueue_peek(s->bufqueue, index - i);
91
            memcpy(&s->scratch[offset], cur->extended_data[ch], cur->nb_samples*sizeof(float));
92
        }
93
        for (i = 0; i < lap_size; i++) {
94
            const int offset = i*120 + lap_size;
95
            AVFrame *cur = ff_bufqueue_peek(s->bufqueue, index + i);
96
            memcpy(&s->scratch[offset], cur->extended_data[ch], cur->nb_samples*sizeof(float));
97
        }
98
99
        s->dsp->vector_fmul(s->scratch, s->scratch, s->window[s->bsize_analysis],
100
                            (OPUS_BLOCK_SIZE(s->bsize_analysis) << 1));
101
102
        s->mdct[s->bsize_analysis]->mdct(s->mdct[s->bsize_analysis], st->coeffs[ch], s->scratch, 1);
103
104
        for (i = 0; i < CELT_MAX_BANDS; i++)
105
            st->bands[ch][i] = &st->coeffs[ch][ff_celt_freq_bands[i] << s->bsize_analysis];
106
    }
107
108
    for (ch = 0; ch < s->avctx->channels; ch++) {
109
        for (i = 0; i < CELT_MAX_BANDS; i++) {
110
            float avg_c_s, energy = 0.0f, dist_dev = 0.0f;
111
            const int range = ff_celt_freq_range[i] << s->bsize_analysis;
112
            const float *coeffs = st->bands[ch][i];
113
            for (j = 0; j < range; j++)
114
                energy += coeffs[j]*coeffs[j];
115
116
            st->energy[ch][i] += sqrtf(energy);
117
            silence |= !!st->energy[ch][i];
118
            avg_c_s = energy / range;
119
120
            for (j = 0; j < range; j++) {
121
                const float c_s = coeffs[j]*coeffs[j];
122
                dist_dev += (avg_c_s - c_s)*(avg_c_s - c_s);
123
            }
124
125
            st->tone[ch][i] += sqrtf(dist_dev);
126
        }
127
    }
128
129
    st->silence = !silence;
130
131
    if (s->avctx->channels > 1) {
132
        for (i = 0; i < CELT_MAX_BANDS; i++) {
133
            float incompat = 0.0f;
134
            const float *coeffs1 = st->bands[0][i];
135
            const float *coeffs2 = st->bands[1][i];
136
            const int range = ff_celt_freq_range[i] << s->bsize_analysis;
137
            for (j = 0; j < range; j++)
138
                incompat += (coeffs1[j] - coeffs2[j])*(coeffs1[j] - coeffs2[j]);
139
            st->stereo[i] = sqrtf(incompat);
140
        }
141
    }
142
143
    for (ch = 0; ch < s->avctx->channels; ch++) {
144
        for (i = 0; i < CELT_MAX_BANDS; i++) {
145
            OpusBandExcitation *ex = &s->ex[ch][i];
146
            float bp_e = bessel_filter(&s->bfilter_lo[ch][i], st->energy[ch][i]);
147
            bp_e = bessel_filter(&s->bfilter_hi[ch][i], bp_e);
148
            bp_e *= bp_e;
149
            if (bp_e > ex->excitation) {
150
                st->change_amp[ch][i] = bp_e - ex->excitation;
151
                st->total_change += st->change_amp[ch][i];
152
                ex->excitation = ex->excitation_init = bp_e;
153
                ex->excitation_dist = 0.0f;
154
            }
155
            if (ex->excitation > 0.0f) {
156
                ex->excitation -= av_clipf((1/expf(ex->excitation_dist)), ex->excitation_init/20, ex->excitation_init/1.09);
157
                ex->excitation = FFMAX(ex->excitation, 0.0f);
158
                ex->excitation_dist += 1.0f;
159
            }
160
        }
161
    }
162
}
163
164
static void search_for_change_points(OpusPsyContext *s, float tgt_change,
165
                                     int offset_s, int offset_e, int resolution,
166
                                     int level)
167
{
168
    int i;
169
    float c_change = 0.0f;
170
    if ((offset_e - offset_s) <= resolution)
171
        return;
172
    for (i = offset_s; i < offset_e; i++) {
173
        c_change += s->steps[i]->total_change;
174
        if (c_change > tgt_change)
175
            break;
176
    }
177
    if (i == offset_e)
178
        return;
179
    search_for_change_points(s, tgt_change / 2.0f, offset_s, i + 0, resolution, level + 1);
180
    s->inflection_points[s->inflection_points_count++] = i;
181
    search_for_change_points(s, tgt_change / 2.0f, i + 1, offset_e, resolution, level + 1);
182
}
183
184
static int flush_silent_frames(OpusPsyContext *s)
185
{
186
    int fsize, silent_frames;
187
188
    for (silent_frames = 0; silent_frames < s->buffered_steps; silent_frames++)
189
        if (!s->steps[silent_frames]->silence)
190
            break;
191
    if (--silent_frames < 0)
192
        return 0;
193
194
    for (fsize = CELT_BLOCK_960; fsize > CELT_BLOCK_120; fsize--) {
195
        if ((1 << fsize) > silent_frames)
196
            continue;
197
        s->p.frames = FFMIN(silent_frames / (1 << fsize), 48 >> fsize);
198
        s->p.framesize = fsize;
199
        return 1;
200
    }
201
202
    return 0;
203
}
204
205
/* Main function which decides frame size and frames per current packet */
206
static void psy_output_groups(OpusPsyContext *s)
207
{
208
    int max_delay_samples = (s->options->max_delay_ms*s->avctx->sample_rate)/1000;
209
    int max_bsize = FFMIN(OPUS_SAMPLES_TO_BLOCK_SIZE(max_delay_samples), CELT_BLOCK_960);
210
211
    /* These don't change for now */
212
    s->p.mode      = OPUS_MODE_CELT;
213
    s->p.bandwidth = OPUS_BANDWIDTH_FULLBAND;
214
215
    /* Flush silent frames ASAP */
216
    if (s->steps[0]->silence && flush_silent_frames(s))
217
        return;
218
219
    s->p.framesize = FFMIN(max_bsize, CELT_BLOCK_960);
220
    s->p.frames    = 1;
221
}
222
223
int ff_opus_psy_process(OpusPsyContext *s, OpusPacketInfo *p)
224
{
225
    int i;
226
    float total_energy_change = 0.0f;
227
228
    if (s->buffered_steps < s->max_steps && !s->eof) {
229
        const int awin = (1 << s->bsize_analysis);
230
        if (++s->steps_to_process >= awin) {
231
            step_collect_psy_metrics(s, s->buffered_steps - awin + 1);
232
            s->steps_to_process = 0;
233
        }
234
        if ((++s->buffered_steps) < s->max_steps)
235
            return 1;
236
    }
237
238
    for (i = 0; i < s->buffered_steps; i++)
239
        total_energy_change += s->steps[i]->total_change;
240
241
    search_for_change_points(s, total_energy_change / 2.0f, 0,
242
                             s->buffered_steps, 1, 0);
243
244
    psy_output_groups(s);
245
246
    p->frames    = s->p.frames;
247
    p->framesize = s->p.framesize;
248
    p->mode      = s->p.mode;
249
    p->bandwidth = s->p.bandwidth;
250
251
    return 0;
252
}
253
254
void ff_opus_psy_celt_frame_init(OpusPsyContext *s, CeltFrame *f, int index)
255
{
256
    int i, neighbouring_points = 0, start_offset = 0;
257
    int radius = (1 << s->p.framesize), step_offset = radius*index;
258
    int silence = 1;
259
260
    f->start_band = (s->p.mode == OPUS_MODE_HYBRID) ? 17 : 0;
261
    f->end_band   = ff_celt_band_end[s->p.bandwidth];
262
    f->channels   = s->avctx->channels;
263
    f->size       = s->p.framesize;
264
265
    for (i = 0; i < (1 << f->size); i++)
266
        silence &= s->steps[index*(1 << f->size) + i]->silence;
267
268
    f->silence = silence;
269
    if (f->silence) {
270
        f->framebits = 0; /* Otherwise the silence flag eats up 16(!) bits */
271
        return;
272
    }
273
274
    for (i = 0; i < s->inflection_points_count; i++) {
275
        if (s->inflection_points[i] >= step_offset) {
276
            start_offset = i;
277
            break;
278
        }
279
    }
280
281
    for (i = start_offset; i < FFMIN(radius, s->inflection_points_count - start_offset); i++) {
282
        if (s->inflection_points[i] < (step_offset + radius)) {
283
            neighbouring_points++;
284
        }
285
    }
286
287
    /* Transient flagging */
288
    f->transient = neighbouring_points > 0;
289
    f->blocks = f->transient ? OPUS_BLOCK_SIZE(s->p.framesize)/CELT_OVERLAP : 1;
290
291
    /* Some sane defaults */
292
    f->pfilter   = 0;
293
    f->pf_gain   = 0.5f;
294
    f->pf_octave = 2;
295
    f->pf_period = 1;
296
    f->pf_tapset = 2;
297
298
    /* More sane defaults */
299
    f->tf_select = 0;
300
    f->anticollapse = 1;
301
    f->alloc_trim = 5;
302
    f->skip_band_floor = f->end_band;
303
    f->intensity_stereo = f->end_band;
304
    f->dual_stereo = 0;
305
    f->spread = CELT_SPREAD_NORMAL;
306
    memset(f->tf_change, 0, sizeof(int)*CELT_MAX_BANDS);
307
    memset(f->alloc_boost, 0, sizeof(int)*CELT_MAX_BANDS);
308
}
309
310
static void celt_gauge_psy_weight(OpusPsyContext *s, OpusPsyStep **start,
311
                                  CeltFrame *f_out)
312
{
313
    int i, f, ch;
314
    int frame_size = OPUS_BLOCK_SIZE(s->p.framesize);
315
    float rate, frame_bits = 0;
316
317
    /* Used for the global ROTATE flag */
318
    float tonal = 0.0f;
319
320
    /* Pseudo-weights */
321
    float band_score[CELT_MAX_BANDS] = { 0 };
322
    float max_score = 1.0f;
323
324
    /* Pass one - one loop around each band, computing unquant stuff */
325
    for (i = 0; i < CELT_MAX_BANDS; i++) {
326
        float weight = 0.0f;
327
        float tonal_contrib = 0.0f;
328
        for (f = 0; f < (1 << s->p.framesize); f++) {
329
            weight = start[f]->stereo[i];
330
            for (ch = 0; ch < s->avctx->channels; ch++) {
331
                weight += start[f]->change_amp[ch][i] + start[f]->tone[ch][i] + start[f]->energy[ch][i];
332
                tonal_contrib += start[f]->tone[ch][i];
333
            }
334
        }
335
        tonal += tonal_contrib;
336
        band_score[i] = weight;
337
    }
338
339
    tonal /= (float)CELT_MAX_BANDS;
340
341
    for (i = 0; i < CELT_MAX_BANDS; i++) {
342
        if (band_score[i] > max_score)
343
            max_score = band_score[i];
344
    }
345
346
    for (i = 0; i < CELT_MAX_BANDS; i++) {
347
        f_out->alloc_boost[i] = (int)((band_score[i]/max_score)*3.0f);
348
        frame_bits += band_score[i]*8.0f;
349
    }
350
351
    tonal /= 1333136.0f;
352
    f_out->spread = av_clip_uintp2(lrintf(tonal), 2);
353
354
    rate = ((float)s->avctx->bit_rate) + frame_bits*frame_size*16;
355
    rate *= s->lambda;
356
    rate /= s->avctx->sample_rate/frame_size;
357
358
    f_out->framebits = lrintf(rate);
359
    f_out->framebits = FFMIN(f_out->framebits, OPUS_MAX_PACKET_SIZE*8);
360
    f_out->framebits = FFALIGN(f_out->framebits, 8);
361
}
362
363
static int bands_dist(OpusPsyContext *s, CeltFrame *f, float *total_dist)
364
{
365
    int i, tdist = 0.0f;
366
    OpusRangeCoder dump;
367
368
    ff_opus_rc_enc_init(&dump);
369
    ff_celt_bitalloc(f, &dump, 1);
370
371
    for (i = 0; i < CELT_MAX_BANDS; i++) {
372
        float bits = 0.0f;
373
        float dist = pvq_band_cost(f->pvq, f, &dump, i, &bits, s->lambda);
374
        tdist += dist;
375
    }
376
377
    *total_dist = tdist;
378
379
    return 0;
380
}
381
382
static void celt_search_for_dual_stereo(OpusPsyContext *s, CeltFrame *f)
383
{
384
    float td1, td2;
385
    f->dual_stereo = 0;
386
387
    if (s->avctx->channels < 2)
388
        return;
389
390
    bands_dist(s, f, &td1);
391
    f->dual_stereo = 1;
392
    bands_dist(s, f, &td2);
393
394
    f->dual_stereo = td2 < td1;
395
    s->dual_stereo_used += td2 < td1;
396
}
397
398
static void celt_search_for_intensity(OpusPsyContext *s, CeltFrame *f)
399
{
400
    int i, best_band = CELT_MAX_BANDS - 1;
401
    float dist, best_dist = FLT_MAX;
402
    /* TODO: fix, make some heuristic up here using the lambda value */
403
    float end_band = 0;
404
405
    if (s->avctx->channels < 2)
406
        return;
407
408
    for (i = f->end_band; i >= end_band; i--) {
409
        f->intensity_stereo = i;
410
        bands_dist(s, f, &dist);
411
        if (best_dist > dist) {
412
            best_dist = dist;
413
            best_band = i;
414
        }
415
    }
416
417
    f->intensity_stereo = best_band;
418
    s->avg_is_band = (s->avg_is_band + f->intensity_stereo)/2.0f;
419
}
420
421
static int celt_search_for_tf(OpusPsyContext *s, OpusPsyStep **start, CeltFrame *f)
422
{
423
    int i, j, k, cway, config[2][CELT_MAX_BANDS] = { { 0 } };
424
    float score[2] = { 0 };
425
426
    for (cway = 0; cway < 2; cway++) {
427
        int mag[2];
428
        int base = f->transient ? 120 : 960;
429
430
        for (i = 0; i < 2; i++) {
431
            int c = ff_celt_tf_select[f->size][f->transient][cway][i];
432
            mag[i] = c < 0 ? base >> FFABS(c) : base << FFABS(c);
433
        }
434
435
        for (i = 0; i < CELT_MAX_BANDS; i++) {
436
            float iscore0 = 0.0f;
437
            float iscore1 = 0.0f;
438
            for (j = 0; j < (1 << f->size); j++) {
439
                for (k = 0; k < s->avctx->channels; k++) {
440
                    iscore0 += start[j]->tone[k][i]*start[j]->change_amp[k][i]/mag[0];
441
                    iscore1 += start[j]->tone[k][i]*start[j]->change_amp[k][i]/mag[1];
442
                }
443
            }
444
            config[cway][i] = FFABS(iscore0 - 1.0f) < FFABS(iscore1 - 1.0f);
445
            score[cway] += config[cway][i] ? iscore1 : iscore0;
446
        }
447
    }
448
449
    f->tf_select = score[0] < score[1];
450
    memcpy(f->tf_change, config[f->tf_select], sizeof(int)*CELT_MAX_BANDS);
451
452
    return 0;
453
}
454
455
int ff_opus_psy_celt_frame_process(OpusPsyContext *s, CeltFrame *f, int index)
456
{
457
    int start_transient_flag = f->transient;
458
    OpusPsyStep **start = &s->steps[index * (1 << s->p.framesize)];
459
460
    if (f->silence)
461
        return 0;
462
463
    celt_gauge_psy_weight(s, start, f);
464
    celt_search_for_intensity(s, f);
465
    celt_search_for_dual_stereo(s, f);
466
    celt_search_for_tf(s, start, f);
467
468
    if (f->transient != start_transient_flag) {
469
        f->blocks = f->transient ? OPUS_BLOCK_SIZE(s->p.framesize)/CELT_OVERLAP : 1;
470
        s->redo_analysis = 1;
471
        return 1;
472
    }
473
474
    s->redo_analysis = 0;
475
476
    return 0;
477
}
478
479
void ff_opus_psy_postencode_update(OpusPsyContext *s, CeltFrame *f, OpusRangeCoder *rc)
480
{
481
    int i, frame_size = OPUS_BLOCK_SIZE(s->p.framesize);
482
    int steps_out = s->p.frames*(frame_size/120);
483
    void *tmp[FF_BUFQUEUE_SIZE];
484
    float ideal_fbits;
485
486
    for (i = 0; i < steps_out; i++)
487
        memset(s->steps[i], 0, sizeof(OpusPsyStep));
488
489
    for (i = 0; i < s->max_steps; i++)
490
        tmp[i] = s->steps[i];
491
492
    for (i = 0; i < s->max_steps; i++) {
493
        const int i_new = i - steps_out;
494
        s->steps[i_new < 0 ? s->max_steps + i_new : i_new] = tmp[i];
495
    }
496
497
    for (i = steps_out; i < s->buffered_steps; i++)
498
        s->steps[i]->index -= steps_out;
499
500
    ideal_fbits = s->avctx->bit_rate/(s->avctx->sample_rate/frame_size);
501
502
    for (i = 0; i < s->p.frames; i++) {
503
        s->avg_is_band += f[i].intensity_stereo;
504
        s->lambda *= ideal_fbits / f[i].framebits;
505
    }
506
507
    s->avg_is_band /= (s->p.frames + 1);
508
509
    s->cs_num = 0;
510
    s->steps_to_process = 0;
511
    s->buffered_steps -= steps_out;
512
    s->total_packets_out += s->p.frames;
513
    s->inflection_points_count = 0;
514
}
515
516
av_cold int ff_opus_psy_init(OpusPsyContext *s, AVCodecContext *avctx,
517
                             struct FFBufQueue *bufqueue, OpusEncOptions *options)
518
{
519
    int i, ch, ret;
520
521
    s->redo_analysis = 0;
522
    s->lambda = 1.0f;
523
    s->options = options;
524
    s->avctx = avctx;
525
    s->bufqueue = bufqueue;
526
    s->max_steps = ceilf(s->options->max_delay_ms/2.5f);
527
    s->bsize_analysis = CELT_BLOCK_960;
528
    s->avg_is_band = CELT_MAX_BANDS - 1;
529
    s->inflection_points_count = 0;
530
531
    s->inflection_points = av_mallocz(sizeof(*s->inflection_points)*s->max_steps);
532
    if (!s->inflection_points) {
533
        ret = AVERROR(ENOMEM);
534
        goto fail;
535
    }
536
537
    s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
538
    if (!s->dsp) {
539
        ret = AVERROR(ENOMEM);
540
        goto fail;
541
    }
542
543
    for (ch = 0; ch < s->avctx->channels; ch++) {
544
        for (i = 0; i < CELT_MAX_BANDS; i++) {
545
            bessel_init(&s->bfilter_hi[ch][i], 1.0f, 19.0f, 100.0f, 1);
546
            bessel_init(&s->bfilter_lo[ch][i], 1.0f, 20.0f, 100.0f, 0);
547
        }
548
    }
549
550
    for (i = 0; i < s->max_steps; i++) {
551
        s->steps[i] = av_mallocz(sizeof(OpusPsyStep));
552
        if (!s->steps[i]) {
553
            ret = AVERROR(ENOMEM);
554
            goto fail;
555
        }
556
    }
557
558
    for (i = 0; i < CELT_BLOCK_NB; i++) {
559
        float tmp;
560
        const int len = OPUS_BLOCK_SIZE(i);
561
        s->window[i] = av_malloc(2*len*sizeof(float));
562
        if (!s->window[i]) {
563
            ret = AVERROR(ENOMEM);
564
            goto fail;
565
        }
566
        generate_window_func(s->window[i], 2*len, WFUNC_SINE, &tmp);
567
        if ((ret = ff_mdct15_init(&s->mdct[i], 0, i + 3, 68 << (CELT_BLOCK_NB - 1 - i))))
568
            goto fail;
569
    }
570
571
    return 0;
572
573
fail:
574
    av_freep(&s->inflection_points);
575
    av_freep(&s->dsp);
576
577
    for (i = 0; i < CELT_BLOCK_NB; i++) {
578
        ff_mdct15_uninit(&s->mdct[i]);
579
        av_freep(&s->window[i]);
580
    }
581
582
    for (i = 0; i < s->max_steps; i++)
583
        av_freep(&s->steps[i]);
584
585
    return ret;
586
}
587
588
void ff_opus_psy_signal_eof(OpusPsyContext *s)
589
{
590
    s->eof = 1;
591
}
592
593
av_cold int ff_opus_psy_end(OpusPsyContext *s)
594
{
595
    int i;
596
597
    av_freep(&s->inflection_points);
598
    av_freep(&s->dsp);
599
600
    for (i = 0; i < CELT_BLOCK_NB; i++) {
601
        ff_mdct15_uninit(&s->mdct[i]);
602
        av_freep(&s->window[i]);
603
    }
604
605
    for (i = 0; i < s->max_steps; i++)
606
        av_freep(&s->steps[i]);
607
608
    av_log(s->avctx, AV_LOG_INFO, "Average Intensity Stereo band: %0.1f\n", s->avg_is_band);
609
    av_log(s->avctx, AV_LOG_INFO, "Dual Stereo used: %0.2f%%\n", ((float)s->dual_stereo_used/s->total_packets_out)*100.0f);
610
611
    return 0;
612
}