GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/opus.c Lines: 429 517 83.0 %
Date: 2019-11-22 03:34:36 Branches: 263 347 75.8 %

Line Branch Exec Source
1
/*
2
 * Copyright (c) 2012 Andrew D'Addesio
3
 * Copyright (c) 2013-2014 Mozilla Corporation
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * Opus decoder/parser shared code
25
 */
26
27
#include <stdint.h>
28
29
#include "libavutil/error.h"
30
#include "libavutil/ffmath.h"
31
32
#include "opus_celt.h"
33
#include "opustab.h"
34
#include "internal.h"
35
#include "vorbis.h"
36
37
static const uint16_t opus_frame_duration[32] = {
38
    480, 960, 1920, 2880,
39
    480, 960, 1920, 2880,
40
    480, 960, 1920, 2880,
41
    480, 960,
42
    480, 960,
43
    120, 240,  480,  960,
44
    120, 240,  480,  960,
45
    120, 240,  480,  960,
46
    120, 240,  480,  960,
47
};
48
49
/**
50
 * Read a 1- or 2-byte frame length
51
 */
52
21805
static inline int xiph_lacing_16bit(const uint8_t **ptr, const uint8_t *end)
53
{
54
    int val;
55
56
21805
    if (*ptr >= end)
57
        return AVERROR_INVALIDDATA;
58
21805
    val = *(*ptr)++;
59
21805
    if (val >= 252) {
60
896
        if (*ptr >= end)
61
            return AVERROR_INVALIDDATA;
62
896
        val += 4 * *(*ptr)++;
63
    }
64
21805
    return val;
65
}
66
67
/**
68
 * Read a multi-byte length (used for code 3 packet padding size)
69
 */
70
1320
static inline int xiph_lacing_full(const uint8_t **ptr, const uint8_t *end)
71
{
72
1320
    int val = 0;
73
    int next;
74
75
    while (1) {
76

1776
        if (*ptr >= end || val > INT_MAX - 254)
77
            return AVERROR_INVALIDDATA;
78
1776
        next = *(*ptr)++;
79
1776
        val += next;
80
1776
        if (next < 255)
81
1320
            break;
82
        else
83
456
            val--;
84
    }
85
1320
    return val;
86
}
87
88
/**
89
 * Parse Opus packet info from raw packet data
90
 */
91
48847
int ff_opus_parse_packet(OpusPacket *pkt, const uint8_t *buf, int buf_size,
92
                         int self_delimiting)
93
{
94
48847
    const uint8_t *ptr = buf;
95
48847
    const uint8_t *end = buf + buf_size;
96
48847
    int padding = 0;
97
    int frame_bytes, i;
98
99
48847
    if (buf_size < 1)
100
        goto fail;
101
102
    /* TOC byte */
103
48847
    i = *ptr++;
104
48847
    pkt->code   = (i     ) & 0x3;
105
48847
    pkt->stereo = (i >> 2) & 0x1;
106
48847
    pkt->config = (i >> 3) & 0x1F;
107
108
    /* code 2 and code 3 packets have at least 1 byte after the TOC */
109

48847
    if (pkt->code >= 2 && buf_size < 2)
110
        goto fail;
111
112

48847
    switch (pkt->code) {
113
40009
    case 0:
114
        /* 1 frame */
115
40009
        pkt->frame_count = 1;
116
40009
        pkt->vbr         = 0;
117
118
40009
        if (self_delimiting) {
119
6885
            int len = xiph_lacing_16bit(&ptr, end);
120

6885
            if (len < 0 || len > end - ptr)
121
                goto fail;
122
6885
            end      = ptr + len;
123
6885
            buf_size = end - buf;
124
        }
125
126
40009
        frame_bytes = end - ptr;
127
40009
        if (frame_bytes > MAX_FRAME_SIZE)
128
            goto fail;
129
40009
        pkt->frame_offset[0] = ptr - buf;
130
40009
        pkt->frame_size[0]   = frame_bytes;
131
40009
        break;
132
640
    case 1:
133
        /* 2 frames, equal size */
134
640
        pkt->frame_count = 2;
135
640
        pkt->vbr         = 0;
136
137
640
        if (self_delimiting) {
138
            int len = xiph_lacing_16bit(&ptr, end);
139
            if (len < 0 || 2 * len > end - ptr)
140
                goto fail;
141
            end      = ptr + 2 * len;
142
            buf_size = end - buf;
143
        }
144
145
640
        frame_bytes = end - ptr;
146

640
        if (frame_bytes & 1 || frame_bytes >> 1 > MAX_FRAME_SIZE)
147
            goto fail;
148
640
        pkt->frame_offset[0] = ptr - buf;
149
640
        pkt->frame_size[0]   = frame_bytes >> 1;
150
640
        pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
151
640
        pkt->frame_size[1]   = frame_bytes >> 1;
152
640
        break;
153
1998
    case 2:
154
        /* 2 frames, different sizes */
155
1998
        pkt->frame_count = 2;
156
1998
        pkt->vbr         = 1;
157
158
        /* read 1st frame size */
159
1998
        frame_bytes = xiph_lacing_16bit(&ptr, end);
160
1998
        if (frame_bytes < 0)
161
            goto fail;
162
163
1998
        if (self_delimiting) {
164
            int len = xiph_lacing_16bit(&ptr, end);
165
            if (len < 0 || len + frame_bytes > end - ptr)
166
                goto fail;
167
            end      = ptr + frame_bytes + len;
168
            buf_size = end - buf;
169
        }
170
171
1998
        pkt->frame_offset[0] = ptr - buf;
172
1998
        pkt->frame_size[0]   = frame_bytes;
173
174
        /* calculate 2nd frame size */
175
1998
        frame_bytes = end - ptr - pkt->frame_size[0];
176

1998
        if (frame_bytes < 0 || frame_bytes > MAX_FRAME_SIZE)
177
            goto fail;
178
1998
        pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
179
1998
        pkt->frame_size[1]   = frame_bytes;
180
1998
        break;
181
6200
    case 3:
182
        /* 1 to 48 frames, can be different sizes */
183
6200
        i = *ptr++;
184
6200
        pkt->frame_count = (i     ) & 0x3F;
185
6200
        padding          = (i >> 6) & 0x01;
186
6200
        pkt->vbr         = (i >> 7) & 0x01;
187
188

6200
        if (pkt->frame_count == 0 || pkt->frame_count > MAX_FRAMES)
189
            goto fail;
190
191
        /* read padding size */
192
6200
        if (padding) {
193
1320
            padding = xiph_lacing_full(&ptr, end);
194
1320
            if (padding < 0)
195
                goto fail;
196
        }
197
198
        /* read frame sizes */
199
6200
        if (pkt->vbr) {
200
            /* for VBR, all frames except the final one have their size coded
201
               in the bitstream. the last frame size is implicit. */
202
4350
            int total_bytes = 0;
203
17272
            for (i = 0; i < pkt->frame_count - 1; i++) {
204
12922
                frame_bytes = xiph_lacing_16bit(&ptr, end);
205
12922
                if (frame_bytes < 0)
206
                    goto fail;
207
12922
                pkt->frame_size[i] = frame_bytes;
208
12922
                total_bytes += frame_bytes;
209
            }
210
211
4350
            if (self_delimiting) {
212
                int len = xiph_lacing_16bit(&ptr, end);
213
                if (len < 0 || len + total_bytes + padding > end - ptr)
214
                    goto fail;
215
                end      = ptr + total_bytes + len + padding;
216
                buf_size = end - buf;
217
            }
218
219
4350
            frame_bytes = end - ptr - padding;
220
4350
            if (total_bytes > frame_bytes)
221
                goto fail;
222
4350
            pkt->frame_offset[0] = ptr - buf;
223
17272
            for (i = 1; i < pkt->frame_count; i++)
224
12922
                pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
225
4350
            pkt->frame_size[pkt->frame_count-1] = frame_bytes - total_bytes;
226
        } else {
227
            /* for CBR, the remaining packet bytes are divided evenly between
228
               the frames */
229
1850
            if (self_delimiting) {
230
                frame_bytes = xiph_lacing_16bit(&ptr, end);
231
                if (frame_bytes < 0 || pkt->frame_count * frame_bytes + padding > end - ptr)
232
                    goto fail;
233
                end      = ptr + pkt->frame_count * frame_bytes + padding;
234
                buf_size = end - buf;
235
            } else {
236
1850
                frame_bytes = end - ptr - padding;
237
1850
                if (frame_bytes % pkt->frame_count ||
238
1850
                    frame_bytes / pkt->frame_count > MAX_FRAME_SIZE)
239
                    goto fail;
240
1850
                frame_bytes /= pkt->frame_count;
241
            }
242
243
1850
            pkt->frame_offset[0] = ptr - buf;
244
1850
            pkt->frame_size[0]   = frame_bytes;
245
2630
            for (i = 1; i < pkt->frame_count; i++) {
246
780
                pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
247
780
                pkt->frame_size[i]   = frame_bytes;
248
            }
249
        }
250
    }
251
252
48847
    pkt->packet_size = buf_size;
253
48847
    pkt->data_size   = pkt->packet_size - padding;
254
255
    /* total packet duration cannot be larger than 120ms */
256
48847
    pkt->frame_duration = opus_frame_duration[pkt->config];
257
48847
    if (pkt->frame_duration * pkt->frame_count > MAX_PACKET_DUR)
258
        goto fail;
259
260
    /* set mode and bandwidth */
261
48847
    if (pkt->config < 12) {
262
9052
        pkt->mode = OPUS_MODE_SILK;
263
9052
        pkt->bandwidth = pkt->config >> 2;
264
39795
    } else if (pkt->config < 16) {
265
9747
        pkt->mode = OPUS_MODE_HYBRID;
266
9747
        pkt->bandwidth = OPUS_BANDWIDTH_SUPERWIDEBAND + (pkt->config >= 14);
267
    } else {
268
30048
        pkt->mode = OPUS_MODE_CELT;
269
30048
        pkt->bandwidth = (pkt->config - 16) >> 2;
270
        /* skip medium band */
271
30048
        if (pkt->bandwidth)
272
26206
            pkt->bandwidth++;
273
    }
274
275
48847
    return 0;
276
277
fail:
278
    memset(pkt, 0, sizeof(*pkt));
279
    return AVERROR_INVALIDDATA;
280
}
281
282
171
static int channel_reorder_vorbis(int nb_channels, int channel_idx)
283
{
284
171
    return ff_vorbis_channel_layout_offsets[nb_channels - 1][channel_idx];
285
}
286
287
143
static int channel_reorder_unknown(int nb_channels, int channel_idx)
288
{
289
143
    return channel_idx;
290
}
291
292
73
av_cold int ff_opus_parse_extradata(AVCodecContext *avctx,
293
                                    OpusContext *s)
294
{
295
    static const uint8_t default_channel_map[2] = { 0, 1 };
296
297
73
    int (*channel_reorder)(int, int) = channel_reorder_unknown;
298
299
    const uint8_t *extradata, *channel_map;
300
    int extradata_size;
301
    int version, channels, map_type, streams, stereo_streams, i, j;
302
    uint64_t layout;
303
304
73
    if (!avctx->extradata) {
305
1
        if (avctx->channels > 2) {
306
            av_log(avctx, AV_LOG_ERROR,
307
                   "Multichannel configuration without extradata.\n");
308
            return AVERROR(EINVAL);
309
        }
310
1
        extradata      = opus_default_extradata;
311
1
        extradata_size = sizeof(opus_default_extradata);
312
    } else {
313
72
        extradata = avctx->extradata;
314
72
        extradata_size = avctx->extradata_size;
315
    }
316
317
73
    if (extradata_size < 19) {
318
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
319
               extradata_size);
320
        return AVERROR_INVALIDDATA;
321
    }
322
323
73
    version = extradata[8];
324
73
    if (version > 15) {
325
        avpriv_request_sample(avctx, "Extradata version %d", version);
326
        return AVERROR_PATCHWELCOME;
327
    }
328
329
73
    avctx->delay = AV_RL16(extradata + 10);
330
73
    if (avctx->internal)
331
45
        avctx->internal->skip_samples = avctx->delay;
332
333

73
    channels = avctx->extradata ? extradata[9] : (avctx->channels == 1) ? 1 : 2;
334
73
    if (!channels) {
335
        av_log(avctx, AV_LOG_ERROR, "Zero channel count specified in the extradata\n");
336
        return AVERROR_INVALIDDATA;
337
    }
338
339
73
    s->gain_i = AV_RL16(extradata + 16);
340
73
    if (s->gain_i)
341
        s->gain = ff_exp10(s->gain_i / (20.0 * 256));
342
343
73
    map_type = extradata[18];
344
73
    if (!map_type) {
345
67
        if (channels > 2) {
346
            av_log(avctx, AV_LOG_ERROR,
347
                   "Channel mapping 0 is only specified for up to 2 channels\n");
348
            return AVERROR_INVALIDDATA;
349
        }
350
67
        layout         = (channels == 1) ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
351
67
        streams        = 1;
352
67
        stereo_streams = channels - 1;
353
67
        channel_map    = default_channel_map;
354

6
    } else if (map_type == 1 || map_type == 2 || map_type == 255) {
355
6
        if (extradata_size < 21 + channels) {
356
            av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
357
                   extradata_size);
358
            return AVERROR_INVALIDDATA;
359
        }
360
361
6
        streams        = extradata[19];
362
6
        stereo_streams = extradata[20];
363

6
        if (!streams || stereo_streams > streams ||
364
6
            streams + stereo_streams > 255) {
365
            av_log(avctx, AV_LOG_ERROR,
366
                   "Invalid stream/stereo stream count: %d/%d\n", streams, stereo_streams);
367
            return AVERROR_INVALIDDATA;
368
        }
369
370
6
        if (map_type == 1) {
371
6
            if (channels > 8) {
372
                av_log(avctx, AV_LOG_ERROR,
373
                       "Channel mapping 1 is only specified for up to 8 channels\n");
374
                return AVERROR_INVALIDDATA;
375
            }
376
6
            layout = ff_vorbis_channel_layouts[channels - 1];
377
6
            channel_reorder = channel_reorder_vorbis;
378
        } else if (map_type == 2) {
379
            int ambisonic_order = ff_sqrt(channels) - 1;
380
            if (channels != ((ambisonic_order + 1) * (ambisonic_order + 1)) &&
381
                channels != ((ambisonic_order + 1) * (ambisonic_order + 1) + 2)) {
382
                av_log(avctx, AV_LOG_ERROR,
383
                       "Channel mapping 2 is only specified for channel counts"
384
                       " which can be written as (n + 1)^2 or (n + 1)^2 + 2"
385
                       " for nonnegative integer n\n");
386
                return AVERROR_INVALIDDATA;
387
            }
388
            if (channels > 227) {
389
                av_log(avctx, AV_LOG_ERROR, "Too many channels\n");
390
                return AVERROR_INVALIDDATA;
391
            }
392
            layout = 0;
393
        } else
394
            layout = 0;
395
396
6
        channel_map = extradata + 21;
397
    } else {
398
        avpriv_request_sample(avctx, "Mapping type %d", map_type);
399
        return AVERROR_PATCHWELCOME;
400
    }
401
402
73
    s->channel_maps = av_mallocz_array(channels, sizeof(*s->channel_maps));
403
73
    if (!s->channel_maps)
404
        return AVERROR(ENOMEM);
405
406
220
    for (i = 0; i < channels; i++) {
407
147
        ChannelMap *map = &s->channel_maps[i];
408
147
        uint8_t     idx = channel_map[channel_reorder(channels, i)];
409
410
147
        if (idx == 255) {
411
            map->silence = 1;
412
            continue;
413
147
        } else if (idx >= streams + stereo_streams) {
414
            av_log(avctx, AV_LOG_ERROR,
415
                   "Invalid channel map for output channel %d: %d\n", i, idx);
416
            av_freep(&s->channel_maps);
417
            return AVERROR_INVALIDDATA;
418
        }
419
420
        /* check that we did not see this index yet */
421
147
        map->copy = 0;
422
314
        for (j = 0; j < i; j++)
423
167
            if (channel_map[channel_reorder(channels, j)] == idx) {
424
                map->copy     = 1;
425
                map->copy_idx = j;
426
                break;
427
            }
428
429
147
        if (idx < 2 * stereo_streams) {
430
106
            map->stream_idx  = idx / 2;
431
106
            map->channel_idx = idx & 1;
432
        } else {
433
41
            map->stream_idx  = idx - stereo_streams;
434
41
            map->channel_idx = 0;
435
        }
436
    }
437
438
73
    avctx->channels       = channels;
439
73
    avctx->channel_layout = layout;
440
73
    s->nb_streams         = streams;
441
73
    s->nb_stereo_streams  = stereo_streams;
442
443
73
    return 0;
444
}
445
446
29869
void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc)
447
{
448
    float lowband_scratch[8 * 22];
449
    float norm1[2 * 8 * 100];
450
29869
    float *norm2 = norm1 + 8 * 100;
451
452
29869
    int totalbits = (f->framebits << 3) - f->anticollapse_needed;
453
454
29869
    int update_lowband = 1;
455
29869
    int lowband_offset = 0;
456
457
    int i, j;
458
459
537903
    for (i = f->start_band; i < f->end_band; i++) {
460
508034
        uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
461
508034
        int band_offset = ff_celt_freq_bands[i] << f->size;
462
508034
        int band_size   = ff_celt_freq_range[i] << f->size;
463
508034
        float *X = f->block[0].coeffs + band_offset;
464
508034
        float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
465
        float *norm_loc1, *norm_loc2;
466
467
508034
        int consumed = opus_rc_tell_frac(rc);
468
508034
        int effective_lowband = -1;
469
508034
        int b = 0;
470
471
        /* Compute how many bits we want to allocate to this band */
472
508034
        if (i != f->start_band)
473
478165
            f->remaining -= consumed;
474
508034
        f->remaining2 = totalbits - consumed - 1;
475
508034
        if (i <= f->coded_bands - 1) {
476
457354
            int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
477
457354
            b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
478
        }
479
480
508034
        if ((ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] ||
481

508034
            i == f->start_band + 1) && (update_lowband || lowband_offset == 0))
482
387139
            lowband_offset = i;
483
484
508034
        if (i == f->start_band + 1) {
485
            /* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into
486
            the second to ensure the second band never has to use the LCG. */
487
29869
            int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size;
488
489
29869
            memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float));
490
491
29869
            if (f->channels == 2)
492
18731
                memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float));
493
        }
494
495
        /* Get a conservative estimate of the collapse_mask's for the bands we're
496
           going to be folding from. */
497

508034
        if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
498

71048
                                    f->blocks > 1 || f->tf_change[i] < 0)) {
499
            int foldstart, foldend;
500
501
            /* This ensures we never repeat spectral content within one band */
502
418948
            effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
503
                                      ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
504
418948
            foldstart = lowband_offset;
505
616773
            while (ff_celt_freq_bands[--foldstart] > effective_lowband);
506
418948
            foldend = lowband_offset - 1;
507

447839
            while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]);
508
509
418948
            cm[0] = cm[1] = 0;
510
1064612
            for (j = foldstart; j < foldend; j++) {
511
645664
                cm[0] |= f->block[0].collapse_masks[j];
512
645664
                cm[1] |= f->block[f->channels - 1].collapse_masks[j];
513
            }
514
        }
515
516

508034
        if (f->dual_stereo && i == f->intensity_stereo) {
517
            /* Switch off dual stereo to do intensity */
518
1670
            f->dual_stereo = 0;
519
570836
            for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
520
569166
                norm1[j] = (norm1[j] + norm2[j]) / 2;
521
        }
522
523
508034
        norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL;
524
508034
        norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL;
525
526
508034
        if (f->dual_stereo) {
527
70158
            cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1,
528
35079
                                       f->blocks, norm_loc1, f->size,
529
35079
                                       norm1 + band_offset, 0, 1.0f,
530
35079
                                       lowband_scratch, cm[0]);
531
532
35079
            cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1,
533
35079
                                       f->blocks, norm_loc2, f->size,
534
35079
                                       norm2 + band_offset, 0, 1.0f,
535
35079
                                       lowband_scratch, cm[1]);
536
        } else {
537
945910
            cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X,    Y, band_size, b >> 0,
538
472955
                                       f->blocks, norm_loc1, f->size,
539
472955
                                       norm1 + band_offset, 0, 1.0f,
540
472955
                                       lowband_scratch, cm[0] | cm[1]);
541
472955
            cm[1] = cm[0];
542
        }
543
544
508034
        f->block[0].collapse_masks[i]               = (uint8_t)cm[0];
545
508034
        f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
546
508034
        f->remaining += f->pulses[i] + consumed;
547
548
        /* Update the folding position only as long as we have 1 bit/sample depth */
549
508034
        update_lowband = (b > band_size << 3);
550
    }
551
29869
}
552
553
#define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2)
554
555
29869
void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode)
556
{
557
    int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
558
29869
    int skip_startband      = f->start_band;
559
29869
    int skip_bit            = 0;
560
29869
    int intensitystereo_bit = 0;
561
29869
    int dualstereo_bit      = 0;
562
29869
    int dynalloc            = 6;
563
29869
    int extrabits           = 0;
564
565
29869
    int boost[CELT_MAX_BANDS] = { 0 };
566
    int trim_offset[CELT_MAX_BANDS];
567
    int threshold[CELT_MAX_BANDS];
568
    int bits1[CELT_MAX_BANDS];
569
    int bits2[CELT_MAX_BANDS];
570
571
    /* Spread */
572
29869
    if (opus_rc_tell(rc) + 4 <= f->framebits) {
573
29735
        if (encode)
574
            ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread);
575
        else
576
29735
            f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
577
    } else {
578
134
        f->spread = CELT_SPREAD_NORMAL;
579
    }
580
581
    /* Initialize static allocation caps */
582
657118
    for (i = 0; i < CELT_MAX_BANDS; i++)
583
627249
        f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]);
584
585
    /* Band boosts */
586
29869
    tbits_8ths = f->framebits << 3;
587
537903
    for (i = f->start_band; i < f->end_band; i++) {
588
508034
        int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
589
508034
        int b_dynalloc = dynalloc;
590
508034
        int boost_amount = f->alloc_boost[i];
591
508034
        quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
592
593

524471
        while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) {
594
            int is_boost;
595
521981
            if (encode) {
596
                is_boost = boost_amount--;
597
                ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
598
            } else {
599
521981
                is_boost = ff_opus_rc_dec_log(rc, b_dynalloc);
600
            }
601
602
521981
            if (!is_boost)
603
505544
                break;
604
605
16437
            boost[i]   += quanta;
606
16437
            tbits_8ths -= quanta;
607
608
16437
            b_dynalloc = 1;
609
        }
610
611
508034
        if (boost[i])
612
12537
            dynalloc = FFMAX(dynalloc - 1, 2);
613
    }
614
615
    /* Allocation trim */
616
29869
    if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
617
29731
        if (encode)
618
            ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim);
619
        else
620
29731
            f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
621
622
    /* Anti-collapse bit reservation */
623
29869
    tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
624
29869
    f->anticollapse_needed = 0;
625

29869
    if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
626
3123
        f->anticollapse_needed = 1 << 3;
627
29869
    tbits_8ths -= f->anticollapse_needed;
628
629
    /* Band skip bit reservation */
630
29869
    if (tbits_8ths >= 1 << 3)
631
29737
        skip_bit = 1 << 3;
632
29869
    tbits_8ths -= skip_bit;
633
634
    /* Intensity/dual stereo bit reservation */
635
29869
    if (f->channels == 2) {
636
18731
        intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
637
18731
        if (intensitystereo_bit <= tbits_8ths) {
638
18660
            tbits_8ths -= intensitystereo_bit;
639
18660
            if (tbits_8ths >= 1 << 3) {
640
18656
                dualstereo_bit = 1 << 3;
641
18656
                tbits_8ths -= 1 << 3;
642
            }
643
        } else {
644
71
            intensitystereo_bit = 0;
645
        }
646
    }
647
648
    /* Trim offsets */
649
537903
    for (i = f->start_band; i < f->end_band; i++) {
650
508034
        int trim     = f->alloc_trim - 5 - f->size;
651
508034
        int band     = ff_celt_freq_range[i] * (f->end_band - i - 1);
652
508034
        int duration = f->size + 3;
653
508034
        int scale    = duration + f->channels - 1;
654
655
        /* PVQ minimum allocation threshold, below this value the band is
656
         * skipped */
657
508034
        threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
658
                             f->channels << 3);
659
660
508034
        trim_offset[i] = trim * (band << scale) >> 6;
661
662
508034
        if (ff_celt_freq_range[i] << f->size == 1)
663
109616
            trim_offset[i] -= f->channels << 3;
664
    }
665
666
    /* Bisection */
667
29869
    low  = 1;
668
29869
    high = CELT_VECTORS - 1;
669
141414
    while (low <= high) {
670
111545
        int center = (low + high) >> 1;
671
111545
        done = total = 0;
672
673
2012955
        for (i = f->end_band - 1; i >= f->start_band; i--) {
674
1901410
            bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]);
675
676
1901410
            if (bandbits)
677
1811644
                bandbits = FFMAX(bandbits + trim_offset[i], 0);
678
1901410
            bandbits += boost[i];
679
680

1901410
            if (bandbits >= threshold[i] || done) {
681
1750453
                done = 1;
682
1750453
                total += FFMIN(bandbits, f->caps[i]);
683
150957
            } else if (bandbits >= f->channels << 3) {
684
31438
                total += f->channels << 3;
685
            }
686
        }
687
688
111545
        if (total > tbits_8ths)
689
39866
            high = center - 1;
690
        else
691
71679
            low = center + 1;
692
    }
693
29869
    high = low--;
694
695
    /* Bisection */
696
537903
    for (i = f->start_band; i < f->end_band; i++) {
697
508034
        bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]);
698
508034
        bits2[i] = high >= CELT_VECTORS ? f->caps[i] :
699
470263
                   NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]);
700
701
508034
        if (bits1[i])
702
464983
            bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0);
703
508034
        if (bits2[i])
704
496152
            bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0);
705
706
508034
        if (low)
707
485717
            bits1[i] += boost[i];
708
508034
        bits2[i] += boost[i];
709
710
508034
        if (boost[i])
711
12537
            skip_startband = i;
712
508034
        bits2[i] = FFMAX(bits2[i] - bits1[i], 0);
713
    }
714
715
    /* Bisection */
716
29869
    low  = 0;
717
29869
    high = 1 << CELT_ALLOC_STEPS;
718
209083
    for (i = 0; i < CELT_ALLOC_STEPS; i++) {
719
179214
        int center = (low + high) >> 1;
720
179214
        done = total = 0;
721
722
3227418
        for (j = f->end_band - 1; j >= f->start_band; j--) {
723
3048204
            bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
724
725

3048204
            if (bandbits >= threshold[j] || done) {
726
2837209
                done = 1;
727
2837209
                total += FFMIN(bandbits, f->caps[j]);
728
210995
            } else if (bandbits >= f->channels << 3)
729
52284
                total += f->channels << 3;
730
        }
731
179214
        if (total > tbits_8ths)
732
85578
            high = center;
733
        else
734
93636
            low = center;
735
    }
736
737
    /* Bisection */
738
29869
    done = total = 0;
739
537903
    for (i = f->end_band - 1; i >= f->start_band; i--) {
740
508034
        bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
741
742

508034
        if (bandbits >= threshold[i] || done)
743
472034
            done = 1;
744
        else
745
36000
            bandbits = (bandbits >= f->channels << 3) ?
746
36000
            f->channels << 3 : 0;
747
748
508034
        bandbits     = FFMIN(bandbits, f->caps[i]);
749
508034
        f->pulses[i] = bandbits;
750
508034
        total      += bandbits;
751
    }
752
753
    /* Band skipping */
754
29869
    for (f->coded_bands = f->end_band; ; f->coded_bands--) {
755
        int allocation;
756
80549
        j = f->coded_bands - 1;
757
758
80549
        if (j == skip_startband) {
759
            /* all remaining bands are not skipped */
760
1645
            tbits_8ths += skip_bit;
761
1645
            break;
762
        }
763
764
        /* determine the number of bits available for coding "do not skip" markers */
765
78904
        remaining   = tbits_8ths - total;
766
78904
        bandbits    = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
767
78904
        remaining  -= bandbits  * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
768
78904
        allocation  = f->pulses[j] + bandbits * ff_celt_freq_range[j];
769
78904
        allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0);
770
771
        /* a "do not skip" marker is only coded if the allocation is
772
         * above the chosen threshold */
773
78904
        if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
774
            int do_not_skip;
775
38108
            if (encode) {
776
                do_not_skip = f->coded_bands <= f->skip_band_floor;
777
                ff_opus_rc_enc_log(rc, do_not_skip, 1);
778
            } else {
779
38108
                do_not_skip = ff_opus_rc_dec_log(rc, 1);
780
            }
781
782
38108
            if (do_not_skip)
783
28224
                break;
784
785
9884
            total      += 1 << 3;
786
9884
            allocation -= 1 << 3;
787
        }
788
789
        /* the band is skipped, so reclaim its bits */
790
50680
        total -= f->pulses[j];
791
50680
        if (intensitystereo_bit) {
792
34519
            total -= intensitystereo_bit;
793
34519
            intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
794
34519
            total += intensitystereo_bit;
795
        }
796
797
50680
        total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
798
    }
799
800
    /* IS start band */
801
29869
    if (encode) {
802
        if (intensitystereo_bit) {
803
            f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands);
804
            ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band);
805
        }
806
    } else {
807
29869
        f->intensity_stereo = f->dual_stereo = 0;
808
29869
        if (intensitystereo_bit)
809
18660
            f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
810
    }
811
812
    /* DS flag */
813
29869
    if (f->intensity_stereo <= f->start_band)
814
13153
        tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
815
16716
    else if (dualstereo_bit)
816
16716
        if (encode)
817
            ff_opus_rc_enc_log(rc, f->dual_stereo, 1);
818
        else
819
16716
            f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
820
821
    /* Supply the remaining bits in this frame to lower bands */
822
29869
    remaining = tbits_8ths - total;
823
29869
    bandbits  = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
824
29869
    remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
825
487223
    for (i = f->start_band; i < f->coded_bands; i++) {
826
457354
        const int bits = FFMIN(remaining, ff_celt_freq_range[i]);
827
457354
        f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
828
457354
        remaining    -= bits;
829
    }
830
831
    /* Finally determine the allocation */
832
487223
    for (i = f->start_band; i < f->coded_bands; i++) {
833
457354
        int N = ff_celt_freq_range[i] << f->size;
834
457354
        int prev_extra = extrabits;
835
457354
        f->pulses[i] += extrabits;
836
837
457354
        if (N > 1) {
838
            int dof;        /* degrees of freedom */
839
            int temp;       /* dof * channels * log(dof) */
840
            int fine_bits;
841
            int max_bits;
842
            int offset;     /* fine energy quantization offset, i.e.
843
                             * extra bits assigned over the standard
844
                             * totalbits/dof */
845
846
350835
            extrabits = FFMAX(f->pulses[i] - f->caps[i], 0);
847
350835
            f->pulses[i] -= extrabits;
848
849
            /* intensity stereo makes use of an extra degree of freedom */
850


350835
            dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
851
350835
            temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
852
350835
            offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
853
350835
            if (N == 2) /* dof=2 is the only case that doesn't fit the model */
854
83650
                offset += dof << 1;
855
856
            /* grant an additional bias for the first and second pulses */
857
350835
            if (f->pulses[i] + offset < 2 * (dof << 3))
858
247060
                offset += temp >> 2;
859
103775
            else if (f->pulses[i] + offset < 3 * (dof << 3))
860
49959
                offset += temp >> 3;
861
862
350835
            fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
863
350835
            max_bits  = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);
864
350835
            max_bits  = FFMAX(max_bits, 0);
865
350835
            f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
866
867
            /* If fine_bits was rounded down or capped,
868
             * give priority for the final fine energy pass */
869
350835
            f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);
870
871
            /* the remaining bits are assigned to PVQ */
872
350835
            f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
873
        } else {
874
            /* all bits go to fine energy except for the sign bit */
875
106519
            extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0);
876
106519
            f->pulses[i] -= extrabits;
877
106519
            f->fine_bits[i] = 0;
878
106519
            f->fine_priority[i] = 1;
879
        }
880
881
        /* hand back a limited number of extra fine energy bits to this band */
882
457354
        if (extrabits > 0) {
883
123173
            int fineextra = FFMIN(extrabits >> (f->channels + 2),
884
                                  CELT_MAX_FINE_BITS - f->fine_bits[i]);
885
123173
            f->fine_bits[i] += fineextra;
886
887
123173
            fineextra <<= f->channels + 2;
888
123173
            f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
889
123173
            extrabits -= fineextra;
890
        }
891
    }
892
29869
    f->remaining = extrabits;
893
894
    /* skipped bands dedicate all of their bits for fine energy */
895
80549
    for (; i < f->end_band; i++) {
896
50680
        f->fine_bits[i]     = f->pulses[i] >> (f->channels - 1) >> 3;
897
50680
        f->pulses[i]        = 0;
898
50680
        f->fine_priority[i] = f->fine_bits[i] < 1;
899
    }
900
29869
}