GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/on2avc.c Lines: 197 587 33.6 %
Date: 2021-04-20 15:25:36 Branches: 82 204 40.2 %

Line Branch Exec Source
1
/*
2
 * On2 Audio for Video Codec decoder
3
 *
4
 * Copyright (c) 2013 Konstantin Shishkov
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
23
#include "libavutil/channel_layout.h"
24
#include "libavutil/ffmath.h"
25
#include "libavutil/float_dsp.h"
26
#include "libavutil/mem_internal.h"
27
28
#include "avcodec.h"
29
#include "bytestream.h"
30
#include "fft.h"
31
#include "get_bits.h"
32
#include "internal.h"
33
34
#include "on2avcdata.h"
35
36
#define ON2AVC_SUBFRAME_SIZE   1024
37
38
enum WindowTypes {
39
    WINDOW_TYPE_LONG       = 0,
40
    WINDOW_TYPE_LONG_STOP,
41
    WINDOW_TYPE_LONG_START,
42
    WINDOW_TYPE_8SHORT     = 3,
43
    WINDOW_TYPE_EXT4,
44
    WINDOW_TYPE_EXT5,
45
    WINDOW_TYPE_EXT6,
46
    WINDOW_TYPE_EXT7,
47
};
48
49
typedef struct On2AVCContext {
50
    AVCodecContext *avctx;
51
    AVFloatDSPContext *fdsp;
52
    FFTContext mdct, mdct_half, mdct_small;
53
    FFTContext fft128, fft256, fft512, fft1024;
54
    void (*wtf)(struct On2AVCContext *ctx, float *out, float *in, int size);
55
56
    int is_av500;
57
58
    const On2AVCMode *modes;
59
    int window_type, prev_window_type;
60
    int num_windows, num_bands;
61
    int bits_per_section;
62
    const int *band_start;
63
64
    int grouping[8];
65
    int ms_present;
66
    int ms_info[ON2AVC_MAX_BANDS];
67
68
    int is_long;
69
70
    uint8_t band_type[ON2AVC_MAX_BANDS];
71
    uint8_t band_run_end[ON2AVC_MAX_BANDS];
72
    int     num_sections;
73
74
    float band_scales[ON2AVC_MAX_BANDS];
75
76
    VLC scale_diff;
77
    VLC cb_vlc[16];
78
79
    float scale_tab[128];
80
81
    DECLARE_ALIGNED(32, float, coeffs)[2][ON2AVC_SUBFRAME_SIZE];
82
    DECLARE_ALIGNED(32, float, delay) [2][ON2AVC_SUBFRAME_SIZE];
83
84
    DECLARE_ALIGNED(32, float, temp)     [ON2AVC_SUBFRAME_SIZE * 2];
85
    DECLARE_ALIGNED(32, float, mdct_buf) [ON2AVC_SUBFRAME_SIZE];
86
    DECLARE_ALIGNED(32, float, long_win) [ON2AVC_SUBFRAME_SIZE];
87
    DECLARE_ALIGNED(32, float, short_win)[ON2AVC_SUBFRAME_SIZE / 8];
88
} On2AVCContext;
89
90
30
static void on2avc_read_ms_info(On2AVCContext *c, GetBitContext *gb)
91
{
92
30
    int w, b, band_off = 0;
93
94
30
    c->ms_present = get_bits1(gb);
95
30
    if (!c->ms_present)
96
30
        return;
97
    for (w = 0; w < c->num_windows; w++) {
98
        if (!c->grouping[w]) {
99
            memcpy(c->ms_info + band_off,
100
                   c->ms_info + band_off - c->num_bands,
101
                   c->num_bands * sizeof(*c->ms_info));
102
            band_off += c->num_bands;
103
            continue;
104
        }
105
        for (b = 0; b < c->num_bands; b++)
106
            c->ms_info[band_off++] = get_bits1(gb);
107
    }
108
}
109
110
// do not see Table 17 in ISO/IEC 13818-7
111
30
static int on2avc_decode_band_types(On2AVCContext *c, GetBitContext *gb)
112
{
113
30
    int bits_per_sect = c->is_long ? 5 : 3;
114
30
    int esc_val = (1 << bits_per_sect) - 1;
115
30
    int num_bands = c->num_bands * c->num_windows;
116
30
    int band = 0, i, band_type, run_len, run;
117
118
255
    while (band < num_bands) {
119
225
        band_type = get_bits(gb, 4);
120
225
        run_len   = 1;
121
        do {
122
225
            run = get_bits(gb, bits_per_sect);
123
225
            if (run > num_bands - band - run_len) {
124
                av_log(c->avctx, AV_LOG_ERROR, "Invalid band type run\n");
125
                return AVERROR_INVALIDDATA;
126
            }
127
225
            run_len += run;
128
225
        } while (run == esc_val);
129
1695
        for (i = band; i < band + run_len; i++) {
130
1470
            c->band_type[i]    = band_type;
131
1470
            c->band_run_end[i] = band + run_len;
132
        }
133
225
        band += run_len;
134
    }
135
136
30
    return 0;
137
}
138
139
// completely not like Table 18 in ISO/IEC 13818-7
140
// (no intensity stereo, different coding for the first coefficient)
141
30
static int on2avc_decode_band_scales(On2AVCContext *c, GetBitContext *gb)
142
{
143
30
    int w, w2, b, scale, first = 1;
144
30
    int band_off = 0;
145
146
60
    for (w = 0; w < c->num_windows; w++) {
147
30
        if (!c->grouping[w]) {
148
            memcpy(c->band_scales + band_off,
149
                   c->band_scales + band_off - c->num_bands,
150
                   c->num_bands * sizeof(*c->band_scales));
151
            band_off += c->num_bands;
152
            continue;
153
        }
154
1500
        for (b = 0; b < c->num_bands; b++) {
155
1470
            if (!c->band_type[band_off]) {
156
211
                int all_zero = 1;
157
211
                for (w2 = w + 1; w2 < c->num_windows; w2++) {
158
                    if (c->grouping[w2])
159
                        break;
160
                    if (c->band_type[w2 * c->num_bands + b]) {
161
                        all_zero = 0;
162
                        break;
163
                    }
164
                }
165
211
                if (all_zero) {
166
211
                    c->band_scales[band_off++] = 0;
167
211
                    continue;
168
                }
169
            }
170
1259
            if (first) {
171
30
                scale = get_bits(gb, 7);
172
30
                first = 0;
173
            } else {
174
1229
                scale += get_vlc2(gb, c->scale_diff.table, 9, 3);
175
            }
176

1259
            if (scale < 0 || scale > 127) {
177
                av_log(c->avctx, AV_LOG_ERROR, "Invalid scale value %d\n",
178
                       scale);
179
                return AVERROR_INVALIDDATA;
180
            }
181
1259
            c->band_scales[band_off++] = c->scale_tab[scale];
182
        }
183
    }
184
185
30
    return 0;
186
}
187
188
20628
static inline float on2avc_scale(int v, float scale)
189
{
190
20628
    return v * sqrtf(abs(v)) * scale;
191
}
192
193
// spectral data is coded completely differently - there are no unsigned codebooks
194
1249
static int on2avc_decode_quads(On2AVCContext *c, GetBitContext *gb, float *dst,
195
                               int dst_size, int type, float band_scale)
196
{
197
    int i, j, val, val1;
198
199
6396
    for (i = 0; i < dst_size; i += 4) {
200
5147
        val = get_vlc2(gb, c->cb_vlc[type].table, 9, 2);
201
202
25735
        for (j = 0; j < 4; j++) {
203
20588
            val1 = sign_extend((val >> (12 - j * 4)) & 0xF, 4);
204
20588
            *dst++ = on2avc_scale(val1, band_scale);
205
        }
206
    }
207
208
1249
    return 0;
209
}
210
211
2
static inline int get_egolomb(GetBitContext *gb)
212
{
213
2
    int v = 4;
214
215
3
    while (get_bits1(gb)) {
216
1
        v++;
217
1
        if (v > 30) {
218
            av_log(NULL, AV_LOG_WARNING, "Too large golomb code in get_egolomb.\n");
219
            v = 30;
220
            break;
221
        }
222
    }
223
224
2
    return (1 << v) + get_bits_long(gb, v);
225
}
226
227
10
static int on2avc_decode_pairs(On2AVCContext *c, GetBitContext *gb, float *dst,
228
                               int dst_size, int type, float band_scale)
229
{
230
    int i, val, val1, val2, sign;
231
232
30
    for (i = 0; i < dst_size; i += 2) {
233
20
        val = get_vlc2(gb, c->cb_vlc[type].table, 9, 2);
234
235
20
        val1 = sign_extend(val >> 8,   8);
236
20
        val2 = sign_extend(val & 0xFF, 8);
237
20
        if (type == ON2AVC_ESC_CB) {
238

6
            if (val1 <= -16 || val1 >= 16) {
239
1
                sign = 1 - (val1 < 0) * 2;
240
1
                val1 = sign * get_egolomb(gb);
241
            }
242

6
            if (val2 <= -16 || val2 >= 16) {
243
1
                sign = 1 - (val2 < 0) * 2;
244
1
                val2 = sign * get_egolomb(gb);
245
            }
246
        }
247
248
20
        *dst++ = on2avc_scale(val1, band_scale);
249
20
        *dst++ = on2avc_scale(val2, band_scale);
250
    }
251
252
10
    return 0;
253
}
254
255
30
static int on2avc_read_channel_data(On2AVCContext *c, GetBitContext *gb, int ch)
256
{
257
    int ret;
258
    int w, b, band_idx;
259
    float *coeff_ptr;
260
261
30
    if ((ret = on2avc_decode_band_types(c, gb)) < 0)
262
        return ret;
263
30
    if ((ret = on2avc_decode_band_scales(c, gb)) < 0)
264
        return ret;
265
266
30
    coeff_ptr = c->coeffs[ch];
267
30
    band_idx  = 0;
268
30
    memset(coeff_ptr, 0, ON2AVC_SUBFRAME_SIZE * sizeof(*coeff_ptr));
269
60
    for (w = 0; w < c->num_windows; w++) {
270
1500
        for (b = 0; b < c->num_bands; b++) {
271
1470
            int band_size = c->band_start[b + 1] - c->band_start[b];
272
1470
            int band_type = c->band_type[band_idx + b];
273
274
1470
            if (!band_type) {
275
211
                coeff_ptr += band_size;
276
211
                continue;
277
            }
278
1259
            if (band_type < 9)
279
1249
                on2avc_decode_quads(c, gb, coeff_ptr, band_size, band_type,
280
1249
                                    c->band_scales[band_idx + b]);
281
            else
282
10
                on2avc_decode_pairs(c, gb, coeff_ptr, band_size, band_type,
283
10
                                    c->band_scales[band_idx + b]);
284
1259
            coeff_ptr += band_size;
285
        }
286
30
        band_idx += c->num_bands;
287
    }
288
289
30
    return 0;
290
}
291
292
static int on2avc_apply_ms(On2AVCContext *c)
293
{
294
    int w, b, i;
295
    int band_off = 0;
296
    float *ch0 = c->coeffs[0];
297
    float *ch1 = c->coeffs[1];
298
299
    for (w = 0; w < c->num_windows; w++) {
300
        for (b = 0; b < c->num_bands; b++) {
301
            if (c->ms_info[band_off + b]) {
302
                for (i = c->band_start[b]; i < c->band_start[b + 1]; i++) {
303
                    float l = *ch0, r = *ch1;
304
                    *ch0++ = l + r;
305
                    *ch1++ = l - r;
306
                }
307
            } else {
308
                ch0 += c->band_start[b + 1] - c->band_start[b];
309
                ch1 += c->band_start[b + 1] - c->band_start[b];
310
            }
311
        }
312
        band_off += c->num_bands;
313
    }
314
    return 0;
315
}
316
317
static void zero_head_and_tail(float *src, int len, int order0, int order1)
318
{
319
    memset(src,                0, sizeof(*src) * order0);
320
    memset(src + len - order1, 0, sizeof(*src) * order1);
321
}
322
323
static void pretwiddle(float *src, float *dst, int dst_len, int tab_step,
324
                       int step, int order0, int order1, const double * const *tabs)
325
{
326
    float *src2, *out;
327
    const double *tab;
328
    int i, j;
329
330
    out = dst;
331
    tab = tabs[0];
332
    for (i = 0; i < tab_step; i++) {
333
        double sum = 0;
334
        for (j = 0; j < order0; j++)
335
            sum += src[j] * tab[j * tab_step + i];
336
        out[i] += sum;
337
    }
338
339
    out = dst + dst_len - tab_step;
340
    tab = tabs[order0];
341
    src2 = src + (dst_len - tab_step) / step + 1 + order0;
342
    for (i = 0; i < tab_step; i++) {
343
        double sum = 0;
344
        for (j = 0; j < order1; j++)
345
            sum += src2[j] * tab[j * tab_step + i];
346
        out[i] += sum;
347
    }
348
}
349
350
static void twiddle(float *src1, float *src2, int src2_len,
351
                    const double *tab, int tab_len, int step,
352
                    int order0, int order1, const double * const *tabs)
353
{
354
    int steps;
355
    int mask;
356
    int i, j;
357
358
    steps = (src2_len - tab_len) / step + 1;
359
    pretwiddle(src1, src2, src2_len, tab_len, step, order0, order1, tabs);
360
    mask = tab_len - 1;
361
362
    for (i = 0; i < steps; i++) {
363
        float in0 = src1[order0 + i];
364
        int   pos = (src2_len - 1) & mask;
365
366
        if (pos < tab_len) {
367
            const double *t = tab;
368
            for (j = pos; j >= 0; j--)
369
                src2[j] += in0 * *t++;
370
            for (j = 0; j < tab_len - pos - 1; j++)
371
                src2[src2_len - j - 1] += in0 * tab[pos + 1 + j];
372
        } else {
373
            for (j = 0; j < tab_len; j++)
374
                src2[pos - j] += in0 * tab[j];
375
        }
376
        mask = pos + step;
377
    }
378
}
379
380
#define CMUL1_R(s, t, is, it) \
381
    s[is + 0] * t[it + 0] - s[is + 1] * t[it + 1]
382
#define CMUL1_I(s, t, is, it) \
383
    s[is + 0] * t[it + 1] + s[is + 1] * t[it + 0]
384
#define CMUL2_R(s, t, is, it) \
385
    s[is + 0] * t[it + 0] + s[is + 1] * t[it + 1]
386
#define CMUL2_I(s, t, is, it) \
387
    s[is + 0] * t[it + 1] - s[is + 1] * t[it + 0]
388
389
#define CMUL0(dst, id, s0, s1, s2, s3, t0, t1, t2, t3, is, it)         \
390
    dst[id]     = s0[is] * t0[it]     + s1[is] * t1[it]                \
391
                + s2[is] * t2[it]     + s3[is] * t3[it];               \
392
    dst[id + 1] = s0[is] * t0[it + 1] + s1[is] * t1[it + 1]            \
393
                + s2[is] * t2[it + 1] + s3[is] * t3[it + 1];
394
395
#define CMUL1(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it)             \
396
    *dst++ = CMUL1_R(s0, t0, is, it)                                   \
397
           + CMUL1_R(s1, t1, is, it)                                   \
398
           + CMUL1_R(s2, t2, is, it)                                   \
399
           + CMUL1_R(s3, t3, is, it);                                  \
400
    *dst++ = CMUL1_I(s0, t0, is, it)                                   \
401
           + CMUL1_I(s1, t1, is, it)                                   \
402
           + CMUL1_I(s2, t2, is, it)                                   \
403
           + CMUL1_I(s3, t3, is, it);
404
405
#define CMUL2(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it)             \
406
    *dst++ = CMUL2_R(s0, t0, is, it)                                   \
407
           + CMUL2_R(s1, t1, is, it)                                   \
408
           + CMUL2_R(s2, t2, is, it)                                   \
409
           + CMUL2_R(s3, t3, is, it);                                  \
410
    *dst++ = CMUL2_I(s0, t0, is, it)                                   \
411
           + CMUL2_I(s1, t1, is, it)                                   \
412
           + CMUL2_I(s2, t2, is, it)                                   \
413
           + CMUL2_I(s3, t3, is, it);
414
415
static void combine_fft(float *s0, float *s1, float *s2, float *s3, float *dst,
416
                        const float *t0, const float *t1,
417
                        const float *t2, const float *t3, int len, int step)
418
{
419
    const float *h0, *h1, *h2, *h3;
420
    float *d1, *d2;
421
    int tmp, half;
422
    int len2 = len >> 1, len4 = len >> 2;
423
    int hoff;
424
    int i, j, k;
425
426
    tmp = step;
427
    for (half = len2; tmp > 1; half <<= 1, tmp >>= 1);
428
429
    h0 = t0 + half;
430
    h1 = t1 + half;
431
    h2 = t2 + half;
432
    h3 = t3 + half;
433
434
    CMUL0(dst, 0, s0, s1, s2, s3, t0, t1, t2, t3, 0, 0);
435
436
    hoff = 2 * step * (len4 >> 1);
437
438
    j = 2;
439
    k = 2 * step;
440
    d1 = dst + 2;
441
    d2 = dst + 2 + (len >> 1);
442
    for (i = 0; i < (len4 - 1) >> 1; i++) {
443
        CMUL1(d1, s0, s1, s2, s3, t0, t1, t2, t3, j, k);
444
        CMUL1(d2, s0, s1, s2, s3, h0, h1, h2, h3, j, k);
445
        j += 2;
446
        k += 2 * step;
447
    }
448
    CMUL0(dst, len4,        s0, s1, s2, s3, t0, t1, t2, t3, 1, hoff);
449
    CMUL0(dst, len4 + len2, s0, s1, s2, s3, h0, h1, h2, h3, 1, hoff);
450
451
    j = len4;
452
    k = hoff + 2 * step * len4;
453
    d1 = dst + len4 + 2;
454
    d2 = dst + len4 + 2 + len2;
455
    for (i = 0; i < (len4 - 2) >> 1; i++) {
456
        CMUL2(d1, s0, s1, s2, s3, t0, t1, t2, t3, j, k);
457
        CMUL2(d2, s0, s1, s2, s3, h0, h1, h2, h3, j, k);
458
        j -= 2;
459
        k += 2 * step;
460
    }
461
    CMUL0(dst, len2 + 4, s0, s1, s2, s3, t0, t1, t2, t3, 0, k);
462
}
463
464
static void wtf_end_512(On2AVCContext *c, float *out, float *src,
465
                        float *tmp0, float *tmp1)
466
{
467
    memcpy(src,        tmp0,      384 * sizeof(*tmp0));
468
    memcpy(tmp0 + 384, src + 384, 128 * sizeof(*tmp0));
469
470
    zero_head_and_tail(src,       128, 16, 4);
471
    zero_head_and_tail(src + 128, 128, 16, 4);
472
    zero_head_and_tail(src + 256, 128, 13, 7);
473
    zero_head_and_tail(src + 384, 128, 15, 5);
474
475
    c->fft128.fft_permute(&c->fft128, (FFTComplex*)src);
476
    c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 128));
477
    c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 256));
478
    c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 384));
479
    c->fft128.fft_calc(&c->fft128, (FFTComplex*)src);
480
    c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 128));
481
    c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 256));
482
    c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 384));
483
    combine_fft(src, src + 128, src + 256, src + 384, tmp1,
484
                ff_on2avc_ctab_1, ff_on2avc_ctab_2,
485
                ff_on2avc_ctab_3, ff_on2avc_ctab_4, 512, 2);
486
    c->fft512.fft_permute(&c->fft512, (FFTComplex*)tmp1);
487
    c->fft512.fft_calc(&c->fft512, (FFTComplex*)tmp1);
488
489
    pretwiddle(&tmp0[  0], tmp1, 512, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
490
    pretwiddle(&tmp0[128], tmp1, 512, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
491
    pretwiddle(&tmp0[256], tmp1, 512, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
492
    pretwiddle(&tmp0[384], tmp1, 512, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
493
494
    memcpy(src, tmp1, 512 * sizeof(float));
495
}
496
497
static void wtf_end_1024(On2AVCContext *c, float *out, float *src,
498
                         float *tmp0, float *tmp1)
499
{
500
    memcpy(src,        tmp0,      768 * sizeof(*tmp0));
501
    memcpy(tmp0 + 768, src + 768, 256 * sizeof(*tmp0));
502
503
    zero_head_and_tail(src,       256, 16, 4);
504
    zero_head_and_tail(src + 256, 256, 16, 4);
505
    zero_head_and_tail(src + 512, 256, 13, 7);
506
    zero_head_and_tail(src + 768, 256, 15, 5);
507
508
    c->fft256.fft_permute(&c->fft256, (FFTComplex*)src);
509
    c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 256));
510
    c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 512));
511
    c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 768));
512
    c->fft256.fft_calc(&c->fft256, (FFTComplex*)src);
513
    c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 256));
514
    c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 512));
515
    c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 768));
516
    combine_fft(src, src + 256, src + 512, src + 768, tmp1,
517
                ff_on2avc_ctab_1, ff_on2avc_ctab_2,
518
                ff_on2avc_ctab_3, ff_on2avc_ctab_4, 1024, 1);
519
    c->fft1024.fft_permute(&c->fft1024, (FFTComplex*)tmp1);
520
    c->fft1024.fft_calc(&c->fft1024, (FFTComplex*)tmp1);
521
522
    pretwiddle(&tmp0[  0], tmp1, 1024, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
523
    pretwiddle(&tmp0[256], tmp1, 1024, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
524
    pretwiddle(&tmp0[512], tmp1, 1024, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
525
    pretwiddle(&tmp0[768], tmp1, 1024, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
526
527
    memcpy(src, tmp1, 1024 * sizeof(float));
528
}
529
530
static void wtf_40(On2AVCContext *c, float *out, float *src, int size)
531
{
532
    float *tmp0 = c->temp, *tmp1 = c->temp + 1024;
533
534
    memset(tmp0, 0, sizeof(*tmp0) * 1024);
535
    memset(tmp1, 0, sizeof(*tmp1) * 1024);
536
537
    if (size == 512) {
538
        twiddle(src,       &tmp0[  0], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
539
        twiddle(src +   8, &tmp0[  0], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
540
        twiddle(src +  16, &tmp0[ 16], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
541
        twiddle(src +  24, &tmp0[ 16], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
542
        twiddle(src +  32, &tmp0[ 32], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
543
        twiddle(src +  40, &tmp0[ 32], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
544
        twiddle(src +  48, &tmp0[ 48], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
545
        twiddle(src +  56, &tmp0[ 48], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
546
        twiddle(&tmp0[ 0], &tmp1[  0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
547
        twiddle(&tmp0[16], &tmp1[  0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
548
        twiddle(&tmp0[32], &tmp1[ 32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
549
        twiddle(&tmp0[48], &tmp1[ 32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
550
        twiddle(src +  64, &tmp1[ 64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
551
        twiddle(src +  80, &tmp1[ 64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
552
        twiddle(src +  96, &tmp1[ 96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
553
        twiddle(src + 112, &tmp1[ 96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
554
        twiddle(src + 128, &tmp1[128], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
555
        twiddle(src + 144, &tmp1[128], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
556
        twiddle(src + 160, &tmp1[160], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
557
        twiddle(src + 176, &tmp1[160], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
558
559
        memset(tmp0, 0, 64 * sizeof(*tmp0));
560
561
        twiddle(&tmp1[  0], &tmp0[  0], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
562
        twiddle(&tmp1[ 32], &tmp0[  0], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
563
        twiddle(&tmp1[ 64], &tmp0[  0], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
564
        twiddle(&tmp1[ 96], &tmp0[  0], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
565
        twiddle(&tmp1[128], &tmp0[128], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
566
        twiddle(&tmp1[160], &tmp0[128], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
567
        twiddle(src + 192,  &tmp0[128], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
568
        twiddle(src + 224,  &tmp0[128], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
569
        twiddle(src + 256,  &tmp0[256], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
570
        twiddle(src + 288,  &tmp0[256], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
571
        twiddle(src + 320,  &tmp0[256], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
572
        twiddle(src + 352,  &tmp0[256], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
573
574
        wtf_end_512(c, out, src, tmp0, tmp1);
575
    } else {
576
        twiddle(src,       &tmp0[  0], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
577
        twiddle(src +  16, &tmp0[  0], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
578
        twiddle(src +  32, &tmp0[ 32], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
579
        twiddle(src +  48, &tmp0[ 32], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
580
        twiddle(src +  64, &tmp0[ 64], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
581
        twiddle(src +  80, &tmp0[ 64], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
582
        twiddle(src +  96, &tmp0[ 96], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
583
        twiddle(src + 112, &tmp0[ 96], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
584
        twiddle(&tmp0[ 0], &tmp1[  0], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
585
        twiddle(&tmp0[32], &tmp1[  0], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
586
        twiddle(&tmp0[64], &tmp1[ 64], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
587
        twiddle(&tmp0[96], &tmp1[ 64], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
588
        twiddle(src + 128, &tmp1[128], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
589
        twiddle(src + 160, &tmp1[128], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
590
        twiddle(src + 192, &tmp1[192], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
591
        twiddle(src + 224, &tmp1[192], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
592
        twiddle(src + 256, &tmp1[256], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
593
        twiddle(src + 288, &tmp1[256], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
594
        twiddle(src + 320, &tmp1[320], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
595
        twiddle(src + 352, &tmp1[320], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
596
597
        memset(tmp0, 0, 128 * sizeof(*tmp0));
598
599
        twiddle(&tmp1[  0], &tmp0[  0], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
600
        twiddle(&tmp1[ 64], &tmp0[  0], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
601
        twiddle(&tmp1[128], &tmp0[  0], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
602
        twiddle(&tmp1[192], &tmp0[  0], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
603
        twiddle(&tmp1[256], &tmp0[256], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
604
        twiddle(&tmp1[320], &tmp0[256], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
605
        twiddle(src + 384,  &tmp0[256], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
606
        twiddle(src + 448,  &tmp0[256], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
607
        twiddle(src + 512,  &tmp0[512], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
608
        twiddle(src + 576,  &tmp0[512], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
609
        twiddle(src + 640,  &tmp0[512], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
610
        twiddle(src + 704,  &tmp0[512], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
611
612
        wtf_end_1024(c, out, src, tmp0, tmp1);
613
    }
614
}
615
616
static void wtf_44(On2AVCContext *c, float *out, float *src, int size)
617
{
618
    float *tmp0 = c->temp, *tmp1 = c->temp + 1024;
619
620
    memset(tmp0, 0, sizeof(*tmp0) * 1024);
621
    memset(tmp1, 0, sizeof(*tmp1) * 1024);
622
623
    if (size == 512) {
624
        twiddle(src,       &tmp0[ 0], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
625
        twiddle(src +   8, &tmp0[ 0], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
626
        twiddle(src +  16, &tmp0[16], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
627
        twiddle(src +  24, &tmp0[16], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
628
        twiddle(src +  32, &tmp0[32], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
629
        twiddle(src +  40, &tmp0[32], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
630
        twiddle(src +  48, &tmp0[48], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
631
        twiddle(src +  56, &tmp0[48], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
632
        twiddle(&tmp0[ 0], &tmp1[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
633
        twiddle(&tmp0[16], &tmp1[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
634
        twiddle(&tmp0[32], &tmp1[32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
635
        twiddle(&tmp0[48], &tmp1[32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
636
        twiddle(src +  64, &tmp1[64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
637
        twiddle(src +  80, &tmp1[64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
638
        twiddle(src +  96, &tmp1[96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
639
        twiddle(src + 112, &tmp1[96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
640
641
        memset(tmp0, 0, 64 * sizeof(*tmp0));
642
643
        twiddle(&tmp1[ 0], &tmp0[  0], 128, ff_on2avc_tab_84_1, 84, 4, 16,  4, ff_on2avc_tabs_20_84_1);
644
        twiddle(&tmp1[32], &tmp0[  0], 128, ff_on2avc_tab_84_2, 84, 4, 16,  4, ff_on2avc_tabs_20_84_2);
645
        twiddle(&tmp1[64], &tmp0[  0], 128, ff_on2avc_tab_84_3, 84, 4, 13,  7, ff_on2avc_tabs_20_84_3);
646
        twiddle(&tmp1[96], &tmp0[  0], 128, ff_on2avc_tab_84_4, 84, 4, 15,  5, ff_on2avc_tabs_20_84_4);
647
        twiddle(src + 128, &tmp0[128], 128, ff_on2avc_tab_84_4, 84, 4, 15,  5, ff_on2avc_tabs_20_84_4);
648
        twiddle(src + 160, &tmp0[128], 128, ff_on2avc_tab_84_3, 84, 4, 13,  7, ff_on2avc_tabs_20_84_3);
649
        twiddle(src + 192, &tmp0[128], 128, ff_on2avc_tab_84_2, 84, 4, 16,  4, ff_on2avc_tabs_20_84_2);
650
        twiddle(src + 224, &tmp0[128], 128, ff_on2avc_tab_84_1, 84, 4, 16,  4, ff_on2avc_tabs_20_84_1);
651
        twiddle(src + 256, &tmp0[256], 128, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
652
        twiddle(src + 320, &tmp0[256], 128, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
653
654
        wtf_end_512(c, out, src, tmp0, tmp1);
655
    } else {
656
        twiddle(src,       &tmp0[  0], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
657
        twiddle(src +  16, &tmp0[  0], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
658
        twiddle(src +  32, &tmp0[ 32], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
659
        twiddle(src +  48, &tmp0[ 32], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
660
        twiddle(src +  64, &tmp0[ 64], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
661
        twiddle(src +  80, &tmp0[ 64], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
662
        twiddle(src +  96, &tmp0[ 96], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
663
        twiddle(src + 112, &tmp0[ 96], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
664
        twiddle(&tmp0[ 0], &tmp1[  0], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
665
        twiddle(&tmp0[32], &tmp1[  0], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
666
        twiddle(&tmp0[64], &tmp1[ 64], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
667
        twiddle(&tmp0[96], &tmp1[ 64], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
668
        twiddle(src + 128, &tmp1[128], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
669
        twiddle(src + 160, &tmp1[128], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
670
        twiddle(src + 192, &tmp1[192], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
671
        twiddle(src + 224, &tmp1[192], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
672
673
        memset(tmp0, 0, 128 * sizeof(*tmp0));
674
675
        twiddle(&tmp1[  0], &tmp0[  0], 256, ff_on2avc_tab_84_1, 84, 4, 16,  4, ff_on2avc_tabs_20_84_1);
676
        twiddle(&tmp1[ 64], &tmp0[  0], 256, ff_on2avc_tab_84_2, 84, 4, 16,  4, ff_on2avc_tabs_20_84_2);
677
        twiddle(&tmp1[128], &tmp0[  0], 256, ff_on2avc_tab_84_3, 84, 4, 13,  7, ff_on2avc_tabs_20_84_3);
678
        twiddle(&tmp1[192], &tmp0[  0], 256, ff_on2avc_tab_84_4, 84, 4, 15,  5, ff_on2avc_tabs_20_84_4);
679
        twiddle(src + 256,  &tmp0[256], 256, ff_on2avc_tab_84_4, 84, 4, 15,  5, ff_on2avc_tabs_20_84_4);
680
        twiddle(src + 320,  &tmp0[256], 256, ff_on2avc_tab_84_3, 84, 4, 13,  7, ff_on2avc_tabs_20_84_3);
681
        twiddle(src + 384,  &tmp0[256], 256, ff_on2avc_tab_84_2, 84, 4, 16,  4, ff_on2avc_tabs_20_84_2);
682
        twiddle(src + 448,  &tmp0[256], 256, ff_on2avc_tab_84_1, 84, 4, 16,  4, ff_on2avc_tabs_20_84_1);
683
        twiddle(src + 512,  &tmp0[512], 256, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
684
        twiddle(src + 640,  &tmp0[512], 256, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
685
686
        wtf_end_1024(c, out, src, tmp0, tmp1);
687
    }
688
}
689
690
static int on2avc_reconstruct_channel_ext(On2AVCContext *c, AVFrame *dst, int offset)
691
{
692
    int ch, i;
693
694
    for (ch = 0; ch < c->avctx->channels; ch++) {
695
        float *out   = (float*)dst->extended_data[ch] + offset;
696
        float *in    = c->coeffs[ch];
697
        float *saved = c->delay[ch];
698
        float *buf   = c->mdct_buf;
699
        float *wout  = out + 448;
700
701
        switch (c->window_type) {
702
        case WINDOW_TYPE_EXT7:
703
            c->mdct.imdct_half(&c->mdct, buf, in);
704
            break;
705
        case WINDOW_TYPE_EXT4:
706
            c->wtf(c, buf, in, 1024);
707
            break;
708
        case WINDOW_TYPE_EXT5:
709
            c->wtf(c, buf, in, 512);
710
            c->mdct.imdct_half(&c->mdct_half, buf + 512, in + 512);
711
            for (i = 0; i < 256; i++) {
712
                FFSWAP(float, buf[i + 512], buf[1023 - i]);
713
            }
714
            break;
715
        case WINDOW_TYPE_EXT6:
716
            c->mdct.imdct_half(&c->mdct_half, buf, in);
717
            for (i = 0; i < 256; i++) {
718
                FFSWAP(float, buf[i], buf[511 - i]);
719
            }
720
            c->wtf(c, buf + 512, in + 512, 512);
721
            break;
722
        }
723
724
        memcpy(out, saved, 448 * sizeof(float));
725
        c->fdsp->vector_fmul_window(wout, saved + 448, buf, c->short_win, 64);
726
        memcpy(wout + 128,  buf + 64,         448 * sizeof(float));
727
        memcpy(saved,       buf + 512,        448 * sizeof(float));
728
        memcpy(saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
729
    }
730
731
    return 0;
732
}
733
734
// not borrowed from aacdec.c - the codec has original design after all
735
30
static int on2avc_reconstruct_channel(On2AVCContext *c, int channel,
736
                                      AVFrame *dst, int offset)
737
{
738
    int i;
739
30
    float *out   = (float*)dst->extended_data[channel] + offset;
740
30
    float *in    = c->coeffs[channel];
741
30
    float *saved = c->delay[channel];
742
30
    float *buf   = c->mdct_buf;
743
30
    float *temp  = c->temp;
744
745
30
    switch (c->window_type) {
746
30
    case WINDOW_TYPE_LONG_START:
747
    case WINDOW_TYPE_LONG_STOP:
748
    case WINDOW_TYPE_LONG:
749
30
        c->mdct.imdct_half(&c->mdct, buf, in);
750
30
        break;
751
    case WINDOW_TYPE_8SHORT:
752
        for (i = 0; i < ON2AVC_SUBFRAME_SIZE; i += ON2AVC_SUBFRAME_SIZE / 8)
753
            c->mdct_small.imdct_half(&c->mdct_small, buf + i, in + i);
754
        break;
755
    }
756
757
30
    if ((c->prev_window_type == WINDOW_TYPE_LONG ||
758
         c->prev_window_type == WINDOW_TYPE_LONG_STOP) &&
759
30
        (c->window_type == WINDOW_TYPE_LONG ||
760
         c->window_type == WINDOW_TYPE_LONG_START)) {
761
30
        c->fdsp->vector_fmul_window(out, saved, buf, c->long_win, 512);
762
    } else {
763
        float *wout = out + 448;
764
        memcpy(out, saved, 448 * sizeof(float));
765
766
        if (c->window_type == WINDOW_TYPE_8SHORT) {
767
            c->fdsp->vector_fmul_window(wout + 0*128, saved + 448,      buf + 0*128, c->short_win, 64);
768
            c->fdsp->vector_fmul_window(wout + 1*128, buf + 0*128 + 64, buf + 1*128, c->short_win, 64);
769
            c->fdsp->vector_fmul_window(wout + 2*128, buf + 1*128 + 64, buf + 2*128, c->short_win, 64);
770
            c->fdsp->vector_fmul_window(wout + 3*128, buf + 2*128 + 64, buf + 3*128, c->short_win, 64);
771
            c->fdsp->vector_fmul_window(temp,         buf + 3*128 + 64, buf + 4*128, c->short_win, 64);
772
            memcpy(wout + 4*128, temp, 64 * sizeof(float));
773
        } else {
774
            c->fdsp->vector_fmul_window(wout, saved + 448, buf, c->short_win, 64);
775
            memcpy(wout + 128, buf + 64, 448 * sizeof(float));
776
        }
777
    }
778
779
    // buffer update
780

30
    switch (c->window_type) {
781
    case WINDOW_TYPE_8SHORT:
782
        memcpy(saved,       temp + 64,         64 * sizeof(float));
783
        c->fdsp->vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, c->short_win, 64);
784
        c->fdsp->vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, c->short_win, 64);
785
        c->fdsp->vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, c->short_win, 64);
786
        memcpy(saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
787
        break;
788
    case WINDOW_TYPE_LONG_START:
789
        memcpy(saved,       buf + 512,        448 * sizeof(float));
790
        memcpy(saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
791
        break;
792
30
    case WINDOW_TYPE_LONG_STOP:
793
    case WINDOW_TYPE_LONG:
794
30
        memcpy(saved,       buf + 512,        512 * sizeof(float));
795
30
        break;
796
    }
797
30
    return 0;
798
}
799
800
30
static int on2avc_decode_subframe(On2AVCContext *c, const uint8_t *buf,
801
                                  int buf_size, AVFrame *dst, int offset)
802
{
803
    GetBitContext gb;
804
    int i, ret;
805
806
30
    if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0)
807
        return ret;
808
809
30
    if (get_bits1(&gb)) {
810
        av_log(c->avctx, AV_LOG_ERROR, "enh bit set\n");
811
        return AVERROR_INVALIDDATA;
812
    }
813
30
    c->prev_window_type = c->window_type;
814
30
    c->window_type      = get_bits(&gb, 3);
815
816
30
    c->band_start  = c->modes[c->window_type].band_start;
817
30
    c->num_windows = c->modes[c->window_type].num_windows;
818
30
    c->num_bands   = c->modes[c->window_type].num_bands;
819
30
    c->is_long     = (c->window_type != WINDOW_TYPE_8SHORT);
820
821
30
    c->grouping[0] = 1;
822
30
    for (i = 1; i < c->num_windows; i++)
823
        c->grouping[i] = !get_bits1(&gb);
824
825
30
    on2avc_read_ms_info(c, &gb);
826
60
    for (i = 0; i < c->avctx->channels; i++)
827
30
        if ((ret = on2avc_read_channel_data(c, &gb, i)) < 0)
828
            return AVERROR_INVALIDDATA;
829

30
    if (c->avctx->channels == 2 && c->ms_present)
830
        on2avc_apply_ms(c);
831
30
    if (c->window_type < WINDOW_TYPE_EXT4) {
832
60
        for (i = 0; i < c->avctx->channels; i++)
833
30
            on2avc_reconstruct_channel(c, i, dst, offset);
834
    } else {
835
        on2avc_reconstruct_channel_ext(c, dst, offset);
836
    }
837
838
30
    return 0;
839
}
840
841
30
static int on2avc_decode_frame(AVCodecContext * avctx, void *data,
842
                               int *got_frame_ptr, AVPacket *avpkt)
843
{
844
30
    AVFrame *frame     = data;
845
30
    const uint8_t *buf = avpkt->data;
846
30
    int buf_size       = avpkt->size;
847
30
    On2AVCContext *c   = avctx->priv_data;
848
    GetByteContext gb;
849
30
    int num_frames = 0, frame_size, audio_off;
850
    int ret;
851
852
30
    if (c->is_av500) {
853
        /* get output buffer */
854
30
        frame->nb_samples = ON2AVC_SUBFRAME_SIZE;
855
30
        if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
856
            return ret;
857
858
30
        if ((ret = on2avc_decode_subframe(c, buf, buf_size, frame, 0)) < 0)
859
            return ret;
860
    } else {
861
        bytestream2_init(&gb, buf, buf_size);
862
        while (bytestream2_get_bytes_left(&gb) > 2) {
863
            frame_size = bytestream2_get_le16(&gb);
864
            if (!frame_size || frame_size > bytestream2_get_bytes_left(&gb)) {
865
                av_log(avctx, AV_LOG_ERROR, "Invalid subframe size %d\n",
866
                       frame_size);
867
                return AVERROR_INVALIDDATA;
868
            }
869
            num_frames++;
870
            bytestream2_skip(&gb, frame_size);
871
        }
872
        if (!num_frames) {
873
            av_log(avctx, AV_LOG_ERROR, "No subframes present\n");
874
            return AVERROR_INVALIDDATA;
875
        }
876
877
        /* get output buffer */
878
        frame->nb_samples = ON2AVC_SUBFRAME_SIZE * num_frames;
879
        if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
880
            return ret;
881
882
        audio_off = 0;
883
        bytestream2_init(&gb, buf, buf_size);
884
        while (bytestream2_get_bytes_left(&gb) > 2) {
885
            frame_size = bytestream2_get_le16(&gb);
886
            if ((ret = on2avc_decode_subframe(c, gb.buffer, frame_size,
887
                                              frame, audio_off)) < 0)
888
                return ret;
889
            audio_off += ON2AVC_SUBFRAME_SIZE;
890
            bytestream2_skip(&gb, frame_size);
891
        }
892
    }
893
894
30
    *got_frame_ptr = 1;
895
896
30
    return buf_size;
897
}
898
899
3
static av_cold void on2avc_free_vlcs(On2AVCContext *c)
900
{
901
    int i;
902
903
3
    ff_free_vlc(&c->scale_diff);
904
48
    for (i = 1; i < 16; i++)
905
45
        ff_free_vlc(&c->cb_vlc[i]);
906
3
}
907
908
3
static av_cold int on2avc_decode_init(AVCodecContext *avctx)
909
{
910
3
    On2AVCContext *c = avctx->priv_data;
911
3
    const uint8_t  *lens = ff_on2avc_cb_lens;
912
3
    const uint16_t *syms = ff_on2avc_cb_syms;
913
    int i, ret;
914
915
3
    if (avctx->channels > 2U) {
916
        avpriv_request_sample(avctx, "Decoding more than 2 channels");
917
        return AVERROR_PATCHWELCOME;
918
    }
919
920
3
    c->avctx = avctx;
921
3
    avctx->sample_fmt     = AV_SAMPLE_FMT_FLTP;
922
6
    avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO
923
3
                                                   : AV_CH_LAYOUT_MONO;
924
925
3
    c->is_av500 = (avctx->codec_tag == 0x500);
926
927
3
    if (avctx->channels == 2)
928
        av_log(avctx, AV_LOG_WARNING,
929
               "Stereo mode support is not good, patch is welcome\n");
930
931
    // We add -0.01 before ceil() to avoid any values to fall at exactly the
932
    // midpoint between different ceil values. The results are identical to
933
    // using pow(10, i / 10.0) without such bias
934
63
    for (i = 0; i < 20; i++)
935
60
        c->scale_tab[i] = ceil(ff_exp10(i * 0.1) * 16 - 0.01) / 32;
936
327
    for (; i < 128; i++)
937
324
        c->scale_tab[i] = ceil(ff_exp10(i * 0.1) * 0.5 - 0.01);
938
939

3
    if (avctx->sample_rate < 32000 || avctx->channels == 1)
940
3
        memcpy(c->long_win, ff_on2avc_window_long_24000,
941
               1024 * sizeof(*c->long_win));
942
    else
943
        memcpy(c->long_win, ff_on2avc_window_long_32000,
944
               1024 * sizeof(*c->long_win));
945
3
    memcpy(c->short_win, ff_on2avc_window_short, 128 * sizeof(*c->short_win));
946
947
6
    c->modes = (avctx->sample_rate <= 40000) ? ff_on2avc_modes_40
948
3
                                             : ff_on2avc_modes_44;
949
3
    c->wtf   = (avctx->sample_rate <= 40000) ? wtf_40
950
                                             : wtf_44;
951
952
3
    ff_mdct_init(&c->mdct,       11, 1, 1.0 / (32768.0 * 1024.0));
953
3
    ff_mdct_init(&c->mdct_half,  10, 1, 1.0 / (32768.0 * 512.0));
954
3
    ff_mdct_init(&c->mdct_small,  8, 1, 1.0 / (32768.0 * 128.0));
955
3
    ff_fft_init(&c->fft128,  6, 0);
956
3
    ff_fft_init(&c->fft256,  7, 0);
957
3
    ff_fft_init(&c->fft512,  8, 1);
958
3
    ff_fft_init(&c->fft1024, 9, 1);
959
3
    c->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
960
3
    if (!c->fdsp)
961
        return AVERROR(ENOMEM);
962
963
3
    ret = ff_init_vlc_from_lengths(&c->scale_diff, 9, ON2AVC_SCALE_DIFFS,
964
                                   ff_on2avc_scale_diff_bits, 1,
965
                                   ff_on2avc_scale_diff_syms, 1, 1, -60, 0, avctx);
966
3
    if (ret < 0)
967
        goto vlc_fail;
968
48
    for (i = 1; i < 16; i++) {
969
45
        int idx = i - 1;
970
45
        ret = ff_init_vlc_from_lengths(&c->cb_vlc[i], 9, ff_on2avc_cb_elems[idx],
971
                                       lens, 1,
972
                                       syms, 2, 2, 0, 0, avctx);
973
45
        if (ret < 0)
974
            goto vlc_fail;
975
45
        lens += ff_on2avc_cb_elems[idx];
976
45
        syms += ff_on2avc_cb_elems[idx];
977
    }
978
979
3
    return 0;
980
vlc_fail:
981
    av_log(avctx, AV_LOG_ERROR, "Cannot init VLC\n");
982
    return ret;
983
}
984
985
3
static av_cold int on2avc_decode_close(AVCodecContext *avctx)
986
{
987
3
    On2AVCContext *c = avctx->priv_data;
988
989
3
    ff_mdct_end(&c->mdct);
990
3
    ff_mdct_end(&c->mdct_half);
991
3
    ff_mdct_end(&c->mdct_small);
992
3
    ff_fft_end(&c->fft128);
993
3
    ff_fft_end(&c->fft256);
994
3
    ff_fft_end(&c->fft512);
995
3
    ff_fft_end(&c->fft1024);
996
997
3
    av_freep(&c->fdsp);
998
999
3
    on2avc_free_vlcs(c);
1000
1001
3
    return 0;
1002
}
1003
1004
1005
AVCodec ff_on2avc_decoder = {
1006
    .name           = "on2avc",
1007
    .long_name      = NULL_IF_CONFIG_SMALL("On2 Audio for Video Codec"),
1008
    .type           = AVMEDIA_TYPE_AUDIO,
1009
    .id             = AV_CODEC_ID_ON2AVC,
1010
    .priv_data_size = sizeof(On2AVCContext),
1011
    .init           = on2avc_decode_init,
1012
    .decode         = on2avc_decode_frame,
1013
    .close          = on2avc_decode_close,
1014
    .capabilities   = AV_CODEC_CAP_DR1,
1015
    .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
1016
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1017
                                                      AV_SAMPLE_FMT_NONE },
1018
};