GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/on2avc.c Lines: 200 593 33.7 %
Date: 2019-11-22 03:34:36 Branches: 85 208 40.9 %

Line Branch Exec Source
1
/*
2
 * On2 Audio for Video Codec decoder
3
 *
4
 * Copyright (c) 2013 Konstantin Shishkov
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
23
#include "libavutil/channel_layout.h"
24
#include "libavutil/ffmath.h"
25
#include "libavutil/float_dsp.h"
26
#include "avcodec.h"
27
#include "bytestream.h"
28
#include "fft.h"
29
#include "get_bits.h"
30
#include "internal.h"
31
32
#include "on2avcdata.h"
33
34
#define ON2AVC_SUBFRAME_SIZE   1024
35
36
enum WindowTypes {
37
    WINDOW_TYPE_LONG       = 0,
38
    WINDOW_TYPE_LONG_STOP,
39
    WINDOW_TYPE_LONG_START,
40
    WINDOW_TYPE_8SHORT     = 3,
41
    WINDOW_TYPE_EXT4,
42
    WINDOW_TYPE_EXT5,
43
    WINDOW_TYPE_EXT6,
44
    WINDOW_TYPE_EXT7,
45
};
46
47
typedef struct On2AVCContext {
48
    AVCodecContext *avctx;
49
    AVFloatDSPContext *fdsp;
50
    FFTContext mdct, mdct_half, mdct_small;
51
    FFTContext fft128, fft256, fft512, fft1024;
52
    void (*wtf)(struct On2AVCContext *ctx, float *out, float *in, int size);
53
54
    int is_av500;
55
56
    const On2AVCMode *modes;
57
    int window_type, prev_window_type;
58
    int num_windows, num_bands;
59
    int bits_per_section;
60
    const int *band_start;
61
62
    int grouping[8];
63
    int ms_present;
64
    int ms_info[ON2AVC_MAX_BANDS];
65
66
    int is_long;
67
68
    uint8_t band_type[ON2AVC_MAX_BANDS];
69
    uint8_t band_run_end[ON2AVC_MAX_BANDS];
70
    int     num_sections;
71
72
    float band_scales[ON2AVC_MAX_BANDS];
73
74
    VLC scale_diff;
75
    VLC cb_vlc[16];
76
77
    float scale_tab[128];
78
79
    DECLARE_ALIGNED(32, float, coeffs)[2][ON2AVC_SUBFRAME_SIZE];
80
    DECLARE_ALIGNED(32, float, delay) [2][ON2AVC_SUBFRAME_SIZE];
81
82
    DECLARE_ALIGNED(32, float, temp)     [ON2AVC_SUBFRAME_SIZE * 2];
83
    DECLARE_ALIGNED(32, float, mdct_buf) [ON2AVC_SUBFRAME_SIZE];
84
    DECLARE_ALIGNED(32, float, long_win) [ON2AVC_SUBFRAME_SIZE];
85
    DECLARE_ALIGNED(32, float, short_win)[ON2AVC_SUBFRAME_SIZE / 8];
86
} On2AVCContext;
87
88
30
static void on2avc_read_ms_info(On2AVCContext *c, GetBitContext *gb)
89
{
90
30
    int w, b, band_off = 0;
91
92
30
    c->ms_present = get_bits1(gb);
93
30
    if (!c->ms_present)
94
30
        return;
95
    for (w = 0; w < c->num_windows; w++) {
96
        if (!c->grouping[w]) {
97
            memcpy(c->ms_info + band_off,
98
                   c->ms_info + band_off - c->num_bands,
99
                   c->num_bands * sizeof(*c->ms_info));
100
            band_off += c->num_bands;
101
            continue;
102
        }
103
        for (b = 0; b < c->num_bands; b++)
104
            c->ms_info[band_off++] = get_bits1(gb);
105
    }
106
}
107
108
// do not see Table 17 in ISO/IEC 13818-7
109
30
static int on2avc_decode_band_types(On2AVCContext *c, GetBitContext *gb)
110
{
111
30
    int bits_per_sect = c->is_long ? 5 : 3;
112
30
    int esc_val = (1 << bits_per_sect) - 1;
113
30
    int num_bands = c->num_bands * c->num_windows;
114
30
    int band = 0, i, band_type, run_len, run;
115
116
255
    while (band < num_bands) {
117
225
        band_type = get_bits(gb, 4);
118
225
        run_len   = 1;
119
        do {
120
225
            run = get_bits(gb, bits_per_sect);
121
225
            if (run > num_bands - band - run_len) {
122
                av_log(c->avctx, AV_LOG_ERROR, "Invalid band type run\n");
123
                return AVERROR_INVALIDDATA;
124
            }
125
225
            run_len += run;
126
225
        } while (run == esc_val);
127
1695
        for (i = band; i < band + run_len; i++) {
128
1470
            c->band_type[i]    = band_type;
129
1470
            c->band_run_end[i] = band + run_len;
130
        }
131
225
        band += run_len;
132
    }
133
134
30
    return 0;
135
}
136
137
// completely not like Table 18 in ISO/IEC 13818-7
138
// (no intensity stereo, different coding for the first coefficient)
139
30
static int on2avc_decode_band_scales(On2AVCContext *c, GetBitContext *gb)
140
{
141
30
    int w, w2, b, scale, first = 1;
142
30
    int band_off = 0;
143
144
60
    for (w = 0; w < c->num_windows; w++) {
145
30
        if (!c->grouping[w]) {
146
            memcpy(c->band_scales + band_off,
147
                   c->band_scales + band_off - c->num_bands,
148
                   c->num_bands * sizeof(*c->band_scales));
149
            band_off += c->num_bands;
150
            continue;
151
        }
152
1500
        for (b = 0; b < c->num_bands; b++) {
153
1470
            if (!c->band_type[band_off]) {
154
211
                int all_zero = 1;
155
211
                for (w2 = w + 1; w2 < c->num_windows; w2++) {
156
                    if (c->grouping[w2])
157
                        break;
158
                    if (c->band_type[w2 * c->num_bands + b]) {
159
                        all_zero = 0;
160
                        break;
161
                    }
162
                }
163
211
                if (all_zero) {
164
211
                    c->band_scales[band_off++] = 0;
165
211
                    continue;
166
                }
167
            }
168
1259
            if (first) {
169
30
                scale = get_bits(gb, 7);
170
30
                first = 0;
171
            } else {
172
1229
                scale += get_vlc2(gb, c->scale_diff.table, 9, 3) - 60;
173
            }
174

1259
            if (scale < 0 || scale > 127) {
175
                av_log(c->avctx, AV_LOG_ERROR, "Invalid scale value %d\n",
176
                       scale);
177
                return AVERROR_INVALIDDATA;
178
            }
179
1259
            c->band_scales[band_off++] = c->scale_tab[scale];
180
        }
181
    }
182
183
30
    return 0;
184
}
185
186
20628
static inline float on2avc_scale(int v, float scale)
187
{
188
20628
    return v * sqrtf(abs(v)) * scale;
189
}
190
191
// spectral data is coded completely differently - there are no unsigned codebooks
192
1249
static int on2avc_decode_quads(On2AVCContext *c, GetBitContext *gb, float *dst,
193
                               int dst_size, int type, float band_scale)
194
{
195
    int i, j, val, val1;
196
197
6396
    for (i = 0; i < dst_size; i += 4) {
198
5147
        val = get_vlc2(gb, c->cb_vlc[type].table, 9, 3);
199
200
25735
        for (j = 0; j < 4; j++) {
201
20588
            val1 = sign_extend((val >> (12 - j * 4)) & 0xF, 4);
202
20588
            *dst++ = on2avc_scale(val1, band_scale);
203
        }
204
    }
205
206
1249
    return 0;
207
}
208
209
2
static inline int get_egolomb(GetBitContext *gb)
210
{
211
2
    int v = 4;
212
213
3
    while (get_bits1(gb)) {
214
1
        v++;
215
1
        if (v > 30) {
216
            av_log(NULL, AV_LOG_WARNING, "Too large golomb code in get_egolomb.\n");
217
            v = 30;
218
            break;
219
        }
220
    }
221
222
2
    return (1 << v) + get_bits_long(gb, v);
223
}
224
225
10
static int on2avc_decode_pairs(On2AVCContext *c, GetBitContext *gb, float *dst,
226
                               int dst_size, int type, float band_scale)
227
{
228
    int i, val, val1, val2, sign;
229
230
30
    for (i = 0; i < dst_size; i += 2) {
231
20
        val = get_vlc2(gb, c->cb_vlc[type].table, 9, 3);
232
233
20
        val1 = sign_extend(val >> 8,   8);
234
20
        val2 = sign_extend(val & 0xFF, 8);
235
20
        if (type == ON2AVC_ESC_CB) {
236

6
            if (val1 <= -16 || val1 >= 16) {
237
1
                sign = 1 - (val1 < 0) * 2;
238
1
                val1 = sign * get_egolomb(gb);
239
            }
240

6
            if (val2 <= -16 || val2 >= 16) {
241
1
                sign = 1 - (val2 < 0) * 2;
242
1
                val2 = sign * get_egolomb(gb);
243
            }
244
        }
245
246
20
        *dst++ = on2avc_scale(val1, band_scale);
247
20
        *dst++ = on2avc_scale(val2, band_scale);
248
    }
249
250
10
    return 0;
251
}
252
253
30
static int on2avc_read_channel_data(On2AVCContext *c, GetBitContext *gb, int ch)
254
{
255
    int ret;
256
    int w, b, band_idx;
257
    float *coeff_ptr;
258
259
30
    if ((ret = on2avc_decode_band_types(c, gb)) < 0)
260
        return ret;
261
30
    if ((ret = on2avc_decode_band_scales(c, gb)) < 0)
262
        return ret;
263
264
30
    coeff_ptr = c->coeffs[ch];
265
30
    band_idx  = 0;
266
30
    memset(coeff_ptr, 0, ON2AVC_SUBFRAME_SIZE * sizeof(*coeff_ptr));
267
60
    for (w = 0; w < c->num_windows; w++) {
268
1500
        for (b = 0; b < c->num_bands; b++) {
269
1470
            int band_size = c->band_start[b + 1] - c->band_start[b];
270
1470
            int band_type = c->band_type[band_idx + b];
271
272
1470
            if (!band_type) {
273
211
                coeff_ptr += band_size;
274
211
                continue;
275
            }
276
1259
            if (band_type < 9)
277
1249
                on2avc_decode_quads(c, gb, coeff_ptr, band_size, band_type,
278
1249
                                    c->band_scales[band_idx + b]);
279
            else
280
10
                on2avc_decode_pairs(c, gb, coeff_ptr, band_size, band_type,
281
10
                                    c->band_scales[band_idx + b]);
282
1259
            coeff_ptr += band_size;
283
        }
284
30
        band_idx += c->num_bands;
285
    }
286
287
30
    return 0;
288
}
289
290
static int on2avc_apply_ms(On2AVCContext *c)
291
{
292
    int w, b, i;
293
    int band_off = 0;
294
    float *ch0 = c->coeffs[0];
295
    float *ch1 = c->coeffs[1];
296
297
    for (w = 0; w < c->num_windows; w++) {
298
        for (b = 0; b < c->num_bands; b++) {
299
            if (c->ms_info[band_off + b]) {
300
                for (i = c->band_start[b]; i < c->band_start[b + 1]; i++) {
301
                    float l = *ch0, r = *ch1;
302
                    *ch0++ = l + r;
303
                    *ch1++ = l - r;
304
                }
305
            } else {
306
                ch0 += c->band_start[b + 1] - c->band_start[b];
307
                ch1 += c->band_start[b + 1] - c->band_start[b];
308
            }
309
        }
310
        band_off += c->num_bands;
311
    }
312
    return 0;
313
}
314
315
static void zero_head_and_tail(float *src, int len, int order0, int order1)
316
{
317
    memset(src,                0, sizeof(*src) * order0);
318
    memset(src + len - order1, 0, sizeof(*src) * order1);
319
}
320
321
static void pretwiddle(float *src, float *dst, int dst_len, int tab_step,
322
                       int step, int order0, int order1, const double * const *tabs)
323
{
324
    float *src2, *out;
325
    const double *tab;
326
    int i, j;
327
328
    out = dst;
329
    tab = tabs[0];
330
    for (i = 0; i < tab_step; i++) {
331
        double sum = 0;
332
        for (j = 0; j < order0; j++)
333
            sum += src[j] * tab[j * tab_step + i];
334
        out[i] += sum;
335
    }
336
337
    out = dst + dst_len - tab_step;
338
    tab = tabs[order0];
339
    src2 = src + (dst_len - tab_step) / step + 1 + order0;
340
    for (i = 0; i < tab_step; i++) {
341
        double sum = 0;
342
        for (j = 0; j < order1; j++)
343
            sum += src2[j] * tab[j * tab_step + i];
344
        out[i] += sum;
345
    }
346
}
347
348
static void twiddle(float *src1, float *src2, int src2_len,
349
                    const double *tab, int tab_len, int step,
350
                    int order0, int order1, const double * const *tabs)
351
{
352
    int steps;
353
    int mask;
354
    int i, j;
355
356
    steps = (src2_len - tab_len) / step + 1;
357
    pretwiddle(src1, src2, src2_len, tab_len, step, order0, order1, tabs);
358
    mask = tab_len - 1;
359
360
    for (i = 0; i < steps; i++) {
361
        float in0 = src1[order0 + i];
362
        int   pos = (src2_len - 1) & mask;
363
364
        if (pos < tab_len) {
365
            const double *t = tab;
366
            for (j = pos; j >= 0; j--)
367
                src2[j] += in0 * *t++;
368
            for (j = 0; j < tab_len - pos - 1; j++)
369
                src2[src2_len - j - 1] += in0 * tab[pos + 1 + j];
370
        } else {
371
            for (j = 0; j < tab_len; j++)
372
                src2[pos - j] += in0 * tab[j];
373
        }
374
        mask = pos + step;
375
    }
376
}
377
378
#define CMUL1_R(s, t, is, it) \
379
    s[is + 0] * t[it + 0] - s[is + 1] * t[it + 1]
380
#define CMUL1_I(s, t, is, it) \
381
    s[is + 0] * t[it + 1] + s[is + 1] * t[it + 0]
382
#define CMUL2_R(s, t, is, it) \
383
    s[is + 0] * t[it + 0] + s[is + 1] * t[it + 1]
384
#define CMUL2_I(s, t, is, it) \
385
    s[is + 0] * t[it + 1] - s[is + 1] * t[it + 0]
386
387
#define CMUL0(dst, id, s0, s1, s2, s3, t0, t1, t2, t3, is, it)         \
388
    dst[id]     = s0[is] * t0[it]     + s1[is] * t1[it]                \
389
                + s2[is] * t2[it]     + s3[is] * t3[it];               \
390
    dst[id + 1] = s0[is] * t0[it + 1] + s1[is] * t1[it + 1]            \
391
                + s2[is] * t2[it + 1] + s3[is] * t3[it + 1];
392
393
#define CMUL1(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it)             \
394
    *dst++ = CMUL1_R(s0, t0, is, it)                                   \
395
           + CMUL1_R(s1, t1, is, it)                                   \
396
           + CMUL1_R(s2, t2, is, it)                                   \
397
           + CMUL1_R(s3, t3, is, it);                                  \
398
    *dst++ = CMUL1_I(s0, t0, is, it)                                   \
399
           + CMUL1_I(s1, t1, is, it)                                   \
400
           + CMUL1_I(s2, t2, is, it)                                   \
401
           + CMUL1_I(s3, t3, is, it);
402
403
#define CMUL2(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it)             \
404
    *dst++ = CMUL2_R(s0, t0, is, it)                                   \
405
           + CMUL2_R(s1, t1, is, it)                                   \
406
           + CMUL2_R(s2, t2, is, it)                                   \
407
           + CMUL2_R(s3, t3, is, it);                                  \
408
    *dst++ = CMUL2_I(s0, t0, is, it)                                   \
409
           + CMUL2_I(s1, t1, is, it)                                   \
410
           + CMUL2_I(s2, t2, is, it)                                   \
411
           + CMUL2_I(s3, t3, is, it);
412
413
static void combine_fft(float *s0, float *s1, float *s2, float *s3, float *dst,
414
                        const float *t0, const float *t1,
415
                        const float *t2, const float *t3, int len, int step)
416
{
417
    const float *h0, *h1, *h2, *h3;
418
    float *d1, *d2;
419
    int tmp, half;
420
    int len2 = len >> 1, len4 = len >> 2;
421
    int hoff;
422
    int i, j, k;
423
424
    tmp = step;
425
    for (half = len2; tmp > 1; half <<= 1, tmp >>= 1);
426
427
    h0 = t0 + half;
428
    h1 = t1 + half;
429
    h2 = t2 + half;
430
    h3 = t3 + half;
431
432
    CMUL0(dst, 0, s0, s1, s2, s3, t0, t1, t2, t3, 0, 0);
433
434
    hoff = 2 * step * (len4 >> 1);
435
436
    j = 2;
437
    k = 2 * step;
438
    d1 = dst + 2;
439
    d2 = dst + 2 + (len >> 1);
440
    for (i = 0; i < (len4 - 1) >> 1; i++) {
441
        CMUL1(d1, s0, s1, s2, s3, t0, t1, t2, t3, j, k);
442
        CMUL1(d2, s0, s1, s2, s3, h0, h1, h2, h3, j, k);
443
        j += 2;
444
        k += 2 * step;
445
    }
446
    CMUL0(dst, len4,        s0, s1, s2, s3, t0, t1, t2, t3, 1, hoff);
447
    CMUL0(dst, len4 + len2, s0, s1, s2, s3, h0, h1, h2, h3, 1, hoff);
448
449
    j = len4;
450
    k = hoff + 2 * step * len4;
451
    d1 = dst + len4 + 2;
452
    d2 = dst + len4 + 2 + len2;
453
    for (i = 0; i < (len4 - 2) >> 1; i++) {
454
        CMUL2(d1, s0, s1, s2, s3, t0, t1, t2, t3, j, k);
455
        CMUL2(d2, s0, s1, s2, s3, h0, h1, h2, h3, j, k);
456
        j -= 2;
457
        k += 2 * step;
458
    }
459
    CMUL0(dst, len2 + 4, s0, s1, s2, s3, t0, t1, t2, t3, 0, k);
460
}
461
462
static void wtf_end_512(On2AVCContext *c, float *out, float *src,
463
                        float *tmp0, float *tmp1)
464
{
465
    memcpy(src,        tmp0,      384 * sizeof(*tmp0));
466
    memcpy(tmp0 + 384, src + 384, 128 * sizeof(*tmp0));
467
468
    zero_head_and_tail(src,       128, 16, 4);
469
    zero_head_and_tail(src + 128, 128, 16, 4);
470
    zero_head_and_tail(src + 256, 128, 13, 7);
471
    zero_head_and_tail(src + 384, 128, 15, 5);
472
473
    c->fft128.fft_permute(&c->fft128, (FFTComplex*)src);
474
    c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 128));
475
    c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 256));
476
    c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 384));
477
    c->fft128.fft_calc(&c->fft128, (FFTComplex*)src);
478
    c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 128));
479
    c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 256));
480
    c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 384));
481
    combine_fft(src, src + 128, src + 256, src + 384, tmp1,
482
                ff_on2avc_ctab_1, ff_on2avc_ctab_2,
483
                ff_on2avc_ctab_3, ff_on2avc_ctab_4, 512, 2);
484
    c->fft512.fft_permute(&c->fft512, (FFTComplex*)tmp1);
485
    c->fft512.fft_calc(&c->fft512, (FFTComplex*)tmp1);
486
487
    pretwiddle(&tmp0[  0], tmp1, 512, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
488
    pretwiddle(&tmp0[128], tmp1, 512, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
489
    pretwiddle(&tmp0[256], tmp1, 512, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
490
    pretwiddle(&tmp0[384], tmp1, 512, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
491
492
    memcpy(src, tmp1, 512 * sizeof(float));
493
}
494
495
static void wtf_end_1024(On2AVCContext *c, float *out, float *src,
496
                         float *tmp0, float *tmp1)
497
{
498
    memcpy(src,        tmp0,      768 * sizeof(*tmp0));
499
    memcpy(tmp0 + 768, src + 768, 256 * sizeof(*tmp0));
500
501
    zero_head_and_tail(src,       256, 16, 4);
502
    zero_head_and_tail(src + 256, 256, 16, 4);
503
    zero_head_and_tail(src + 512, 256, 13, 7);
504
    zero_head_and_tail(src + 768, 256, 15, 5);
505
506
    c->fft256.fft_permute(&c->fft256, (FFTComplex*)src);
507
    c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 256));
508
    c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 512));
509
    c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 768));
510
    c->fft256.fft_calc(&c->fft256, (FFTComplex*)src);
511
    c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 256));
512
    c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 512));
513
    c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 768));
514
    combine_fft(src, src + 256, src + 512, src + 768, tmp1,
515
                ff_on2avc_ctab_1, ff_on2avc_ctab_2,
516
                ff_on2avc_ctab_3, ff_on2avc_ctab_4, 1024, 1);
517
    c->fft1024.fft_permute(&c->fft1024, (FFTComplex*)tmp1);
518
    c->fft1024.fft_calc(&c->fft1024, (FFTComplex*)tmp1);
519
520
    pretwiddle(&tmp0[  0], tmp1, 1024, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
521
    pretwiddle(&tmp0[256], tmp1, 1024, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
522
    pretwiddle(&tmp0[512], tmp1, 1024, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
523
    pretwiddle(&tmp0[768], tmp1, 1024, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
524
525
    memcpy(src, tmp1, 1024 * sizeof(float));
526
}
527
528
static void wtf_40(On2AVCContext *c, float *out, float *src, int size)
529
{
530
    float *tmp0 = c->temp, *tmp1 = c->temp + 1024;
531
532
    memset(tmp0, 0, sizeof(*tmp0) * 1024);
533
    memset(tmp1, 0, sizeof(*tmp1) * 1024);
534
535
    if (size == 512) {
536
        twiddle(src,       &tmp0[  0], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
537
        twiddle(src +   8, &tmp0[  0], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
538
        twiddle(src +  16, &tmp0[ 16], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
539
        twiddle(src +  24, &tmp0[ 16], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
540
        twiddle(src +  32, &tmp0[ 32], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
541
        twiddle(src +  40, &tmp0[ 32], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
542
        twiddle(src +  48, &tmp0[ 48], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
543
        twiddle(src +  56, &tmp0[ 48], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
544
        twiddle(&tmp0[ 0], &tmp1[  0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
545
        twiddle(&tmp0[16], &tmp1[  0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
546
        twiddle(&tmp0[32], &tmp1[ 32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
547
        twiddle(&tmp0[48], &tmp1[ 32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
548
        twiddle(src +  64, &tmp1[ 64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
549
        twiddle(src +  80, &tmp1[ 64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
550
        twiddle(src +  96, &tmp1[ 96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
551
        twiddle(src + 112, &tmp1[ 96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
552
        twiddle(src + 128, &tmp1[128], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
553
        twiddle(src + 144, &tmp1[128], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
554
        twiddle(src + 160, &tmp1[160], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
555
        twiddle(src + 176, &tmp1[160], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
556
557
        memset(tmp0, 0, 64 * sizeof(*tmp0));
558
559
        twiddle(&tmp1[  0], &tmp0[  0], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
560
        twiddle(&tmp1[ 32], &tmp0[  0], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
561
        twiddle(&tmp1[ 64], &tmp0[  0], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
562
        twiddle(&tmp1[ 96], &tmp0[  0], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
563
        twiddle(&tmp1[128], &tmp0[128], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
564
        twiddle(&tmp1[160], &tmp0[128], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
565
        twiddle(src + 192,  &tmp0[128], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
566
        twiddle(src + 224,  &tmp0[128], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
567
        twiddle(src + 256,  &tmp0[256], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
568
        twiddle(src + 288,  &tmp0[256], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
569
        twiddle(src + 320,  &tmp0[256], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
570
        twiddle(src + 352,  &tmp0[256], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
571
572
        wtf_end_512(c, out, src, tmp0, tmp1);
573
    } else {
574
        twiddle(src,       &tmp0[  0], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
575
        twiddle(src +  16, &tmp0[  0], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
576
        twiddle(src +  32, &tmp0[ 32], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
577
        twiddle(src +  48, &tmp0[ 32], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
578
        twiddle(src +  64, &tmp0[ 64], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
579
        twiddle(src +  80, &tmp0[ 64], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
580
        twiddle(src +  96, &tmp0[ 96], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
581
        twiddle(src + 112, &tmp0[ 96], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
582
        twiddle(&tmp0[ 0], &tmp1[  0], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
583
        twiddle(&tmp0[32], &tmp1[  0], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
584
        twiddle(&tmp0[64], &tmp1[ 64], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
585
        twiddle(&tmp0[96], &tmp1[ 64], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
586
        twiddle(src + 128, &tmp1[128], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
587
        twiddle(src + 160, &tmp1[128], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
588
        twiddle(src + 192, &tmp1[192], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
589
        twiddle(src + 224, &tmp1[192], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
590
        twiddle(src + 256, &tmp1[256], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
591
        twiddle(src + 288, &tmp1[256], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
592
        twiddle(src + 320, &tmp1[320], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
593
        twiddle(src + 352, &tmp1[320], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
594
595
        memset(tmp0, 0, 128 * sizeof(*tmp0));
596
597
        twiddle(&tmp1[  0], &tmp0[  0], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
598
        twiddle(&tmp1[ 64], &tmp0[  0], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
599
        twiddle(&tmp1[128], &tmp0[  0], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
600
        twiddle(&tmp1[192], &tmp0[  0], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
601
        twiddle(&tmp1[256], &tmp0[256], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
602
        twiddle(&tmp1[320], &tmp0[256], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
603
        twiddle(src + 384,  &tmp0[256], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
604
        twiddle(src + 448,  &tmp0[256], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
605
        twiddle(src + 512,  &tmp0[512], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
606
        twiddle(src + 576,  &tmp0[512], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
607
        twiddle(src + 640,  &tmp0[512], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
608
        twiddle(src + 704,  &tmp0[512], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
609
610
        wtf_end_1024(c, out, src, tmp0, tmp1);
611
    }
612
}
613
614
static void wtf_44(On2AVCContext *c, float *out, float *src, int size)
615
{
616
    float *tmp0 = c->temp, *tmp1 = c->temp + 1024;
617
618
    memset(tmp0, 0, sizeof(*tmp0) * 1024);
619
    memset(tmp1, 0, sizeof(*tmp1) * 1024);
620
621
    if (size == 512) {
622
        twiddle(src,       &tmp0[ 0], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
623
        twiddle(src +   8, &tmp0[ 0], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
624
        twiddle(src +  16, &tmp0[16], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
625
        twiddle(src +  24, &tmp0[16], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
626
        twiddle(src +  32, &tmp0[32], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
627
        twiddle(src +  40, &tmp0[32], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
628
        twiddle(src +  48, &tmp0[48], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
629
        twiddle(src +  56, &tmp0[48], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
630
        twiddle(&tmp0[ 0], &tmp1[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
631
        twiddle(&tmp0[16], &tmp1[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
632
        twiddle(&tmp0[32], &tmp1[32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
633
        twiddle(&tmp0[48], &tmp1[32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
634
        twiddle(src +  64, &tmp1[64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
635
        twiddle(src +  80, &tmp1[64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
636
        twiddle(src +  96, &tmp1[96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
637
        twiddle(src + 112, &tmp1[96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
638
639
        memset(tmp0, 0, 64 * sizeof(*tmp0));
640
641
        twiddle(&tmp1[ 0], &tmp0[  0], 128, ff_on2avc_tab_84_1, 84, 4, 16,  4, ff_on2avc_tabs_20_84_1);
642
        twiddle(&tmp1[32], &tmp0[  0], 128, ff_on2avc_tab_84_2, 84, 4, 16,  4, ff_on2avc_tabs_20_84_2);
643
        twiddle(&tmp1[64], &tmp0[  0], 128, ff_on2avc_tab_84_3, 84, 4, 13,  7, ff_on2avc_tabs_20_84_3);
644
        twiddle(&tmp1[96], &tmp0[  0], 128, ff_on2avc_tab_84_4, 84, 4, 15,  5, ff_on2avc_tabs_20_84_4);
645
        twiddle(src + 128, &tmp0[128], 128, ff_on2avc_tab_84_4, 84, 4, 15,  5, ff_on2avc_tabs_20_84_4);
646
        twiddle(src + 160, &tmp0[128], 128, ff_on2avc_tab_84_3, 84, 4, 13,  7, ff_on2avc_tabs_20_84_3);
647
        twiddle(src + 192, &tmp0[128], 128, ff_on2avc_tab_84_2, 84, 4, 16,  4, ff_on2avc_tabs_20_84_2);
648
        twiddle(src + 224, &tmp0[128], 128, ff_on2avc_tab_84_1, 84, 4, 16,  4, ff_on2avc_tabs_20_84_1);
649
        twiddle(src + 256, &tmp0[256], 128, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
650
        twiddle(src + 320, &tmp0[256], 128, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
651
652
        wtf_end_512(c, out, src, tmp0, tmp1);
653
    } else {
654
        twiddle(src,       &tmp0[  0], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
655
        twiddle(src +  16, &tmp0[  0], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
656
        twiddle(src +  32, &tmp0[ 32], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
657
        twiddle(src +  48, &tmp0[ 32], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
658
        twiddle(src +  64, &tmp0[ 64], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
659
        twiddle(src +  80, &tmp0[ 64], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
660
        twiddle(src +  96, &tmp0[ 96], 32, ff_on2avc_tab_20_2, 20, 2,  4,  5, ff_on2avc_tabs_9_20_2);
661
        twiddle(src + 112, &tmp0[ 96], 32, ff_on2avc_tab_20_1, 20, 2,  5,  4, ff_on2avc_tabs_9_20_1);
662
        twiddle(&tmp0[ 0], &tmp1[  0], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
663
        twiddle(&tmp0[32], &tmp1[  0], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
664
        twiddle(&tmp0[64], &tmp1[ 64], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
665
        twiddle(&tmp0[96], &tmp1[ 64], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
666
        twiddle(src + 128, &tmp1[128], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
667
        twiddle(src + 160, &tmp1[128], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
668
        twiddle(src + 192, &tmp1[192], 64, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
669
        twiddle(src + 224, &tmp1[192], 64, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
670
671
        memset(tmp0, 0, 128 * sizeof(*tmp0));
672
673
        twiddle(&tmp1[  0], &tmp0[  0], 256, ff_on2avc_tab_84_1, 84, 4, 16,  4, ff_on2avc_tabs_20_84_1);
674
        twiddle(&tmp1[ 64], &tmp0[  0], 256, ff_on2avc_tab_84_2, 84, 4, 16,  4, ff_on2avc_tabs_20_84_2);
675
        twiddle(&tmp1[128], &tmp0[  0], 256, ff_on2avc_tab_84_3, 84, 4, 13,  7, ff_on2avc_tabs_20_84_3);
676
        twiddle(&tmp1[192], &tmp0[  0], 256, ff_on2avc_tab_84_4, 84, 4, 15,  5, ff_on2avc_tabs_20_84_4);
677
        twiddle(src + 256,  &tmp0[256], 256, ff_on2avc_tab_84_4, 84, 4, 15,  5, ff_on2avc_tabs_20_84_4);
678
        twiddle(src + 320,  &tmp0[256], 256, ff_on2avc_tab_84_3, 84, 4, 13,  7, ff_on2avc_tabs_20_84_3);
679
        twiddle(src + 384,  &tmp0[256], 256, ff_on2avc_tab_84_2, 84, 4, 16,  4, ff_on2avc_tabs_20_84_2);
680
        twiddle(src + 448,  &tmp0[256], 256, ff_on2avc_tab_84_1, 84, 4, 16,  4, ff_on2avc_tabs_20_84_1);
681
        twiddle(src + 512,  &tmp0[512], 256, ff_on2avc_tab_40_1, 40, 2, 11,  8, ff_on2avc_tabs_19_40_1);
682
        twiddle(src + 640,  &tmp0[512], 256, ff_on2avc_tab_40_2, 40, 2,  8, 11, ff_on2avc_tabs_19_40_2);
683
684
        wtf_end_1024(c, out, src, tmp0, tmp1);
685
    }
686
}
687
688
static int on2avc_reconstruct_channel_ext(On2AVCContext *c, AVFrame *dst, int offset)
689
{
690
    int ch, i;
691
692
    for (ch = 0; ch < c->avctx->channels; ch++) {
693
        float *out   = (float*)dst->extended_data[ch] + offset;
694
        float *in    = c->coeffs[ch];
695
        float *saved = c->delay[ch];
696
        float *buf   = c->mdct_buf;
697
        float *wout  = out + 448;
698
699
        switch (c->window_type) {
700
        case WINDOW_TYPE_EXT7:
701
            c->mdct.imdct_half(&c->mdct, buf, in);
702
            break;
703
        case WINDOW_TYPE_EXT4:
704
            c->wtf(c, buf, in, 1024);
705
            break;
706
        case WINDOW_TYPE_EXT5:
707
            c->wtf(c, buf, in, 512);
708
            c->mdct.imdct_half(&c->mdct_half, buf + 512, in + 512);
709
            for (i = 0; i < 256; i++) {
710
                FFSWAP(float, buf[i + 512], buf[1023 - i]);
711
            }
712
            break;
713
        case WINDOW_TYPE_EXT6:
714
            c->mdct.imdct_half(&c->mdct_half, buf, in);
715
            for (i = 0; i < 256; i++) {
716
                FFSWAP(float, buf[i], buf[511 - i]);
717
            }
718
            c->wtf(c, buf + 512, in + 512, 512);
719
            break;
720
        }
721
722
        memcpy(out, saved, 448 * sizeof(float));
723
        c->fdsp->vector_fmul_window(wout, saved + 448, buf, c->short_win, 64);
724
        memcpy(wout + 128,  buf + 64,         448 * sizeof(float));
725
        memcpy(saved,       buf + 512,        448 * sizeof(float));
726
        memcpy(saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
727
    }
728
729
    return 0;
730
}
731
732
// not borrowed from aacdec.c - the codec has original design after all
733
30
static int on2avc_reconstruct_channel(On2AVCContext *c, int channel,
734
                                      AVFrame *dst, int offset)
735
{
736
    int i;
737
30
    float *out   = (float*)dst->extended_data[channel] + offset;
738
30
    float *in    = c->coeffs[channel];
739
30
    float *saved = c->delay[channel];
740
30
    float *buf   = c->mdct_buf;
741
30
    float *temp  = c->temp;
742
743
30
    switch (c->window_type) {
744
30
    case WINDOW_TYPE_LONG_START:
745
    case WINDOW_TYPE_LONG_STOP:
746
    case WINDOW_TYPE_LONG:
747
30
        c->mdct.imdct_half(&c->mdct, buf, in);
748
30
        break;
749
    case WINDOW_TYPE_8SHORT:
750
        for (i = 0; i < ON2AVC_SUBFRAME_SIZE; i += ON2AVC_SUBFRAME_SIZE / 8)
751
            c->mdct_small.imdct_half(&c->mdct_small, buf + i, in + i);
752
        break;
753
    }
754
755
30
    if ((c->prev_window_type == WINDOW_TYPE_LONG ||
756
         c->prev_window_type == WINDOW_TYPE_LONG_STOP) &&
757
30
        (c->window_type == WINDOW_TYPE_LONG ||
758
         c->window_type == WINDOW_TYPE_LONG_START)) {
759
30
        c->fdsp->vector_fmul_window(out, saved, buf, c->long_win, 512);
760
    } else {
761
        float *wout = out + 448;
762
        memcpy(out, saved, 448 * sizeof(float));
763
764
        if (c->window_type == WINDOW_TYPE_8SHORT) {
765
            c->fdsp->vector_fmul_window(wout + 0*128, saved + 448,      buf + 0*128, c->short_win, 64);
766
            c->fdsp->vector_fmul_window(wout + 1*128, buf + 0*128 + 64, buf + 1*128, c->short_win, 64);
767
            c->fdsp->vector_fmul_window(wout + 2*128, buf + 1*128 + 64, buf + 2*128, c->short_win, 64);
768
            c->fdsp->vector_fmul_window(wout + 3*128, buf + 2*128 + 64, buf + 3*128, c->short_win, 64);
769
            c->fdsp->vector_fmul_window(temp,         buf + 3*128 + 64, buf + 4*128, c->short_win, 64);
770
            memcpy(wout + 4*128, temp, 64 * sizeof(float));
771
        } else {
772
            c->fdsp->vector_fmul_window(wout, saved + 448, buf, c->short_win, 64);
773
            memcpy(wout + 128, buf + 64, 448 * sizeof(float));
774
        }
775
    }
776
777
    // buffer update
778

30
    switch (c->window_type) {
779
    case WINDOW_TYPE_8SHORT:
780
        memcpy(saved,       temp + 64,         64 * sizeof(float));
781
        c->fdsp->vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, c->short_win, 64);
782
        c->fdsp->vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, c->short_win, 64);
783
        c->fdsp->vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, c->short_win, 64);
784
        memcpy(saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
785
        break;
786
    case WINDOW_TYPE_LONG_START:
787
        memcpy(saved,       buf + 512,        448 * sizeof(float));
788
        memcpy(saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
789
        break;
790
30
    case WINDOW_TYPE_LONG_STOP:
791
    case WINDOW_TYPE_LONG:
792
30
        memcpy(saved,       buf + 512,        512 * sizeof(float));
793
30
        break;
794
    }
795
30
    return 0;
796
}
797
798
30
static int on2avc_decode_subframe(On2AVCContext *c, const uint8_t *buf,
799
                                  int buf_size, AVFrame *dst, int offset)
800
{
801
    GetBitContext gb;
802
    int i, ret;
803
804
30
    if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0)
805
        return ret;
806
807
30
    if (get_bits1(&gb)) {
808
        av_log(c->avctx, AV_LOG_ERROR, "enh bit set\n");
809
        return AVERROR_INVALIDDATA;
810
    }
811
30
    c->prev_window_type = c->window_type;
812
30
    c->window_type      = get_bits(&gb, 3);
813
814
30
    c->band_start  = c->modes[c->window_type].band_start;
815
30
    c->num_windows = c->modes[c->window_type].num_windows;
816
30
    c->num_bands   = c->modes[c->window_type].num_bands;
817
30
    c->is_long     = (c->window_type != WINDOW_TYPE_8SHORT);
818
819
30
    c->grouping[0] = 1;
820
30
    for (i = 1; i < c->num_windows; i++)
821
        c->grouping[i] = !get_bits1(&gb);
822
823
30
    on2avc_read_ms_info(c, &gb);
824
60
    for (i = 0; i < c->avctx->channels; i++)
825
30
        if ((ret = on2avc_read_channel_data(c, &gb, i)) < 0)
826
            return AVERROR_INVALIDDATA;
827

30
    if (c->avctx->channels == 2 && c->ms_present)
828
        on2avc_apply_ms(c);
829
30
    if (c->window_type < WINDOW_TYPE_EXT4) {
830
60
        for (i = 0; i < c->avctx->channels; i++)
831
30
            on2avc_reconstruct_channel(c, i, dst, offset);
832
    } else {
833
        on2avc_reconstruct_channel_ext(c, dst, offset);
834
    }
835
836
30
    return 0;
837
}
838
839
30
static int on2avc_decode_frame(AVCodecContext * avctx, void *data,
840
                               int *got_frame_ptr, AVPacket *avpkt)
841
{
842
30
    AVFrame *frame     = data;
843
30
    const uint8_t *buf = avpkt->data;
844
30
    int buf_size       = avpkt->size;
845
30
    On2AVCContext *c   = avctx->priv_data;
846
    GetByteContext gb;
847
30
    int num_frames = 0, frame_size, audio_off;
848
    int ret;
849
850
30
    if (c->is_av500) {
851
        /* get output buffer */
852
30
        frame->nb_samples = ON2AVC_SUBFRAME_SIZE;
853
30
        if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
854
            return ret;
855
856
30
        if ((ret = on2avc_decode_subframe(c, buf, buf_size, frame, 0)) < 0)
857
            return ret;
858
    } else {
859
        bytestream2_init(&gb, buf, buf_size);
860
        while (bytestream2_get_bytes_left(&gb) > 2) {
861
            frame_size = bytestream2_get_le16(&gb);
862
            if (!frame_size || frame_size > bytestream2_get_bytes_left(&gb)) {
863
                av_log(avctx, AV_LOG_ERROR, "Invalid subframe size %d\n",
864
                       frame_size);
865
                return AVERROR_INVALIDDATA;
866
            }
867
            num_frames++;
868
            bytestream2_skip(&gb, frame_size);
869
        }
870
        if (!num_frames) {
871
            av_log(avctx, AV_LOG_ERROR, "No subframes present\n");
872
            return AVERROR_INVALIDDATA;
873
        }
874
875
        /* get output buffer */
876
        frame->nb_samples = ON2AVC_SUBFRAME_SIZE * num_frames;
877
        if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
878
            return ret;
879
880
        audio_off = 0;
881
        bytestream2_init(&gb, buf, buf_size);
882
        while (bytestream2_get_bytes_left(&gb) > 2) {
883
            frame_size = bytestream2_get_le16(&gb);
884
            if ((ret = on2avc_decode_subframe(c, gb.buffer, frame_size,
885
                                              frame, audio_off)) < 0)
886
                return ret;
887
            audio_off += ON2AVC_SUBFRAME_SIZE;
888
            bytestream2_skip(&gb, frame_size);
889
        }
890
    }
891
892
30
    *got_frame_ptr = 1;
893
894
30
    return buf_size;
895
}
896
897
3
static av_cold void on2avc_free_vlcs(On2AVCContext *c)
898
{
899
    int i;
900
901
3
    ff_free_vlc(&c->scale_diff);
902
48
    for (i = 1; i < 16; i++)
903
45
        ff_free_vlc(&c->cb_vlc[i]);
904
3
}
905
906
3
static av_cold int on2avc_decode_init(AVCodecContext *avctx)
907
{
908
3
    On2AVCContext *c = avctx->priv_data;
909
    int i;
910
911
3
    if (avctx->channels > 2U) {
912
        avpriv_request_sample(avctx, "Decoding more than 2 channels");
913
        return AVERROR_PATCHWELCOME;
914
    }
915
916
3
    c->avctx = avctx;
917
3
    avctx->sample_fmt     = AV_SAMPLE_FMT_FLTP;
918
6
    avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO
919
3
                                                   : AV_CH_LAYOUT_MONO;
920
921
3
    c->is_av500 = (avctx->codec_tag == 0x500);
922
923
3
    if (avctx->channels == 2)
924
        av_log(avctx, AV_LOG_WARNING,
925
               "Stereo mode support is not good, patch is welcome\n");
926
927
    // We add -0.01 before ceil() to avoid any values to fall at exactly the
928
    // midpoint between different ceil values. The results are identical to
929
    // using pow(10, i / 10.0) without such bias
930
63
    for (i = 0; i < 20; i++)
931
60
        c->scale_tab[i] = ceil(ff_exp10(i * 0.1) * 16 - 0.01) / 32;
932
327
    for (; i < 128; i++)
933
324
        c->scale_tab[i] = ceil(ff_exp10(i * 0.1) * 0.5 - 0.01);
934
935

3
    if (avctx->sample_rate < 32000 || avctx->channels == 1)
936
3
        memcpy(c->long_win, ff_on2avc_window_long_24000,
937
               1024 * sizeof(*c->long_win));
938
    else
939
        memcpy(c->long_win, ff_on2avc_window_long_32000,
940
               1024 * sizeof(*c->long_win));
941
3
    memcpy(c->short_win, ff_on2avc_window_short, 128 * sizeof(*c->short_win));
942
943
6
    c->modes = (avctx->sample_rate <= 40000) ? ff_on2avc_modes_40
944
3
                                             : ff_on2avc_modes_44;
945
3
    c->wtf   = (avctx->sample_rate <= 40000) ? wtf_40
946
                                             : wtf_44;
947
948
3
    ff_mdct_init(&c->mdct,       11, 1, 1.0 / (32768.0 * 1024.0));
949
3
    ff_mdct_init(&c->mdct_half,  10, 1, 1.0 / (32768.0 * 512.0));
950
3
    ff_mdct_init(&c->mdct_small,  8, 1, 1.0 / (32768.0 * 128.0));
951
3
    ff_fft_init(&c->fft128,  6, 0);
952
3
    ff_fft_init(&c->fft256,  7, 0);
953
3
    ff_fft_init(&c->fft512,  8, 1);
954
3
    ff_fft_init(&c->fft1024, 9, 1);
955
3
    c->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
956
3
    if (!c->fdsp)
957
        return AVERROR(ENOMEM);
958
959
3
    if (init_vlc(&c->scale_diff, 9, ON2AVC_SCALE_DIFFS,
960
                 ff_on2avc_scale_diff_bits,  1, 1,
961
                 ff_on2avc_scale_diff_codes, 4, 4, 0)) {
962
        goto vlc_fail;
963
    }
964
27
    for (i = 1; i < 9; i++) {
965
24
        int idx = i - 1;
966
24
        if (ff_init_vlc_sparse(&c->cb_vlc[i], 9, ff_on2avc_quad_cb_elems[idx],
967
24
                               ff_on2avc_quad_cb_bits[idx],  1, 1,
968
24
                               ff_on2avc_quad_cb_codes[idx], 4, 4,
969
24
                               ff_on2avc_quad_cb_syms[idx],  2, 2, 0)) {
970
            goto vlc_fail;
971
        }
972
    }
973
24
    for (i = 9; i < 16; i++) {
974
21
        int idx = i - 9;
975
21
        if (ff_init_vlc_sparse(&c->cb_vlc[i], 9, ff_on2avc_pair_cb_elems[idx],
976
21
                               ff_on2avc_pair_cb_bits[idx],  1, 1,
977
21
                               ff_on2avc_pair_cb_codes[idx], 2, 2,
978
21
                               ff_on2avc_pair_cb_syms[idx],  2, 2, 0)) {
979
            goto vlc_fail;
980
        }
981
    }
982
983
3
    return 0;
984
vlc_fail:
985
    av_log(avctx, AV_LOG_ERROR, "Cannot init VLC\n");
986
    on2avc_free_vlcs(c);
987
    av_freep(&c->fdsp);
988
    return AVERROR(ENOMEM);
989
}
990
991
3
static av_cold int on2avc_decode_close(AVCodecContext *avctx)
992
{
993
3
    On2AVCContext *c = avctx->priv_data;
994
995
3
    ff_mdct_end(&c->mdct);
996
3
    ff_mdct_end(&c->mdct_half);
997
3
    ff_mdct_end(&c->mdct_small);
998
3
    ff_fft_end(&c->fft128);
999
3
    ff_fft_end(&c->fft256);
1000
3
    ff_fft_end(&c->fft512);
1001
3
    ff_fft_end(&c->fft1024);
1002
1003
3
    av_freep(&c->fdsp);
1004
1005
3
    on2avc_free_vlcs(c);
1006
1007
3
    return 0;
1008
}
1009
1010
1011
AVCodec ff_on2avc_decoder = {
1012
    .name           = "on2avc",
1013
    .long_name      = NULL_IF_CONFIG_SMALL("On2 Audio for Video Codec"),
1014
    .type           = AVMEDIA_TYPE_AUDIO,
1015
    .id             = AV_CODEC_ID_ON2AVC,
1016
    .priv_data_size = sizeof(On2AVCContext),
1017
    .init           = on2avc_decode_init,
1018
    .decode         = on2avc_decode_frame,
1019
    .close          = on2avc_decode_close,
1020
    .capabilities   = AV_CODEC_CAP_DR1,
1021
    .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
1022
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1023
                                                      AV_SAMPLE_FMT_NONE },
1024
};