GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/mpegaudiodec_template.c Lines: 736 1051 70.0 %
Date: 2019-11-20 04:07:19 Branches: 381 572 66.6 %

Line Branch Exec Source
1
/*
2
 * MPEG Audio decoder
3
 * Copyright (c) 2001, 2002 Fabrice Bellard
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * MPEG Audio decoder
25
 */
26
27
#include "libavutil/attributes.h"
28
#include "libavutil/avassert.h"
29
#include "libavutil/channel_layout.h"
30
#include "libavutil/float_dsp.h"
31
#include "libavutil/libm.h"
32
#include "avcodec.h"
33
#include "get_bits.h"
34
#include "internal.h"
35
#include "mathops.h"
36
#include "mpegaudiodsp.h"
37
38
/*
39
 * TODO:
40
 *  - test lsf / mpeg25 extensively.
41
 */
42
43
#include "mpegaudio.h"
44
#include "mpegaudiodecheader.h"
45
46
#define BACKSTEP_SIZE 512
47
#define EXTRABYTES 24
48
#define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
49
50
/* layer 3 "granule" */
51
typedef struct GranuleDef {
52
    uint8_t scfsi;
53
    int part2_3_length;
54
    int big_values;
55
    int global_gain;
56
    int scalefac_compress;
57
    uint8_t block_type;
58
    uint8_t switch_point;
59
    int table_select[3];
60
    int subblock_gain[3];
61
    uint8_t scalefac_scale;
62
    uint8_t count1table_select;
63
    int region_size[3]; /* number of huffman codes in each region */
64
    int preflag;
65
    int short_start, long_end; /* long/short band indexes */
66
    uint8_t scale_factors[40];
67
    DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
68
} GranuleDef;
69
70
typedef struct MPADecodeContext {
71
    MPA_DECODE_HEADER
72
    uint8_t last_buf[LAST_BUF_SIZE];
73
    int last_buf_size;
74
    int extrasize;
75
    /* next header (used in free format parsing) */
76
    uint32_t free_format_next_header;
77
    GetBitContext gb;
78
    GetBitContext in_gb;
79
    DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
80
    int synth_buf_offset[MPA_MAX_CHANNELS];
81
    DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
82
    INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
83
    GranuleDef granules[2][2]; /* Used in Layer 3 */
84
    int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
85
    int dither_state;
86
    int err_recognition;
87
    AVCodecContext* avctx;
88
    MPADSPContext mpadsp;
89
    AVFloatDSPContext *fdsp;
90
    AVFrame *frame;
91
} MPADecodeContext;
92
93
#define HEADER_SIZE 4
94
95
#include "mpegaudiodata.h"
96
#include "mpegaudiodectab.h"
97
98
/* vlc structure for decoding layer 3 huffman tables */
99
static VLC huff_vlc[16];
100
static VLC_TYPE huff_vlc_tables[
101
    0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
102
  142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
103
  ][2];
104
static const int huff_vlc_tables_sizes[16] = {
105
    0,  128,  128,  128,  130,  128,  154,  166,
106
  142,  204,  190,  170,  542,  460,  662,  414
107
};
108
static VLC huff_quad_vlc[2];
109
static VLC_TYPE  huff_quad_vlc_tables[128+16][2];
110
static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
111
/* computed from band_size_long */
112
static uint16_t band_index_long[9][23];
113
#include "mpegaudio_tablegen.h"
114
/* intensity stereo coef table */
115
static INTFLOAT is_table[2][16];
116
static INTFLOAT is_table_lsf[2][2][16];
117
static INTFLOAT csa_table[8][4];
118
119
static int16_t division_tab3[1<<6 ];
120
static int16_t division_tab5[1<<8 ];
121
static int16_t division_tab9[1<<11];
122
123
static int16_t * const division_tabs[4] = {
124
    division_tab3, division_tab5, NULL, division_tab9
125
};
126
127
/* lower 2 bits: modulo 3, higher bits: shift */
128
static uint16_t scale_factor_modshift[64];
129
/* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
130
static int32_t scale_factor_mult[15][3];
131
/* mult table for layer 2 group quantization */
132
133
#define SCALE_GEN(v) \
134
{ FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
135
136
static const int32_t scale_factor_mult2[3][3] = {
137
    SCALE_GEN(4.0 / 3.0), /* 3 steps */
138
    SCALE_GEN(4.0 / 5.0), /* 5 steps */
139
    SCALE_GEN(4.0 / 9.0), /* 9 steps */
140
};
141
142
/**
143
 * Convert region offsets to region sizes and truncate
144
 * size to big_values.
145
 */
146
8116
static void region_offset2size(GranuleDef *g)
147
{
148
8116
    int i, k, j = 0;
149
8116
    g->region_size[2] = 576 / 2;
150
32464
    for (i = 0; i < 3; i++) {
151
24348
        k = FFMIN(g->region_size[i], g->big_values);
152
24348
        g->region_size[i] = k - j;
153
24348
        j = k;
154
    }
155
8116
}
156
157
845
static void init_short_region(MPADecodeContext *s, GranuleDef *g)
158
{
159
845
    if (g->block_type == 2) {
160
305
        if (s->sample_rate_index != 8)
161
305
            g->region_size[0] = (36 / 2);
162
        else
163
            g->region_size[0] = (72 / 2);
164
    } else {
165
540
        if (s->sample_rate_index <= 2)
166
539
            g->region_size[0] = (36 / 2);
167
1
        else if (s->sample_rate_index != 8)
168
1
            g->region_size[0] = (54 / 2);
169
        else
170
            g->region_size[0] = (108 / 2);
171
    }
172
845
    g->region_size[1] = (576 / 2);
173
845
}
174
175
7271
static void init_long_region(MPADecodeContext *s, GranuleDef *g,
176
                             int ra1, int ra2)
177
{
178
    int l;
179
7271
    g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
180
    /* should not overflow */
181
7271
    l = FFMIN(ra1 + ra2 + 2, 22);
182
7271
    g->region_size[1] = band_index_long[s->sample_rate_index][      l] >> 1;
183
7271
}
184
185
8116
static void compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
186
{
187
8116
    if (g->block_type == 2) {
188
305
        if (g->switch_point) {
189
13
            if(s->sample_rate_index == 8)
190
                avpriv_request_sample(s->avctx, "switch point in 8khz");
191
            /* if switched mode, we handle the 36 first samples as
192
                long blocks.  For 8000Hz, we handle the 72 first
193
                exponents as long blocks */
194
13
            if (s->sample_rate_index <= 2)
195
13
                g->long_end = 8;
196
            else
197
                g->long_end = 6;
198
199
13
            g->short_start = 3;
200
        } else {
201
292
            g->long_end    = 0;
202
292
            g->short_start = 0;
203
        }
204
    } else {
205
7811
        g->short_start = 13;
206
7811
        g->long_end    = 22;
207
    }
208
8116
}
209
210
/* layer 1 unscaling */
211
/* n = number of bits of the mantissa minus 1 */
212
5010012
static inline int l1_unscale(int n, int mant, int scale_factor)
213
{
214
    int shift, mod;
215
    int64_t val;
216
217
5010012
    shift   = scale_factor_modshift[scale_factor];
218
5010012
    mod     = shift & 3;
219
5010012
    shift >>= 2;
220
5010012
    val     = MUL64((int)(mant + (-1U << n) + 1), scale_factor_mult[n-1][mod]);
221
5010012
    shift  += n;
222
    /* NOTE: at this point, 1 <= shift >= 21 + 15 */
223
5010012
    return (int)((val + (1LL << (shift - 1))) >> shift);
224
}
225
226
882756
static inline int l2_unscale_group(int steps, int mant, int scale_factor)
227
{
228
    int shift, mod, val;
229
230
882756
    shift   = scale_factor_modshift[scale_factor];
231
882756
    mod     = shift & 3;
232
882756
    shift >>= 2;
233
234
882756
    val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
235
    /* NOTE: at this point, 0 <= shift <= 21 */
236
882756
    if (shift > 0)
237
882756
        val = (val + (1 << (shift - 1))) >> shift;
238
882756
    return val;
239
}
240
241
/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
242
56735
static inline int l3_unscale(int value, int exponent)
243
{
244
    unsigned int m;
245
    int e;
246
247
56735
    e  = table_4_3_exp  [4 * value + (exponent & 3)];
248
56735
    m  = table_4_3_value[4 * value + (exponent & 3)];
249
56735
    e -= exponent >> 2;
250
#ifdef DEBUG
251
    if(e < 1)
252
        av_log(NULL, AV_LOG_WARNING, "l3_unscale: e is %d\n", e);
253
#endif
254
56735
    if (e > (SUINT)31)
255
10
        return 0;
256
56725
    m = (m + ((1U << e)>>1)) >> e;
257
258
56725
    return m;
259
}
260
261
89
static av_cold void decode_init_static(void)
262
{
263
    int i, j, k;
264
    int offset;
265
266
    /* scale factors table for layer 1/2 */
267
5785
    for (i = 0; i < 64; i++) {
268
        int shift, mod;
269
        /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
270
5696
        shift = i / 3;
271
5696
        mod   = i % 3;
272
5696
        scale_factor_modshift[i] = mod | (shift << 2);
273
    }
274
275
    /* scale factor multiply for layer 1 */
276
1424
    for (i = 0; i < 15; i++) {
277
        int n, norm;
278
1335
        n = i + 2;
279
1335
        norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
280
1335
        scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0          * 2.0), FRAC_BITS);
281
1335
        scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
282
1335
        scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
283
        ff_dlog(NULL, "%d: norm=%x s=%"PRIx32" %"PRIx32" %"PRIx32"\n", i,
284
                (unsigned)norm,
285
                scale_factor_mult[i][0],
286
                scale_factor_mult[i][1],
287
                scale_factor_mult[i][2]);
288
    }
289
290
89
    RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
291
292
    /* huffman decode tables */
293
89
    offset = 0;
294
1424
    for (i = 1; i < 16; i++) {
295
1335
        const HuffTable *h = &mpa_huff_tables[i];
296
        int xsize, x, y;
297
1335
        uint8_t  tmp_bits [512] = { 0 };
298
1335
        uint16_t tmp_codes[512] = { 0 };
299
300
1335
        xsize = h->xsize;
301
302
1335
        j = 0;
303
12193
        for (x = 0; x < xsize; x++) {
304
133500
            for (y = 0; y < xsize; y++) {
305

122642
                tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j  ];
306

122642
                tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
307
            }
308
        }
309
310
        /* XXX: fail test */
311
1335
        huff_vlc[i].table = huff_vlc_tables+offset;
312
1335
        huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
313
1335
        init_vlc(&huff_vlc[i], 7, 512,
314
                 tmp_bits, 1, 1, tmp_codes, 2, 2,
315
                 INIT_VLC_USE_NEW_STATIC);
316
1335
        offset += huff_vlc_tables_sizes[i];
317
    }
318
89
    av_assert0(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
319
320
89
    offset = 0;
321
267
    for (i = 0; i < 2; i++) {
322
178
        huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
323
178
        huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
324
178
        init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
325
                 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
326
                 INIT_VLC_USE_NEW_STATIC);
327
178
        offset += huff_quad_vlc_tables_sizes[i];
328
    }
329
89
    av_assert0(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
330
331
890
    for (i = 0; i < 9; i++) {
332
801
        k = 0;
333
18423
        for (j = 0; j < 22; j++) {
334
17622
            band_index_long[i][j] = k;
335
17622
            k += band_size_long[i][j];
336
        }
337
801
        band_index_long[i][22] = k;
338
    }
339
340
    /* compute n ^ (4/3) and store it in mantissa/exp format */
341
342
89
    mpegaudio_tableinit();
343
344
445
    for (i = 0; i < 4; i++) {
345
356
        if (ff_mpa_quant_bits[i] < 0) {
346
211019
            for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
347
                int val1, val2, val3, steps;
348
210752
                int val = j;
349
210752
                steps   = ff_mpa_quant_steps[i];
350
210752
                val1    = val % steps;
351
210752
                val    /= steps;
352
210752
                val2    = val % steps;
353
210752
                val3    = val / steps;
354
210752
                division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
355
            }
356
        }
357
    }
358
359
360
712
    for (i = 0; i < 7; i++) {
361
        float f;
362
        INTFLOAT v;
363
623
        if (i != 6) {
364
534
            f = tan((double)i * M_PI / 12.0);
365
534
            v = FIXR(f / (1.0 + f));
366
        } else {
367
89
            v = FIXR(1.0);
368
        }
369
623
        is_table[0][    i] = v;
370
623
        is_table[1][6 - i] = v;
371
    }
372
    /* invalid values */
373
890
    for (i = 7; i < 16; i++)
374
801
        is_table[0][i] = is_table[1][i] = 0.0;
375
376
1513
    for (i = 0; i < 16; i++) {
377
        double f;
378
        int e, k;
379
380
4272
        for (j = 0; j < 2; j++) {
381
2848
            e = -(j + 1) * ((i + 1) >> 1);
382
2848
            f = exp2(e / 4.0);
383
2848
            k = i & 1;
384
2848
            is_table_lsf[j][k ^ 1][i] = FIXR(f);
385
2848
            is_table_lsf[j][k    ][i] = FIXR(1.0);
386
            ff_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
387
                    i, j, (float) is_table_lsf[j][0][i],
388
                    (float) is_table_lsf[j][1][i]);
389
        }
390
    }
391
392
801
    for (i = 0; i < 8; i++) {
393
        double ci, cs, ca;
394
712
        ci = ci_table[i];
395
712
        cs = 1.0 / sqrt(1.0 + ci * ci);
396
712
        ca = cs * ci;
397
#if !USE_FLOATS
398
352
        csa_table[i][0] = FIXHR(cs/4);
399
352
        csa_table[i][1] = FIXHR(ca/4);
400
352
        csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
401
352
        csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
402
#else
403
360
        csa_table[i][0] = cs;
404
360
        csa_table[i][1] = ca;
405
360
        csa_table[i][2] = ca + cs;
406
360
        csa_table[i][3] = ca - cs;
407
#endif
408
    }
409
89
}
410
411
#if USE_FLOATS
412
62
static av_cold int decode_close(AVCodecContext * avctx)
413
{
414
62
    MPADecodeContext *s = avctx->priv_data;
415
62
    av_freep(&s->fdsp);
416
417
62
    return 0;
418
}
419
#endif
420
421
131
static av_cold int decode_init(AVCodecContext * avctx)
422
{
423
    static int initialized_tables = 0;
424
131
    MPADecodeContext *s = avctx->priv_data;
425
426
131
    if (!initialized_tables) {
427
89
        decode_init_static();
428
89
        initialized_tables = 1;
429
    }
430
431
131
    s->avctx = avctx;
432
433
#if USE_FLOATS
434
62
    s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
435
62
    if (!s->fdsp)
436
        return AVERROR(ENOMEM);
437
#endif
438
439
131
    ff_mpadsp_init(&s->mpadsp);
440
441
131
    if (avctx->request_sample_fmt == OUT_FMT &&
442
        avctx->codec_id != AV_CODEC_ID_MP3ON4)
443
        avctx->sample_fmt = OUT_FMT;
444
    else
445
131
        avctx->sample_fmt = OUT_FMT_P;
446
131
    s->err_recognition = avctx->err_recognition;
447
448
131
    if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
449
        s->adu_mode = 1;
450
451
131
    return 0;
452
}
453
454
#define C3 FIXHR(0.86602540378443864676/2)
455
#define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
456
#define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
457
#define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
458
459
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
460
   cases. */
461
19371
static void imdct12(INTFLOAT *out, SUINTFLOAT *in)
462
{
463
    SUINTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
464
465
19371
    in0  = in[0*3];
466
19371
    in1  = in[1*3] + in[0*3];
467
19371
    in2  = in[2*3] + in[1*3];
468
19371
    in3  = in[3*3] + in[2*3];
469
19371
    in4  = in[4*3] + in[3*3];
470
19371
    in5  = in[5*3] + in[4*3];
471
19371
    in5 += in3;
472
19371
    in3 += in1;
473
474
19371
    in2  = MULH3(in2, C3, 2);
475
19371
    in3  = MULH3(in3, C3, 4);
476
477
19371
    t1   = in0 - in4;
478
19371
    t2   = MULH3(in1 - in5, C4, 2);
479
480
19371
    out[ 7] =
481
19371
    out[10] = t1 + t2;
482
19371
    out[ 1] =
483
19371
    out[ 4] = t1 - t2;
484
485
19371
    in0    += SHR(in4, 1);
486
19371
    in4     = in0 + in2;
487
19371
    in5    += 2*in1;
488
19371
    in1     = MULH3(in5 + in3, C5, 1);
489
19371
    out[ 8] =
490
19371
    out[ 9] = in4 + in1;
491
19371
    out[ 2] =
492
19371
    out[ 3] = in4 - in1;
493
494
19371
    in0    -= in2;
495
19371
    in5     = MULH3(in5 - in3, C6, 2);
496
19371
    out[ 0] =
497
19371
    out[ 5] = in0 - in5;
498
19371
    out[ 6] =
499
19371
    out[11] = in0 + in5;
500
19371
}
501
502
/* return the number of decoded frames */
503
static int mp_decode_layer1(MPADecodeContext *s)
504
{
505
    int bound, i, v, n, ch, j, mant;
506
    uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
507
    uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
508
509
    if (s->mode == MPA_JSTEREO)
510
        bound = (s->mode_ext + 1) * 4;
511
    else
512
        bound = SBLIMIT;
513
514
    /* allocation bits */
515
    for (i = 0; i < bound; i++) {
516
        for (ch = 0; ch < s->nb_channels; ch++) {
517
            allocation[ch][i] = get_bits(&s->gb, 4);
518
        }
519
    }
520
    for (i = bound; i < SBLIMIT; i++)
521
        allocation[0][i] = get_bits(&s->gb, 4);
522
523
    /* scale factors */
524
    for (i = 0; i < bound; i++) {
525
        for (ch = 0; ch < s->nb_channels; ch++) {
526
            if (allocation[ch][i])
527
                scale_factors[ch][i] = get_bits(&s->gb, 6);
528
        }
529
    }
530
    for (i = bound; i < SBLIMIT; i++) {
531
        if (allocation[0][i]) {
532
            scale_factors[0][i] = get_bits(&s->gb, 6);
533
            scale_factors[1][i] = get_bits(&s->gb, 6);
534
        }
535
    }
536
537
    /* compute samples */
538
    for (j = 0; j < 12; j++) {
539
        for (i = 0; i < bound; i++) {
540
            for (ch = 0; ch < s->nb_channels; ch++) {
541
                n = allocation[ch][i];
542
                if (n) {
543
                    mant = get_bits(&s->gb, n + 1);
544
                    v = l1_unscale(n, mant, scale_factors[ch][i]);
545
                } else {
546
                    v = 0;
547
                }
548
                s->sb_samples[ch][j][i] = v;
549
            }
550
        }
551
        for (i = bound; i < SBLIMIT; i++) {
552
            n = allocation[0][i];
553
            if (n) {
554
                mant = get_bits(&s->gb, n + 1);
555
                v = l1_unscale(n, mant, scale_factors[0][i]);
556
                s->sb_samples[0][j][i] = v;
557
                v = l1_unscale(n, mant, scale_factors[1][i]);
558
                s->sb_samples[1][j][i] = v;
559
            } else {
560
                s->sb_samples[0][j][i] = 0;
561
                s->sb_samples[1][j][i] = 0;
562
            }
563
        }
564
    }
565
    return 12;
566
}
567
568
7237
static int mp_decode_layer2(MPADecodeContext *s)
569
{
570
    int sblimit; /* number of used subbands */
571
    const unsigned char *alloc_table;
572
    int table, bit_alloc_bits, i, j, ch, bound, v;
573
    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
574
    unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
575
    unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
576
    int scale, qindex, bits, steps, k, l, m, b;
577
578
    /* select decoding table */
579
7237
    table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
580
                                   s->sample_rate, s->lsf);
581
7237
    sblimit     = ff_mpa_sblimit_table[table];
582
7237
    alloc_table = ff_mpa_alloc_tables[table];
583
584
7237
    if (s->mode == MPA_JSTEREO)
585
        bound = (s->mode_ext + 1) * 4;
586
    else
587
7237
        bound = sblimit;
588
589
    ff_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
590
591
    /* sanity check */
592
7237
    if (bound > sblimit)
593
        bound = sblimit;
594
595
    /* parse bit allocation */
596
7237
    j = 0;
597
221869
    for (i = 0; i < bound; i++) {
598
214632
        bit_alloc_bits = alloc_table[j];
599
447402
        for (ch = 0; ch < s->nb_channels; ch++)
600
232770
            bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
601
214632
        j += 1 << bit_alloc_bits;
602
    }
603
7237
    for (i = bound; i < sblimit; i++) {
604
        bit_alloc_bits = alloc_table[j];
605
        v = get_bits(&s->gb, bit_alloc_bits);
606
        bit_alloc[0][i] = v;
607
        bit_alloc[1][i] = v;
608
        j += 1 << bit_alloc_bits;
609
    }
610
611
    /* scale codes */
612
221869
    for (i = 0; i < sblimit; i++) {
613
447402
        for (ch = 0; ch < s->nb_channels; ch++) {
614
232770
            if (bit_alloc[ch][i])
615
163688
                scale_code[ch][i] = get_bits(&s->gb, 2);
616
        }
617
    }
618
619
    /* scale factors */
620
221869
    for (i = 0; i < sblimit; i++) {
621
447402
        for (ch = 0; ch < s->nb_channels; ch++) {
622
232770
            if (bit_alloc[ch][i]) {
623
163688
                sf = scale_factors[ch][i];
624

163688
                switch (scale_code[ch][i]) {
625
2929
                default:
626
                case 0:
627
2929
                    sf[0] = get_bits(&s->gb, 6);
628
2929
                    sf[1] = get_bits(&s->gb, 6);
629
2929
                    sf[2] = get_bits(&s->gb, 6);
630
2929
                    break;
631
153192
                case 2:
632
153192
                    sf[0] = get_bits(&s->gb, 6);
633
153192
                    sf[1] = sf[0];
634
153192
                    sf[2] = sf[0];
635
153192
                    break;
636
2542
                case 1:
637
2542
                    sf[0] = get_bits(&s->gb, 6);
638
2542
                    sf[2] = get_bits(&s->gb, 6);
639
2542
                    sf[1] = sf[0];
640
2542
                    break;
641
5025
                case 3:
642
5025
                    sf[0] = get_bits(&s->gb, 6);
643
5025
                    sf[2] = get_bits(&s->gb, 6);
644
5025
                    sf[1] = sf[2];
645
5025
                    break;
646
                }
647
69082
            }
648
        }
649
    }
650
651
    /* samples */
652
28948
    for (k = 0; k < 3; k++) {
653
108555
        for (l = 0; l < 12; l += 3) {
654
86844
            j = 0;
655
2662428
            for (i = 0; i < bound; i++) {
656
2575584
                bit_alloc_bits = alloc_table[j];
657
5368824
                for (ch = 0; ch < s->nb_channels; ch++) {
658
2793240
                    b = bit_alloc[ch][i];
659
2793240
                    if (b) {
660
1964256
                        scale = scale_factors[ch][i][k];
661
1964256
                        qindex = alloc_table[j+b];
662
1964256
                        bits = ff_mpa_quant_bits[qindex];
663
1964256
                        if (bits < 0) {
664
                            int v2;
665
                            /* 3 values at the same time */
666
294252
                            v = get_bits(&s->gb, -bits);
667
294252
                            v2 = division_tabs[qindex][v];
668
294252
                            steps  = ff_mpa_quant_steps[qindex];
669
670
586416
                            s->sb_samples[ch][k * 12 + l + 0][i] =
671
294252
                                l2_unscale_group(steps,  v2       & 15, scale);
672
586416
                            s->sb_samples[ch][k * 12 + l + 1][i] =
673
294252
                                l2_unscale_group(steps, (v2 >> 4) & 15, scale);
674
294252
                            s->sb_samples[ch][k * 12 + l + 2][i] =
675
294252
                                l2_unscale_group(steps,  v2 >> 8      , scale);
676
                        } else {
677
6680016
                            for (m = 0; m < 3; m++) {
678
5010012
                                v = get_bits(&s->gb, bits);
679
5010012
                                v = l1_unscale(bits - 1, v, scale);
680
5010012
                                s->sb_samples[ch][k * 12 + l + m][i] = v;
681
                            }
682
                        }
683
                    } else {
684
828984
                        s->sb_samples[ch][k * 12 + l + 0][i] = 0;
685
828984
                        s->sb_samples[ch][k * 12 + l + 1][i] = 0;
686
828984
                        s->sb_samples[ch][k * 12 + l + 2][i] = 0;
687
                    }
688
                }
689
                /* next subband in alloc table */
690
2575584
                j += 1 << bit_alloc_bits;
691
            }
692
            /* XXX: find a way to avoid this duplication of code */
693
86844
            for (i = bound; i < sblimit; i++) {
694
                bit_alloc_bits = alloc_table[j];
695
                b = bit_alloc[0][i];
696
                if (b) {
697
                    int mant, scale0, scale1;
698
                    scale0 = scale_factors[0][i][k];
699
                    scale1 = scale_factors[1][i][k];
700
                    qindex = alloc_table[j+b];
701
                    bits = ff_mpa_quant_bits[qindex];
702
                    if (bits < 0) {
703
                        /* 3 values at the same time */
704
                        v = get_bits(&s->gb, -bits);
705
                        steps = ff_mpa_quant_steps[qindex];
706
                        mant = v % steps;
707
                        v = v / steps;
708
                        s->sb_samples[0][k * 12 + l + 0][i] =
709
                            l2_unscale_group(steps, mant, scale0);
710
                        s->sb_samples[1][k * 12 + l + 0][i] =
711
                            l2_unscale_group(steps, mant, scale1);
712
                        mant = v % steps;
713
                        v = v / steps;
714
                        s->sb_samples[0][k * 12 + l + 1][i] =
715
                            l2_unscale_group(steps, mant, scale0);
716
                        s->sb_samples[1][k * 12 + l + 1][i] =
717
                            l2_unscale_group(steps, mant, scale1);
718
                        s->sb_samples[0][k * 12 + l + 2][i] =
719
                            l2_unscale_group(steps, v, scale0);
720
                        s->sb_samples[1][k * 12 + l + 2][i] =
721
                            l2_unscale_group(steps, v, scale1);
722
                    } else {
723
                        for (m = 0; m < 3; m++) {
724
                            mant = get_bits(&s->gb, bits);
725
                            s->sb_samples[0][k * 12 + l + m][i] =
726
                                l1_unscale(bits - 1, mant, scale0);
727
                            s->sb_samples[1][k * 12 + l + m][i] =
728
                                l1_unscale(bits - 1, mant, scale1);
729
                        }
730
                    }
731
                } else {
732
                    s->sb_samples[0][k * 12 + l + 0][i] = 0;
733
                    s->sb_samples[0][k * 12 + l + 1][i] = 0;
734
                    s->sb_samples[0][k * 12 + l + 2][i] = 0;
735
                    s->sb_samples[1][k * 12 + l + 0][i] = 0;
736
                    s->sb_samples[1][k * 12 + l + 1][i] = 0;
737
                    s->sb_samples[1][k * 12 + l + 2][i] = 0;
738
                }
739
                /* next subband in alloc table */
740
                j += 1 << bit_alloc_bits;
741
            }
742
            /* fill remaining samples to zero */
743
290268
            for (i = sblimit; i < SBLIMIT; i++) {
744
437256
                for (ch = 0; ch < s->nb_channels; ch++) {
745
233832
                    s->sb_samples[ch][k * 12 + l + 0][i] = 0;
746
233832
                    s->sb_samples[ch][k * 12 + l + 1][i] = 0;
747
233832
                    s->sb_samples[ch][k * 12 + l + 2][i] = 0;
748
                }
749
            }
750
        }
751
    }
752
7237
    return 3 * 12;
753
}
754
755
#define SPLIT(dst,sf,n)             \
756
    if (n == 3) {                   \
757
        int m = (sf * 171) >> 9;    \
758
        dst   = sf - 3 * m;         \
759
        sf    = m;                  \
760
    } else if (n == 4) {            \
761
        dst  = sf & 3;              \
762
        sf >>= 2;                   \
763
    } else if (n == 5) {            \
764
        int m = (sf * 205) >> 10;   \
765
        dst   = sf - 5 * m;         \
766
        sf    = m;                  \
767
    } else if (n == 6) {            \
768
        int m = (sf * 171) >> 10;   \
769
        dst   = sf - 6 * m;         \
770
        sf    = m;                  \
771
    } else {                        \
772
        dst = 0;                    \
773
    }
774
775
4
static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
776
                                           int n3)
777
{
778


4
    SPLIT(slen[3], sf, n3)
779


4
    SPLIT(slen[2], sf, n2)
780


4
    SPLIT(slen[1], sf, n1)
781
4
    slen[0] = sf;
782
4
}
783
784
8112
static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
785
                                         int16_t *exponents)
786
{
787
    const uint8_t *bstab, *pretab;
788
    int len, i, j, k, l, v0, shift, gain, gains[3];
789
    int16_t *exp_ptr;
790
791
8112
    exp_ptr = exponents;
792
8112
    gain    = g->global_gain - 210;
793
8112
    shift   = g->scalefac_scale + 1;
794
795
8112
    bstab  = band_size_long[s->sample_rate_index];
796
8112
    pretab = mpa_pretab[g->preflag];
797
179992
    for (i = 0; i < g->long_end; i++) {
798
171880
        v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
799
171880
        len = bstab[i];
800
4669756
        for (j = len; j > 0; j--)
801
4497876
            *exp_ptr++ = v0;
802
    }
803
804
8112
    if (g->short_start < 13) {
805
304
        bstab    = band_size_short[s->sample_rate_index];
806
304
        gains[0] = gain - (g->subblock_gain[0] << 3);
807
304
        gains[1] = gain - (g->subblock_gain[1] << 3);
808
304
        gains[2] = gain - (g->subblock_gain[2] << 3);
809
304
        k        = g->long_end;
810
4217
        for (i = g->short_start; i < 13; i++) {
811
3913
            len = bstab[i];
812
15652
            for (l = 0; l < 3; l++) {
813
11739
                v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
814
186375
                for (j = len; j > 0; j--)
815
174636
                    *exp_ptr++ = v0;
816
            }
817
        }
818
    }
819
8112
}
820
821
16799
static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
822
                          int *end_pos2)
823
{
824

16799
    if (s->in_gb.buffer && *pos >= s->gb.size_in_bits - s->extrasize * 8) {
825
939
        s->gb           = s->in_gb;
826
939
        s->in_gb.buffer = NULL;
827
939
        s->extrasize    = 0;
828
        av_assert2((get_bits_count(&s->gb) & 7) == 0);
829
939
        skip_bits_long(&s->gb, *pos - *end_pos);
830
939
        *end_pos2 =
831
939
        *end_pos  = *end_pos2 + get_bits_count(&s->gb) - *pos;
832
939
        *pos      = get_bits_count(&s->gb);
833
    }
834
16799
}
835
836
/* Following is an optimized code for
837
            INTFLOAT v = *src
838
            if(get_bits1(&s->gb))
839
                v = -v;
840
            *dst = v;
841
*/
842
#if USE_FLOATS
843
#define READ_FLIP_SIGN(dst,src)                     \
844
    v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31);  \
845
    AV_WN32A(dst, v);
846
#else
847
#define READ_FLIP_SIGN(dst,src)     \
848
    v      = -get_bits1(&s->gb);    \
849
    *(dst) = (*(src) ^ v) - v;
850
#endif
851
852
8112
static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
853
                          int16_t *exponents, int end_pos2)
854
{
855
    int s_index;
856
    int i;
857
    int last_pos, bits_left;
858
    VLC *vlc;
859
8112
    int end_pos = FFMIN(end_pos2, s->gb.size_in_bits - s->extrasize * 8);
860
861
    /* low frequencies (called big values) */
862
8112
    s_index = 0;
863
32448
    for (i = 0; i < 3; i++) {
864
        int j, k, l, linbits;
865
24336
        j = g->region_size[i];
866
24336
        if (j == 0)
867
1292
            continue;
868
        /* select vlc table */
869
23044
        k       = g->table_select[i];
870
23044
        l       = mpa_huff_data[k][0];
871
23044
        linbits = mpa_huff_data[k][1];
872
23044
        vlc     = &huff_vlc[l];
873
874
23044
        if (!l) {
875
92
            memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
876
92
            s_index += 2 * j;
877
92
            continue;
878
        }
879
880
        /* read huffcode and compute each couple */
881
909472
        for (; j > 0; j--) {
882
            int exponent, x, y;
883
            int v;
884
886520
            int pos = get_bits_count(&s->gb);
885
886
886520
            if (pos >= end_pos){
887
789
                switch_buffer(s, &pos, &end_pos, &end_pos2);
888
789
                if (pos >= end_pos)
889
                    break;
890
            }
891
886520
            y = get_vlc2(&s->gb, vlc->table, 7, 3);
892
893
886520
            if (!y) {
894
215662
                g->sb_hybrid[s_index  ] =
895
215662
                g->sb_hybrid[s_index+1] = 0;
896
215662
                s_index += 2;
897
215662
                continue;
898
            }
899
900
670858
            exponent= exponents[s_index];
901
902
            ff_dlog(s->avctx, "region=%d n=%d y=%d exp=%d\n",
903
                    i, g->region_size[i] - j, y, exponent);
904
670858
            if (y & 16) {
905
426226
                x = y >> 5;
906
426226
                y = y & 0x0f;
907
426226
                if (x < 15) {
908
400278
                    READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
909
                } else {
910
25948
                    x += get_bitsz(&s->gb, linbits);
911
25948
                    v  = l3_unscale(x, exponent);
912
25948
                    if (get_bits1(&s->gb))
913
12440
                        v = -v;
914
25948
                    g->sb_hybrid[s_index] = v;
915
                }
916
426226
                if (y < 15) {
917
401244
                    READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
918
                } else {
919
24982
                    y += get_bitsz(&s->gb, linbits);
920
24982
                    v  = l3_unscale(y, exponent);
921
24982
                    if (get_bits1(&s->gb))
922
11889
                        v = -v;
923
24982
                    g->sb_hybrid[s_index+1] = v;
924
                }
925
            } else {
926
244632
                x = y >> 5;
927
244632
                y = y & 0x0f;
928
244632
                x += y;
929
244632
                if (x < 15) {
930
238827
                    READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
931
                } else {
932
5805
                    x += get_bitsz(&s->gb, linbits);
933
5805
                    v  = l3_unscale(x, exponent);
934
5805
                    if (get_bits1(&s->gb))
935
2114
                        v = -v;
936
5805
                    g->sb_hybrid[s_index+!!y] = v;
937
                }
938
244632
                g->sb_hybrid[s_index + !y] = 0;
939
            }
940
670858
            s_index += 2;
941
        }
942
    }
943
944
    /* high frequencies */
945
8112
    vlc = &huff_quad_vlc[g->count1table_select];
946
8112
    last_pos = 0;
947
226739
    while (s_index <= 572) {
948
        int pos, code;
949
226438
        pos = get_bits_count(&s->gb);
950
226438
        if (pos >= end_pos) {
951

7898
            if (pos > end_pos2 && last_pos) {
952
                /* some encoders generate an incorrect size for this
953
                   part. We must go back into the data */
954
                s_index -= 4;
955
                skip_bits_long(&s->gb, last_pos - pos);
956
                av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
957
                if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
958
                    s_index=0;
959
7811
                break;
960
            }
961
7898
            switch_buffer(s, &pos, &end_pos, &end_pos2);
962
7898
            if (pos >= end_pos)
963
7811
                break;
964
        }
965
218627
        last_pos = pos;
966
967
218627
        code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
968
        ff_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
969
218627
        g->sb_hybrid[s_index+0] =
970
218627
        g->sb_hybrid[s_index+1] =
971
218627
        g->sb_hybrid[s_index+2] =
972
218627
        g->sb_hybrid[s_index+3] = 0;
973
366945
        while (code) {
974
            static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
975
            int v;
976
148318
            int pos = s_index + idxtab[code];
977
148318
            code   ^= 8 >> idxtab[code];
978
148318
            READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
979
        }
980
218627
        s_index += 4;
981
    }
982
    /* skip extension bits */
983
8112
    bits_left = end_pos2 - get_bits_count(&s->gb);
984

8112
    if (bits_left < 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_COMPLIANT))) {
985
        av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
986
        s_index=0;
987

8112
    } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_AGGRESSIVE))) {
988
        av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
989
        s_index = 0;
990
    }
991
8112
    memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
992
8112
    skip_bits_long(&s->gb, bits_left);
993
994
8112
    i = get_bits_count(&s->gb);
995
8112
    switch_buffer(s, &i, &end_pos, &end_pos2);
996
997
8112
    return 0;
998
}
999
1000
/* Reorder short blocks from bitstream order to interleaved order. It
1001
   would be faster to do it in parsing, but the code would be far more
1002
   complicated */
1003
8112
static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1004
{
1005
    int i, j, len;
1006
    INTFLOAT *ptr, *dst, *ptr1;
1007
    INTFLOAT tmp[576];
1008
1009
8112
    if (g->block_type != 2)
1010
7808
        return;
1011
1012
304
    if (g->switch_point) {
1013
13
        if (s->sample_rate_index != 8)
1014
13
            ptr = g->sb_hybrid + 36;
1015
        else
1016
            ptr = g->sb_hybrid + 72;
1017
    } else {
1018
291
        ptr = g->sb_hybrid;
1019
    }
1020
1021
4217
    for (i = g->short_start; i < 13; i++) {
1022
3913
        len  = band_size_short[s->sample_rate_index][i];
1023
3913
        ptr1 = ptr;
1024
3913
        dst  = tmp;
1025
62125
        for (j = len; j > 0; j--) {
1026
58212
            *dst++ = ptr[0*len];
1027
58212
            *dst++ = ptr[1*len];
1028
58212
            *dst++ = ptr[2*len];
1029
58212
            ptr++;
1030
        }
1031
3913
        ptr += 2 * len;
1032
3913
        memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
1033
    }
1034
}
1035
1036
#define ISQRT2 FIXR(0.70710678118654752440)
1037
1038
2447
static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
1039
{
1040
    int i, j, k, l;
1041
    int sf_max, sf, len, non_zero_found;
1042
    INTFLOAT (*is_tab)[16], *tab0, *tab1, v1, v2;
1043
    SUINTFLOAT tmp0, tmp1;
1044
    int non_zero_found_short[3];
1045
1046
    /* intensity stereo */
1047
2447
    if (s->mode_ext & MODE_EXT_I_STEREO) {
1048
1
        if (!s->lsf) {
1049
            is_tab = is_table;
1050
            sf_max = 7;
1051
        } else {
1052
1
            is_tab = is_table_lsf[g1->scalefac_compress & 1];
1053
1
            sf_max = 16;
1054
        }
1055
1056
1
        tab0 = g0->sb_hybrid + 576;
1057
1
        tab1 = g1->sb_hybrid + 576;
1058
1059
1
        non_zero_found_short[0] = 0;
1060
1
        non_zero_found_short[1] = 0;
1061
1
        non_zero_found_short[2] = 0;
1062
1
        k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1063
1
        for (i = 12; i >= g1->short_start; i--) {
1064
            /* for last band, use previous scale factor */
1065
            if (i != 11)
1066
                k -= 3;
1067
            len = band_size_short[s->sample_rate_index][i];
1068
            for (l = 2; l >= 0; l--) {
1069
                tab0 -= len;
1070
                tab1 -= len;
1071
                if (!non_zero_found_short[l]) {
1072
                    /* test if non zero band. if so, stop doing i-stereo */
1073
                    for (j = 0; j < len; j++) {
1074
                        if (tab1[j] != 0) {
1075
                            non_zero_found_short[l] = 1;
1076
                            goto found1;
1077
                        }
1078
                    }
1079
                    sf = g1->scale_factors[k + l];
1080
                    if (sf >= sf_max)
1081
                        goto found1;
1082
1083
                    v1 = is_tab[0][sf];
1084
                    v2 = is_tab[1][sf];
1085
                    for (j = 0; j < len; j++) {
1086
                        tmp0    = tab0[j];
1087
                        tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1088
                        tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1089
                    }
1090
                } else {
1091
found1:
1092
                    if (s->mode_ext & MODE_EXT_MS_STEREO) {
1093
                        /* lower part of the spectrum : do ms stereo
1094
                           if enabled */
1095
                        for (j = 0; j < len; j++) {
1096
                            tmp0    = tab0[j];
1097
                            tmp1    = tab1[j];
1098
                            tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1099
                            tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1100
                        }
1101
                    }
1102
                }
1103
            }
1104
        }
1105
1106
1
        non_zero_found = non_zero_found_short[0] |
1107
1
                         non_zero_found_short[1] |
1108
1
                         non_zero_found_short[2];
1109
1110
23
        for (i = g1->long_end - 1;i >= 0;i--) {
1111
22
            len   = band_size_long[s->sample_rate_index][i];
1112
22
            tab0 -= len;
1113
22
            tab1 -= len;
1114
            /* test if non zero band. if so, stop doing i-stereo */
1115
22
            if (!non_zero_found) {
1116
598
                for (j = 0; j < len; j++) {
1117
576
                    if (tab1[j] != 0) {
1118
                        non_zero_found = 1;
1119
                        goto found2;
1120
                    }
1121
                }
1122
                /* for last band, use previous scale factor */
1123
22
                k  = (i == 21) ? 20 : i;
1124
22
                sf = g1->scale_factors[k];
1125
22
                if (sf >= sf_max)
1126
                    goto found2;
1127
22
                v1 = is_tab[0][sf];
1128
22
                v2 = is_tab[1][sf];
1129
598
                for (j = 0; j < len; j++) {
1130
576
                    tmp0    = tab0[j];
1131
576
                    tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1132
576
                    tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1133
                }
1134
            } else {
1135
found2:
1136
                if (s->mode_ext & MODE_EXT_MS_STEREO) {
1137
                    /* lower part of the spectrum : do ms stereo
1138
                       if enabled */
1139
                    for (j = 0; j < len; j++) {
1140
                        tmp0    = tab0[j];
1141
                        tmp1    = tab1[j];
1142
                        tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1143
                        tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1144
                    }
1145
                }
1146
            }
1147
        }
1148
2446
    } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1149
        /* ms stereo ONLY */
1150
        /* NOTE: the 1/sqrt(2) normalization factor is included in the
1151
           global gain */
1152
#if USE_FLOATS
1153
52
       s->fdsp->butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
1154
#else
1155
2176
        tab0 = g0->sb_hybrid;
1156
2176
        tab1 = g1->sb_hybrid;
1157
1255552
        for (i = 0; i < 576; i++) {
1158
1253376
            tmp0    = tab0[i];
1159
1253376
            tmp1    = tab1[i];
1160
1253376
            tab0[i] = tmp0 + tmp1;
1161
1253376
            tab1[i] = tmp0 - tmp1;
1162
        }
1163
#endif
1164
    }
1165
2447
}
1166
1167
#if USE_FLOATS
1168
#if HAVE_MIPSFPU
1169
#   include "mips/compute_antialias_float.h"
1170
#endif /* HAVE_MIPSFPU */
1171
#else
1172
#if HAVE_MIPSDSP
1173
#   include "mips/compute_antialias_fixed.h"
1174
#endif /* HAVE_MIPSDSP */
1175
#endif /* USE_FLOATS */
1176
1177
#ifndef compute_antialias
1178
#if USE_FLOATS
1179
#define AA(j) do {                                                      \
1180
        float tmp0 = ptr[-1-j];                                         \
1181
        float tmp1 = ptr[   j];                                         \
1182
        ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1];    \
1183
        ptr[   j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0];    \
1184
    } while (0)
1185
#else
1186
#define AA(j) do {                                              \
1187
        SUINT tmp0 = ptr[-1-j];                                   \
1188
        SUINT tmp1 = ptr[   j];                                   \
1189
        SUINT tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]);          \
1190
        ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2]));   \
1191
        ptr[   j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3]));   \
1192
    } while (0)
1193
#endif
1194
1195
8112
static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
1196
{
1197
    INTFLOAT *ptr;
1198
    int n, i;
1199
1200
    /* we antialias only "long" bands */
1201
8112
    if (g->block_type == 2) {
1202
304
        if (!g->switch_point)
1203
291
            return;
1204
        /* XXX: check this for 8000Hz case */
1205
13
        n = 1;
1206
    } else {
1207
7808
        n = SBLIMIT - 1;
1208
    }
1209
1210
7821
    ptr = g->sb_hybrid + 18;
1211
249882
    for (i = n; i > 0; i--) {
1212
242061
        AA(0);
1213
242061
        AA(1);
1214
242061
        AA(2);
1215
242061
        AA(3);
1216
242061
        AA(4);
1217
242061
        AA(5);
1218
242061
        AA(6);
1219
242061
        AA(7);
1220
1221
242061
        ptr += 18;
1222
    }
1223
}
1224
#endif /* compute_antialias */
1225
1226
8116
static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
1227
                          INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
1228
{
1229
    INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
1230
    INTFLOAT out2[12];
1231
    int i, j, mdct_long_end, sblimit;
1232
1233
    /* find last non zero block */
1234
8116
    ptr  = g->sb_hybrid + 576;
1235
8116
    ptr1 = g->sb_hybrid + 2 * 18;
1236
312005
    while (ptr >= ptr1) {
1237
        int32_t *p;
1238
311823
        ptr -= 6;
1239
311823
        p    = (int32_t*)ptr;
1240
311823
        if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
1241
7934
            break;
1242
    }
1243
8116
    sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1244
1245
8116
    if (g->block_type == 2) {
1246
        /* XXX: check for 8000 Hz */
1247
305
        if (g->switch_point)
1248
13
            mdct_long_end = 2;
1249
        else
1250
292
            mdct_long_end = 0;
1251
    } else {
1252
7811
        mdct_long_end = sblimit;
1253
    }
1254
1255
8116
    s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
1256
8116
                                     mdct_long_end, g->switch_point,
1257
8116
                                     g->block_type);
1258
1259
8116
    buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
1260
8116
    ptr = g->sb_hybrid + 18 * mdct_long_end;
1261
1262
14573
    for (j = mdct_long_end; j < sblimit; j++) {
1263
        /* select frequency inversion */
1264
6457
        win     = RENAME(ff_mdct_win)[2 + (4  & -(j & 1))];
1265
6457
        out_ptr = sb_samples + j;
1266
1267
45199
        for (i = 0; i < 6; i++) {
1268
38742
            *out_ptr = buf[4*i];
1269
38742
            out_ptr += SBLIMIT;
1270
        }
1271
6457
        imdct12(out2, ptr + 0);
1272
45199
        for (i = 0; i < 6; i++) {
1273
38742
            *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*1)];
1274
38742
            buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
1275
38742
            out_ptr += SBLIMIT;
1276
        }
1277
6457
        imdct12(out2, ptr + 1);
1278
45199
        for (i = 0; i < 6; i++) {
1279
38742
            *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*2)];
1280
38742
            buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
1281
38742
            out_ptr += SBLIMIT;
1282
        }
1283
6457
        imdct12(out2, ptr + 2);
1284
45199
        for (i = 0; i < 6; i++) {
1285
38742
            buf[4*(i + 6*0)] = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*0)];
1286
38742
            buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
1287
38742
            buf[4*(i + 6*2)] = 0;
1288
        }
1289
6457
        ptr += 18;
1290
6457
        buf += (j&3) != 3 ? 1 : (4*18-3);
1291
    }
1292
    /* zero bands */
1293
105676
    for (j = sblimit; j < SBLIMIT; j++) {
1294
        /* overlap */
1295
97560
        out_ptr = sb_samples + j;
1296
1853640
        for (i = 0; i < 18; i++) {
1297
1756080
            *out_ptr = buf[4*i];
1298
1756080
            buf[4*i]   = 0;
1299
1756080
            out_ptr += SBLIMIT;
1300
        }
1301
97560
        buf += (j&3) != 3 ? 1 : (4*18-3);
1302
    }
1303
8116
}
1304
1305
/* main layer3 decoding function */
1306
2803
static int mp_decode_layer3(MPADecodeContext *s)
1307
{
1308
    int nb_granules, main_data_begin;
1309
    int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
1310
    GranuleDef *g;
1311
    int16_t exponents[576]; //FIXME try INTFLOAT
1312
1313
    /* read side info */
1314
2803
    if (s->lsf) {
1315
3
        main_data_begin = get_bits(&s->gb, 8);
1316
3
        skip_bits(&s->gb, s->nb_channels);
1317
3
        nb_granules = 1;
1318
    } else {
1319
2800
        main_data_begin = get_bits(&s->gb, 9);
1320
2800
        if (s->nb_channels == 2)
1321
1256
            skip_bits(&s->gb, 3);
1322
        else
1323
1544
            skip_bits(&s->gb, 5);
1324
2800
        nb_granules = 2;
1325
6856
        for (ch = 0; ch < s->nb_channels; ch++) {
1326
4056
            s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
1327
4056
            s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
1328
        }
1329
    }
1330
1331
8406
    for (gr = 0; gr < nb_granules; gr++) {
1332
13719
        for (ch = 0; ch < s->nb_channels; ch++) {
1333
            ff_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
1334
8116
            g = &s->granules[ch][gr];
1335
8116
            g->part2_3_length = get_bits(&s->gb, 12);
1336
8116
            g->big_values     = get_bits(&s->gb,  9);
1337
8116
            if (g->big_values > 288) {
1338
                av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
1339
                return AVERROR_INVALIDDATA;
1340
            }
1341
1342
8116
            g->global_gain = get_bits(&s->gb, 8);
1343
            /* if MS stereo only is selected, we precompute the
1344
               1/sqrt(2) renormalization factor */
1345
8116
            if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
1346
                MODE_EXT_MS_STEREO)
1347
4456
                g->global_gain -= 2;
1348
8116
            if (s->lsf)
1349
4
                g->scalefac_compress = get_bits(&s->gb, 9);
1350
            else
1351
8112
                g->scalefac_compress = get_bits(&s->gb, 4);
1352
8116
            blocksplit_flag = get_bits1(&s->gb);
1353
8116
            if (blocksplit_flag) {
1354
845
                g->block_type = get_bits(&s->gb, 2);
1355
845
                if (g->block_type == 0) {
1356
                    av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
1357
                    return AVERROR_INVALIDDATA;
1358
                }
1359
845
                g->switch_point = get_bits1(&s->gb);
1360
2535
                for (i = 0; i < 2; i++)
1361
1690
                    g->table_select[i] = get_bits(&s->gb, 5);
1362
3380
                for (i = 0; i < 3; i++)
1363
2535
                    g->subblock_gain[i] = get_bits(&s->gb, 3);
1364
845
                init_short_region(s, g);
1365
            } else {
1366
                int region_address1, region_address2;
1367
7271
                g->block_type = 0;
1368
7271
                g->switch_point = 0;
1369
29084
                for (i = 0; i < 3; i++)
1370
21813
                    g->table_select[i] = get_bits(&s->gb, 5);
1371
                /* compute huffman coded region sizes */
1372
7271
                region_address1 = get_bits(&s->gb, 4);
1373
7271
                region_address2 = get_bits(&s->gb, 3);
1374
                ff_dlog(s->avctx, "region1=%d region2=%d\n",
1375
                        region_address1, region_address2);
1376
7271
                init_long_region(s, g, region_address1, region_address2);
1377
            }
1378
8116
            region_offset2size(g);
1379
8116
            compute_band_indexes(s, g);
1380
1381
8116
            g->preflag = 0;
1382
8116
            if (!s->lsf)
1383
8112
                g->preflag = get_bits1(&s->gb);
1384
8116
            g->scalefac_scale     = get_bits1(&s->gb);
1385
8116
            g->count1table_select = get_bits1(&s->gb);
1386
            ff_dlog(s->avctx, "block_type=%d switch_point=%d\n",
1387
                    g->block_type, g->switch_point);
1388
        }
1389
    }
1390
1391
2803
    if (!s->adu_mode) {
1392
        int skip;
1393
2803
        const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
1394
2803
        s->extrasize = av_clip((get_bits_left(&s->gb) >> 3) - s->extrasize, 0,
1395
2803
                               FFMAX(0, LAST_BUF_SIZE - s->last_buf_size));
1396
        av_assert1((get_bits_count(&s->gb) & 7) == 0);
1397
        /* now we get bits from the main_data_begin offset */
1398
        ff_dlog(s->avctx, "seekback:%d, lastbuf:%d\n",
1399
                main_data_begin, s->last_buf_size);
1400
1401
2803
        memcpy(s->last_buf + s->last_buf_size, ptr, s->extrasize);
1402
2803
        s->in_gb = s->gb;
1403
2803
        init_get_bits(&s->gb, s->last_buf, (s->last_buf_size + s->extrasize) * 8);
1404
2803
        s->last_buf_size <<= 3;
1405

2807
        for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
1406
8
            for (ch = 0; ch < s->nb_channels; ch++) {
1407
4
                g = &s->granules[ch][gr];
1408
4
                s->last_buf_size += g->part2_3_length;
1409
4
                memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
1410
4
                compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
1411
            }
1412
        }
1413
2803
        skip = s->last_buf_size - 8 * main_data_begin;
1414

2803
        if (skip >= s->gb.size_in_bits - s->extrasize * 8 && s->in_gb.buffer) {
1415
145
            skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits + s->extrasize * 8);
1416
145
            s->gb           = s->in_gb;
1417
145
            s->in_gb.buffer = NULL;
1418
145
            s->extrasize    = 0;
1419
        } else {
1420
2658
            skip_bits_long(&s->gb, skip);
1421
        }
1422
    } else {
1423
        gr = 0;
1424
        s->extrasize = 0;
1425
    }
1426
1427
8402
    for (; gr < nb_granules; gr++) {
1428
13711
        for (ch = 0; ch < s->nb_channels; ch++) {
1429
8112
            g = &s->granules[ch][gr];
1430
8112
            bits_pos = get_bits_count(&s->gb);
1431
1432
8112
            if (!s->lsf) {
1433
                uint8_t *sc;
1434
                int slen, slen1, slen2;
1435
1436
                /* MPEG-1 scale factors */
1437
8108
                slen1 = slen_table[0][g->scalefac_compress];
1438
8108
                slen2 = slen_table[1][g->scalefac_compress];
1439
                ff_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
1440
8108
                if (g->block_type == 2) {
1441
304
                    n = g->switch_point ? 17 : 18;
1442
304
                    j = 0;
1443
304
                    if (slen1) {
1444
756
                        for (i = 0; i < n; i++)
1445
716
                            g->scale_factors[j++] = get_bits(&s->gb, slen1);
1446
                    } else {
1447
5007
                        for (i = 0; i < n; i++)
1448
4743
                            g->scale_factors[j++] = 0;
1449
                    }
1450
304
                    if (slen2) {
1451
4826
                        for (i = 0; i < 18; i++)
1452
4572
                            g->scale_factors[j++] = get_bits(&s->gb, slen2);
1453
1016
                        for (i = 0; i < 3; i++)
1454
762
                            g->scale_factors[j++] = 0;
1455
                    } else {
1456
1100
                        for (i = 0; i < 21; i++)
1457
1050
                            g->scale_factors[j++] = 0;
1458
                    }
1459
                } else {
1460
7804
                    sc = s->granules[ch][0].scale_factors;
1461
7804
                    j = 0;
1462
39020
                    for (k = 0; k < 4; k++) {
1463
31216
                        n = k == 0 ? 6 : 5;
1464
31216
                        if ((g->scfsi & (0x8 >> k)) == 0) {
1465
26870
                            slen = (k < 2) ? slen1 : slen2;
1466
26870
                            if (slen) {
1467
88829
                                for (i = 0; i < n; i++)
1468
74467
                                    g->scale_factors[j++] = get_bits(&s->gb, slen);
1469
                            } else {
1470
78786
                                for (i = 0; i < n; i++)
1471
66278
                                    g->scale_factors[j++] = 0;
1472
                            }
1473
                        } else {
1474
                            /* simply copy from last granule */
1475
27485
                            for (i = 0; i < n; i++) {
1476
23139
                                g->scale_factors[j] = sc[j];
1477
23139
                                j++;
1478
                            }
1479
                        }
1480
                    }
1481
7804
                    g->scale_factors[j++] = 0;
1482
                }
1483
            } else {
1484
                int tindex, tindex2, slen[4], sl, sf;
1485
1486
                /* LSF scale factors */
1487
4
                if (g->block_type == 2)
1488
                    tindex = g->switch_point ? 2 : 1;
1489
                else
1490
4
                    tindex = 0;
1491
1492
4
                sf = g->scalefac_compress;
1493

4
                if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
1494
                    /* intensity stereo case */
1495
1
                    sf >>= 1;
1496
1
                    if (sf < 180) {
1497
1
                        lsf_sf_expand(slen, sf, 6, 6, 0);
1498
1
                        tindex2 = 3;
1499
                    } else if (sf < 244) {
1500
                        lsf_sf_expand(slen, sf - 180, 4, 4, 0);
1501
                        tindex2 = 4;
1502
                    } else {
1503
                        lsf_sf_expand(slen, sf - 244, 3, 0, 0);
1504
                        tindex2 = 5;
1505
                    }
1506
                } else {
1507
                    /* normal case */
1508
3
                    if (sf < 400) {
1509
1
                        lsf_sf_expand(slen, sf, 5, 4, 4);
1510
1
                        tindex2 = 0;
1511
2
                    } else if (sf < 500) {
1512
2
                        lsf_sf_expand(slen, sf - 400, 5, 4, 0);
1513
2
                        tindex2 = 1;
1514
                    } else {
1515
                        lsf_sf_expand(slen, sf - 500, 3, 0, 0);
1516
                        tindex2 = 2;
1517
                        g->preflag = 1;
1518
                    }
1519
                }
1520
1521
4
                j = 0;
1522
20
                for (k = 0; k < 4; k++) {
1523
16
                    n  = lsf_nsf_table[tindex2][tindex][k];
1524
16
                    sl = slen[k];
1525
16
                    if (sl) {
1526
45
                        for (i = 0; i < n; i++)
1527
39
                            g->scale_factors[j++] = get_bits(&s->gb, sl);
1528
                    } else {
1529
55
                        for (i = 0; i < n; i++)
1530
45
                            g->scale_factors[j++] = 0;
1531
                    }
1532
                }
1533
                /* XXX: should compute exact size */
1534
80
                for (; j < 40; j++)
1535
76
                    g->scale_factors[j] = 0;
1536
            }
1537
1538
8112
            exponents_from_scale_factors(s, g, exponents);
1539
1540
            /* read Huffman coded residue */
1541
8112
            huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
1542
        } /* ch */
1543
1544
5599
        if (s->mode == MPA_JSTEREO)
1545
2447
            compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
1546
1547
13711
        for (ch = 0; ch < s->nb_channels; ch++) {
1548
8112
            g = &s->granules[ch][gr];
1549
1550
8112
            reorder_block(s, g);
1551
8112
            compute_antialias(s, g);
1552
8112
            compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
1553
        }
1554
    } /* gr */
1555
2803
    if (get_bits_count(&s->gb) < 0)
1556
        skip_bits_long(&s->gb, -get_bits_count(&s->gb));
1557
2803
    return nb_granules * 18;
1558
}
1559
1560
10040
static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples,
1561
                           const uint8_t *buf, int buf_size)
1562
{
1563
    int i, nb_frames, ch, ret;
1564
    OUT_INT *samples_ptr;
1565
1566
10040
    init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
1567
1568
    /* skip error protection field */
1569
10040
    if (s->error_protection)
1570
117
        skip_bits(&s->gb, 16);
1571
1572

10040
    switch(s->layer) {
1573
    case 1:
1574
        s->avctx->frame_size = 384;
1575
        nb_frames = mp_decode_layer1(s);
1576
        break;
1577
7237
    case 2:
1578
7237
        s->avctx->frame_size = 1152;
1579
7237
        nb_frames = mp_decode_layer2(s);
1580
7237
        break;
1581
2803
    case 3:
1582
2803
        s->avctx->frame_size = s->lsf ? 576 : 1152;
1583
2803
    default:
1584
2803
        nb_frames = mp_decode_layer3(s);
1585
1586
2803
        s->last_buf_size=0;
1587
2803
        if (s->in_gb.buffer) {
1588
1719
            align_get_bits(&s->gb);
1589
1719
            i = (get_bits_left(&s->gb) >> 3) - s->extrasize;
1590

1719
            if (i >= 0 && i <= BACKSTEP_SIZE) {
1591
1719
                memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
1592
1719
                s->last_buf_size=i;
1593
            } else
1594
                av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
1595
1719
            s->gb           = s->in_gb;
1596
1719
            s->in_gb.buffer = NULL;
1597
1719
            s->extrasize    = 0;
1598
        }
1599
1600
2803
        align_get_bits(&s->gb);
1601
        av_assert1((get_bits_count(&s->gb) & 7) == 0);
1602
2803
        i = (get_bits_left(&s->gb) >> 3) - s->extrasize;
1603

2803
        if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
1604
230
            if (i < 0)
1605
                av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
1606
230
            i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
1607
        }
1608
        av_assert1(i <= buf_size - HEADER_SIZE && i >= 0);
1609
2803
        memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
1610
2803
        s->last_buf_size += i;
1611
    }
1612
1613
10040
    if(nb_frames < 0)
1614
        return nb_frames;
1615
1616
    /* get output buffer */
1617
10040
    if (!samples) {
1618
10040
        av_assert0(s->frame);
1619
10040
        s->frame->nb_samples = s->avctx->frame_size;
1620
10040
        if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0)
1621
            return ret;
1622
10040
        samples = (OUT_INT **)s->frame->extended_data;
1623
    }
1624
1625
    /* apply the synthesis filter */
1626
21983
    for (ch = 0; ch < s->nb_channels; ch++) {
1627
        int sample_stride;
1628
11943
        if (s->avctx->sample_fmt == OUT_FMT_P) {
1629
11943
            samples_ptr   = samples[ch];
1630
11943
            sample_stride = 1;
1631
        } else {
1632
            samples_ptr   = samples[0] + ch;
1633
            sample_stride = s->nb_channels;
1634
        }
1635
441819
        for (i = 0; i < nb_frames; i++) {
1636
429876
            RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch],
1637
                                        &(s->synth_buf_offset[ch]),
1638
                                        RENAME(ff_mpa_synth_window),
1639
                                        &s->dither_state, samples_ptr,
1640
429876
                                        sample_stride, s->sb_samples[ch][i]);
1641
429876
            samples_ptr += 32 * sample_stride;
1642
        }
1643
    }
1644
1645
10040
    return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
1646
}
1647
1648
10042
static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
1649
                        AVPacket *avpkt)
1650
{
1651
10042
    const uint8_t *buf  = avpkt->data;
1652
10042
    int buf_size        = avpkt->size;
1653
10042
    MPADecodeContext *s = avctx->priv_data;
1654
    uint32_t header;
1655
    int ret;
1656
1657
10042
    int skipped = 0;
1658

10042
    while(buf_size && !*buf){
1659
        buf++;
1660
        buf_size--;
1661
        skipped++;
1662
    }
1663
1664
10042
    if (buf_size < HEADER_SIZE)
1665
        return AVERROR_INVALIDDATA;
1666
1667
10042
    header = AV_RB32(buf);
1668
10042
    if (header>>8 == AV_RB32("TAG")>>8) {
1669
        av_log(avctx, AV_LOG_DEBUG, "discarding ID3 tag\n");
1670
        return buf_size + skipped;
1671
    }
1672
10042
    ret = avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
1673
10042
    if (ret < 0) {
1674
2
        av_log(avctx, AV_LOG_ERROR, "Header missing\n");
1675
2
        return AVERROR_INVALIDDATA;
1676
10040
    } else if (ret == 1) {
1677
        /* free format: prepare to compute frame size */
1678
        s->frame_size = -1;
1679
        return AVERROR_INVALIDDATA;
1680
    }
1681
    /* update codec info */
1682
10040
    avctx->channels       = s->nb_channels;
1683
10040
    avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
1684
10040
    if (!avctx->bit_rate)
1685
4
        avctx->bit_rate = s->bit_rate;
1686
1687
10040
    if (s->frame_size <= 0) {
1688
        av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1689
        return AVERROR_INVALIDDATA;
1690
10040
    } else if (s->frame_size < buf_size) {
1691
        av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
1692
        buf_size= s->frame_size;
1693
    }
1694
1695
10040
    s->frame = data;
1696
1697
10040
    ret = mp_decode_frame(s, NULL, buf, buf_size);
1698
10040
    if (ret >= 0) {
1699
10040
        s->frame->nb_samples = avctx->frame_size;
1700
10040
        *got_frame_ptr       = 1;
1701
10040
        avctx->sample_rate   = s->sample_rate;
1702
        //FIXME maybe move the other codec info stuff from above here too
1703
    } else {
1704
        av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
1705
        /* Only return an error if the bad frame makes up the whole packet or
1706
         * the error is related to buffer management.
1707
         * If there is more data in the packet, just consume the bad frame
1708
         * instead of returning an error, which would discard the whole
1709
         * packet. */
1710
        *got_frame_ptr = 0;
1711
        if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
1712
            return ret;
1713
    }
1714
10040
    s->frame_size = 0;
1715
10040
    return buf_size + skipped;
1716
}
1717
1718
static void mp_flush(MPADecodeContext *ctx)
1719
{
1720
    memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf));
1721
    memset(ctx->mdct_buf, 0, sizeof(ctx->mdct_buf));
1722
    ctx->last_buf_size = 0;
1723
    ctx->dither_state = 0;
1724
}
1725
1726
static void flush(AVCodecContext *avctx)
1727
{
1728
    mp_flush(avctx->priv_data);
1729
}
1730
1731
#if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
1732
static int decode_frame_adu(AVCodecContext *avctx, void *data,
1733
                            int *got_frame_ptr, AVPacket *avpkt)
1734
{
1735
    const uint8_t *buf  = avpkt->data;
1736
    int buf_size        = avpkt->size;
1737
    MPADecodeContext *s = avctx->priv_data;
1738
    uint32_t header;
1739
    int len, ret;
1740
    int av_unused out_size;
1741
1742
    len = buf_size;
1743
1744
    // Discard too short frames
1745
    if (buf_size < HEADER_SIZE) {
1746
        av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
1747
        return AVERROR_INVALIDDATA;
1748
    }
1749
1750
1751
    if (len > MPA_MAX_CODED_FRAME_SIZE)
1752
        len = MPA_MAX_CODED_FRAME_SIZE;
1753
1754
    // Get header and restore sync word
1755
    header = AV_RB32(buf) | 0xffe00000;
1756
1757
    ret = avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
1758
    if (ret < 0) {
1759
        av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
1760
        return ret;
1761
    }
1762
    /* update codec info */
1763
    avctx->sample_rate = s->sample_rate;
1764
    avctx->channels    = s->nb_channels;
1765
    avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
1766
    if (!avctx->bit_rate)
1767
        avctx->bit_rate = s->bit_rate;
1768
1769
    s->frame_size = len;
1770
1771
    s->frame = data;
1772
1773
    ret = mp_decode_frame(s, NULL, buf, buf_size);
1774
    if (ret < 0) {
1775
        av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
1776
        return ret;
1777
    }
1778
1779
    *got_frame_ptr = 1;
1780
1781
    return buf_size;
1782
}
1783
#endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
1784
1785
#if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
1786
1787
/**
1788
 * Context for MP3On4 decoder
1789
 */
1790
typedef struct MP3On4DecodeContext {
1791
    int frames;                     ///< number of mp3 frames per block (number of mp3 decoder instances)
1792
    int syncword;                   ///< syncword patch
1793
    const uint8_t *coff;            ///< channel offsets in output buffer
1794
    MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
1795
} MP3On4DecodeContext;
1796
1797
#include "mpeg4audio.h"
1798
1799
/* Next 3 arrays are indexed by channel config number (passed via codecdata) */
1800
1801
/* number of mp3 decoder instances */
1802
static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
1803
1804
/* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
1805
static const uint8_t chan_offset[8][5] = {
1806
    { 0             },
1807
    { 0             },  // C
1808
    { 0             },  // FLR
1809
    { 2, 0          },  // C FLR
1810
    { 2, 0, 3       },  // C FLR BS
1811
    { 2, 0, 3       },  // C FLR BLRS
1812
    { 2, 0, 4, 3    },  // C FLR BLRS LFE
1813
    { 2, 0, 6, 4, 3 },  // C FLR BLRS BLR LFE
1814
};
1815
1816
/* mp3on4 channel layouts */
1817
static const int16_t chan_layout[8] = {
1818
    0,
1819
    AV_CH_LAYOUT_MONO,
1820
    AV_CH_LAYOUT_STEREO,
1821
    AV_CH_LAYOUT_SURROUND,
1822
    AV_CH_LAYOUT_4POINT0,
1823
    AV_CH_LAYOUT_5POINT0,
1824
    AV_CH_LAYOUT_5POINT1,
1825
    AV_CH_LAYOUT_7POINT1
1826
};
1827
1828
static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
1829
{
1830
    MP3On4DecodeContext *s = avctx->priv_data;
1831
    int i;
1832
1833
    if (s->mp3decctx[0])
1834
        av_freep(&s->mp3decctx[0]->fdsp);
1835
1836
    for (i = 0; i < s->frames; i++)
1837
        av_freep(&s->mp3decctx[i]);
1838
1839
    return 0;
1840
}
1841
1842
1843
static av_cold int decode_init_mp3on4(AVCodecContext * avctx)
1844
{
1845
    MP3On4DecodeContext *s = avctx->priv_data;
1846
    MPEG4AudioConfig cfg;
1847
    int i;
1848
1849
    if ((avctx->extradata_size < 2) || !avctx->extradata) {
1850
        av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
1851
        return AVERROR_INVALIDDATA;
1852
    }
1853
1854
    avpriv_mpeg4audio_get_config2(&cfg, avctx->extradata,
1855
                                  avctx->extradata_size, 1, avctx);
1856
    if (!cfg.chan_config || cfg.chan_config > 7) {
1857
        av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
1858
        return AVERROR_INVALIDDATA;
1859
    }
1860
    s->frames             = mp3Frames[cfg.chan_config];
1861
    s->coff               = chan_offset[cfg.chan_config];
1862
    avctx->channels       = ff_mpeg4audio_channels[cfg.chan_config];
1863
    avctx->channel_layout = chan_layout[cfg.chan_config];
1864
1865
    if (cfg.sample_rate < 16000)
1866
        s->syncword = 0xffe00000;
1867
    else
1868
        s->syncword = 0xfff00000;
1869
1870
    /* Init the first mp3 decoder in standard way, so that all tables get builded
1871
     * We replace avctx->priv_data with the context of the first decoder so that
1872
     * decode_init() does not have to be changed.
1873
     * Other decoders will be initialized here copying data from the first context
1874
     */
1875
    // Allocate zeroed memory for the first decoder context
1876
    s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
1877
    if (!s->mp3decctx[0])
1878
        goto alloc_fail;
1879
    // Put decoder context in place to make init_decode() happy
1880
    avctx->priv_data = s->mp3decctx[0];
1881
    decode_init(avctx);
1882
    // Restore mp3on4 context pointer
1883
    avctx->priv_data = s;
1884
    s->mp3decctx[0]->adu_mode = 1; // Set adu mode
1885
1886
    /* Create a separate codec/context for each frame (first is already ok).
1887
     * Each frame is 1 or 2 channels - up to 5 frames allowed
1888
     */
1889
    for (i = 1; i < s->frames; i++) {
1890
        s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
1891
        if (!s->mp3decctx[i])
1892
            goto alloc_fail;
1893
        s->mp3decctx[i]->adu_mode = 1;
1894
        s->mp3decctx[i]->avctx = avctx;
1895
        s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
1896
        s->mp3decctx[i]->fdsp = s->mp3decctx[0]->fdsp;
1897
    }
1898
1899
    return 0;
1900
alloc_fail:
1901
    decode_close_mp3on4(avctx);
1902
    return AVERROR(ENOMEM);
1903
}
1904
1905
1906
static void flush_mp3on4(AVCodecContext *avctx)
1907
{
1908
    int i;
1909
    MP3On4DecodeContext *s = avctx->priv_data;
1910
1911
    for (i = 0; i < s->frames; i++)
1912
        mp_flush(s->mp3decctx[i]);
1913
}
1914
1915
1916
static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
1917
                               int *got_frame_ptr, AVPacket *avpkt)
1918
{
1919
    AVFrame *frame         = data;
1920
    const uint8_t *buf     = avpkt->data;
1921
    int buf_size           = avpkt->size;
1922
    MP3On4DecodeContext *s = avctx->priv_data;
1923
    MPADecodeContext *m;
1924
    int fsize, len = buf_size, out_size = 0;
1925
    uint32_t header;
1926
    OUT_INT **out_samples;
1927
    OUT_INT *outptr[2];
1928
    int fr, ch, ret;
1929
1930
    /* get output buffer */
1931
    frame->nb_samples = MPA_FRAME_SIZE;
1932
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1933
        return ret;
1934
    out_samples = (OUT_INT **)frame->extended_data;
1935
1936
    // Discard too short frames
1937
    if (buf_size < HEADER_SIZE)
1938
        return AVERROR_INVALIDDATA;
1939
1940
    avctx->bit_rate = 0;
1941
1942
    ch = 0;
1943
    for (fr = 0; fr < s->frames; fr++) {
1944
        fsize = AV_RB16(buf) >> 4;
1945
        fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
1946
        m     = s->mp3decctx[fr];
1947
        av_assert1(m);
1948
1949
        if (fsize < HEADER_SIZE) {
1950
            av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
1951
            return AVERROR_INVALIDDATA;
1952
        }
1953
        header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
1954
1955
        ret = avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
1956
        if (ret < 0) {
1957
            av_log(avctx, AV_LOG_ERROR, "Bad header, discard block\n");
1958
            return AVERROR_INVALIDDATA;
1959
        }
1960
1961
        if (ch + m->nb_channels > avctx->channels ||
1962
            s->coff[fr] + m->nb_channels > avctx->channels) {
1963
            av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
1964
                                        "channel count\n");
1965
            return AVERROR_INVALIDDATA;
1966
        }
1967
        ch += m->nb_channels;
1968
1969
        outptr[0] = out_samples[s->coff[fr]];
1970
        if (m->nb_channels > 1)
1971
            outptr[1] = out_samples[s->coff[fr] + 1];
1972
1973
        if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0) {
1974
            av_log(avctx, AV_LOG_ERROR, "failed to decode channel %d\n", ch);
1975
            memset(outptr[0], 0, MPA_FRAME_SIZE*sizeof(OUT_INT));
1976
            if (m->nb_channels > 1)
1977
                memset(outptr[1], 0, MPA_FRAME_SIZE*sizeof(OUT_INT));
1978
            ret = m->nb_channels * MPA_FRAME_SIZE*sizeof(OUT_INT);
1979
        }
1980
1981
        out_size += ret;
1982
        buf      += fsize;
1983
        len      -= fsize;
1984
1985
        avctx->bit_rate += m->bit_rate;
1986
    }
1987
    if (ch != avctx->channels) {
1988
        av_log(avctx, AV_LOG_ERROR, "failed to decode all channels\n");
1989
        return AVERROR_INVALIDDATA;
1990
    }
1991
1992
    /* update codec info */
1993
    avctx->sample_rate = s->mp3decctx[0]->sample_rate;
1994
1995
    frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
1996
    *got_frame_ptr    = 1;
1997
1998
    return buf_size;
1999
}
2000
#endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */