GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/mdct_template.c Lines: 90 101 89.1 %
Date: 2019-11-20 04:07:19 Branches: 17 21 81.0 %

Line Branch Exec Source
1
/*
2
 * MDCT/IMDCT transforms
3
 * Copyright (c) 2002 Fabrice Bellard
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
#include <stdlib.h>
23
#include <string.h>
24
#include "libavutil/common.h"
25
#include "libavutil/libm.h"
26
#include "libavutil/mathematics.h"
27
#include "fft.h"
28
#include "fft-internal.h"
29
30
/**
31
 * @file
32
 * MDCT/IMDCT transforms.
33
 */
34
35
#if FFT_FLOAT
36
#   define RSCALE(x, y) ((x) + (y))
37
#else
38
#if FFT_FIXED_32
39
#   define RSCALE(x, y) ((int)((x) + (unsigned)(y) + 32) >> 6)
40
#else /* FFT_FIXED_32 */
41
#   define RSCALE(x, y) ((int)((x) + (unsigned)(y)) >> 1)
42
#endif /* FFT_FIXED_32 */
43
#endif
44
45
/**
46
 * init MDCT or IMDCT computation.
47
 */
48
2450
av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
49
{
50
    int n, n4, i;
51
    double alpha, theta;
52
    int tstep;
53
54
2450
    memset(s, 0, sizeof(*s));
55
2450
    n = 1 << nbits;
56
2450
    s->mdct_bits = nbits;
57
2450
    s->mdct_size = n;
58
2450
    n4 = n >> 2;
59
2450
    s->mdct_permutation = FF_MDCT_PERM_NONE;
60
61
2450
    if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0)
62
        goto fail;
63
64
2450
    s->tcos = av_malloc_array(n/2, sizeof(FFTSample));
65
2450
    if (!s->tcos)
66
        goto fail;
67
68
2450
    switch (s->mdct_permutation) {
69
2450
    case FF_MDCT_PERM_NONE:
70
2450
        s->tsin = s->tcos + n4;
71
2450
        tstep = 1;
72
2450
        break;
73
    case FF_MDCT_PERM_INTERLEAVE:
74
        s->tsin = s->tcos + 1;
75
        tstep = 2;
76
        break;
77
    default:
78
        goto fail;
79
    }
80
81
2450
    theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
82
2450
    scale = sqrt(fabs(scale));
83
555126
    for(i=0;i<n4;i++) {
84
552676
        alpha = 2 * M_PI * (i + theta) / n;
85
#if FFT_FIXED_32
86
30588
        s->tcos[i*tstep] = lrint(-cos(alpha) * 2147483648.0);
87
30588
        s->tsin[i*tstep] = lrint(-sin(alpha) * 2147483648.0);
88
#else
89
522088
        s->tcos[i*tstep] = FIX15(-cos(alpha) * scale);
90
522088
        s->tsin[i*tstep] = FIX15(-sin(alpha) * scale);
91
#endif
92
    }
93
2450
    return 0;
94
 fail:
95
    ff_mdct_end(s);
96
    return -1;
97
}
98
99
/**
100
 * Compute the middle half of the inverse MDCT of size N = 2^nbits,
101
 * thus excluding the parts that can be derived by symmetry
102
 * @param output N/2 samples
103
 * @param input N/2 samples
104
 */
105
2331699
void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input)
106
{
107
    int k, n8, n4, n2, n, j;
108
2331699
    const uint16_t *revtab = s->revtab;
109
2331699
    const FFTSample *tcos = s->tcos;
110
2331699
    const FFTSample *tsin = s->tsin;
111
    const FFTSample *in1, *in2;
112
2331699
    FFTComplex *z = (FFTComplex *)output;
113
114
2331699
    n = 1 << s->mdct_bits;
115
2331699
    n2 = n >> 1;
116
2331699
    n4 = n >> 2;
117
2331699
    n8 = n >> 3;
118
119
    /* pre rotation */
120
2331699
    in1 = input;
121
2331699
    in2 = input + n2 - 1;
122
119593507
    for(k = 0; k < n4; k++) {
123
117261808
        j=revtab[k];
124
117261808
        CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
125
117261808
        in1 += 2;
126
117261808
        in2 -= 2;
127
    }
128
2331699
    s->fft_calc(s, z);
129
130
    /* post rotation + reordering */
131
60962603
    for(k = 0; k < n8; k++) {
132
        FFTSample r0, i0, r1, i1;
133
58630904
        CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
134
58630904
        CMUL(r1, i0, z[n8+k  ].im, z[n8+k  ].re, tsin[n8+k  ], tcos[n8+k  ]);
135
58630904
        z[n8-k-1].re = r0;
136
58630904
        z[n8-k-1].im = i0;
137
58630904
        z[n8+k  ].re = r1;
138
58630904
        z[n8+k  ].im = i1;
139
    }
140
2331699
}
141
142
/**
143
 * Compute inverse MDCT of size N = 2^nbits
144
 * @param output N samples
145
 * @param input N/2 samples
146
 */
147
25954
void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input)
148
{
149
    int k;
150
25954
    int n = 1 << s->mdct_bits;
151
25954
    int n2 = n >> 1;
152
25954
    int n4 = n >> 2;
153
154
25954
    ff_imdct_half_c(s, output+n4, input);
155
156
2874834
    for(k = 0; k < n4; k++) {
157
2848880
        output[k] = -output[n2-k-1];
158
2848880
        output[n-k-1] = output[n2+k];
159
    }
160
25954
}
161
162
/**
163
 * Compute MDCT of size N = 2^nbits
164
 * @param input N samples
165
 * @param out N/2 samples
166
 */
167
22325
void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input)
168
{
169
    int i, j, n, n8, n4, n2, n3;
170
    FFTDouble re, im;
171
22325
    const uint16_t *revtab = s->revtab;
172
22325
    const FFTSample *tcos = s->tcos;
173
22325
    const FFTSample *tsin = s->tsin;
174
22325
    FFTComplex *x = (FFTComplex *)out;
175
176
22325
    n = 1 << s->mdct_bits;
177
22325
    n2 = n >> 1;
178
22325
    n4 = n >> 2;
179
22325
    n8 = n >> 3;
180
22325
    n3 = 3 * n4;
181
182
    /* pre rotation */
183
3429167
    for(i=0;i<n8;i++) {
184
3406842
        re = RSCALE(-input[2*i+n3], - input[n3-1-2*i]);
185
3406842
        im = RSCALE(-input[n4+2*i], + input[n4-1-2*i]);
186
3406842
        j = revtab[i];
187
3406842
        CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
188
189
3406842
        re = RSCALE( input[2*i]   , - input[n2-1-2*i]);
190
3406842
        im = RSCALE(-input[n2+2*i], - input[ n-1-2*i]);
191
3406842
        j = revtab[n8 + i];
192
3406842
        CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
193
    }
194
195
22325
    s->fft_calc(s, x);
196
197
    /* post rotation */
198
3429167
    for(i=0;i<n8;i++) {
199
        FFTSample r0, i0, r1, i1;
200
3406842
        CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
201
3406842
        CMUL(i0, r1, x[n8+i  ].re, x[n8+i  ].im, -tsin[n8+i  ], -tcos[n8+i  ]);
202
3406842
        x[n8-i-1].re = r0;
203
3406842
        x[n8-i-1].im = i0;
204
3406842
        x[n8+i  ].re = r1;
205
3406842
        x[n8+i  ].im = i1;
206
    }
207
22325
}
208
209
2542
av_cold void ff_mdct_end(FFTContext *s)
210
{
211
2542
    av_freep(&s->tcos);
212
2542
    ff_fft_end(s);
213
2542
}