GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/lpc.c Lines: 137 150 91.3 %
Date: 2019-11-22 03:34:36 Branches: 73 86 84.9 %

Line Branch Exec Source
1
/*
2
 * LPC utility code
3
 * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
#include "libavutil/common.h"
23
#include "libavutil/lls.h"
24
25
#define LPC_USE_DOUBLE
26
#include "lpc.h"
27
#include "libavutil/avassert.h"
28
29
30
/**
31
 * Apply Welch window function to audio block
32
 */
33
3969
static void lpc_apply_welch_window_c(const int32_t *data, int len,
34
                                     double *w_data)
35
{
36
    int i, n2;
37
    double w;
38
    double c;
39
40
3969
    n2 = (len >> 1);
41
3969
    c = 2.0 / (len - 1.0);
42
43
3969
    if (len & 1) {
44
1050
        for(i=0; i<n2; i++) {
45
1048
            w = c - i - 1.0;
46
1048
            w = 1.0 - (w * w);
47
1048
            w_data[i] = data[i] * w;
48
1048
            w_data[len-1-i] = data[len-1-i] * w;
49
        }
50
2
        return;
51
    }
52
53
3967
    w_data+=n2;
54
3967
      data+=n2;
55
9253857
    for(i=0; i<n2; i++) {
56
9249890
        w = c - n2 + i;
57
9249890
        w = 1.0 - (w * w);
58
9249890
        w_data[-i-1] = data[-i-1] * w;
59
9249890
        w_data[+i  ] = data[+i  ] * w;
60
    }
61
}
62
63
/**
64
 * Calculate autocorrelation data from audio samples
65
 * A Welch window function is applied before calculation.
66
 */
67
7733
static void lpc_compute_autocorr_c(const double *data, int len, int lag,
68
                                   double *autoc)
69
{
70
    int i, j;
71
72
57574
    for(j=0; j<lag; j+=2){
73
49841
        double sum0 = 1.0, sum1 = 1.0;
74
141092269
        for(i=j; i<len; i++){
75
141042428
            sum0 += data[i] * data[i-j];
76
141042428
            sum1 += data[i] * data[i-j-1];
77
        }
78
49841
        autoc[j  ] = sum0;
79
49841
        autoc[j+1] = sum1;
80
    }
81
82
7733
    if(j==lag){
83
7317
        double sum = 1.0;
84
10279207
        for(i=j-1; i<len; i+=2){
85
10271890
            sum += data[i  ] * data[i-j  ]
86
10271890
                 + data[i+1] * data[i-j+1];
87
        }
88
7317
        autoc[j] = sum;
89
    }
90
7733
}
91
92
/**
93
 * Quantize LPC coefficients
94
 */
95
11765
static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
96
                               int32_t *lpc_out, int *shift, int min_shift,
97
                               int max_shift, int zero_shift)
98
{
99
    int i;
100
    double cmax, error;
101
    int32_t qmax;
102
    int sh;
103
104
    /* define maximum levels */
105
11765
    qmax = (1 << (precision - 1)) - 1;
106
107
    /* find maximum coefficient value */
108
11765
    cmax = 0.0;
109
69630
    for(i=0; i<order; i++) {
110
57865
        cmax= FFMAX(cmax, fabs(lpc_in[i]));
111
    }
112
113
    /* if maximum value quantizes to zero, return all zeros */
114
11765
    if(cmax * (1 << max_shift) < 1.0) {
115
        *shift = zero_shift;
116
        memset(lpc_out, 0, sizeof(int32_t) * order);
117
        return;
118
    }
119
120
    /* calculate level shift which scales max coeff to available bits */
121
11765
    sh = max_shift;
122

32239
    while((cmax * (1 << sh) > qmax) && (sh > min_shift)) {
123
20474
        sh--;
124
    }
125
126
    /* since negative shift values are unsupported in decoder, scale down
127
       coefficients instead */
128

11765
    if(sh == 0 && cmax > qmax) {
129
        double scale = ((double)qmax) / cmax;
130
        for(i=0; i<order; i++) {
131
            lpc_in[i] *= scale;
132
        }
133
    }
134
135
    /* output quantized coefficients and level shift */
136
11765
    error=0;
137
69630
    for(i=0; i<order; i++) {
138
57865
        error -= lpc_in[i] * (1 << sh);
139
57865
        lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
140
57865
        error -= lpc_out[i];
141
    }
142
11765
    *shift = sh;
143
}
144
145
8933
static int estimate_best_order(double *ref, int min_order, int max_order)
146
{
147
    int i, est;
148
149
8933
    est = min_order;
150
64596
    for(i=max_order-1; i>=min_order-1; i--) {
151
64422
        if(ref[i] > 0.10) {
152
8759
            est = i+1;
153
8759
            break;
154
        }
155
    }
156
8933
    return est;
157
}
158
159
int ff_lpc_calc_ref_coefs(LPCContext *s,
160
                          const int32_t *samples, int order, double *ref)
161
{
162
    double autoc[MAX_LPC_ORDER + 1];
163
164
    s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples);
165
    s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc);
166
    compute_ref_coefs(autoc, order, ref, NULL);
167
168
    return order;
169
}
170
171
3764
double ff_lpc_calc_ref_coefs_f(LPCContext *s, const float *samples, int len,
172
                               int order, double *ref)
173
{
174
    int i;
175
3764
    double signal = 0.0f, avg_err = 0.0f;
176
3764
    double autoc[MAX_LPC_ORDER+1] = {0}, error[MAX_LPC_ORDER+1] = {0};
177
3764
    const double a = 0.5f, b = 1.0f - a;
178
179
    /* Apply windowing */
180
1090012
    for (i = 0; i <= len / 2; i++) {
181
1086248
        double weight = a - b*cos((2*M_PI*i)/(len - 1));
182
1086248
        s->windowed_samples[i] = weight*samples[i];
183
1086248
        s->windowed_samples[len-1-i] = weight*samples[len-1-i];
184
    }
185
186
3764
    s->lpc_compute_autocorr(s->windowed_samples, len, order, autoc);
187
3764
    signal = autoc[0];
188
3764
    compute_ref_coefs(autoc, order, ref, error);
189
46852
    for (i = 0; i < order; i++)
190
43088
        avg_err = (avg_err + error[i])/2.0f;
191
3764
    return signal/avg_err;
192
}
193
194
/**
195
 * Calculate LPC coefficients for multiple orders
196
 *
197
 * @param lpc_type LPC method for determining coefficients,
198
 *                 see #FFLPCType for details
199
 */
200
9169
int ff_lpc_calc_coefs(LPCContext *s,
201
                      const int32_t *samples, int blocksize, int min_order,
202
                      int max_order, int precision,
203
                      int32_t coefs[][MAX_LPC_ORDER], int *shift,
204
                      enum FFLPCType lpc_type, int lpc_passes,
205
                      int omethod, int min_shift, int max_shift, int zero_shift)
206
{
207
    double autoc[MAX_LPC_ORDER+1];
208
9169
    double ref[MAX_LPC_ORDER] = { 0 };
209
    double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
210
9169
    int i, j, pass = 0;
211
    int opt_order;
212
213
    av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
214
           lpc_type > FF_LPC_TYPE_FIXED);
215

9169
    av_assert0(lpc_type == FF_LPC_TYPE_CHOLESKY || lpc_type == FF_LPC_TYPE_LEVINSON);
216
217
    /* reinit LPC context if parameters have changed */
218

9169
    if (blocksize != s->blocksize || max_order != s->max_order ||
219
9156
        lpc_type  != s->lpc_type) {
220
14
        ff_lpc_end(s);
221
14
        ff_lpc_init(s, blocksize, max_order, lpc_type);
222
    }
223
224
9169
    if(lpc_passes <= 0)
225
2589
        lpc_passes = 2;
226
227

9169
    if (lpc_type == FF_LPC_TYPE_LEVINSON || (lpc_type == FF_LPC_TYPE_CHOLESKY && lpc_passes > 1)) {
228
9169
        s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples);
229
230
9169
        s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc);
231
232
9169
        compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
233
234
106947
        for(i=0; i<max_order; i++)
235
97778
            ref[i] = fabs(lpc[i][i]);
236
237
9169
        pass++;
238
    }
239
240
9169
    if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
241
182
        LLSModel *m = s->lls_models;
242
182
        LOCAL_ALIGNED(32, double, var, [FFALIGN(MAX_LPC_ORDER+1,4)]);
243
182
        double av_uninit(weight);
244
182
        memset(var, 0, FFALIGN(MAX_LPC_ORDER+1,4)*sizeof(*var));
245
246
1638
        for(j=0; j<max_order; j++)
247
1456
            m[0].coeff[max_order-1][j] = -lpc[max_order-1][j];
248
249
364
        for(; pass<lpc_passes; pass++){
250
182
            avpriv_init_lls(&m[pass&1], max_order);
251
252
182
            weight=0;
253
836626
            for(i=max_order; i<blocksize; i++){
254
8364440
                for(j=0; j<=max_order; j++)
255
7527996
                    var[j]= samples[i-j];
256
257
836444
                if(pass){
258
                    double eval, inv, rinv;
259
836444
                    eval= m[pass&1].evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
260
836444
                    eval= (512>>pass) + fabs(eval - var[0]);
261
836444
                    inv = 1/eval;
262
836444
                    rinv = sqrt(inv);
263
8364440
                    for(j=0; j<=max_order; j++)
264
7527996
                        var[j] *= rinv;
265
836444
                    weight += inv;
266
                }else
267
                    weight++;
268
269
836444
                m[pass&1].update_lls(&m[pass&1], var);
270
            }
271
182
            avpriv_solve_lls(&m[pass&1], 0.001, 0);
272
        }
273
274
1638
        for(i=0; i<max_order; i++){
275
13104
            for(j=0; j<max_order; j++)
276
11648
                lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
277
1456
            ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
278
        }
279
1456
        for(i=max_order-1; i>0; i--)
280
1274
            ref[i] = ref[i-1] - ref[i];
281
    }
282
283
9169
    opt_order = max_order;
284
285
9169
    if(omethod == ORDER_METHOD_EST) {
286
8933
        opt_order = estimate_best_order(ref, min_order, max_order);
287
8933
        i = opt_order-1;
288
8933
        quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
289
                           min_shift, max_shift, zero_shift);
290
    } else {
291
3068
        for(i=min_order-1; i<max_order; i++) {
292
2832
            quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
293
                               min_shift, max_shift, zero_shift);
294
        }
295
    }
296
297
9169
    return opt_order;
298
}
299
300
63
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
301
                        enum FFLPCType lpc_type)
302
{
303
63
    s->blocksize = blocksize;
304
63
    s->max_order = max_order;
305
63
    s->lpc_type  = lpc_type;
306
307
63
    s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) *
308
                                    sizeof(*s->windowed_samples));
309
63
    if (!s->windowed_buffer)
310
        return AVERROR(ENOMEM);
311
63
    s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4);
312
313
63
    s->lpc_apply_welch_window = lpc_apply_welch_window_c;
314
63
    s->lpc_compute_autocorr   = lpc_compute_autocorr_c;
315
316
    if (ARCH_X86)
317
63
        ff_lpc_init_x86(s);
318
319
63
    return 0;
320
}
321
322
63
av_cold void ff_lpc_end(LPCContext *s)
323
{
324
63
    av_freep(&s->windowed_buffer);
325
63
}