GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/lagarith.c Lines: 284 383 74.2 %
Date: 2019-11-18 18:00:01 Branches: 141 204 69.1 %

Line Branch Exec Source
1
/*
2
 * Lagarith lossless decoder
3
 * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * Lagarith lossless decoder
25
 * @author Nathan Caldwell
26
 */
27
28
#include <inttypes.h>
29
30
#include "avcodec.h"
31
#include "get_bits.h"
32
#include "mathops.h"
33
#include "lagarithrac.h"
34
#include "lossless_videodsp.h"
35
#include "thread.h"
36
37
enum LagarithFrameType {
38
    FRAME_RAW           = 1,    /**< uncompressed */
39
    FRAME_U_RGB24       = 2,    /**< unaligned RGB24 */
40
    FRAME_ARITH_YUY2    = 3,    /**< arithmetic coded YUY2 */
41
    FRAME_ARITH_RGB24   = 4,    /**< arithmetic coded RGB24 */
42
    FRAME_SOLID_GRAY    = 5,    /**< solid grayscale color frame */
43
    FRAME_SOLID_COLOR   = 6,    /**< solid non-grayscale color frame */
44
    FRAME_OLD_ARITH_RGB = 7,    /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
45
    FRAME_ARITH_RGBA    = 8,    /**< arithmetic coded RGBA */
46
    FRAME_SOLID_RGBA    = 9,    /**< solid RGBA color frame */
47
    FRAME_ARITH_YV12    = 10,   /**< arithmetic coded YV12 */
48
    FRAME_REDUCED_RES   = 11,   /**< reduced resolution YV12 frame */
49
};
50
51
typedef struct LagarithContext {
52
    AVCodecContext *avctx;
53
    LLVidDSPContext llviddsp;
54
    int zeros;                  /**< number of consecutive zero bytes encountered */
55
    int zeros_rem;              /**< number of zero bytes remaining to output */
56
} LagarithContext;
57
58
/**
59
 * Compute the 52-bit mantissa of 1/(double)denom.
60
 * This crazy format uses floats in an entropy coder and we have to match x86
61
 * rounding exactly, thus ordinary floats aren't portable enough.
62
 * @param denom denominator
63
 * @return 52-bit mantissa
64
 * @see softfloat_mul
65
 */
66
128
static uint64_t softfloat_reciprocal(uint32_t denom)
67
{
68
128
    int shift = av_log2(denom - 1) + 1;
69
128
    uint64_t ret = (1ULL << 52) / denom;
70
128
    uint64_t err = (1ULL << 52) - ret * denom;
71
128
    ret <<= shift;
72
128
    err <<= shift;
73
128
    err +=  denom / 2;
74
128
    return ret + err / denom;
75
}
76
77
/**
78
 * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
79
 * Used in combination with softfloat_reciprocal computes x/(double)denom.
80
 * @param x 32-bit integer factor
81
 * @param mantissa mantissa of f with exponent 0
82
 * @return 32-bit integer value (x*f)
83
 * @see softfloat_reciprocal
84
 */
85
32768
static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
86
{
87
32768
    uint64_t l = x * (mantissa & 0xffffffff);
88
32768
    uint64_t h = x * (mantissa >> 32);
89
32768
    h += l >> 32;
90
32768
    l &= 0xffffffff;
91
32768
    l += 1LL << av_log2(h >> 21);
92
32768
    h += l >> 32;
93
32768
    return h >> 20;
94
}
95
96
466504
static uint8_t lag_calc_zero_run(int8_t x)
97
{
98
466504
    return (x * 2) ^ (x >> 7);
99
}
100
101
21472
static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
102
{
103
    static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
104
    int i;
105
21472
    int bit     = 0;
106
21472
    int bits    = 0;
107
21472
    int prevbit = 0;
108
    unsigned val;
109
110
99357
    for (i = 0; i < 7; i++) {
111

99255
        if (prevbit && bit)
112
21370
            break;
113
77885
        prevbit = bit;
114
77885
        bit = get_bits1(gb);
115

77885
        if (bit && !prevbit)
116
26960
            bits += series[i];
117
    }
118
21472
    bits--;
119

21472
    if (bits < 0 || bits > 31) {
120
        *value = 0;
121
        return -1;
122
21472
    } else if (bits == 0) {
123
3939
        *value = 0;
124
3939
        return 0;
125
    }
126
127
17533
    val  = get_bits_long(gb, bits);
128
17533
    val |= 1U << bits;
129
130
17533
    *value = val - 1;
131
132
17533
    return 0;
133
}
134
135
130
static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
136
{
137
    int i, j, scale_factor;
138
    unsigned prob, cumulative_target;
139
130
    unsigned cumul_prob = 0;
140
130
    unsigned scaled_cumul_prob = 0;
141
130
    int nnz = 0;
142
143
130
    rac->prob[0] = 0;
144
130
    rac->prob[257] = UINT_MAX;
145
    /* Read probabilities from bitstream */
146
18868
    for (i = 1; i < 257; i++) {
147
18738
        if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
148
            av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
149
            return -1;
150
        }
151
18738
        if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
152
            av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
153
            return -1;
154
        }
155
18738
        cumul_prob += rac->prob[i];
156
18738
        if (!rac->prob[i]) {
157
2734
            if (lag_decode_prob(gb, &prob)) {
158
                av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
159
                return -1;
160
            }
161
2734
            if (prob > 256 - i)
162
                prob = 256 - i;
163
17276
            for (j = 0; j < prob; j++)
164
14542
                rac->prob[++i] = 0;
165
        }else {
166
16004
            nnz++;
167
        }
168
    }
169
170
130
    if (!cumul_prob) {
171
        av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
172
        return -1;
173
    }
174
175

130
    if (nnz == 1 && (show_bits_long(gb, 32) & 0xFFFFFF)) {
176
        return AVERROR_INVALIDDATA;
177
    }
178
179
    /* Scale probabilities so cumulative probability is an even power of 2. */
180
130
    scale_factor = av_log2(cumul_prob);
181
182
130
    if (cumul_prob & (cumul_prob - 1)) {
183
128
        uint64_t mul = softfloat_reciprocal(cumul_prob);
184
16512
        for (i = 1; i <= 128; i++) {
185
16384
            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
186
16384
            scaled_cumul_prob += rac->prob[i];
187
        }
188
128
        if (scaled_cumul_prob <= 0) {
189
            av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n");
190
            return AVERROR_INVALIDDATA;
191
        }
192
16512
        for (; i < 257; i++) {
193
16384
            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
194
16384
            scaled_cumul_prob += rac->prob[i];
195
        }
196
197
128
        scale_factor++;
198
128
        if (scale_factor >= 32U)
199
            return AVERROR_INVALIDDATA;
200
128
        cumulative_target = 1U << scale_factor;
201
202
128
        if (scaled_cumul_prob > cumulative_target) {
203
            av_log(rac->avctx, AV_LOG_ERROR,
204
                   "Scaled probabilities are larger than target!\n");
205
            return -1;
206
        }
207
208
128
        scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
209
210
13440
        for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
211
13312
            if (rac->prob[i]) {
212
7476
                rac->prob[i]++;
213
7476
                scaled_cumul_prob--;
214
            }
215
            /* Comment from reference source:
216
             * if (b & 0x80 == 0) {     // order of operations is 'wrong'; it has been left this way
217
             *                          // since the compression change is negligible and fixing it
218
             *                          // breaks backwards compatibility
219
             *      b =- (signed int)b;
220
             *      b &= 0xFF;
221
             * } else {
222
             *      b++;
223
             *      b &= 0x7f;
224
             * }
225
             */
226
        }
227
    }
228
229
130
    rac->scale = scale_factor;
230
231
    /* Fill probability array with cumulative probability for each symbol. */
232
33410
    for (i = 1; i < 257; i++)
233
33280
        rac->prob[i] += rac->prob[i - 1];
234
235
130
    return 0;
236
}
237
238
50756
static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
239
                                      uint8_t *diff, int w, int *left,
240
                                      int *left_top)
241
{
242
    /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
243
     * However the &0xFF on the gradient predictor yields incorrect output
244
     * for lagarith.
245
     */
246
    int i;
247
    uint8_t l, lt;
248
249
50756
    l  = *left;
250
50756
    lt = *left_top;
251
252
34347300
    for (i = 0; i < w; i++) {
253
34296544
        l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
254
34296544
        lt = src1[i];
255
34296544
        dst[i] = l;
256
    }
257
258
50756
    *left     = l;
259
50756
    *left_top = lt;
260
50756
}
261
262
50880
static void lag_pred_line(LagarithContext *l, uint8_t *buf,
263
                          int width, int stride, int line)
264
{
265
    int L, TL;
266
267
50880
    if (!line) {
268
        /* Left prediction only for first line */
269
124
        L = l->llviddsp.add_left_pred(buf, buf, width, 0);
270
    } else {
271
        /* Left pixel is actually prev_row[width] */
272
50756
        L = buf[width - stride - 1];
273
274
50756
        if (line == 1) {
275
            /* Second line, left predict first pixel, the rest of the line is median predicted
276
             * NOTE: In the case of RGB this pixel is top predicted */
277
124
            TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
278
        } else {
279
            /* Top left is 2 rows back, last pixel */
280
50632
            TL = buf[width - (2 * stride) - 1];
281
        }
282
283
50756
        add_lag_median_prediction(buf, buf - stride, buf,
284
                                  width, &L, &TL);
285
    }
286
50880
}
287
288
4608
static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
289
                               int width, int stride, int line,
290
                               int is_luma)
291
{
292
    int L, TL;
293
294
4608
    if (!line) {
295
6
        L= buf[0];
296
6
        if (is_luma)
297
2
            buf[0] = 0;
298
6
        l->llviddsp.add_left_pred(buf, buf, width, 0);
299
6
        if (is_luma)
300
2
            buf[0] = L;
301
6
        return;
302
    }
303
4602
    if (line == 1) {
304
6
        const int HEAD = is_luma ? 4 : 2;
305
        int i;
306
307
6
        L  = buf[width - stride - 1];
308
6
        TL = buf[HEAD  - stride - 1];
309
22
        for (i = 0; i < HEAD; i++) {
310
16
            L += buf[i];
311
16
            buf[i] = L;
312
        }
313
4086
        for (; i < width; i++) {
314
4080
            L      = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
315
4080
            TL     = buf[i - stride];
316
4080
            buf[i] = L;
317
        }
318
    } else {
319
4596
        TL = buf[width - (2 * stride) - 1];
320
4596
        L  = buf[width - stride - 1];
321
4596
        l->llviddsp.add_median_pred(buf, buf - stride, buf, width, &L, &TL);
322
    }
323
}
324
325
55488
static int lag_decode_line(LagarithContext *l, lag_rac *rac,
326
                           uint8_t *dst, int width, int stride,
327
                           int esc_count)
328
{
329
55488
    int i = 0;
330
55488
    int ret = 0;
331
332
55488
    if (!esc_count)
333
1656
        esc_count = -1;
334
335
    /* Output any zeros remaining from the previous run */
336
53832
handle_zeros:
337
521992
    if (l->zeros_rem) {
338
381611
        int count = FFMIN(l->zeros_rem, width - i);
339
381611
        memset(dst + i, 0, count);
340
381611
        i += count;
341
381611
        l->zeros_rem -= count;
342
    }
343
344
4207733
    while (i < width) {
345
4152245
        dst[i] = lag_get_rac(rac);
346
4152245
        ret++;
347
348
4152245
        if (dst[i])
349
2803136
            l->zeros = 0;
350
        else
351
1349109
            l->zeros++;
352
353
4152245
        i++;
354
4152245
        if (l->zeros == esc_count) {
355
466504
            int index = lag_get_rac(rac);
356
466504
            ret++;
357
358
466504
            l->zeros = 0;
359
360
466504
            l->zeros_rem = lag_calc_zero_run(index);
361
466504
            goto handle_zeros;
362
        }
363
    }
364
55488
    return ret;
365
}
366
367
static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
368
                                    const uint8_t *src, const uint8_t *src_end,
369
                                    int width, int esc_count)
370
{
371
    int i = 0;
372
    int count;
373
    uint8_t zero_run = 0;
374
    const uint8_t *src_start = src;
375
    uint8_t mask1 = -(esc_count < 2);
376
    uint8_t mask2 = -(esc_count < 3);
377
    uint8_t *end = dst + (width - 2);
378
379
    avpriv_request_sample(l->avctx, "zero_run_line");
380
381
    memset(dst, 0, width);
382
383
output_zeros:
384
    if (l->zeros_rem) {
385
        count = FFMIN(l->zeros_rem, width - i);
386
        if (end - dst < count) {
387
            av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
388
            return AVERROR_INVALIDDATA;
389
        }
390
391
        memset(dst, 0, count);
392
        l->zeros_rem -= count;
393
        dst += count;
394
    }
395
396
    while (dst < end) {
397
        i = 0;
398
        while (!zero_run && dst + i < end) {
399
            i++;
400
            if (i+2 >= src_end - src)
401
                return AVERROR_INVALIDDATA;
402
            zero_run =
403
                !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
404
        }
405
        if (zero_run) {
406
            zero_run = 0;
407
            i += esc_count;
408
            memcpy(dst, src, i);
409
            dst += i;
410
            l->zeros_rem = lag_calc_zero_run(src[i]);
411
412
            src += i + 1;
413
            goto output_zeros;
414
        } else {
415
            memcpy(dst, src, i);
416
            src += i;
417
            dst += i;
418
        }
419
    }
420
    return  src - src_start;
421
}
422
423
424
425
140
static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
426
                                  int width, int height, int stride,
427
                                  const uint8_t *src, int src_size)
428
{
429
140
    int i = 0;
430
140
    int read = 0;
431
    uint32_t length;
432
140
    uint32_t offset = 1;
433
    int esc_count;
434
    GetBitContext gb;
435
    lag_rac rac;
436
140
    const uint8_t *src_end = src + src_size;
437
    int ret;
438
439
140
    rac.avctx = l->avctx;
440
140
    l->zeros = 0;
441
442
140
    if(src_size < 2)
443
        return AVERROR_INVALIDDATA;
444
445
140
    esc_count = src[0];
446
140
    if (esc_count < 4) {
447
130
        length = width * height;
448
130
        if(src_size < 5)
449
            return AVERROR_INVALIDDATA;
450

130
        if (esc_count && AV_RL32(src + 1) < length) {
451
127
            length = AV_RL32(src + 1);
452
127
            offset += 4;
453
        }
454
455
130
        if ((ret = init_get_bits8(&gb, src + offset, src_size - offset)) < 0)
456
            return ret;
457
458
130
        if (lag_read_prob_header(&rac, &gb) < 0)
459
            return -1;
460
461
130
        ff_lag_rac_init(&rac, &gb, length - stride);
462
55618
        for (i = 0; i < height; i++) {
463
55488
            if (rac.overread > MAX_OVERREAD)
464
                return AVERROR_INVALIDDATA;
465
55488
            read += lag_decode_line(l, &rac, dst + (i * stride), width,
466
                                    stride, esc_count);
467
        }
468
469
130
        if (read > length)
470
            av_log(l->avctx, AV_LOG_WARNING,
471
                   "Output more bytes than length (%d of %"PRIu32")\n", read,
472
                   length);
473
10
    } else if (esc_count < 8) {
474
        esc_count -= 4;
475
        src ++;
476
        src_size --;
477
        if (esc_count > 0) {
478
            /* Zero run coding only, no range coding. */
479
            for (i = 0; i < height; i++) {
480
                int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
481
                                                   src_end, width, esc_count);
482
                if (res < 0)
483
                    return res;
484
                src += res;
485
            }
486
        } else {
487
            if (src_size < width * height)
488
                return AVERROR_INVALIDDATA; // buffer not big enough
489
            /* Plane is stored uncompressed */
490
            for (i = 0; i < height; i++) {
491
                memcpy(dst + (i * stride), src, width);
492
                src += width;
493
            }
494
        }
495
10
    } else if (esc_count == 0xff) {
496
        /* Plane is a solid run of given value */
497
3610
        for (i = 0; i < height; i++)
498
3600
            memset(dst + i * stride, src[1], width);
499
        /* Do not apply prediction.
500
           Note: memset to 0 above, setting first value to src[1]
501
           and applying prediction gives the same result. */
502
10
        return 0;
503
    } else {
504
        av_log(l->avctx, AV_LOG_ERROR,
505
               "Invalid zero run escape code! (%#x)\n", esc_count);
506
        return -1;
507
    }
508
509
130
    if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
510
51004
        for (i = 0; i < height; i++) {
511
50880
            lag_pred_line(l, dst, width, stride, i);
512
50880
            dst += stride;
513
        }
514
    } else {
515
4614
        for (i = 0; i < height; i++) {
516
4608
            lag_pred_line_yuy2(l, dst, width, stride, i,
517
4608
                               width == l->avctx->width);
518
4608
            dst += stride;
519
        }
520
    }
521
522
130
    return 0;
523
}
524
525
/**
526
 * Decode a frame.
527
 * @param avctx codec context
528
 * @param data output AVFrame
529
 * @param data_size size of output data or 0 if no picture is returned
530
 * @param avpkt input packet
531
 * @return number of consumed bytes on success or negative if decode fails
532
 */
533
82
static int lag_decode_frame(AVCodecContext *avctx,
534
                            void *data, int *got_frame, AVPacket *avpkt)
535
{
536
82
    const uint8_t *buf = avpkt->data;
537
82
    unsigned int buf_size = avpkt->size;
538
82
    LagarithContext *l = avctx->priv_data;
539
82
    ThreadFrame frame = { .f = data };
540
82
    AVFrame *const p  = data;
541
    uint8_t frametype;
542
82
    uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
543
    uint32_t offs[4];
544
    uint8_t *srcs[4];
545
82
    int i, j, planes = 3;
546
    int ret;
547
548
82
    p->key_frame = 1;
549
82
    p->pict_type = AV_PICTURE_TYPE_I;
550
551
82
    frametype = buf[0];
552
553
82
    offset_gu = AV_RL32(buf + 1);
554
82
    offset_bv = AV_RL32(buf + 5);
555
556


82
    switch (frametype) {
557
6
    case FRAME_SOLID_RGBA:
558
6
        avctx->pix_fmt = AV_PIX_FMT_GBRAP;
559
16
    case FRAME_SOLID_GRAY:
560
16
        if (frametype == FRAME_SOLID_GRAY)
561
10
            if (avctx->bits_per_coded_sample == 24) {
562
10
                avctx->pix_fmt = AV_PIX_FMT_GBRP;
563
            } else {
564
                avctx->pix_fmt = AV_PIX_FMT_GBRAP;
565
                planes = 4;
566
            }
567
568
16
        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
569
            return ret;
570
571
16
        if (frametype == FRAME_SOLID_RGBA) {
572
2886
            for (i = 0; i < avctx->height; i++) {
573
2880
                memset(p->data[0] + i * p->linesize[0], buf[2], avctx->width);
574
2880
                memset(p->data[1] + i * p->linesize[1], buf[1], avctx->width);
575
2880
                memset(p->data[2] + i * p->linesize[2], buf[3], avctx->width);
576
2880
                memset(p->data[3] + i * p->linesize[3], buf[4], avctx->width);
577
            }
578
        } else {
579
3610
            for (i = 0; i < avctx->height; i++) {
580
14400
                for (j = 0; j < planes; j++)
581
10800
                    memset(p->data[j] + i * p->linesize[j], buf[1], avctx->width);
582
            }
583
        }
584
16
        break;
585
26
    case FRAME_SOLID_COLOR:
586
26
        if (avctx->bits_per_coded_sample == 24) {
587
26
            avctx->pix_fmt = AV_PIX_FMT_GBRP;
588
        } else {
589
            avctx->pix_fmt = AV_PIX_FMT_GBRAP;
590
        }
591
592
26
        if ((ret = ff_thread_get_buffer(avctx, &frame,0)) < 0)
593
            return ret;
594
595
6266
        for (i = 0; i < avctx->height; i++) {
596
6240
            memset(p->data[0] + i * p->linesize[0], buf[2], avctx->width);
597
6240
            memset(p->data[1] + i * p->linesize[1], buf[1], avctx->width);
598
6240
            memset(p->data[2] + i * p->linesize[2], buf[3], avctx->width);
599
6240
            if (avctx->pix_fmt == AV_PIX_FMT_GBRAP)
600
                memset(p->data[3] + i * p->linesize[3], 0xFFu, avctx->width);
601
        }
602
26
        break;
603
20
    case FRAME_ARITH_RGBA:
604
20
        avctx->pix_fmt = AV_PIX_FMT_GBRAP;
605
20
        planes = 4;
606
20
        offset_ry += 4;
607
20
        offs[3] = AV_RL32(buf + 9);
608
35
    case FRAME_ARITH_RGB24:
609
    case FRAME_U_RGB24:
610

35
        if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
611
15
            avctx->pix_fmt = AV_PIX_FMT_GBRP;
612
613
35
        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
614
            return ret;
615
616
35
        offs[0] = offset_bv;
617
35
        offs[1] = offset_gu;
618
35
        offs[2] = offset_ry;
619
620
160
        for (i = 0; i < planes; i++)
621
125
            srcs[i] = p->data[i] + (avctx->height - 1) * p->linesize[i];
622
160
        for (i = 0; i < planes; i++)
623
125
            if (buf_size <= offs[i]) {
624
                av_log(avctx, AV_LOG_ERROR,
625
                        "Invalid frame offsets\n");
626
                return AVERROR_INVALIDDATA;
627
            }
628
629
160
        for (i = 0; i < planes; i++)
630
125
            lag_decode_arith_plane(l, srcs[i],
631
                                   avctx->width, avctx->height,
632
125
                                   -p->linesize[i], buf + offs[i],
633
125
                                   buf_size - offs[i]);
634
14515
        for (i = 0; i < avctx->height; i++) {
635
14480
            l->llviddsp.add_bytes(p->data[0] + i * p->linesize[0], p->data[1] + i * p->linesize[1], avctx->width);
636
14480
            l->llviddsp.add_bytes(p->data[2] + i * p->linesize[2], p->data[1] + i * p->linesize[1], avctx->width);
637
        }
638
35
        FFSWAP(uint8_t*, p->data[0], p->data[1]);
639
35
        FFSWAP(int, p->linesize[0], p->linesize[1]);
640
35
        FFSWAP(uint8_t*, p->data[2], p->data[1]);
641
35
        FFSWAP(int, p->linesize[2], p->linesize[1]);
642
35
        break;
643
2
    case FRAME_ARITH_YUY2:
644
2
        avctx->pix_fmt = AV_PIX_FMT_YUV422P;
645
646
2
        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
647
            return ret;
648
649

2
        if (offset_ry >= buf_size ||
650
2
            offset_gu >= buf_size ||
651
            offset_bv >= buf_size) {
652
            av_log(avctx, AV_LOG_ERROR,
653
                   "Invalid frame offsets\n");
654
            return AVERROR_INVALIDDATA;
655
        }
656
657
2
        lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
658
                               p->linesize[0], buf + offset_ry,
659
2
                               buf_size - offset_ry);
660
2
        lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
661
                               avctx->height, p->linesize[1],
662
2
                               buf + offset_gu, buf_size - offset_gu);
663
2
        lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
664
                               avctx->height, p->linesize[2],
665
2
                               buf + offset_bv, buf_size - offset_bv);
666
2
        break;
667
3
    case FRAME_ARITH_YV12:
668
3
        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
669
670
3
        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
671
            return ret;
672
673

3
        if (offset_ry >= buf_size ||
674
3
            offset_gu >= buf_size ||
675
            offset_bv >= buf_size) {
676
            av_log(avctx, AV_LOG_ERROR,
677
                   "Invalid frame offsets\n");
678
            return AVERROR_INVALIDDATA;
679
        }
680
681
3
        lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
682
                               p->linesize[0], buf + offset_ry,
683
3
                               buf_size - offset_ry);
684
3
        lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
685
3
                               (avctx->height + 1) / 2, p->linesize[2],
686
3
                               buf + offset_gu, buf_size - offset_gu);
687
3
        lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
688
3
                               (avctx->height + 1) / 2, p->linesize[1],
689
3
                               buf + offset_bv, buf_size - offset_bv);
690
3
        break;
691
    default:
692
        av_log(avctx, AV_LOG_ERROR,
693
               "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
694
        return AVERROR_PATCHWELCOME;
695
    }
696
697
82
    *got_frame = 1;
698
699
82
    return buf_size;
700
}
701
702
20
static av_cold int lag_decode_init(AVCodecContext *avctx)
703
{
704
20
    LagarithContext *l = avctx->priv_data;
705
20
    l->avctx = avctx;
706
707
20
    ff_llviddsp_init(&l->llviddsp);
708
709
20
    return 0;
710
}
711
712
#if HAVE_THREADS
713
static av_cold int lag_decode_init_thread_copy(AVCodecContext *avctx)
714
{
715
    LagarithContext *l = avctx->priv_data;
716
    l->avctx = avctx;
717
718
    return 0;
719
}
720
#endif
721
722
AVCodec ff_lagarith_decoder = {
723
    .name           = "lagarith",
724
    .long_name      = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
725
    .type           = AVMEDIA_TYPE_VIDEO,
726
    .id             = AV_CODEC_ID_LAGARITH,
727
    .priv_data_size = sizeof(LagarithContext),
728
    .init           = lag_decode_init,
729
    .init_thread_copy = ONLY_IF_THREADS_ENABLED(lag_decode_init_thread_copy),
730
    .decode         = lag_decode_frame,
731
    .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
732
};