1 |
|
|
/* |
2 |
|
|
* This file is part of the Independent JPEG Group's software. |
3 |
|
|
* |
4 |
|
|
* The authors make NO WARRANTY or representation, either express or implied, |
5 |
|
|
* with respect to this software, its quality, accuracy, merchantability, or |
6 |
|
|
* fitness for a particular purpose. This software is provided "AS IS", and |
7 |
|
|
* you, its user, assume the entire risk as to its quality and accuracy. |
8 |
|
|
* |
9 |
|
|
* This software is copyright (C) 1991-1996, Thomas G. Lane. |
10 |
|
|
* All Rights Reserved except as specified below. |
11 |
|
|
* |
12 |
|
|
* Permission is hereby granted to use, copy, modify, and distribute this |
13 |
|
|
* software (or portions thereof) for any purpose, without fee, subject to |
14 |
|
|
* these conditions: |
15 |
|
|
* (1) If any part of the source code for this software is distributed, then |
16 |
|
|
* this README file must be included, with this copyright and no-warranty |
17 |
|
|
* notice unaltered; and any additions, deletions, or changes to the original |
18 |
|
|
* files must be clearly indicated in accompanying documentation. |
19 |
|
|
* (2) If only executable code is distributed, then the accompanying |
20 |
|
|
* documentation must state that "this software is based in part on the work |
21 |
|
|
* of the Independent JPEG Group". |
22 |
|
|
* (3) Permission for use of this software is granted only if the user accepts |
23 |
|
|
* full responsibility for any undesirable consequences; the authors accept |
24 |
|
|
* NO LIABILITY for damages of any kind. |
25 |
|
|
* |
26 |
|
|
* These conditions apply to any software derived from or based on the IJG |
27 |
|
|
* code, not just to the unmodified library. If you use our work, you ought |
28 |
|
|
* to acknowledge us. |
29 |
|
|
* |
30 |
|
|
* Permission is NOT granted for the use of any IJG author's name or company |
31 |
|
|
* name in advertising or publicity relating to this software or products |
32 |
|
|
* derived from it. This software may be referred to only as "the Independent |
33 |
|
|
* JPEG Group's software". |
34 |
|
|
* |
35 |
|
|
* We specifically permit and encourage the use of this software as the basis |
36 |
|
|
* of commercial products, provided that all warranty or liability claims are |
37 |
|
|
* assumed by the product vendor. |
38 |
|
|
* |
39 |
|
|
* This file contains a slow-but-accurate integer implementation of the |
40 |
|
|
* forward DCT (Discrete Cosine Transform). |
41 |
|
|
* |
42 |
|
|
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
43 |
|
|
* on each column. Direct algorithms are also available, but they are |
44 |
|
|
* much more complex and seem not to be any faster when reduced to code. |
45 |
|
|
* |
46 |
|
|
* This implementation is based on an algorithm described in |
47 |
|
|
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT |
48 |
|
|
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, |
49 |
|
|
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. |
50 |
|
|
* The primary algorithm described there uses 11 multiplies and 29 adds. |
51 |
|
|
* We use their alternate method with 12 multiplies and 32 adds. |
52 |
|
|
* The advantage of this method is that no data path contains more than one |
53 |
|
|
* multiplication; this allows a very simple and accurate implementation in |
54 |
|
|
* scaled fixed-point arithmetic, with a minimal number of shifts. |
55 |
|
|
*/ |
56 |
|
|
|
57 |
|
|
/** |
58 |
|
|
* @file |
59 |
|
|
* Independent JPEG Group's slow & accurate dct. |
60 |
|
|
*/ |
61 |
|
|
|
62 |
|
|
#include "libavutil/common.h" |
63 |
|
|
#include "dct.h" |
64 |
|
|
|
65 |
|
|
#include "bit_depth_template.c" |
66 |
|
|
|
67 |
|
|
#define DCTSIZE 8 |
68 |
|
|
#define BITS_IN_JSAMPLE BIT_DEPTH |
69 |
|
|
#define GLOBAL(x) x |
70 |
|
|
#define RIGHT_SHIFT(x, n) ((x) >> (n)) |
71 |
|
|
#define MULTIPLY16C16(var,const) ((var)*(const)) |
72 |
|
|
#define DESCALE(x,n) RIGHT_SHIFT((x) + (1 << ((n) - 1)), n) |
73 |
|
|
|
74 |
|
|
|
75 |
|
|
/* |
76 |
|
|
* This module is specialized to the case DCTSIZE = 8. |
77 |
|
|
*/ |
78 |
|
|
|
79 |
|
|
#if DCTSIZE != 8 |
80 |
|
|
#error "Sorry, this code only copes with 8x8 DCTs." |
81 |
|
|
#endif |
82 |
|
|
|
83 |
|
|
|
84 |
|
|
/* |
85 |
|
|
* The poop on this scaling stuff is as follows: |
86 |
|
|
* |
87 |
|
|
* Each 1-D DCT step produces outputs which are a factor of sqrt(N) |
88 |
|
|
* larger than the true DCT outputs. The final outputs are therefore |
89 |
|
|
* a factor of N larger than desired; since N=8 this can be cured by |
90 |
|
|
* a simple right shift at the end of the algorithm. The advantage of |
91 |
|
|
* this arrangement is that we save two multiplications per 1-D DCT, |
92 |
|
|
* because the y0 and y4 outputs need not be divided by sqrt(N). |
93 |
|
|
* In the IJG code, this factor of 8 is removed by the quantization step |
94 |
|
|
* (in jcdctmgr.c), NOT in this module. |
95 |
|
|
* |
96 |
|
|
* We have to do addition and subtraction of the integer inputs, which |
97 |
|
|
* is no problem, and multiplication by fractional constants, which is |
98 |
|
|
* a problem to do in integer arithmetic. We multiply all the constants |
99 |
|
|
* by CONST_SCALE and convert them to integer constants (thus retaining |
100 |
|
|
* CONST_BITS bits of precision in the constants). After doing a |
101 |
|
|
* multiplication we have to divide the product by CONST_SCALE, with proper |
102 |
|
|
* rounding, to produce the correct output. This division can be done |
103 |
|
|
* cheaply as a right shift of CONST_BITS bits. We postpone shifting |
104 |
|
|
* as long as possible so that partial sums can be added together with |
105 |
|
|
* full fractional precision. |
106 |
|
|
* |
107 |
|
|
* The outputs of the first pass are scaled up by PASS1_BITS bits so that |
108 |
|
|
* they are represented to better-than-integral precision. These outputs |
109 |
|
|
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word |
110 |
|
|
* with the recommended scaling. (For 12-bit sample data, the intermediate |
111 |
|
|
* array is int32_t anyway.) |
112 |
|
|
* |
113 |
|
|
* To avoid overflow of the 32-bit intermediate results in pass 2, we must |
114 |
|
|
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis |
115 |
|
|
* shows that the values given below are the most effective. |
116 |
|
|
*/ |
117 |
|
|
|
118 |
|
|
#undef CONST_BITS |
119 |
|
|
#undef PASS1_BITS |
120 |
|
|
#undef OUT_SHIFT |
121 |
|
|
|
122 |
|
|
#if BITS_IN_JSAMPLE == 8 |
123 |
|
|
#define CONST_BITS 13 |
124 |
|
|
#define PASS1_BITS 4 /* set this to 2 if 16x16 multiplies are faster */ |
125 |
|
|
#define OUT_SHIFT PASS1_BITS |
126 |
|
|
#else |
127 |
|
|
#define CONST_BITS 13 |
128 |
|
|
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
129 |
|
|
#define OUT_SHIFT (PASS1_BITS + 1) |
130 |
|
|
#endif |
131 |
|
|
|
132 |
|
|
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
133 |
|
|
* causing a lot of useless floating-point operations at run time. |
134 |
|
|
* To get around this we use the following pre-calculated constants. |
135 |
|
|
* If you change CONST_BITS you may want to add appropriate values. |
136 |
|
|
* (With a reasonable C compiler, you can just rely on the FIX() macro...) |
137 |
|
|
*/ |
138 |
|
|
|
139 |
|
|
#if CONST_BITS == 13 |
140 |
|
|
#define FIX_0_298631336 ((int32_t) 2446) /* FIX(0.298631336) */ |
141 |
|
|
#define FIX_0_390180644 ((int32_t) 3196) /* FIX(0.390180644) */ |
142 |
|
|
#define FIX_0_541196100 ((int32_t) 4433) /* FIX(0.541196100) */ |
143 |
|
|
#define FIX_0_765366865 ((int32_t) 6270) /* FIX(0.765366865) */ |
144 |
|
|
#define FIX_0_899976223 ((int32_t) 7373) /* FIX(0.899976223) */ |
145 |
|
|
#define FIX_1_175875602 ((int32_t) 9633) /* FIX(1.175875602) */ |
146 |
|
|
#define FIX_1_501321110 ((int32_t) 12299) /* FIX(1.501321110) */ |
147 |
|
|
#define FIX_1_847759065 ((int32_t) 15137) /* FIX(1.847759065) */ |
148 |
|
|
#define FIX_1_961570560 ((int32_t) 16069) /* FIX(1.961570560) */ |
149 |
|
|
#define FIX_2_053119869 ((int32_t) 16819) /* FIX(2.053119869) */ |
150 |
|
|
#define FIX_2_562915447 ((int32_t) 20995) /* FIX(2.562915447) */ |
151 |
|
|
#define FIX_3_072711026 ((int32_t) 25172) /* FIX(3.072711026) */ |
152 |
|
|
#else |
153 |
|
|
#define FIX_0_298631336 FIX(0.298631336) |
154 |
|
|
#define FIX_0_390180644 FIX(0.390180644) |
155 |
|
|
#define FIX_0_541196100 FIX(0.541196100) |
156 |
|
|
#define FIX_0_765366865 FIX(0.765366865) |
157 |
|
|
#define FIX_0_899976223 FIX(0.899976223) |
158 |
|
|
#define FIX_1_175875602 FIX(1.175875602) |
159 |
|
|
#define FIX_1_501321110 FIX(1.501321110) |
160 |
|
|
#define FIX_1_847759065 FIX(1.847759065) |
161 |
|
|
#define FIX_1_961570560 FIX(1.961570560) |
162 |
|
|
#define FIX_2_053119869 FIX(2.053119869) |
163 |
|
|
#define FIX_2_562915447 FIX(2.562915447) |
164 |
|
|
#define FIX_3_072711026 FIX(3.072711026) |
165 |
|
|
#endif |
166 |
|
|
|
167 |
|
|
|
168 |
|
|
/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result. |
169 |
|
|
* For 8-bit samples with the recommended scaling, all the variable |
170 |
|
|
* and constant values involved are no more than 16 bits wide, so a |
171 |
|
|
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
172 |
|
|
* For 12-bit samples, a full 32-bit multiplication will be needed. |
173 |
|
|
*/ |
174 |
|
|
|
175 |
|
|
#if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2 |
176 |
|
|
#define MULTIPLY(var,const) MULTIPLY16C16(var,const) |
177 |
|
|
#else |
178 |
|
|
#define MULTIPLY(var,const) ((var) * (const)) |
179 |
|
|
#endif |
180 |
|
|
|
181 |
|
|
|
182 |
|
53360452 |
static av_always_inline void FUNC(row_fdct)(int16_t *data) |
183 |
|
|
{ |
184 |
|
|
int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
185 |
|
|
int tmp10, tmp11, tmp12, tmp13; |
186 |
|
|
int z1, z2, z3, z4, z5; |
187 |
|
|
int16_t *dataptr; |
188 |
|
|
int ctr; |
189 |
|
|
|
190 |
|
|
/* Pass 1: process rows. */ |
191 |
|
|
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
192 |
|
|
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
193 |
|
|
|
194 |
|
53360452 |
dataptr = data; |
195 |
✓✓ |
480244068 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
196 |
|
426883616 |
tmp0 = dataptr[0] + dataptr[7]; |
197 |
|
426883616 |
tmp7 = dataptr[0] - dataptr[7]; |
198 |
|
426883616 |
tmp1 = dataptr[1] + dataptr[6]; |
199 |
|
426883616 |
tmp6 = dataptr[1] - dataptr[6]; |
200 |
|
426883616 |
tmp2 = dataptr[2] + dataptr[5]; |
201 |
|
426883616 |
tmp5 = dataptr[2] - dataptr[5]; |
202 |
|
426883616 |
tmp3 = dataptr[3] + dataptr[4]; |
203 |
|
426883616 |
tmp4 = dataptr[3] - dataptr[4]; |
204 |
|
|
|
205 |
|
|
/* Even part per LL&M figure 1 --- note that published figure is faulty; |
206 |
|
|
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
207 |
|
|
*/ |
208 |
|
|
|
209 |
|
426883616 |
tmp10 = tmp0 + tmp3; |
210 |
|
426883616 |
tmp13 = tmp0 - tmp3; |
211 |
|
426883616 |
tmp11 = tmp1 + tmp2; |
212 |
|
426883616 |
tmp12 = tmp1 - tmp2; |
213 |
|
|
|
214 |
|
426883616 |
dataptr[0] = (int16_t) ((tmp10 + tmp11) * (1 << PASS1_BITS)); |
215 |
|
426883616 |
dataptr[4] = (int16_t) ((tmp10 - tmp11) * (1 << PASS1_BITS)); |
216 |
|
|
|
217 |
|
426883616 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
218 |
|
426883616 |
dataptr[2] = (int16_t) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), |
219 |
|
|
CONST_BITS-PASS1_BITS); |
220 |
|
426883616 |
dataptr[6] = (int16_t) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), |
221 |
|
|
CONST_BITS-PASS1_BITS); |
222 |
|
|
|
223 |
|
|
/* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
224 |
|
|
* cK represents cos(K*pi/16). |
225 |
|
|
* i0..i3 in the paper are tmp4..tmp7 here. |
226 |
|
|
*/ |
227 |
|
|
|
228 |
|
426883616 |
z1 = tmp4 + tmp7; |
229 |
|
426883616 |
z2 = tmp5 + tmp6; |
230 |
|
426883616 |
z3 = tmp4 + tmp6; |
231 |
|
426883616 |
z4 = tmp5 + tmp7; |
232 |
|
426883616 |
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ |
233 |
|
|
|
234 |
|
426883616 |
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
235 |
|
426883616 |
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
236 |
|
426883616 |
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
237 |
|
426883616 |
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
238 |
|
426883616 |
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
239 |
|
426883616 |
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
240 |
|
426883616 |
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
241 |
|
426883616 |
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
242 |
|
|
|
243 |
|
426883616 |
z3 += z5; |
244 |
|
426883616 |
z4 += z5; |
245 |
|
|
|
246 |
|
426883616 |
dataptr[7] = (int16_t) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); |
247 |
|
426883616 |
dataptr[5] = (int16_t) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); |
248 |
|
426883616 |
dataptr[3] = (int16_t) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); |
249 |
|
426883616 |
dataptr[1] = (int16_t) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); |
250 |
|
|
|
251 |
|
426883616 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
252 |
|
|
} |
253 |
|
53360452 |
} |
254 |
|
|
|
255 |
|
|
/* |
256 |
|
|
* Perform the forward DCT on one block of samples. |
257 |
|
|
*/ |
258 |
|
|
|
259 |
|
|
GLOBAL(void) |
260 |
|
53360452 |
FUNC(ff_jpeg_fdct_islow)(int16_t *data) |
261 |
|
|
{ |
262 |
|
|
int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
263 |
|
|
int tmp10, tmp11, tmp12, tmp13; |
264 |
|
|
int z1, z2, z3, z4, z5; |
265 |
|
|
int16_t *dataptr; |
266 |
|
|
int ctr; |
267 |
|
|
|
268 |
|
53360452 |
FUNC(row_fdct)(data); |
269 |
|
|
|
270 |
|
|
/* Pass 2: process columns. |
271 |
|
|
* We remove the PASS1_BITS scaling, but leave the results scaled up |
272 |
|
|
* by an overall factor of 8. |
273 |
|
|
*/ |
274 |
|
|
|
275 |
|
53360452 |
dataptr = data; |
276 |
✓✓ |
480244068 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
277 |
|
426883616 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
278 |
|
426883616 |
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
279 |
|
426883616 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
280 |
|
426883616 |
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
281 |
|
426883616 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
282 |
|
426883616 |
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
283 |
|
426883616 |
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
284 |
|
426883616 |
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
285 |
|
|
|
286 |
|
|
/* Even part per LL&M figure 1 --- note that published figure is faulty; |
287 |
|
|
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
288 |
|
|
*/ |
289 |
|
|
|
290 |
|
426883616 |
tmp10 = tmp0 + tmp3; |
291 |
|
426883616 |
tmp13 = tmp0 - tmp3; |
292 |
|
426883616 |
tmp11 = tmp1 + tmp2; |
293 |
|
426883616 |
tmp12 = tmp1 - tmp2; |
294 |
|
|
|
295 |
|
426883616 |
dataptr[DCTSIZE*0] = DESCALE(tmp10 + tmp11, OUT_SHIFT); |
296 |
|
426883616 |
dataptr[DCTSIZE*4] = DESCALE(tmp10 - tmp11, OUT_SHIFT); |
297 |
|
|
|
298 |
|
426883616 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
299 |
|
426883616 |
dataptr[DCTSIZE*2] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), |
300 |
|
|
CONST_BITS + OUT_SHIFT); |
301 |
|
426883616 |
dataptr[DCTSIZE*6] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), |
302 |
|
|
CONST_BITS + OUT_SHIFT); |
303 |
|
|
|
304 |
|
|
/* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
305 |
|
|
* cK represents cos(K*pi/16). |
306 |
|
|
* i0..i3 in the paper are tmp4..tmp7 here. |
307 |
|
|
*/ |
308 |
|
|
|
309 |
|
426883616 |
z1 = tmp4 + tmp7; |
310 |
|
426883616 |
z2 = tmp5 + tmp6; |
311 |
|
426883616 |
z3 = tmp4 + tmp6; |
312 |
|
426883616 |
z4 = tmp5 + tmp7; |
313 |
|
426883616 |
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ |
314 |
|
|
|
315 |
|
426883616 |
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
316 |
|
426883616 |
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
317 |
|
426883616 |
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
318 |
|
426883616 |
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
319 |
|
426883616 |
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
320 |
|
426883616 |
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
321 |
|
426883616 |
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
322 |
|
426883616 |
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
323 |
|
|
|
324 |
|
426883616 |
z3 += z5; |
325 |
|
426883616 |
z4 += z5; |
326 |
|
|
|
327 |
|
426883616 |
dataptr[DCTSIZE*7] = DESCALE(tmp4 + z1 + z3, CONST_BITS + OUT_SHIFT); |
328 |
|
426883616 |
dataptr[DCTSIZE*5] = DESCALE(tmp5 + z2 + z4, CONST_BITS + OUT_SHIFT); |
329 |
|
426883616 |
dataptr[DCTSIZE*3] = DESCALE(tmp6 + z2 + z3, CONST_BITS + OUT_SHIFT); |
330 |
|
426883616 |
dataptr[DCTSIZE*1] = DESCALE(tmp7 + z1 + z4, CONST_BITS + OUT_SHIFT); |
331 |
|
|
|
332 |
|
426883616 |
dataptr++; /* advance pointer to next column */ |
333 |
|
|
} |
334 |
|
53360452 |
} |
335 |
|
|
|
336 |
|
|
/* |
337 |
|
|
* The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT |
338 |
|
|
* on the rows and then, instead of doing even and odd, part on the columns |
339 |
|
|
* you do even part two times. |
340 |
|
|
*/ |
341 |
|
|
GLOBAL(void) |
342 |
|
|
FUNC(ff_fdct248_islow)(int16_t *data) |
343 |
|
|
{ |
344 |
|
|
int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
345 |
|
|
int tmp10, tmp11, tmp12, tmp13; |
346 |
|
|
int z1; |
347 |
|
|
int16_t *dataptr; |
348 |
|
|
int ctr; |
349 |
|
|
|
350 |
|
|
FUNC(row_fdct)(data); |
351 |
|
|
|
352 |
|
|
/* Pass 2: process columns. |
353 |
|
|
* We remove the PASS1_BITS scaling, but leave the results scaled up |
354 |
|
|
* by an overall factor of 8. |
355 |
|
|
*/ |
356 |
|
|
|
357 |
|
|
dataptr = data; |
358 |
|
|
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
359 |
|
|
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1]; |
360 |
|
|
tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; |
361 |
|
|
tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; |
362 |
|
|
tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; |
363 |
|
|
tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1]; |
364 |
|
|
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; |
365 |
|
|
tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; |
366 |
|
|
tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; |
367 |
|
|
|
368 |
|
|
tmp10 = tmp0 + tmp3; |
369 |
|
|
tmp11 = tmp1 + tmp2; |
370 |
|
|
tmp12 = tmp1 - tmp2; |
371 |
|
|
tmp13 = tmp0 - tmp3; |
372 |
|
|
|
373 |
|
|
dataptr[DCTSIZE*0] = DESCALE(tmp10 + tmp11, OUT_SHIFT); |
374 |
|
|
dataptr[DCTSIZE*4] = DESCALE(tmp10 - tmp11, OUT_SHIFT); |
375 |
|
|
|
376 |
|
|
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
377 |
|
|
dataptr[DCTSIZE*2] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), |
378 |
|
|
CONST_BITS+OUT_SHIFT); |
379 |
|
|
dataptr[DCTSIZE*6] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), |
380 |
|
|
CONST_BITS+OUT_SHIFT); |
381 |
|
|
|
382 |
|
|
tmp10 = tmp4 + tmp7; |
383 |
|
|
tmp11 = tmp5 + tmp6; |
384 |
|
|
tmp12 = tmp5 - tmp6; |
385 |
|
|
tmp13 = tmp4 - tmp7; |
386 |
|
|
|
387 |
|
|
dataptr[DCTSIZE*1] = DESCALE(tmp10 + tmp11, OUT_SHIFT); |
388 |
|
|
dataptr[DCTSIZE*5] = DESCALE(tmp10 - tmp11, OUT_SHIFT); |
389 |
|
|
|
390 |
|
|
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
391 |
|
|
dataptr[DCTSIZE*3] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), |
392 |
|
|
CONST_BITS + OUT_SHIFT); |
393 |
|
|
dataptr[DCTSIZE*7] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), |
394 |
|
|
CONST_BITS + OUT_SHIFT); |
395 |
|
|
|
396 |
|
|
dataptr++; /* advance pointer to next column */ |
397 |
|
|
} |
398 |
|
|
} |