GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/jfdctfst.c Lines: 71 102 69.6 %
Date: 2019-11-22 03:34:36 Branches: 4 6 66.7 %

Line Branch Exec Source
1
/*
2
 * This file is part of the Independent JPEG Group's software.
3
 *
4
 * The authors make NO WARRANTY or representation, either express or implied,
5
 * with respect to this software, its quality, accuracy, merchantability, or
6
 * fitness for a particular purpose.  This software is provided "AS IS", and
7
 * you, its user, assume the entire risk as to its quality and accuracy.
8
 *
9
 * This software is copyright (C) 1994-1996, Thomas G. Lane.
10
 * All Rights Reserved except as specified below.
11
 *
12
 * Permission is hereby granted to use, copy, modify, and distribute this
13
 * software (or portions thereof) for any purpose, without fee, subject to
14
 * these conditions:
15
 * (1) If any part of the source code for this software is distributed, then
16
 * this README file must be included, with this copyright and no-warranty
17
 * notice unaltered; and any additions, deletions, or changes to the original
18
 * files must be clearly indicated in accompanying documentation.
19
 * (2) If only executable code is distributed, then the accompanying
20
 * documentation must state that "this software is based in part on the work
21
 * of the Independent JPEG Group".
22
 * (3) Permission for use of this software is granted only if the user accepts
23
 * full responsibility for any undesirable consequences; the authors accept
24
 * NO LIABILITY for damages of any kind.
25
 *
26
 * These conditions apply to any software derived from or based on the IJG
27
 * code, not just to the unmodified library.  If you use our work, you ought
28
 * to acknowledge us.
29
 *
30
 * Permission is NOT granted for the use of any IJG author's name or company
31
 * name in advertising or publicity relating to this software or products
32
 * derived from it.  This software may be referred to only as "the Independent
33
 * JPEG Group's software".
34
 *
35
 * We specifically permit and encourage the use of this software as the basis
36
 * of commercial products, provided that all warranty or liability claims are
37
 * assumed by the product vendor.
38
 *
39
 * This file contains a fast, not so accurate integer implementation of the
40
 * forward DCT (Discrete Cosine Transform).
41
 *
42
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
43
 * on each column.  Direct algorithms are also available, but they are
44
 * much more complex and seem not to be any faster when reduced to code.
45
 *
46
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
47
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
48
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
49
 * JPEG textbook (see REFERENCES section in file README).  The following code
50
 * is based directly on figure 4-8 in P&M.
51
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
52
 * possible to arrange the computation so that many of the multiplies are
53
 * simple scalings of the final outputs.  These multiplies can then be
54
 * folded into the multiplications or divisions by the JPEG quantization
55
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
56
 * to be done in the DCT itself.
57
 * The primary disadvantage of this method is that with fixed-point math,
58
 * accuracy is lost due to imprecise representation of the scaled
59
 * quantization values.  The smaller the quantization table entry, the less
60
 * precise the scaled value, so this implementation does worse with high-
61
 * quality-setting files than with low-quality ones.
62
 */
63
64
/**
65
 * @file
66
 * Independent JPEG Group's fast AAN dct.
67
 */
68
69
#include <stdlib.h>
70
#include <stdio.h>
71
#include "libavutil/common.h"
72
#include "dct.h"
73
74
#define DCTSIZE 8
75
#define GLOBAL(x) x
76
#define RIGHT_SHIFT(x, n) ((x) >> (n))
77
78
/*
79
 * This module is specialized to the case DCTSIZE = 8.
80
 */
81
82
#if DCTSIZE != 8
83
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
84
#endif
85
86
87
/* Scaling decisions are generally the same as in the LL&M algorithm;
88
 * see jfdctint.c for more details.  However, we choose to descale
89
 * (right shift) multiplication products as soon as they are formed,
90
 * rather than carrying additional fractional bits into subsequent additions.
91
 * This compromises accuracy slightly, but it lets us save a few shifts.
92
 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
93
 * everywhere except in the multiplications proper; this saves a good deal
94
 * of work on 16-bit-int machines.
95
 *
96
 * Again to save a few shifts, the intermediate results between pass 1 and
97
 * pass 2 are not upscaled, but are represented only to integral precision.
98
 *
99
 * A final compromise is to represent the multiplicative constants to only
100
 * 8 fractional bits, rather than 13.  This saves some shifting work on some
101
 * machines, and may also reduce the cost of multiplication (since there
102
 * are fewer one-bits in the constants).
103
 */
104
105
#define CONST_BITS  8
106
107
108
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
109
 * causing a lot of useless floating-point operations at run time.
110
 * To get around this we use the following pre-calculated constants.
111
 * If you change CONST_BITS you may want to add appropriate values.
112
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
113
 */
114
115
#if CONST_BITS == 8
116
#define FIX_0_382683433  ((int32_t)   98)       /* FIX(0.382683433) */
117
#define FIX_0_541196100  ((int32_t)  139)       /* FIX(0.541196100) */
118
#define FIX_0_707106781  ((int32_t)  181)       /* FIX(0.707106781) */
119
#define FIX_1_306562965  ((int32_t)  334)       /* FIX(1.306562965) */
120
#else
121
#define FIX_0_382683433  FIX(0.382683433)
122
#define FIX_0_541196100  FIX(0.541196100)
123
#define FIX_0_707106781  FIX(0.707106781)
124
#define FIX_1_306562965  FIX(1.306562965)
125
#endif
126
127
128
/* We can gain a little more speed, with a further compromise in accuracy,
129
 * by omitting the addition in a descaling shift.  This yields an incorrectly
130
 * rounded result half the time...
131
 */
132
133
#ifndef USE_ACCURATE_ROUNDING
134
#undef DESCALE
135
#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
136
#endif
137
138
139
/* Multiply a int16_t variable by an int32_t constant, and immediately
140
 * descale to yield a int16_t result.
141
 */
142
143
#define MULTIPLY(var,const)  ((int16_t) DESCALE((var) * (const), CONST_BITS))
144
145
99700014
static av_always_inline void row_fdct(int16_t * data){
146
  int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
147
  int tmp10, tmp11, tmp12, tmp13;
148
  int z1, z2, z3, z4, z5, z11, z13;
149
  int16_t *dataptr;
150
  int ctr;
151
152
  /* Pass 1: process rows. */
153
154
99700014
  dataptr = data;
155
897300126
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
156
797600112
    tmp0 = dataptr[0] + dataptr[7];
157
797600112
    tmp7 = dataptr[0] - dataptr[7];
158
797600112
    tmp1 = dataptr[1] + dataptr[6];
159
797600112
    tmp6 = dataptr[1] - dataptr[6];
160
797600112
    tmp2 = dataptr[2] + dataptr[5];
161
797600112
    tmp5 = dataptr[2] - dataptr[5];
162
797600112
    tmp3 = dataptr[3] + dataptr[4];
163
797600112
    tmp4 = dataptr[3] - dataptr[4];
164
165
    /* Even part */
166
167
797600112
    tmp10 = tmp0 + tmp3;        /* phase 2 */
168
797600112
    tmp13 = tmp0 - tmp3;
169
797600112
    tmp11 = tmp1 + tmp2;
170
797600112
    tmp12 = tmp1 - tmp2;
171
172
797600112
    dataptr[0] = tmp10 + tmp11; /* phase 3 */
173
797600112
    dataptr[4] = tmp10 - tmp11;
174
175
797600112
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
176
797600112
    dataptr[2] = tmp13 + z1;    /* phase 5 */
177
797600112
    dataptr[6] = tmp13 - z1;
178
179
    /* Odd part */
180
181
797600112
    tmp10 = tmp4 + tmp5;        /* phase 2 */
182
797600112
    tmp11 = tmp5 + tmp6;
183
797600112
    tmp12 = tmp6 + tmp7;
184
185
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
186
797600112
    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
187
797600112
    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5;    /* c2-c6 */
188
797600112
    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5;    /* c2+c6 */
189
797600112
    z3 = MULTIPLY(tmp11, FIX_0_707106781);         /* c4 */
190
191
797600112
    z11 = tmp7 + z3;            /* phase 5 */
192
797600112
    z13 = tmp7 - z3;
193
194
797600112
    dataptr[5] = z13 + z2;      /* phase 6 */
195
797600112
    dataptr[3] = z13 - z2;
196
797600112
    dataptr[1] = z11 + z4;
197
797600112
    dataptr[7] = z11 - z4;
198
199
797600112
    dataptr += DCTSIZE;         /* advance pointer to next row */
200
  }
201
99700014
}
202
203
/*
204
 * Perform the forward DCT on one block of samples.
205
 */
206
207
GLOBAL(void)
208
99700014
ff_fdct_ifast (int16_t * data)
209
{
210
  int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
211
  int tmp10, tmp11, tmp12, tmp13;
212
  int z1, z2, z3, z4, z5, z11, z13;
213
  int16_t *dataptr;
214
  int ctr;
215
216
99700014
  row_fdct(data);
217
218
  /* Pass 2: process columns. */
219
220
99700014
  dataptr = data;
221
897300126
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
222
797600112
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
223
797600112
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
224
797600112
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
225
797600112
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
226
797600112
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
227
797600112
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
228
797600112
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
229
797600112
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
230
231
    /* Even part */
232
233
797600112
    tmp10 = tmp0 + tmp3;        /* phase 2 */
234
797600112
    tmp13 = tmp0 - tmp3;
235
797600112
    tmp11 = tmp1 + tmp2;
236
797600112
    tmp12 = tmp1 - tmp2;
237
238
797600112
    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
239
797600112
    dataptr[DCTSIZE*4] = tmp10 - tmp11;
240
241
797600112
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
242
797600112
    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
243
797600112
    dataptr[DCTSIZE*6] = tmp13 - z1;
244
245
    /* Odd part */
246
247
797600112
    tmp10 = tmp4 + tmp5;        /* phase 2 */
248
797600112
    tmp11 = tmp5 + tmp6;
249
797600112
    tmp12 = tmp6 + tmp7;
250
251
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
252
797600112
    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
253
797600112
    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
254
797600112
    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
255
797600112
    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
256
257
797600112
    z11 = tmp7 + z3;            /* phase 5 */
258
797600112
    z13 = tmp7 - z3;
259
260
797600112
    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
261
797600112
    dataptr[DCTSIZE*3] = z13 - z2;
262
797600112
    dataptr[DCTSIZE*1] = z11 + z4;
263
797600112
    dataptr[DCTSIZE*7] = z11 - z4;
264
265
797600112
    dataptr++;                  /* advance pointer to next column */
266
  }
267
99700014
}
268
269
/*
270
 * Perform the forward 2-4-8 DCT on one block of samples.
271
 */
272
273
GLOBAL(void)
274
ff_fdct_ifast248 (int16_t * data)
275
{
276
  int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
277
  int tmp10, tmp11, tmp12, tmp13;
278
  int z1;
279
  int16_t *dataptr;
280
  int ctr;
281
282
  row_fdct(data);
283
284
  /* Pass 2: process columns. */
285
286
  dataptr = data;
287
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
288
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
289
    tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
290
    tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
291
    tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
292
    tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
293
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
294
    tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
295
    tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
296
297
    /* Even part */
298
299
    tmp10 = tmp0 + tmp3;
300
    tmp11 = tmp1 + tmp2;
301
    tmp12 = tmp1 - tmp2;
302
    tmp13 = tmp0 - tmp3;
303
304
    dataptr[DCTSIZE*0] = tmp10 + tmp11;
305
    dataptr[DCTSIZE*4] = tmp10 - tmp11;
306
307
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
308
    dataptr[DCTSIZE*2] = tmp13 + z1;
309
    dataptr[DCTSIZE*6] = tmp13 - z1;
310
311
    tmp10 = tmp4 + tmp7;
312
    tmp11 = tmp5 + tmp6;
313
    tmp12 = tmp5 - tmp6;
314
    tmp13 = tmp4 - tmp7;
315
316
    dataptr[DCTSIZE*1] = tmp10 + tmp11;
317
    dataptr[DCTSIZE*5] = tmp10 - tmp11;
318
319
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
320
    dataptr[DCTSIZE*3] = tmp13 + z1;
321
    dataptr[DCTSIZE*7] = tmp13 - z1;
322
323
    dataptr++;                        /* advance pointer to next column */
324
  }
325
}
326
327
328
#undef GLOBAL
329
#undef CONST_BITS
330
#undef DESCALE
331
#undef FIX_0_541196100
332
#undef FIX_1_306562965