1 |
|
|
/* |
2 |
|
|
* This file is part of the Independent JPEG Group's software. |
3 |
|
|
* |
4 |
|
|
* The authors make NO WARRANTY or representation, either express or implied, |
5 |
|
|
* with respect to this software, its quality, accuracy, merchantability, or |
6 |
|
|
* fitness for a particular purpose. This software is provided "AS IS", and |
7 |
|
|
* you, its user, assume the entire risk as to its quality and accuracy. |
8 |
|
|
* |
9 |
|
|
* This software is copyright (C) 1994-1996, Thomas G. Lane. |
10 |
|
|
* All Rights Reserved except as specified below. |
11 |
|
|
* |
12 |
|
|
* Permission is hereby granted to use, copy, modify, and distribute this |
13 |
|
|
* software (or portions thereof) for any purpose, without fee, subject to |
14 |
|
|
* these conditions: |
15 |
|
|
* (1) If any part of the source code for this software is distributed, then |
16 |
|
|
* this README file must be included, with this copyright and no-warranty |
17 |
|
|
* notice unaltered; and any additions, deletions, or changes to the original |
18 |
|
|
* files must be clearly indicated in accompanying documentation. |
19 |
|
|
* (2) If only executable code is distributed, then the accompanying |
20 |
|
|
* documentation must state that "this software is based in part on the work |
21 |
|
|
* of the Independent JPEG Group". |
22 |
|
|
* (3) Permission for use of this software is granted only if the user accepts |
23 |
|
|
* full responsibility for any undesirable consequences; the authors accept |
24 |
|
|
* NO LIABILITY for damages of any kind. |
25 |
|
|
* |
26 |
|
|
* These conditions apply to any software derived from or based on the IJG |
27 |
|
|
* code, not just to the unmodified library. If you use our work, you ought |
28 |
|
|
* to acknowledge us. |
29 |
|
|
* |
30 |
|
|
* Permission is NOT granted for the use of any IJG author's name or company |
31 |
|
|
* name in advertising or publicity relating to this software or products |
32 |
|
|
* derived from it. This software may be referred to only as "the Independent |
33 |
|
|
* JPEG Group's software". |
34 |
|
|
* |
35 |
|
|
* We specifically permit and encourage the use of this software as the basis |
36 |
|
|
* of commercial products, provided that all warranty or liability claims are |
37 |
|
|
* assumed by the product vendor. |
38 |
|
|
* |
39 |
|
|
* This file contains a fast, not so accurate integer implementation of the |
40 |
|
|
* forward DCT (Discrete Cosine Transform). |
41 |
|
|
* |
42 |
|
|
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
43 |
|
|
* on each column. Direct algorithms are also available, but they are |
44 |
|
|
* much more complex and seem not to be any faster when reduced to code. |
45 |
|
|
* |
46 |
|
|
* This implementation is based on Arai, Agui, and Nakajima's algorithm for |
47 |
|
|
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
48 |
|
|
* Japanese, but the algorithm is described in the Pennebaker & Mitchell |
49 |
|
|
* JPEG textbook (see REFERENCES section in file README). The following code |
50 |
|
|
* is based directly on figure 4-8 in P&M. |
51 |
|
|
* While an 8-point DCT cannot be done in less than 11 multiplies, it is |
52 |
|
|
* possible to arrange the computation so that many of the multiplies are |
53 |
|
|
* simple scalings of the final outputs. These multiplies can then be |
54 |
|
|
* folded into the multiplications or divisions by the JPEG quantization |
55 |
|
|
* table entries. The AA&N method leaves only 5 multiplies and 29 adds |
56 |
|
|
* to be done in the DCT itself. |
57 |
|
|
* The primary disadvantage of this method is that with fixed-point math, |
58 |
|
|
* accuracy is lost due to imprecise representation of the scaled |
59 |
|
|
* quantization values. The smaller the quantization table entry, the less |
60 |
|
|
* precise the scaled value, so this implementation does worse with high- |
61 |
|
|
* quality-setting files than with low-quality ones. |
62 |
|
|
*/ |
63 |
|
|
|
64 |
|
|
/** |
65 |
|
|
* @file |
66 |
|
|
* Independent JPEG Group's fast AAN dct. |
67 |
|
|
*/ |
68 |
|
|
|
69 |
|
|
#include <stdlib.h> |
70 |
|
|
#include <stdio.h> |
71 |
|
|
#include "libavutil/common.h" |
72 |
|
|
#include "dct.h" |
73 |
|
|
|
74 |
|
|
#define DCTSIZE 8 |
75 |
|
|
#define GLOBAL(x) x |
76 |
|
|
#define RIGHT_SHIFT(x, n) ((x) >> (n)) |
77 |
|
|
|
78 |
|
|
/* |
79 |
|
|
* This module is specialized to the case DCTSIZE = 8. |
80 |
|
|
*/ |
81 |
|
|
|
82 |
|
|
#if DCTSIZE != 8 |
83 |
|
|
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
84 |
|
|
#endif |
85 |
|
|
|
86 |
|
|
|
87 |
|
|
/* Scaling decisions are generally the same as in the LL&M algorithm; |
88 |
|
|
* see jfdctint.c for more details. However, we choose to descale |
89 |
|
|
* (right shift) multiplication products as soon as they are formed, |
90 |
|
|
* rather than carrying additional fractional bits into subsequent additions. |
91 |
|
|
* This compromises accuracy slightly, but it lets us save a few shifts. |
92 |
|
|
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) |
93 |
|
|
* everywhere except in the multiplications proper; this saves a good deal |
94 |
|
|
* of work on 16-bit-int machines. |
95 |
|
|
* |
96 |
|
|
* Again to save a few shifts, the intermediate results between pass 1 and |
97 |
|
|
* pass 2 are not upscaled, but are represented only to integral precision. |
98 |
|
|
* |
99 |
|
|
* A final compromise is to represent the multiplicative constants to only |
100 |
|
|
* 8 fractional bits, rather than 13. This saves some shifting work on some |
101 |
|
|
* machines, and may also reduce the cost of multiplication (since there |
102 |
|
|
* are fewer one-bits in the constants). |
103 |
|
|
*/ |
104 |
|
|
|
105 |
|
|
#define CONST_BITS 8 |
106 |
|
|
|
107 |
|
|
|
108 |
|
|
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
109 |
|
|
* causing a lot of useless floating-point operations at run time. |
110 |
|
|
* To get around this we use the following pre-calculated constants. |
111 |
|
|
* If you change CONST_BITS you may want to add appropriate values. |
112 |
|
|
* (With a reasonable C compiler, you can just rely on the FIX() macro...) |
113 |
|
|
*/ |
114 |
|
|
|
115 |
|
|
#if CONST_BITS == 8 |
116 |
|
|
#define FIX_0_382683433 ((int32_t) 98) /* FIX(0.382683433) */ |
117 |
|
|
#define FIX_0_541196100 ((int32_t) 139) /* FIX(0.541196100) */ |
118 |
|
|
#define FIX_0_707106781 ((int32_t) 181) /* FIX(0.707106781) */ |
119 |
|
|
#define FIX_1_306562965 ((int32_t) 334) /* FIX(1.306562965) */ |
120 |
|
|
#else |
121 |
|
|
#define FIX_0_382683433 FIX(0.382683433) |
122 |
|
|
#define FIX_0_541196100 FIX(0.541196100) |
123 |
|
|
#define FIX_0_707106781 FIX(0.707106781) |
124 |
|
|
#define FIX_1_306562965 FIX(1.306562965) |
125 |
|
|
#endif |
126 |
|
|
|
127 |
|
|
|
128 |
|
|
/* We can gain a little more speed, with a further compromise in accuracy, |
129 |
|
|
* by omitting the addition in a descaling shift. This yields an incorrectly |
130 |
|
|
* rounded result half the time... |
131 |
|
|
*/ |
132 |
|
|
|
133 |
|
|
#ifndef USE_ACCURATE_ROUNDING |
134 |
|
|
#undef DESCALE |
135 |
|
|
#define DESCALE(x,n) RIGHT_SHIFT(x, n) |
136 |
|
|
#endif |
137 |
|
|
|
138 |
|
|
|
139 |
|
|
/* Multiply a int16_t variable by an int32_t constant, and immediately |
140 |
|
|
* descale to yield a int16_t result. |
141 |
|
|
*/ |
142 |
|
|
|
143 |
|
|
#define MULTIPLY(var,const) ((int16_t) DESCALE((var) * (const), CONST_BITS)) |
144 |
|
|
|
145 |
|
99811350 |
static av_always_inline void row_fdct(int16_t * data){ |
146 |
|
|
int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
147 |
|
|
int tmp10, tmp11, tmp12, tmp13; |
148 |
|
|
int z1, z2, z3, z4, z5, z11, z13; |
149 |
|
|
int16_t *dataptr; |
150 |
|
|
int ctr; |
151 |
|
|
|
152 |
|
|
/* Pass 1: process rows. */ |
153 |
|
|
|
154 |
|
99811350 |
dataptr = data; |
155 |
✓✓ |
898302150 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
156 |
|
798490800 |
tmp0 = dataptr[0] + dataptr[7]; |
157 |
|
798490800 |
tmp7 = dataptr[0] - dataptr[7]; |
158 |
|
798490800 |
tmp1 = dataptr[1] + dataptr[6]; |
159 |
|
798490800 |
tmp6 = dataptr[1] - dataptr[6]; |
160 |
|
798490800 |
tmp2 = dataptr[2] + dataptr[5]; |
161 |
|
798490800 |
tmp5 = dataptr[2] - dataptr[5]; |
162 |
|
798490800 |
tmp3 = dataptr[3] + dataptr[4]; |
163 |
|
798490800 |
tmp4 = dataptr[3] - dataptr[4]; |
164 |
|
|
|
165 |
|
|
/* Even part */ |
166 |
|
|
|
167 |
|
798490800 |
tmp10 = tmp0 + tmp3; /* phase 2 */ |
168 |
|
798490800 |
tmp13 = tmp0 - tmp3; |
169 |
|
798490800 |
tmp11 = tmp1 + tmp2; |
170 |
|
798490800 |
tmp12 = tmp1 - tmp2; |
171 |
|
|
|
172 |
|
798490800 |
dataptr[0] = tmp10 + tmp11; /* phase 3 */ |
173 |
|
798490800 |
dataptr[4] = tmp10 - tmp11; |
174 |
|
|
|
175 |
|
798490800 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ |
176 |
|
798490800 |
dataptr[2] = tmp13 + z1; /* phase 5 */ |
177 |
|
798490800 |
dataptr[6] = tmp13 - z1; |
178 |
|
|
|
179 |
|
|
/* Odd part */ |
180 |
|
|
|
181 |
|
798490800 |
tmp10 = tmp4 + tmp5; /* phase 2 */ |
182 |
|
798490800 |
tmp11 = tmp5 + tmp6; |
183 |
|
798490800 |
tmp12 = tmp6 + tmp7; |
184 |
|
|
|
185 |
|
|
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
186 |
|
798490800 |
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ |
187 |
|
798490800 |
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ |
188 |
|
798490800 |
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ |
189 |
|
798490800 |
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ |
190 |
|
|
|
191 |
|
798490800 |
z11 = tmp7 + z3; /* phase 5 */ |
192 |
|
798490800 |
z13 = tmp7 - z3; |
193 |
|
|
|
194 |
|
798490800 |
dataptr[5] = z13 + z2; /* phase 6 */ |
195 |
|
798490800 |
dataptr[3] = z13 - z2; |
196 |
|
798490800 |
dataptr[1] = z11 + z4; |
197 |
|
798490800 |
dataptr[7] = z11 - z4; |
198 |
|
|
|
199 |
|
798490800 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
200 |
|
|
} |
201 |
|
99811350 |
} |
202 |
|
|
|
203 |
|
|
/* |
204 |
|
|
* Perform the forward DCT on one block of samples. |
205 |
|
|
*/ |
206 |
|
|
|
207 |
|
|
GLOBAL(void) |
208 |
|
99811350 |
ff_fdct_ifast (int16_t * data) |
209 |
|
|
{ |
210 |
|
|
int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
211 |
|
|
int tmp10, tmp11, tmp12, tmp13; |
212 |
|
|
int z1, z2, z3, z4, z5, z11, z13; |
213 |
|
|
int16_t *dataptr; |
214 |
|
|
int ctr; |
215 |
|
|
|
216 |
|
99811350 |
row_fdct(data); |
217 |
|
|
|
218 |
|
|
/* Pass 2: process columns. */ |
219 |
|
|
|
220 |
|
99811350 |
dataptr = data; |
221 |
✓✓ |
898302150 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
222 |
|
798490800 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
223 |
|
798490800 |
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
224 |
|
798490800 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
225 |
|
798490800 |
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
226 |
|
798490800 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
227 |
|
798490800 |
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
228 |
|
798490800 |
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
229 |
|
798490800 |
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
230 |
|
|
|
231 |
|
|
/* Even part */ |
232 |
|
|
|
233 |
|
798490800 |
tmp10 = tmp0 + tmp3; /* phase 2 */ |
234 |
|
798490800 |
tmp13 = tmp0 - tmp3; |
235 |
|
798490800 |
tmp11 = tmp1 + tmp2; |
236 |
|
798490800 |
tmp12 = tmp1 - tmp2; |
237 |
|
|
|
238 |
|
798490800 |
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
239 |
|
798490800 |
dataptr[DCTSIZE*4] = tmp10 - tmp11; |
240 |
|
|
|
241 |
|
798490800 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ |
242 |
|
798490800 |
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
243 |
|
798490800 |
dataptr[DCTSIZE*6] = tmp13 - z1; |
244 |
|
|
|
245 |
|
|
/* Odd part */ |
246 |
|
|
|
247 |
|
798490800 |
tmp10 = tmp4 + tmp5; /* phase 2 */ |
248 |
|
798490800 |
tmp11 = tmp5 + tmp6; |
249 |
|
798490800 |
tmp12 = tmp6 + tmp7; |
250 |
|
|
|
251 |
|
|
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
252 |
|
798490800 |
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ |
253 |
|
798490800 |
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ |
254 |
|
798490800 |
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ |
255 |
|
798490800 |
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ |
256 |
|
|
|
257 |
|
798490800 |
z11 = tmp7 + z3; /* phase 5 */ |
258 |
|
798490800 |
z13 = tmp7 - z3; |
259 |
|
|
|
260 |
|
798490800 |
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
261 |
|
798490800 |
dataptr[DCTSIZE*3] = z13 - z2; |
262 |
|
798490800 |
dataptr[DCTSIZE*1] = z11 + z4; |
263 |
|
798490800 |
dataptr[DCTSIZE*7] = z11 - z4; |
264 |
|
|
|
265 |
|
798490800 |
dataptr++; /* advance pointer to next column */ |
266 |
|
|
} |
267 |
|
99811350 |
} |
268 |
|
|
|
269 |
|
|
/* |
270 |
|
|
* Perform the forward 2-4-8 DCT on one block of samples. |
271 |
|
|
*/ |
272 |
|
|
|
273 |
|
|
GLOBAL(void) |
274 |
|
|
ff_fdct_ifast248 (int16_t * data) |
275 |
|
|
{ |
276 |
|
|
int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
277 |
|
|
int tmp10, tmp11, tmp12, tmp13; |
278 |
|
|
int z1; |
279 |
|
|
int16_t *dataptr; |
280 |
|
|
int ctr; |
281 |
|
|
|
282 |
|
|
row_fdct(data); |
283 |
|
|
|
284 |
|
|
/* Pass 2: process columns. */ |
285 |
|
|
|
286 |
|
|
dataptr = data; |
287 |
|
|
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
288 |
|
|
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1]; |
289 |
|
|
tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; |
290 |
|
|
tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; |
291 |
|
|
tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; |
292 |
|
|
tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1]; |
293 |
|
|
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; |
294 |
|
|
tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; |
295 |
|
|
tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; |
296 |
|
|
|
297 |
|
|
/* Even part */ |
298 |
|
|
|
299 |
|
|
tmp10 = tmp0 + tmp3; |
300 |
|
|
tmp11 = tmp1 + tmp2; |
301 |
|
|
tmp12 = tmp1 - tmp2; |
302 |
|
|
tmp13 = tmp0 - tmp3; |
303 |
|
|
|
304 |
|
|
dataptr[DCTSIZE*0] = tmp10 + tmp11; |
305 |
|
|
dataptr[DCTSIZE*4] = tmp10 - tmp11; |
306 |
|
|
|
307 |
|
|
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); |
308 |
|
|
dataptr[DCTSIZE*2] = tmp13 + z1; |
309 |
|
|
dataptr[DCTSIZE*6] = tmp13 - z1; |
310 |
|
|
|
311 |
|
|
tmp10 = tmp4 + tmp7; |
312 |
|
|
tmp11 = tmp5 + tmp6; |
313 |
|
|
tmp12 = tmp5 - tmp6; |
314 |
|
|
tmp13 = tmp4 - tmp7; |
315 |
|
|
|
316 |
|
|
dataptr[DCTSIZE*1] = tmp10 + tmp11; |
317 |
|
|
dataptr[DCTSIZE*5] = tmp10 - tmp11; |
318 |
|
|
|
319 |
|
|
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); |
320 |
|
|
dataptr[DCTSIZE*3] = tmp13 + z1; |
321 |
|
|
dataptr[DCTSIZE*7] = tmp13 - z1; |
322 |
|
|
|
323 |
|
|
dataptr++; /* advance pointer to next column */ |
324 |
|
|
} |
325 |
|
|
} |
326 |
|
|
|
327 |
|
|
|
328 |
|
|
#undef GLOBAL |
329 |
|
|
#undef CONST_BITS |
330 |
|
|
#undef DESCALE |
331 |
|
|
#undef FIX_0_541196100 |
332 |
|
|
#undef FIX_1_306562965 |