GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/indeo3.c Lines: 383 486 78.8 %
Date: 2019-11-22 03:34:36 Branches: 243 375 64.8 %

Line Branch Exec Source
1
/*
2
 * Indeo Video v3 compatible decoder
3
 * Copyright (c) 2009 - 2011 Maxim Poliakovski
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * This is a decoder for Intel Indeo Video v3.
25
 * It is based on vector quantization, run-length coding and motion compensation.
26
 * Known container formats: .avi and .mov
27
 * Known FOURCCs: 'IV31', 'IV32'
28
 *
29
 * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
30
 */
31
32
#include "libavutil/imgutils.h"
33
#include "libavutil/intreadwrite.h"
34
#include "avcodec.h"
35
#include "copy_block.h"
36
#include "bytestream.h"
37
#include "get_bits.h"
38
#include "hpeldsp.h"
39
#include "internal.h"
40
41
#include "indeo3data.h"
42
43
/* RLE opcodes. */
44
enum {
45
    RLE_ESC_F9    = 249, ///< same as RLE_ESC_FA + do the same with next block
46
    RLE_ESC_FA    = 250, ///< INTRA: skip block, INTER: copy data from reference
47
    RLE_ESC_FB    = 251, ///< apply null delta to N blocks / skip N blocks
48
    RLE_ESC_FC    = 252, ///< same as RLE_ESC_FD + do the same with next block
49
    RLE_ESC_FD    = 253, ///< apply null delta to all remaining lines of this block
50
    RLE_ESC_FE    = 254, ///< apply null delta to all lines up to the 3rd line
51
    RLE_ESC_FF    = 255  ///< apply null delta to all lines up to the 2nd line
52
};
53
54
55
/* Some constants for parsing frame bitstream flags. */
56
#define BS_8BIT_PEL     (1 << 1) ///< 8-bit pixel bitdepth indicator
57
#define BS_KEYFRAME     (1 << 2) ///< intra frame indicator
58
#define BS_MV_Y_HALF    (1 << 4) ///< vertical mv halfpel resolution indicator
59
#define BS_MV_X_HALF    (1 << 5) ///< horizontal mv halfpel resolution indicator
60
#define BS_NONREF       (1 << 8) ///< nonref (discardable) frame indicator
61
#define BS_BUFFER        9       ///< indicates which of two frame buffers should be used
62
63
64
typedef struct Plane {
65
    uint8_t         *buffers[2];
66
    uint8_t         *pixels[2]; ///< pointer to the actual pixel data of the buffers above
67
    uint32_t        width;
68
    uint32_t        height;
69
    ptrdiff_t       pitch;
70
} Plane;
71
72
#define CELL_STACK_MAX  20
73
74
typedef struct Cell {
75
    int16_t         xpos;       ///< cell coordinates in 4x4 blocks
76
    int16_t         ypos;
77
    int16_t         width;      ///< cell width  in 4x4 blocks
78
    int16_t         height;     ///< cell height in 4x4 blocks
79
    uint8_t         tree;       ///< tree id: 0- MC tree, 1 - VQ tree
80
    const int8_t    *mv_ptr;    ///< ptr to the motion vector if any
81
} Cell;
82
83
typedef struct Indeo3DecodeContext {
84
    AVCodecContext *avctx;
85
    HpelDSPContext  hdsp;
86
87
    GetBitContext   gb;
88
    int             need_resync;
89
    int             skip_bits;
90
    const uint8_t   *next_cell_data;
91
    const uint8_t   *last_byte;
92
    const int8_t    *mc_vectors;
93
    unsigned        num_vectors;    ///< number of motion vectors in mc_vectors
94
95
    int16_t         width, height;
96
    uint32_t        frame_num;      ///< current frame number (zero-based)
97
    int             data_size;      ///< size of the frame data in bytes
98
    uint16_t        frame_flags;    ///< frame properties
99
    uint8_t         cb_offset;      ///< needed for selecting VQ tables
100
    uint8_t         buf_sel;        ///< active frame buffer: 0 - primary, 1 -secondary
101
    const uint8_t   *y_data_ptr;
102
    const uint8_t   *v_data_ptr;
103
    const uint8_t   *u_data_ptr;
104
    int32_t         y_data_size;
105
    int32_t         v_data_size;
106
    int32_t         u_data_size;
107
    const uint8_t   *alt_quant;     ///< secondary VQ table set for the modes 1 and 4
108
    Plane           planes[3];
109
} Indeo3DecodeContext;
110
111
112
static uint8_t requant_tab[8][128];
113
114
/*
115
 *  Build the static requantization table.
116
 *  This table is used to remap pixel values according to a specific
117
 *  quant index and thus avoid overflows while adding deltas.
118
 */
119
4
static av_cold void build_requant_tab(void)
120
{
121
    static const int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
122
    static const int8_t deltas [8] = { 0, 1, 0,  4,  4, 1, 0, 1 };
123
124
    int i, j, step;
125
126
36
    for (i = 0; i < 8; i++) {
127
32
        step = i + 2;
128
4128
        for (j = 0; j < 128; j++)
129
4096
                requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
130
    }
131
132
    /* some last elements calculated above will have values >= 128 */
133
    /* pixel values shall never exceed 127 so set them to non-overflowing values */
134
    /* according with the quantization step of the respective section */
135
4
    requant_tab[0][127] = 126;
136
4
    requant_tab[1][119] = 118;
137
4
    requant_tab[1][120] = 118;
138
4
    requant_tab[2][126] = 124;
139
4
    requant_tab[2][127] = 124;
140
4
    requant_tab[6][124] = 120;
141
4
    requant_tab[6][125] = 120;
142
4
    requant_tab[6][126] = 120;
143
4
    requant_tab[6][127] = 120;
144
145
    /* Patch for compatibility with the Intel's binary decoders */
146
4
    requant_tab[1][7] = 10;
147
4
    requant_tab[4][8] = 10;
148
4
}
149
150
151
4
static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
152
{
153
    int p;
154
155
4
    ctx->width = ctx->height = 0;
156
157
16
    for (p = 0; p < 3; p++) {
158
12
        av_freep(&ctx->planes[p].buffers[0]);
159
12
        av_freep(&ctx->planes[p].buffers[1]);
160
12
        ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
161
    }
162
4
}
163
164
165
4
static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
166
                                          AVCodecContext *avctx, int luma_width, int luma_height)
167
{
168
    int p, chroma_width, chroma_height;
169
    int luma_size, chroma_size;
170
    ptrdiff_t luma_pitch, chroma_pitch;
171
172

4
    if (luma_width  < 16 || luma_width  > 640 ||
173
4
        luma_height < 16 || luma_height > 480 ||
174

4
        luma_width  &  3 || luma_height &   3) {
175
        av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
176
               luma_width, luma_height);
177
        return AVERROR_INVALIDDATA;
178
    }
179
180
4
    ctx->width  = luma_width ;
181
4
    ctx->height = luma_height;
182
183
4
    chroma_width  = FFALIGN(luma_width  >> 2, 4);
184
4
    chroma_height = FFALIGN(luma_height >> 2, 4);
185
186
4
    luma_pitch   = FFALIGN(luma_width,   16);
187
4
    chroma_pitch = FFALIGN(chroma_width, 16);
188
189
    /* Calculate size of the luminance plane.  */
190
    /* Add one line more for INTRA prediction. */
191
4
    luma_size = luma_pitch * (luma_height + 1);
192
193
    /* Calculate size of a chrominance planes. */
194
    /* Add one line more for INTRA prediction. */
195
4
    chroma_size = chroma_pitch * (chroma_height + 1);
196
197
    /* allocate frame buffers */
198
16
    for (p = 0; p < 3; p++) {
199
12
        ctx->planes[p].pitch  = !p ? luma_pitch  : chroma_pitch;
200
12
        ctx->planes[p].width  = !p ? luma_width  : chroma_width;
201
12
        ctx->planes[p].height = !p ? luma_height : chroma_height;
202
203
12
        ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
204
12
        ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
205
206

12
        if (!ctx->planes[p].buffers[0] || !ctx->planes[p].buffers[1]) {
207
            free_frame_buffers(ctx);
208
            return AVERROR(ENOMEM);
209
        }
210
211
        /* fill the INTRA prediction lines with the middle pixel value = 64 */
212
12
        memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
213
12
        memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
214
215
        /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
216
12
        ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
217
12
        ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
218
12
        memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
219
12
        memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
220
    }
221
222
4
    return 0;
223
}
224
225
/**
226
 *  Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
227
 *  the cell(x, y) in the current frame.
228
 *
229
 *  @param ctx      pointer to the decoder context
230
 *  @param plane    pointer to the plane descriptor
231
 *  @param cell     pointer to the cell  descriptor
232
 */
233
1683
static int copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
234
{
235
    int     h, w, mv_x, mv_y, offset, offset_dst;
236
    uint8_t *src, *dst;
237
238
    /* setup output and reference pointers */
239
1683
    offset_dst  = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
240
1683
    dst         = plane->pixels[ctx->buf_sel] + offset_dst;
241
1683
    if(cell->mv_ptr){
242
1683
    mv_y        = cell->mv_ptr[0];
243
1683
    mv_x        = cell->mv_ptr[1];
244
    }else
245
        mv_x= mv_y= 0;
246
247
    /* -1 because there is an extra line on top for prediction */
248

1683
    if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
249
1683
        ((cell->ypos + cell->height) << 2) + mv_y > plane->height     ||
250
1683
        ((cell->xpos + cell->width)  << 2) + mv_x > plane->width) {
251
        av_log(ctx->avctx, AV_LOG_ERROR,
252
               "Motion vectors point out of the frame.\n");
253
        return AVERROR_INVALIDDATA;
254
    }
255
256
1683
    offset      = offset_dst + mv_y * plane->pitch + mv_x;
257
1683
    src         = plane->pixels[ctx->buf_sel ^ 1] + offset;
258
259
1683
    h = cell->height << 2;
260
261
4624
    for (w = cell->width; w > 0;) {
262
        /* copy using 16xH blocks */
263

2941
        if (!((cell->xpos << 2) & 15) && w >= 4) {
264
1682
            for (; w >= 4; src += 16, dst += 16, w -= 4)
265
841
                ctx->hdsp.put_pixels_tab[0][0](dst, src, plane->pitch, h);
266
        }
267
268
        /* copy using 8xH blocks */
269

2941
        if (!((cell->xpos << 2) & 7) && w >= 2) {
270
2519
            ctx->hdsp.put_pixels_tab[1][0](dst, src, plane->pitch, h);
271
2519
            w -= 2;
272
2519
            src += 8;
273
2519
            dst += 8;
274
422
        } else if (w >= 1) {
275
            ctx->hdsp.put_pixels_tab[2][0](dst, src, plane->pitch, h);
276
            w--;
277
            src += 4;
278
            dst += 4;
279
        }
280
    }
281
282
1683
    return 0;
283
}
284
285
286
/* Average 4/8 pixels at once without rounding using SWAR */
287
#define AVG_32(dst, src, ref) \
288
    AV_WN32A(dst, ((AV_RN32(src) + AV_RN32(ref)) >> 1) & 0x7F7F7F7FUL)
289
290
#define AVG_64(dst, src, ref) \
291
    AV_WN64A(dst, ((AV_RN64(src) + AV_RN64(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
292
293
294
/*
295
 *  Replicate each even pixel as follows:
296
 *  ABCDEFGH -> AACCEEGG
297
 */
298
3811
static inline uint64_t replicate64(uint64_t a) {
299
#if HAVE_BIGENDIAN
300
    a &= 0xFF00FF00FF00FF00ULL;
301
    a |= a >> 8;
302
#else
303
3811
    a &= 0x00FF00FF00FF00FFULL;
304
3811
    a |= a << 8;
305
#endif
306
3811
    return a;
307
}
308
309
12140
static inline uint32_t replicate32(uint32_t a) {
310
#if HAVE_BIGENDIAN
311
    a &= 0xFF00FF00UL;
312
    a |= a >> 8;
313
#else
314
12140
    a &= 0x00FF00FFUL;
315
12140
    a |= a << 8;
316
#endif
317
12140
    return a;
318
}
319
320
321
/* Fill n lines with 64-bit pixel value pix */
322
17347
static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
323
                           int32_t row_offset)
324
{
325
128722
    for (; n > 0; dst += row_offset, n--)
326
111375
        AV_WN64A(dst, pix);
327
17347
}
328
329
330
/* Error codes for cell decoding. */
331
enum {
332
    IV3_NOERR       = 0,
333
    IV3_BAD_RLE     = 1,
334
    IV3_BAD_DATA    = 2,
335
    IV3_BAD_COUNTER = 3,
336
    IV3_UNSUPPORTED = 4,
337
    IV3_OUT_OF_DATA = 5
338
};
339
340
341
#define BUFFER_PRECHECK \
342
if (*data_ptr >= last_ptr) \
343
    return IV3_OUT_OF_DATA; \
344
345
#define RLE_BLOCK_COPY \
346
    if (cell->mv_ptr || !skip_flag) \
347
        copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
348
349
#define RLE_BLOCK_COPY_8 \
350
    pix64 = AV_RN64(ref);\
351
    if (is_first_row) {/* special prediction case: top line of a cell */\
352
        pix64 = replicate64(pix64);\
353
        fill_64(dst + row_offset, pix64, 7, row_offset);\
354
        AVG_64(dst, ref, dst + row_offset);\
355
    } else \
356
        fill_64(dst, pix64, 8, row_offset)
357
358
#define RLE_LINES_COPY \
359
    copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
360
361
#define RLE_LINES_COPY_M10 \
362
    pix64 = AV_RN64(ref);\
363
    if (is_top_of_cell) {\
364
        pix64 = replicate64(pix64);\
365
        fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
366
        AVG_64(dst, ref, dst + row_offset);\
367
    } else \
368
        fill_64(dst, pix64, num_lines << 1, row_offset)
369
370
#define APPLY_DELTA_4 \
371
    AV_WN16A(dst + line_offset    ,\
372
             (AV_RN16(ref    ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
373
    AV_WN16A(dst + line_offset + 2,\
374
             (AV_RN16(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
375
    if (mode >= 3) {\
376
        if (is_top_of_cell && !cell->ypos) {\
377
            AV_COPY32U(dst, dst + row_offset);\
378
        } else {\
379
            AVG_32(dst, ref, dst + row_offset);\
380
        }\
381
    }
382
383
#define APPLY_DELTA_8 \
384
    /* apply two 32-bit VQ deltas to next even line */\
385
    if (is_top_of_cell) { \
386
        AV_WN32A(dst + row_offset    , \
387
                 (replicate32(AV_RN32(ref    )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
388
        AV_WN32A(dst + row_offset + 4, \
389
                 (replicate32(AV_RN32(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
390
    } else { \
391
        AV_WN32A(dst + row_offset    , \
392
                 (AV_RN32(ref    ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
393
        AV_WN32A(dst + row_offset + 4, \
394
                 (AV_RN32(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
395
    } \
396
    /* odd lines are not coded but rather interpolated/replicated */\
397
    /* first line of the cell on the top of image? - replicate */\
398
    /* otherwise - interpolate */\
399
    if (is_top_of_cell && !cell->ypos) {\
400
        AV_COPY64U(dst, dst + row_offset);\
401
    } else \
402
        AVG_64(dst, ref, dst + row_offset);
403
404
405
#define APPLY_DELTA_1011_INTER \
406
    if (mode == 10) { \
407
        AV_WN32A(dst                 , \
408
                 (AV_RN32(dst                 ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
409
        AV_WN32A(dst + 4             , \
410
                 (AV_RN32(dst + 4             ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
411
        AV_WN32A(dst + row_offset    , \
412
                 (AV_RN32(dst + row_offset    ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
413
        AV_WN32A(dst + row_offset + 4, \
414
                 (AV_RN32(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
415
    } else { \
416
        AV_WN16A(dst                 , \
417
                 (AV_RN16(dst                 ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
418
        AV_WN16A(dst + 2             , \
419
                 (AV_RN16(dst + 2             ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
420
        AV_WN16A(dst + row_offset    , \
421
                 (AV_RN16(dst + row_offset    ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
422
        AV_WN16A(dst + row_offset + 2, \
423
                 (AV_RN16(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
424
    }
425
426
427
15944
static int decode_cell_data(Indeo3DecodeContext *ctx, Cell *cell,
428
                            uint8_t *block, uint8_t *ref_block,
429
                            ptrdiff_t row_offset, int h_zoom, int v_zoom, int mode,
430
                            const vqEntry *delta[2], int swap_quads[2],
431
                            const uint8_t **data_ptr, const uint8_t *last_ptr)
432
{
433
    int           x, y, line, num_lines;
434
15944
    int           rle_blocks = 0;
435
    uint8_t       code, *dst, *ref;
436
    const vqEntry *delta_tab;
437
    unsigned int  dyad1, dyad2;
438
    uint64_t      pix64;
439
15944
    int           skip_flag = 0, is_top_of_cell, is_first_row = 1;
440
    int           blk_row_offset, line_offset;
441
442
15944
    blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
443
15944
    line_offset    = v_zoom ? row_offset : 0;
444
445

15944
    if (cell->height & v_zoom || cell->width & h_zoom)
446
        return IV3_BAD_DATA;
447
448
93487
    for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
449
427098
        for (x = 0; x < cell->width; x += 1 + h_zoom) {
450
349555
            ref = ref_block;
451
349555
            dst = block;
452
453
349555
            if (rle_blocks > 0) {
454
76314
                if (mode <= 4) {
455

60984
                    RLE_BLOCK_COPY;
456

15330
                } else if (mode == 10 && !cell->mv_ptr) {
457
8469
                    RLE_BLOCK_COPY_8;
458
                }
459
76314
                rle_blocks--;
460
            } else {
461
1187685
                for (line = 0; line < 4;) {
462
914444
                    num_lines = 1;
463

914444
                    is_top_of_cell = is_first_row && !line;
464
465
                    /* select primary VQ table for odd, secondary for even lines */
466
914444
                    if (mode <= 4)
467
842209
                        delta_tab = delta[line & 1];
468
                    else
469
72235
                        delta_tab = delta[1];
470
914444
                    BUFFER_PRECHECK;
471
914444
                    code = bytestream_get_byte(data_ptr);
472
914444
                    if (code < 248) {
473
809297
                        if (code < delta_tab->num_dyads) {
474
342912
                            BUFFER_PRECHECK;
475
342912
                            dyad1 = bytestream_get_byte(data_ptr);
476
342912
                            dyad2 = code;
477

342912
                            if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
478
                                return IV3_BAD_DATA;
479
                        } else {
480
                            /* process QUADS */
481
466385
                            code -= delta_tab->num_dyads;
482
466385
                            dyad1 = code / delta_tab->quad_exp;
483
466385
                            dyad2 = code % delta_tab->quad_exp;
484
466385
                            if (swap_quads[line & 1])
485
                                FFSWAP(unsigned int, dyad1, dyad2);
486
                        }
487
809297
                        if (mode <= 4) {
488

748407
                            APPLY_DELTA_4;
489

60890
                        } else if (mode == 10 && !cell->mv_ptr) {
490

59579
                            APPLY_DELTA_8;
491
                        } else {
492
1311
                            APPLY_DELTA_1011_INTER;
493
                        }
494
                    } else {
495
                        /* process RLE codes */
496

105147
                        switch (code) {
497
11658
                        case RLE_ESC_FC:
498
11658
                            skip_flag  = 0;
499
11658
                            rle_blocks = 1;
500
11658
                            code       = 253;
501
                            /* FALLTHROUGH */
502
88796
                        case RLE_ESC_FF:
503
                        case RLE_ESC_FE:
504
                        case RLE_ESC_FD:
505
88796
                            num_lines = 257 - code - line;
506
88796
                            if (num_lines <= 0)
507
                                return IV3_BAD_RLE;
508
88796
                            if (mode <= 4) {
509
80567
                                RLE_LINES_COPY;
510

8229
                            } else if (mode == 10 && !cell->mv_ptr) {
511
7274
                                RLE_LINES_COPY_M10;
512
                            }
513
88796
                            break;
514
14291
                        case RLE_ESC_FB:
515
14291
                            BUFFER_PRECHECK;
516
14291
                            code = bytestream_get_byte(data_ptr);
517
14291
                            rle_blocks = (code & 0x1F) - 1; /* set block counter */
518

14291
                            if (code >= 64 || rle_blocks < 0)
519
                                return IV3_BAD_COUNTER;
520
14291
                            skip_flag = code & 0x20;
521
14291
                            num_lines = 4 - line; /* enforce next block processing */
522

14291
                            if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
523
14291
                                if (mode <= 4) {
524
11441
                                    RLE_LINES_COPY;
525

2850
                                } else if (mode == 10 && !cell->mv_ptr) {
526
1604
                                    RLE_LINES_COPY_M10;
527
                                }
528
                            }
529
14291
                            break;
530
570
                        case RLE_ESC_F9:
531
570
                            skip_flag  = 1;
532
570
                            rle_blocks = 1;
533
                            /* FALLTHROUGH */
534
2060
                        case RLE_ESC_FA:
535
2060
                            if (line)
536
                                return IV3_BAD_RLE;
537
2060
                            num_lines = 4; /* enforce next block processing */
538
2060
                            if (cell->mv_ptr) {
539
2060
                                if (mode <= 4) {
540
1794
                                    RLE_LINES_COPY;
541

266
                                } else if (mode == 10 && !cell->mv_ptr) {
542
                                    RLE_LINES_COPY_M10;
543
                                }
544
                            }
545
2060
                            break;
546
                        default:
547
                            return IV3_UNSUPPORTED;
548
                        }
549
                    }
550
551
914444
                    line += num_lines;
552
914444
                    ref  += row_offset * (num_lines << v_zoom);
553
914444
                    dst  += row_offset * (num_lines << v_zoom);
554
                }
555
            }
556
557
            /* move to next horizontal block */
558
349555
            block     += 4 << h_zoom;
559
349555
            ref_block += 4 << h_zoom;
560
        }
561
562
        /* move to next line of blocks */
563
77543
        ref_block += blk_row_offset;
564
77543
        block     += blk_row_offset;
565
    }
566
15944
    return IV3_NOERR;
567
}
568
569
570
/**
571
 *  Decode a vector-quantized cell.
572
 *  It consists of several routines, each of which handles one or more "modes"
573
 *  with which a cell can be encoded.
574
 *
575
 *  @param ctx      pointer to the decoder context
576
 *  @param avctx    ptr to the AVCodecContext
577
 *  @param plane    pointer to the plane descriptor
578
 *  @param cell     pointer to the cell  descriptor
579
 *  @param data_ptr pointer to the compressed data
580
 *  @param last_ptr pointer to the last byte to catch reads past end of buffer
581
 *  @return         number of consumed bytes or negative number in case of error
582
 */
583
15944
static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
584
                       Plane *plane, Cell *cell, const uint8_t *data_ptr,
585
                       const uint8_t *last_ptr)
586
{
587
    int           x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
588
    int           zoom_fac;
589
15944
    int           offset, error = 0, swap_quads[2];
590
15944
    uint8_t       code, *block, *ref_block = 0;
591
    const vqEntry *delta[2];
592
15944
    const uint8_t *data_start = data_ptr;
593
594
    /* get coding mode and VQ table index from the VQ descriptor byte */
595
15944
    code     = *data_ptr++;
596
15944
    mode     = code >> 4;
597
15944
    vq_index = code & 0xF;
598
599
    /* setup output and reference pointers */
600
15944
    offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
601
15944
    block  =  plane->pixels[ctx->buf_sel] + offset;
602
603
15944
    if (!cell->mv_ptr) {
604
        /* use previous line as reference for INTRA cells */
605
12410
        ref_block = block - plane->pitch;
606
3534
    } else if (mode >= 10) {
607
        /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
608
        /* so we don't need to do data copying for each RLE code later */
609
1227
        int ret = copy_cell(ctx, plane, cell);
610
1227
        if (ret < 0)
611
            return ret;
612
    } else {
613
        /* set the pointer to the reference pixels for modes 0-4 INTER */
614
2307
        mv_y      = cell->mv_ptr[0];
615
2307
        mv_x      = cell->mv_ptr[1];
616
617
        /* -1 because there is an extra line on top for prediction */
618

2307
        if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
619
2307
            ((cell->ypos + cell->height) << 2) + mv_y > plane->height     ||
620
2307
            ((cell->xpos + cell->width)  << 2) + mv_x > plane->width) {
621
            av_log(ctx->avctx, AV_LOG_ERROR,
622
                   "Motion vectors point out of the frame.\n");
623
            return AVERROR_INVALIDDATA;
624
        }
625
626
2307
        offset   += mv_y * plane->pitch + mv_x;
627
2307
        ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
628
    }
629
630
    /* select VQ tables as follows: */
631
    /* modes 0 and 3 use only the primary table for all lines in a block */
632
    /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
633

15944
    if (mode == 1 || mode == 4) {
634
        code        = ctx->alt_quant[vq_index];
635
        prim_indx   = (code >> 4)  + ctx->cb_offset;
636
        second_indx = (code & 0xF) + ctx->cb_offset;
637
    } else {
638
15944
        vq_index += ctx->cb_offset;
639
15944
        prim_indx = second_indx = vq_index;
640
    }
641
642

15944
    if (prim_indx >= 24 || second_indx >= 24) {
643
        av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
644
               prim_indx, second_indx);
645
        return AVERROR_INVALIDDATA;
646
    }
647
648
15944
    delta[0] = &vq_tab[second_indx];
649
15944
    delta[1] = &vq_tab[prim_indx];
650
15944
    swap_quads[0] = second_indx >= 16;
651
15944
    swap_quads[1] = prim_indx   >= 16;
652
653
    /* requantize the prediction if VQ index of this cell differs from VQ index */
654
    /* of the predicted cell in order to avoid overflows. */
655

15944
    if (vq_index >= 8 && ref_block) {
656
263506
        for (x = 0; x < cell->width << 2; x++)
657
251096
            ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
658
    }
659
660
15944
    error = IV3_NOERR;
661
662
15944
    switch (mode) {
663
10783
    case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
664
    case 1:
665
    case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
666
    case 4:
667

10783
        if (mode >= 3 && cell->mv_ptr) {
668
            av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
669
            return AVERROR_INVALIDDATA;
670
        }
671
672
10783
        zoom_fac = mode >= 3;
673
10783
        error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
674
                                 0, zoom_fac, mode, delta, swap_quads,
675
                                 &data_ptr, last_ptr);
676
10783
        break;
677
5161
    case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
678
    case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
679

5161
        if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
680
3934
            error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
681
                                     1, 1, mode, delta, swap_quads,
682
                                     &data_ptr, last_ptr);
683
        } else { /* mode 10 and 11 INTER processing */
684

1227
            if (mode == 11 && !cell->mv_ptr) {
685
               av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
686
               return AVERROR_INVALIDDATA;
687
            }
688
689
1227
            zoom_fac = mode == 10;
690
1227
            error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
691
                                     zoom_fac, 1, mode, delta, swap_quads,
692
                                     &data_ptr, last_ptr);
693
        }
694
5161
        break;
695
    default:
696
        av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
697
        return AVERROR_INVALIDDATA;
698
    }//switch mode
699
700

15944
    switch (error) {
701
    case IV3_BAD_RLE:
702
        av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
703
               mode, data_ptr[-1]);
704
        return AVERROR_INVALIDDATA;
705
    case IV3_BAD_DATA:
706
        av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
707
        return AVERROR_INVALIDDATA;
708
    case IV3_BAD_COUNTER:
709
        av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
710
        return AVERROR_INVALIDDATA;
711
    case IV3_UNSUPPORTED:
712
        av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
713
        return AVERROR_INVALIDDATA;
714
    case IV3_OUT_OF_DATA:
715
        av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
716
        return AVERROR_INVALIDDATA;
717
    }
718
719
15944
    return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
720
}
721
722
723
/* Binary tree codes. */
724
enum {
725
    H_SPLIT    = 0,
726
    V_SPLIT    = 1,
727
    INTRA_NULL = 2,
728
    INTER_DATA = 3
729
};
730
731
732
#define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
733
734
#define UPDATE_BITPOS(n) \
735
    ctx->skip_bits  += (n); \
736
    ctx->need_resync = 1
737
738
#define RESYNC_BITSTREAM \
739
    if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
740
        skip_bits_long(&ctx->gb, ctx->skip_bits);              \
741
        ctx->skip_bits   = 0;                                  \
742
        ctx->need_resync = 0;                                  \
743
    }
744
745
#define CHECK_CELL \
746
    if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) ||               \
747
        curr_cell.ypos + curr_cell.height > (plane->height >> 2)) {             \
748
        av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n",   \
749
               curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
750
        return AVERROR_INVALIDDATA;                                                              \
751
    }
752
753
754
16400
static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
755
                         Plane *plane, int code, Cell *ref_cell,
756
                         const int depth, const int strip_width)
757
{
758
    Cell    curr_cell;
759
    int     bytes_used, ret;
760
761
16400
    if (depth <= 0) {
762
        av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
763
        return AVERROR_INVALIDDATA; // unwind recursion
764
    }
765
766
16400
    curr_cell = *ref_cell; // clone parent cell
767
16400
    if (code == H_SPLIT) {
768
5560
        SPLIT_CELL(ref_cell->height, curr_cell.height);
769
5560
        ref_cell->ypos   += curr_cell.height;
770
5560
        ref_cell->height -= curr_cell.height;
771

5560
        if (ref_cell->height <= 0 || curr_cell.height <= 0)
772
            return AVERROR_INVALIDDATA;
773
10840
    } else if (code == V_SPLIT) {
774
10420
        if (curr_cell.width > strip_width) {
775
            /* split strip */
776
300
            curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
777
        } else
778
10120
            SPLIT_CELL(ref_cell->width, curr_cell.width);
779
10420
        ref_cell->xpos  += curr_cell.width;
780
10420
        ref_cell->width -= curr_cell.width;
781

10420
        if (ref_cell->width <= 0 || curr_cell.width <= 0)
782
            return AVERROR_INVALIDDATA;
783
    }
784
785
54389
    while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
786

37989
        RESYNC_BITSTREAM;
787

37989
        switch (code = get_bits(&ctx->gb, 2)) {
788
15980
        case H_SPLIT:
789
        case V_SPLIT:
790
15980
            if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
791
                return AVERROR_INVALIDDATA;
792
15980
            break;
793
2829
        case INTRA_NULL:
794
2829
            if (!curr_cell.tree) { /* MC tree INTRA code */
795
2373
                curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
796
2373
                curr_cell.tree   = 1; /* enter the VQ tree */
797
            } else { /* VQ tree NULL code */
798

456
                RESYNC_BITSTREAM;
799
456
                code = get_bits(&ctx->gb, 2);
800
456
                if (code >= 2) {
801
                    av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
802
                    return AVERROR_INVALIDDATA;
803
                }
804
456
                if (code == 1)
805
                    av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
806
807

456
                CHECK_CELL
808
456
                if (!curr_cell.mv_ptr)
809
                    return AVERROR_INVALIDDATA;
810
811
456
                ret = copy_cell(ctx, plane, &curr_cell);
812
456
                return ret;
813
            }
814
2373
            break;
815
19180
        case INTER_DATA:
816
19180
            if (!curr_cell.tree) { /* MC tree INTER code */
817
                unsigned mv_idx;
818
                /* get motion vector index and setup the pointer to the mv set */
819
3236
                if (!ctx->need_resync)
820
1544
                    ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
821
3236
                if (ctx->next_cell_data >= ctx->last_byte) {
822
                    av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
823
                    return AVERROR_INVALIDDATA;
824
                }
825
3236
                mv_idx = *(ctx->next_cell_data++);
826
3236
                if (mv_idx >= ctx->num_vectors) {
827
                    av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
828
                    return AVERROR_INVALIDDATA;
829
                }
830
3236
                curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
831
3236
                curr_cell.tree   = 1; /* enter the VQ tree */
832
3236
                UPDATE_BITPOS(8);
833
            } else { /* VQ tree DATA code */
834
15944
                if (!ctx->need_resync)
835
7503
                    ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
836
837

15944
                CHECK_CELL
838
15944
                bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
839
                                         ctx->next_cell_data, ctx->last_byte);
840
15944
                if (bytes_used < 0)
841
                    return AVERROR_INVALIDDATA;
842
843
15944
                UPDATE_BITPOS(bytes_used << 3);
844
15944
                ctx->next_cell_data += bytes_used;
845
15944
                return 0;
846
            }
847
3236
            break;
848
        }
849
37989
    }//while
850
851
    return AVERROR_INVALIDDATA;
852
}
853
854
855
420
static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
856
                        Plane *plane, const uint8_t *data, int32_t data_size,
857
                        int32_t strip_width)
858
{
859
    Cell            curr_cell;
860
    unsigned        num_vectors;
861
862
    /* each plane data starts with mc_vector_count field, */
863
    /* an optional array of motion vectors followed by the vq data */
864
420
    num_vectors = bytestream_get_le32(&data); data_size -= 4;
865
420
    if (num_vectors > 256) {
866
        av_log(ctx->avctx, AV_LOG_ERROR,
867
               "Read invalid number of motion vectors %d\n", num_vectors);
868
        return AVERROR_INVALIDDATA;
869
    }
870
420
    if (num_vectors * 2 > data_size)
871
        return AVERROR_INVALIDDATA;
872
873
420
    ctx->num_vectors = num_vectors;
874
420
    ctx->mc_vectors  = num_vectors ? data : 0;
875
876
    /* init the bitreader */
877
420
    init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
878
420
    ctx->skip_bits   = 0;
879
420
    ctx->need_resync = 0;
880
881
420
    ctx->last_byte = data + data_size;
882
883
    /* initialize the 1st cell and set its dimensions to whole plane */
884
420
    curr_cell.xpos   = curr_cell.ypos = 0;
885
420
    curr_cell.width  = plane->width  >> 2;
886
420
    curr_cell.height = plane->height >> 2;
887
420
    curr_cell.tree   = 0; // we are in the MC tree now
888
420
    curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
889
890
420
    return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
891
}
892
893
894
#define OS_HDR_ID   MKBETAG('F', 'R', 'M', 'H')
895
896
140
static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
897
                                const uint8_t *buf, int buf_size)
898
{
899
    GetByteContext gb;
900
    const uint8_t   *bs_hdr;
901
    uint32_t        frame_num, word2, check_sum, data_size;
902
    int             y_offset, u_offset, v_offset;
903
    uint32_t        starts[3], ends[3];
904
    uint16_t        height, width;
905
    int             i, j;
906
907
140
    bytestream2_init(&gb, buf, buf_size);
908
909
    /* parse and check the OS header */
910
140
    frame_num = bytestream2_get_le32(&gb);
911
140
    word2     = bytestream2_get_le32(&gb);
912
140
    check_sum = bytestream2_get_le32(&gb);
913
140
    data_size = bytestream2_get_le32(&gb);
914
915
140
    if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
916
        av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
917
        return AVERROR_INVALIDDATA;
918
    }
919
920
    /* parse the bitstream header */
921
140
    bs_hdr = gb.buffer;
922
923
140
    if (bytestream2_get_le16(&gb) != 32) {
924
        av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
925
        return AVERROR_INVALIDDATA;
926
    }
927
928
140
    ctx->frame_num   =  frame_num;
929
140
    ctx->frame_flags =  bytestream2_get_le16(&gb);
930
140
    ctx->data_size   = (bytestream2_get_le32(&gb) + 7) >> 3;
931
140
    ctx->cb_offset   =  bytestream2_get_byte(&gb);
932
933
140
    if (ctx->data_size == 16)
934
        return 4;
935
140
    ctx->data_size = FFMIN(ctx->data_size, buf_size - 16);
936
937
140
    bytestream2_skip(&gb, 3); // skip reserved byte and checksum
938
939
    /* check frame dimensions */
940
140
    height = bytestream2_get_le16(&gb);
941
140
    width  = bytestream2_get_le16(&gb);
942
140
    if (av_image_check_size(width, height, 0, avctx))
943
        return AVERROR_INVALIDDATA;
944
945

140
    if (width != ctx->width || height != ctx->height) {
946
        int res;
947
948
        ff_dlog(avctx, "Frame dimensions changed!\n");
949
950
        if (width  < 16 || width  > 640 ||
951
            height < 16 || height > 480 ||
952
            width  &  3 || height &   3) {
953
            av_log(avctx, AV_LOG_ERROR,
954
                   "Invalid picture dimensions: %d x %d!\n", width, height);
955
            return AVERROR_INVALIDDATA;
956
        }
957
        free_frame_buffers(ctx);
958
        if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
959
             return res;
960
        if ((res = ff_set_dimensions(avctx, width, height)) < 0)
961
            return res;
962
    }
963
964
140
    y_offset = bytestream2_get_le32(&gb);
965
140
    v_offset = bytestream2_get_le32(&gb);
966
140
    u_offset = bytestream2_get_le32(&gb);
967
140
    bytestream2_skip(&gb, 4);
968
969
    /* unfortunately there is no common order of planes in the buffer */
970
    /* so we use that sorting algo for determining planes data sizes  */
971
140
    starts[0] = y_offset;
972
140
    starts[1] = v_offset;
973
140
    starts[2] = u_offset;
974
975
560
    for (j = 0; j < 3; j++) {
976
420
        ends[j] = ctx->data_size;
977
1680
        for (i = 2; i >= 0; i--)
978

1260
            if (starts[i] < ends[j] && starts[i] > starts[j])
979
280
                ends[j] = starts[i];
980
    }
981
982
140
    ctx->y_data_size = ends[0] - starts[0];
983
140
    ctx->v_data_size = ends[1] - starts[1];
984
140
    ctx->u_data_size = ends[2] - starts[2];
985
140
    if (FFMIN3(y_offset, v_offset, u_offset) < 0 ||
986
140
        FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
987
140
        FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 ||
988
140
        FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
989
        av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
990
        return AVERROR_INVALIDDATA;
991
    }
992
993
140
    ctx->y_data_ptr = bs_hdr + y_offset;
994
140
    ctx->v_data_ptr = bs_hdr + v_offset;
995
140
    ctx->u_data_ptr = bs_hdr + u_offset;
996
140
    ctx->alt_quant  = gb.buffer;
997
998
140
    if (ctx->data_size == 16) {
999
        av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
1000
        return 16;
1001
    }
1002
1003
140
    if (ctx->frame_flags & BS_8BIT_PEL) {
1004
        avpriv_request_sample(avctx, "8-bit pixel format");
1005
        return AVERROR_PATCHWELCOME;
1006
    }
1007
1008

140
    if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
1009
        avpriv_request_sample(avctx, "Halfpel motion vectors");
1010
        return AVERROR_PATCHWELCOME;
1011
    }
1012
1013
140
    return 0;
1014
}
1015
1016
1017
/**
1018
 *  Convert and output the current plane.
1019
 *  All pixel values will be upsampled by shifting right by one bit.
1020
 *
1021
 *  @param[in]  plane        pointer to the descriptor of the plane being processed
1022
 *  @param[in]  buf_sel      indicates which frame buffer the input data stored in
1023
 *  @param[out] dst          pointer to the buffer receiving converted pixels
1024
 *  @param[in]  dst_pitch    pitch for moving to the next y line
1025
 *  @param[in]  dst_height   output plane height
1026
 */
1027
420
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
1028
                         ptrdiff_t dst_pitch, int dst_height)
1029
{
1030
    int             x,y;
1031
420
    const uint8_t   *src  = plane->pixels[buf_sel];
1032
420
    ptrdiff_t       pitch = plane->pitch;
1033
1034
420
    dst_height = FFMIN(dst_height, plane->height);
1035
35820
    for (y = 0; y < dst_height; y++) {
1036
        /* convert four pixels at once using SWAR */
1037
1943400
        for (x = 0; x < plane->width >> 2; x++) {
1038
1908000
            AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
1039
1908000
            src += 4;
1040
1908000
            dst += 4;
1041
        }
1042
1043
35400
        for (x <<= 2; x < plane->width; x++)
1044
            *dst++ = *src++ << 1;
1045
1046
35400
        src += pitch     - plane->width;
1047
35400
        dst += dst_pitch - plane->width;
1048
    }
1049
420
}
1050
1051
1052
4
static av_cold int decode_init(AVCodecContext *avctx)
1053
{
1054
4
    Indeo3DecodeContext *ctx = avctx->priv_data;
1055
1056
4
    ctx->avctx     = avctx;
1057
4
    avctx->pix_fmt = AV_PIX_FMT_YUV410P;
1058
1059
4
    build_requant_tab();
1060
1061
4
    ff_hpeldsp_init(&ctx->hdsp, avctx->flags);
1062
1063
4
    return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
1064
}
1065
1066
1067
140
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
1068
                        AVPacket *avpkt)
1069
{
1070
140
    Indeo3DecodeContext *ctx = avctx->priv_data;
1071
140
    const uint8_t *buf = avpkt->data;
1072
140
    int buf_size       = avpkt->size;
1073
140
    AVFrame *frame     = data;
1074
    int res;
1075
1076
140
    res = decode_frame_headers(ctx, avctx, buf, buf_size);
1077
140
    if (res < 0)
1078
        return res;
1079
1080
    /* skip sync(null) frames */
1081
140
    if (res) {
1082
        // we have processed 16 bytes but no data was decoded
1083
        *got_frame = 0;
1084
        return buf_size;
1085
    }
1086
1087
    /* skip droppable INTER frames if requested */
1088
140
    if (ctx->frame_flags & BS_NONREF &&
1089
32
       (avctx->skip_frame >= AVDISCARD_NONREF))
1090
        return 0;
1091
1092
    /* skip INTER frames if requested */
1093

140
    if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
1094
        return 0;
1095
1096
    /* use BS_BUFFER flag for buffer switching */
1097
140
    ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
1098
1099
140
    if ((res = ff_get_buffer(avctx, frame, 0)) < 0)
1100
        return res;
1101
1102
    /* decode luma plane */
1103
140
    if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
1104
        return res;
1105
1106
    /* decode chroma planes */
1107
140
    if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
1108
        return res;
1109
1110
140
    if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
1111
        return res;
1112
1113
140
    output_plane(&ctx->planes[0], ctx->buf_sel,
1114
140
                 frame->data[0], frame->linesize[0],
1115
                 avctx->height);
1116
140
    output_plane(&ctx->planes[1], ctx->buf_sel,
1117
140
                 frame->data[1], frame->linesize[1],
1118
140
                 (avctx->height + 3) >> 2);
1119
140
    output_plane(&ctx->planes[2], ctx->buf_sel,
1120
140
                 frame->data[2], frame->linesize[2],
1121
140
                 (avctx->height + 3) >> 2);
1122
1123
140
    *got_frame = 1;
1124
1125
140
    return buf_size;
1126
}
1127
1128
1129
4
static av_cold int decode_close(AVCodecContext *avctx)
1130
{
1131
4
    free_frame_buffers(avctx->priv_data);
1132
1133
4
    return 0;
1134
}
1135
1136
AVCodec ff_indeo3_decoder = {
1137
    .name           = "indeo3",
1138
    .long_name      = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
1139
    .type           = AVMEDIA_TYPE_VIDEO,
1140
    .id             = AV_CODEC_ID_INDEO3,
1141
    .priv_data_size = sizeof(Indeo3DecodeContext),
1142
    .init           = decode_init,
1143
    .close          = decode_close,
1144
    .decode         = decode_frame,
1145
    .capabilities   = AV_CODEC_CAP_DR1,
1146
};