GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/imc.c Lines: 460 570 80.7 %
Date: 2021-01-26 11:44:58 Branches: 290 372 78.0 %

Line Branch Exec Source
1
/*
2
 * IMC compatible decoder
3
 * Copyright (c) 2002-2004 Maxim Poliakovski
4
 * Copyright (c) 2006 Benjamin Larsson
5
 * Copyright (c) 2006 Konstantin Shishkov
6
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23
24
/**
25
 *  @file
26
 *  IMC - Intel Music Coder
27
 *  A mdct based codec using a 256 points large transform
28
 *  divided into 32 bands with some mix of scale factors.
29
 *  Only mono is supported.
30
 */
31
32
33
#include <math.h>
34
#include <stddef.h>
35
#include <stdio.h>
36
37
#include "libavutil/channel_layout.h"
38
#include "libavutil/ffmath.h"
39
#include "libavutil/float_dsp.h"
40
#include "libavutil/internal.h"
41
#include "libavutil/mem_internal.h"
42
#include "libavutil/thread.h"
43
44
#include "avcodec.h"
45
#include "bswapdsp.h"
46
#include "get_bits.h"
47
#include "fft.h"
48
#include "internal.h"
49
#include "sinewin.h"
50
51
#include "imcdata.h"
52
53
#define IMC_BLOCK_SIZE 64
54
#define IMC_FRAME_ID 0x21
55
#define BANDS 32
56
#define COEFFS 256
57
58
typedef struct IMCChannel {
59
    float old_floor[BANDS];
60
    float flcoeffs1[BANDS];
61
    float flcoeffs2[BANDS];
62
    float flcoeffs3[BANDS];
63
    float flcoeffs4[BANDS];
64
    float flcoeffs5[BANDS];
65
    float flcoeffs6[BANDS];
66
    float CWdecoded[COEFFS];
67
68
    int bandWidthT[BANDS];     ///< codewords per band
69
    int bitsBandT[BANDS];      ///< how many bits per codeword in band
70
    int CWlengthT[COEFFS];     ///< how many bits in each codeword
71
    int levlCoeffBuf[BANDS];
72
    int bandFlagsBuf[BANDS];   ///< flags for each band
73
    int sumLenArr[BANDS];      ///< bits for all coeffs in band
74
    int skipFlagRaw[BANDS];    ///< skip flags are stored in raw form or not
75
    int skipFlagBits[BANDS];   ///< bits used to code skip flags
76
    int skipFlagCount[BANDS];  ///< skipped coefficients per band
77
    int skipFlags[COEFFS];     ///< skip coefficient decoding or not
78
    int codewords[COEFFS];     ///< raw codewords read from bitstream
79
80
    float last_fft_im[COEFFS];
81
82
    int decoder_reset;
83
} IMCChannel;
84
85
typedef struct IMCContext {
86
    IMCChannel chctx[2];
87
88
    /** MDCT tables */
89
    //@{
90
    float mdct_sine_window[COEFFS];
91
    float post_cos[COEFFS];
92
    float post_sin[COEFFS];
93
    float pre_coef1[COEFFS];
94
    float pre_coef2[COEFFS];
95
    //@}
96
97
    float sqrt_tab[30];
98
    GetBitContext gb;
99
100
    BswapDSPContext bdsp;
101
    void (*butterflies_float)(float *av_restrict v1, float *av_restrict v2, int len);
102
    FFTContext fft;
103
    DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS / 2];
104
    float *out_samples;
105
106
    int coef0_pos;
107
108
    int8_t cyclTab[32], cyclTab2[32];
109
    float  weights1[31], weights2[31];
110
111
    AVCodecContext *avctx;
112
} IMCContext;
113
114
static VLC huffman_vlc[4][4];
115
116
#define IMC_VLC_BITS 9
117
#define VLC_TABLES_SIZE 9512
118
119
static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
120
121
static inline double freq2bark(double freq)
122
{
123
    return 3.5 * atan((freq / 7500.0) * (freq / 7500.0)) + 13.0 * atan(freq * 0.00076);
124
}
125
126
static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
127
{
128
    double freqmin[32], freqmid[32], freqmax[32];
129
    double scale = sampling_rate / (256.0 * 2.0 * 2.0);
130
    double nyquist_freq = sampling_rate * 0.5;
131
    double freq, bark, prev_bark = 0, tf, tb;
132
    int i, j;
133
134
    for (i = 0; i < 32; i++) {
135
        freq = (band_tab[i] + band_tab[i + 1] - 1) * scale;
136
        bark = freq2bark(freq);
137
138
        if (i > 0) {
139
            tb = bark - prev_bark;
140
            q->weights1[i - 1] = ff_exp10(-1.0 * tb);
141
            q->weights2[i - 1] = ff_exp10(-2.7 * tb);
142
        }
143
        prev_bark = bark;
144
145
        freqmid[i] = freq;
146
147
        tf = freq;
148
        while (tf < nyquist_freq) {
149
            tf += 0.5;
150
            tb =  freq2bark(tf);
151
            if (tb > bark + 0.5)
152
                break;
153
        }
154
        freqmax[i] = tf;
155
156
        tf = freq;
157
        while (tf > 0.0) {
158
            tf -= 0.5;
159
            tb =  freq2bark(tf);
160
            if (tb <= bark - 0.5)
161
                break;
162
        }
163
        freqmin[i] = tf;
164
    }
165
166
    for (i = 0; i < 32; i++) {
167
        freq = freqmax[i];
168
        for (j = 31; j > 0 && freq <= freqmid[j]; j--);
169
        q->cyclTab[i] = j + 1;
170
171
        freq = freqmin[i];
172
        for (j = 0; j < 32 && freq >= freqmid[j]; j++);
173
        q->cyclTab2[i] = j - 1;
174
    }
175
}
176
177
1
static av_cold void imc_init_static(void)
178
{
179
    /* initialize the VLC tables */
180
5
    for (int i = 0, offset = 0; i < 4 ; i++) {
181
20
        for (int j = 0; j < 4; j++) {
182
16
            huffman_vlc[i][j].table           = &vlc_tables[offset];
183
16
            huffman_vlc[i][j].table_allocated = VLC_TABLES_SIZE - offset;;
184
16
            ff_init_vlc_from_lengths(&huffman_vlc[i][j], IMC_VLC_BITS, imc_huffman_sizes[i],
185
16
                                     imc_huffman_lens[i][j], 1,
186
16
                                     imc_huffman_syms[i][j], 1, 1,
187
                                     0, INIT_VLC_STATIC_OVERLONG, NULL);
188
16
            offset += huffman_vlc[i][j].table_size;
189
        }
190
    }
191
1
}
192
193
2
static av_cold int imc_decode_init(AVCodecContext *avctx)
194
{
195
    int i, j, ret;
196
2
    IMCContext *q = avctx->priv_data;
197
    static AVOnce init_static_once = AV_ONCE_INIT;
198
    AVFloatDSPContext *fdsp;
199
    double r1, r2;
200
201

2
    if (avctx->codec_id == AV_CODEC_ID_IAC && avctx->sample_rate > 96000) {
202
        av_log(avctx, AV_LOG_ERROR,
203
               "Strange sample rate of %i, file likely corrupt or "
204
               "needing a new table derivation method.\n",
205
               avctx->sample_rate);
206
        return AVERROR_PATCHWELCOME;
207
    }
208
209
2
    if (avctx->codec_id == AV_CODEC_ID_IMC)
210
2
        avctx->channels = 1;
211
212
2
    if (avctx->channels > 2) {
213
        avpriv_request_sample(avctx, "Number of channels > 2");
214
        return AVERROR_PATCHWELCOME;
215
    }
216
217
4
    for (j = 0; j < avctx->channels; j++) {
218
2
        q->chctx[j].decoder_reset = 1;
219
220
66
        for (i = 0; i < BANDS; i++)
221
64
            q->chctx[j].old_floor[i] = 1.0;
222
223
258
        for (i = 0; i < COEFFS / 2; i++)
224
256
            q->chctx[j].last_fft_im[i] = 0;
225
    }
226
227
    /* Build mdct window, a simple sine window normalized with sqrt(2) */
228
2
    ff_sine_window_init(q->mdct_sine_window, COEFFS);
229
514
    for (i = 0; i < COEFFS; i++)
230
512
        q->mdct_sine_window[i] *= sqrt(2.0);
231
258
    for (i = 0; i < COEFFS / 2; i++) {
232
256
        q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
233
256
        q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
234
235
256
        r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
236
256
        r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
237
238
256
        if (i & 0x1) {
239
128
            q->pre_coef1[i] =  (r1 + r2) * sqrt(2.0);
240
128
            q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
241
        } else {
242
128
            q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
243
128
            q->pre_coef2[i] =  (r1 - r2) * sqrt(2.0);
244
        }
245
    }
246
247
    /* Generate a square root table */
248
249
62
    for (i = 0; i < 30; i++)
250
60
        q->sqrt_tab[i] = sqrt(i);
251
252
2
    if (avctx->codec_id == AV_CODEC_ID_IAC) {
253
        iac_generate_tabs(q, avctx->sample_rate);
254
    } else {
255
2
        memcpy(q->cyclTab,  cyclTab,  sizeof(cyclTab));
256
2
        memcpy(q->cyclTab2, cyclTab2, sizeof(cyclTab2));
257
2
        memcpy(q->weights1, imc_weights1, sizeof(imc_weights1));
258
2
        memcpy(q->weights2, imc_weights2, sizeof(imc_weights2));
259
    }
260
261
2
    fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
262
2
    if (!fdsp)
263
        return AVERROR(ENOMEM);
264
2
    q->butterflies_float = fdsp->butterflies_float;
265
2
    av_free(fdsp);
266
2
    if ((ret = ff_fft_init(&q->fft, 7, 1))) {
267
        av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
268
        return ret;
269
    }
270
2
    ff_bswapdsp_init(&q->bdsp);
271
272
2
    avctx->sample_fmt     = AV_SAMPLE_FMT_FLTP;
273
4
    avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
274
2
                                                 : AV_CH_LAYOUT_STEREO;
275
276
2
    ff_thread_once(&init_static_once, imc_init_static);
277
278
2
    return 0;
279
}
280
281
1312
static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1,
282
                                 float *flcoeffs2, int *bandWidthT,
283
                                 float *flcoeffs3, float *flcoeffs5)
284
{
285
    float   workT1[BANDS];
286
    float   workT2[BANDS];
287
    float   workT3[BANDS];
288
1312
    float   snr_limit = 1.e-30;
289
1312
    float   accum = 0.0;
290
    int i, cnt2;
291
292
43296
    for (i = 0; i < BANDS; i++) {
293
41984
        flcoeffs5[i] = workT2[i] = 0.0;
294
41984
        if (bandWidthT[i]) {
295
37529
            workT1[i] = flcoeffs1[i] * flcoeffs1[i];
296
37529
            flcoeffs3[i] = 2.0 * flcoeffs2[i];
297
        } else {
298
4455
            workT1[i]    = 0.0;
299
4455
            flcoeffs3[i] = -30000.0;
300
        }
301
41984
        workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
302
41984
        if (workT3[i] <= snr_limit)
303
4455
            workT3[i] = 0.0;
304
    }
305
306
43296
    for (i = 0; i < BANDS; i++) {
307
101024
        for (cnt2 = i; cnt2 < q->cyclTab[i]; cnt2++)
308
59040
            flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
309
41984
        workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i];
310
    }
311
312
41984
    for (i = 1; i < BANDS; i++) {
313
40672
        accum = (workT2[i - 1] + accum) * q->weights1[i - 1];
314
40672
        flcoeffs5[i] += accum;
315
    }
316
317
43296
    for (i = 0; i < BANDS; i++)
318
41984
        workT2[i] = 0.0;
319
320
43296
    for (i = 0; i < BANDS; i++) {
321
59040
        for (cnt2 = i - 1; cnt2 > q->cyclTab2[i]; cnt2--)
322
17056
            flcoeffs5[cnt2] += workT3[i];
323
41984
        workT2[cnt2+1] += workT3[i];
324
    }
325
326
1312
    accum = 0.0;
327
328
41984
    for (i = BANDS-2; i >= 0; i--) {
329
40672
        accum = (workT2[i+1] + accum) * q->weights2[i];
330
40672
        flcoeffs5[i] += accum;
331
        // there is missing code here, but it seems to never be triggered
332
    }
333
1312
}
334
335
336
1312
static void imc_read_level_coeffs(IMCContext *q, int stream_format_code,
337
                                  int *levlCoeffs)
338
{
339
    int i;
340
    VLC *hufftab[4];
341
1312
    int start = 0;
342
    const uint8_t *cb_sel;
343
    int s;
344
345
1312
    s = stream_format_code >> 1;
346
1312
    hufftab[0] = &huffman_vlc[s][0];
347
1312
    hufftab[1] = &huffman_vlc[s][1];
348
1312
    hufftab[2] = &huffman_vlc[s][2];
349
1312
    hufftab[3] = &huffman_vlc[s][3];
350
1312
    cb_sel = imc_cb_select[s];
351
352
1312
    if (stream_format_code & 4)
353
306
        start = 1;
354
1312
    if (start)
355
306
        levlCoeffs[0] = get_bits(&q->gb, 7);
356
42990
    for (i = start; i < BANDS; i++) {
357
41678
        levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table,
358
                                 IMC_VLC_BITS, 2);
359
41678
        if (levlCoeffs[i] == 17)
360
            levlCoeffs[i] += get_bits(&q->gb, 4);
361
    }
362
1312
}
363
364
static void imc_read_level_coeffs_raw(IMCContext *q, int stream_format_code,
365
                                      int *levlCoeffs)
366
{
367
    int i;
368
369
    q->coef0_pos  = get_bits(&q->gb, 5);
370
    levlCoeffs[0] = get_bits(&q->gb, 7);
371
    for (i = 1; i < BANDS; i++)
372
        levlCoeffs[i] = get_bits(&q->gb, 4);
373
}
374
375
306
static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf,
376
                                          float *flcoeffs1, float *flcoeffs2)
377
{
378
    int i, level;
379
    float tmp, tmp2;
380
    // maybe some frequency division thingy
381
382
306
    flcoeffs1[0] = 20000.0 / exp2 (levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
383
306
    flcoeffs2[0] = log2f(flcoeffs1[0]);
384
306
    tmp  = flcoeffs1[0];
385
306
    tmp2 = flcoeffs2[0];
386
387
9792
    for (i = 1; i < BANDS; i++) {
388
9486
        level = levlCoeffBuf[i];
389
9486
        if (level == 16) {
390
952
            flcoeffs1[i] = 1.0;
391
952
            flcoeffs2[i] = 0.0;
392
        } else {
393
8534
            if (level < 17)
394
8534
                level -= 7;
395
            else if (level <= 24)
396
                level -= 32;
397
            else
398
                level -= 16;
399
400
8534
            tmp  *= imc_exp_tab[15 + level];
401
8534
            tmp2 += 0.83048 * level;  // 0.83048 = log2(10) * 0.25
402
8534
            flcoeffs1[i] = tmp;
403
8534
            flcoeffs2[i] = tmp2;
404
        }
405
    }
406
306
}
407
408
409
1006
static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
410
                                           float *old_floor, float *flcoeffs1,
411
                                           float *flcoeffs2)
412
{
413
    int i;
414
    /* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
415
     *       and flcoeffs2 old scale factors
416
     *       might be incomplete due to a missing table that is in the binary code
417
     */
418
33198
    for (i = 0; i < BANDS; i++) {
419
32192
        flcoeffs1[i] = 0;
420
32192
        if (levlCoeffBuf[i] < 16) {
421
28689
            flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
422
28689
            flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
423
        } else {
424
3503
            flcoeffs1[i] = old_floor[i];
425
        }
426
    }
427
1006
}
428
429
static void imc_decode_level_coefficients_raw(IMCContext *q, int *levlCoeffBuf,
430
                                              float *flcoeffs1, float *flcoeffs2)
431
{
432
    int i, level, pos;
433
    float tmp, tmp2;
434
435
    pos = q->coef0_pos;
436
    flcoeffs1[pos] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
437
    flcoeffs2[pos] = log2f(flcoeffs1[pos]);
438
    tmp  = flcoeffs1[pos];
439
    tmp2 = flcoeffs2[pos];
440
441
    levlCoeffBuf++;
442
    for (i = 0; i < BANDS; i++) {
443
        if (i == pos)
444
            continue;
445
        level = *levlCoeffBuf++;
446
        flcoeffs1[i] = tmp  * powf(10.0, -level * 0.4375); //todo tab
447
        flcoeffs2[i] = tmp2 - 1.4533435415 * level; // 1.4533435415 = log2(10) * 0.4375
448
    }
449
}
450
451
/**
452
 * Perform bit allocation depending on bits available
453
 */
454
1312
static int bit_allocation(IMCContext *q, IMCChannel *chctx,
455
                          int stream_format_code, int freebits, int flag)
456
{
457
    int i, j;
458
1312
    const float limit = -1.e20;
459
1312
    float highest = 0.0;
460
    int indx;
461
1312
    int t1 = 0;
462
1312
    int t2 = 1;
463
1312
    float summa = 0.0;
464
1312
    int iacc = 0;
465
1312
    int summer = 0;
466
    int rres, cwlen;
467
1312
    float lowest = 1.e10;
468
1312
    int low_indx = 0;
469
    float workT[32];
470
    int flg;
471
1312
    int found_indx = 0;
472
473
43296
    for (i = 0; i < BANDS; i++)
474
41984
        highest = FFMAX(highest, chctx->flcoeffs1[i]);
475
476
41984
    for (i = 0; i < BANDS - 1; i++) {
477
40672
        if (chctx->flcoeffs5[i] <= 0) {
478
            av_log(q->avctx, AV_LOG_ERROR, "flcoeffs5 %f invalid\n", chctx->flcoeffs5[i]);
479
            return AVERROR_INVALIDDATA;
480
        }
481
40672
        chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log2f(chctx->flcoeffs5[i]);
482
    }
483
1312
    chctx->flcoeffs4[BANDS - 1] = limit;
484
485
1312
    highest = highest * 0.25;
486
487
43296
    for (i = 0; i < BANDS; i++) {
488
41984
        indx = -1;
489
41984
        if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
490
37529
            indx = 0;
491
492
41984
        if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
493
4455
            indx = 1;
494
495
41984
        if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
496
4455
            indx = 2;
497
498
41984
        if (indx == -1)
499
            return AVERROR_INVALIDDATA;
500
501
41984
        chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
502
    }
503
504
1312
    if (stream_format_code & 0x2) {
505
1180
        chctx->flcoeffs4[0] = limit;
506
1180
        chctx->flcoeffs4[1] = limit;
507
1180
        chctx->flcoeffs4[2] = limit;
508
1180
        chctx->flcoeffs4[3] = limit;
509
    }
510
511
37264
    for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
512
35952
        iacc  += chctx->bandWidthT[i];
513
35952
        summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
514
    }
515
516
1312
    if (!iacc)
517
        return AVERROR_INVALIDDATA;
518
519
1312
    chctx->bandWidthT[BANDS - 1] = 0;
520
1312
    summa = (summa * 0.5 - freebits) / iacc;
521
522
523
4322
    for (i = 0; i < BANDS / 2; i++) {
524
4317
        rres = summer - freebits;
525

4317
        if ((rres >= -8) && (rres <= 8))
526
1307
            break;
527
528
3010
        summer = 0;
529
3010
        iacc   = 0;
530
531
88290
        for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
532
85280
            cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
533
534
85280
            chctx->bitsBandT[j] = cwlen;
535
85280
            summer += chctx->bandWidthT[j] * cwlen;
536
537
85280
            if (cwlen > 0)
538
68479
                iacc += chctx->bandWidthT[j];
539
        }
540
541
3010
        flg = t2;
542
3010
        t2 = 1;
543
3010
        if (freebits < summer)
544
1369
            t2 = -1;
545
3010
        if (i == 0)
546
1312
            flg = t2;
547
3010
        if (flg != t2)
548
1177
            t1++;
549
550
3010
        summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
551
    }
552
553
38576
    for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
554
358976
        for (j = band_tab[i]; j < band_tab[i + 1]; j++)
555
321712
            chctx->CWlengthT[j] = chctx->bitsBandT[i];
556
    }
557
558
1312
    if (freebits > summer) {
559
19602
        for (i = 0; i < BANDS; i++) {
560
19008
            workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
561
19008
                                              : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
562
        }
563
564
594
        highest = 0.0;
565
566
        do {
567
641
            if (highest <= -1.e20)
568
                break;
569
570
641
            found_indx = 0;
571
641
            highest = -1.e20;
572
573
21153
            for (i = 0; i < BANDS; i++) {
574
20512
                if (workT[i] > highest) {
575
2365
                    highest = workT[i];
576
2365
                    found_indx = i;
577
                }
578
            }
579
580
641
            if (highest > -1.e20) {
581
641
                workT[found_indx] -= 2.0;
582
641
                if (++chctx->bitsBandT[found_indx] == 6)
583
                    workT[found_indx] = -1.e20;
584
585

3097
                for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
586
2456
                    chctx->CWlengthT[j]++;
587
2456
                    summer++;
588
                }
589
            }
590
641
        } while (freebits > summer);
591
    }
592
1312
    if (freebits < summer) {
593
20460
        for (i = 0; i < BANDS; i++) {
594
19840
            workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
595
19840
                                       : 1.e20;
596
        }
597
620
        if (stream_format_code & 0x2) {
598
547
            workT[0] = 1.e20;
599
547
            workT[1] = 1.e20;
600
547
            workT[2] = 1.e20;
601
547
            workT[3] = 1.e20;
602
        }
603
1292
        while (freebits < summer) {
604
672
            lowest   = 1.e10;
605
672
            low_indx = 0;
606
22176
            for (i = 0; i < BANDS; i++) {
607
21504
                if (workT[i] < lowest) {
608
3064
                    lowest   = workT[i];
609
3064
                    low_indx = i;
610
                }
611
            }
612
            // if (lowest >= 1.e10)
613
            //     break;
614
672
            workT[low_indx] = lowest + 2.0;
615
616
672
            if (!--chctx->bitsBandT[low_indx])
617
183
                workT[low_indx] = 1.e20;
618
619

3300
            for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
620
2628
                if (chctx->CWlengthT[j] > 0) {
621
2628
                    chctx->CWlengthT[j]--;
622
2628
                    summer--;
623
                }
624
            }
625
        }
626
    }
627
1312
    return 0;
628
}
629
630
1312
static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
631
{
632
    int i, j;
633
634
1312
    memset(chctx->skipFlagBits,  0, sizeof(chctx->skipFlagBits));
635
1312
    memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
636
43296
    for (i = 0; i < BANDS; i++) {
637

41984
        if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
638
33134
            continue;
639
640
8850
        if (!chctx->skipFlagRaw[i]) {
641
7672
            chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
642
643
54723
            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
644
47051
                chctx->skipFlags[j] = get_bits1(&q->gb);
645
47051
                if (chctx->skipFlags[j])
646
24771
                    chctx->skipFlagCount[i]++;
647
            }
648
        } else {
649
6648
            for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
650
5470
                if (!get_bits1(&q->gb)) { // 0
651
3869
                    chctx->skipFlagBits[i]++;
652
3869
                    chctx->skipFlags[j]      = 1;
653
3869
                    chctx->skipFlags[j + 1]  = 1;
654
3869
                    chctx->skipFlagCount[i] += 2;
655
                } else {
656
1601
                    if (get_bits1(&q->gb)) { // 11
657
899
                        chctx->skipFlagBits[i] += 2;
658
899
                        chctx->skipFlags[j]     = 0;
659
899
                        chctx->skipFlags[j + 1] = 1;
660
899
                        chctx->skipFlagCount[i]++;
661
                    } else {
662
702
                        chctx->skipFlagBits[i] += 3;
663
702
                        chctx->skipFlags[j + 1] = 0;
664
702
                        if (!get_bits1(&q->gb)) { // 100
665
466
                            chctx->skipFlags[j] = 1;
666
466
                            chctx->skipFlagCount[i]++;
667
                        } else { // 101
668
236
                            chctx->skipFlags[j] = 0;
669
                        }
670
                    }
671
                }
672
            }
673
674
1178
            if (j < band_tab[i + 1]) {
675
554
                chctx->skipFlagBits[i]++;
676
554
                if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
677
357
                    chctx->skipFlagCount[i]++;
678
            }
679
        }
680
    }
681
1312
}
682
683
/**
684
 * Increase highest' band coefficient sizes as some bits won't be used
685
 */
686
1312
static void imc_adjust_bit_allocation(IMCContext *q, IMCChannel *chctx,
687
                                      int summer)
688
{
689
    float workT[32];
690
1312
    int corrected = 0;
691
    int i, j;
692
1312
    float highest  = 0;
693
1312
    int found_indx = 0;
694
695
43296
    for (i = 0; i < BANDS; i++) {
696
41984
        workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
697
41984
                                          : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
698
    }
699
700
4780
    while (corrected < summer) {
701
3468
        if (highest <= -1.e20)
702
            break;
703
704
3468
        highest = -1.e20;
705
706
114444
        for (i = 0; i < BANDS; i++) {
707
110976
            if (workT[i] > highest) {
708
12960
                highest = workT[i];
709
12960
                found_indx = i;
710
            }
711
        }
712
713
3468
        if (highest > -1.e20) {
714
3468
            workT[found_indx] -= 2.0;
715
3468
            if (++(chctx->bitsBandT[found_indx]) == 6)
716
4
                workT[found_indx] = -1.e20;
717
718

26503
            for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
719

23035
                if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
720
19375
                    chctx->CWlengthT[j]++;
721
19375
                    corrected++;
722
                }
723
            }
724
        }
725
    }
726
1312
}
727
728
1312
static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
729
{
730
    int i;
731
    float re, im;
732
1312
    float *dst1 = q->out_samples;
733
1312
    float *dst2 = q->out_samples + (COEFFS - 1);
734
735
    /* prerotation */
736
169248
    for (i = 0; i < COEFFS / 2; i++) {
737
167936
        q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
738
167936
                            (q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
739
167936
        q->samples[i].im =  (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
740
167936
                            (q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
741
    }
742
743
    /* FFT */
744
1312
    q->fft.fft_permute(&q->fft, q->samples);
745
1312
    q->fft.fft_calc(&q->fft, q->samples);
746
747
    /* postrotation, window and reorder */
748
169248
    for (i = 0; i < COEFFS / 2; i++) {
749
167936
        re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
750
167936
        im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
751
167936
        *dst1 =  (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
752
167936
               + (q->mdct_sine_window[i * 2] * re);
753
167936
        *dst2 =  (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
754
167936
               - (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
755
167936
        dst1 += 2;
756
167936
        dst2 -= 2;
757
167936
        chctx->last_fft_im[i] = im;
758
    }
759
1312
}
760
761
1312
static int inverse_quant_coeff(IMCContext *q, IMCChannel *chctx,
762
                               int stream_format_code)
763
{
764
    int i, j;
765
    int middle_value, cw_len, max_size;
766
    const float *quantizer;
767
768
43296
    for (i = 0; i < BANDS; i++) {
769
377856
        for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
770
335872
            chctx->CWdecoded[j] = 0;
771
335872
            cw_len = chctx->CWlengthT[j];
772
773

335872
            if (cw_len <= 0 || chctx->skipFlags[j])
774
114401
                continue;
775
776
221471
            max_size     = 1 << cw_len;
777
221471
            middle_value = max_size >> 1;
778
779

221471
            if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
780
                return AVERROR_INVALIDDATA;
781
782
221471
            if (cw_len >= 4) {
783
26862
                quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
784
26862
                if (chctx->codewords[j] >= middle_value)
785
13149
                    chctx->CWdecoded[j] =  quantizer[chctx->codewords[j] - 8]                * chctx->flcoeffs6[i];
786
                else
787
13713
                    chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
788
            }else{
789
194609
                quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
790
194609
                if (chctx->codewords[j] >= middle_value)
791
97364
                    chctx->CWdecoded[j] =  quantizer[chctx->codewords[j] - 1]            * chctx->flcoeffs6[i];
792
                else
793
97245
                    chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
794
            }
795
        }
796
    }
797
1312
    return 0;
798
}
799
800
801
1312
static void imc_get_coeffs(AVCodecContext *avctx,
802
                           IMCContext *q, IMCChannel *chctx)
803
{
804
    int i, j, cw_len, cw;
805
806
43296
    for (i = 0; i < BANDS; i++) {
807
41984
        if (!chctx->sumLenArr[i])
808
6765
            continue;
809

35219
        if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
810
293131
            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
811
257912
                cw_len = chctx->CWlengthT[j];
812
257912
                cw = 0;
813
814

257912
                if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j])) {
815
221471
                    if (get_bits_count(&q->gb) + cw_len > 512) {
816
                        av_log(avctx, AV_LOG_WARNING,
817
                            "Potential problem on band %i, coefficient %i"
818
                            ": cw_len=%i\n", i, j, cw_len);
819
                    } else
820
221471
                        cw = get_bits(&q->gb, cw_len);
821
                }
822
823
257912
                chctx->codewords[j] = cw;
824
            }
825
        }
826
    }
827
1312
}
828
829
1312
static void imc_refine_bit_allocation(IMCContext *q, IMCChannel *chctx)
830
{
831
    int i, j;
832
    int bits, summer;
833
834
43296
    for (i = 0; i < BANDS; i++) {
835
41984
        chctx->sumLenArr[i]   = 0;
836
41984
        chctx->skipFlagRaw[i] = 0;
837
377856
        for (j = band_tab[i]; j < band_tab[i + 1]; j++)
838
335872
            chctx->sumLenArr[i] += chctx->CWlengthT[j];
839
41984
        if (chctx->bandFlagsBuf[i])
840

8850
            if (((int)((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
841
1178
                chctx->skipFlagRaw[i] = 1;
842
    }
843
844
1312
    imc_get_skip_coeff(q, chctx);
845
846
43296
    for (i = 0; i < BANDS; i++) {
847
41984
        chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
848
        /* band has flag set and at least one coded coefficient */
849

41984
        if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
850
8850
            chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
851
8850
                                   q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
852
        }
853
    }
854
855
    /* calculate bits left, bits needed and adjust bit allocation */
856
1312
    bits = summer = 0;
857
858
43296
    for (i = 0; i < BANDS; i++) {
859
41984
        if (chctx->bandFlagsBuf[i]) {
860
67395
            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
861
58545
                if (chctx->skipFlags[j]) {
862
34231
                    summer += chctx->CWlengthT[j];
863
34231
                    chctx->CWlengthT[j] = 0;
864
                }
865
            }
866
8850
            bits   += chctx->skipFlagBits[i];
867
8850
            summer -= chctx->skipFlagBits[i];
868
        }
869
    }
870
1312
    imc_adjust_bit_allocation(q, chctx, summer);
871
1312
}
872
873
1312
static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
874
{
875
    int stream_format_code;
876
    int imc_hdr, i, j, ret;
877
    int flag;
878
    int bits;
879
    int counter, bitscount;
880
1312
    IMCChannel *chctx = q->chctx + ch;
881
882
883
    /* Check the frame header */
884
1312
    imc_hdr = get_bits(&q->gb, 9);
885
1312
    if (imc_hdr & 0x18) {
886
        av_log(avctx, AV_LOG_ERROR, "frame header check failed!\n");
887
        av_log(avctx, AV_LOG_ERROR, "got %X.\n", imc_hdr);
888
        return AVERROR_INVALIDDATA;
889
    }
890
1312
    stream_format_code = get_bits(&q->gb, 3);
891
892
1312
    if (stream_format_code & 0x04)
893
306
        chctx->decoder_reset = 1;
894
895
1312
    if (chctx->decoder_reset) {
896
10098
        for (i = 0; i < BANDS; i++)
897
9792
            chctx->old_floor[i] = 1.0;
898
78642
        for (i = 0; i < COEFFS; i++)
899
78336
            chctx->CWdecoded[i] = 0;
900
306
        chctx->decoder_reset = 0;
901
    }
902
903
1312
    flag = get_bits1(&q->gb);
904
1312
    if (stream_format_code & 0x1)
905
        imc_read_level_coeffs_raw(q, stream_format_code, chctx->levlCoeffBuf);
906
    else
907
1312
        imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
908
909
1312
    if (stream_format_code & 0x1)
910
        imc_decode_level_coefficients_raw(q, chctx->levlCoeffBuf,
911
                                          chctx->flcoeffs1, chctx->flcoeffs2);
912
1312
    else if (stream_format_code & 0x4)
913
306
        imc_decode_level_coefficients(q, chctx->levlCoeffBuf,
914
306
                                      chctx->flcoeffs1, chctx->flcoeffs2);
915
    else
916
1006
        imc_decode_level_coefficients2(q, chctx->levlCoeffBuf, chctx->old_floor,
917
1006
                                       chctx->flcoeffs1, chctx->flcoeffs2);
918
919
43296
    for(i=0; i<BANDS; i++) {
920
41984
        if(chctx->flcoeffs1[i] > INT_MAX) {
921
            av_log(avctx, AV_LOG_ERROR, "scalefactor out of range\n");
922
            return AVERROR_INVALIDDATA;
923
        }
924
    }
925
926
1312
    memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
927
928
1312
    counter = 0;
929
1312
    if (stream_format_code & 0x1) {
930
        for (i = 0; i < BANDS; i++) {
931
            chctx->bandWidthT[i]   = band_tab[i + 1] - band_tab[i];
932
            chctx->bandFlagsBuf[i] = 0;
933
            chctx->flcoeffs3[i]    = chctx->flcoeffs2[i] * 2;
934
            chctx->flcoeffs5[i]    = 1.0;
935
        }
936
    } else {
937
43296
        for (i = 0; i < BANDS; i++) {
938
41984
            if (chctx->levlCoeffBuf[i] == 16) {
939
4455
                chctx->bandWidthT[i] = 0;
940
4455
                counter++;
941
            } else
942
37529
                chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
943
        }
944
945
1312
        memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
946
41984
        for (i = 0; i < BANDS - 1; i++)
947
40672
            if (chctx->bandWidthT[i])
948
37510
                chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
949
950
1312
        imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2,
951
1312
                             chctx->bandWidthT, chctx->flcoeffs3,
952
1312
                             chctx->flcoeffs5);
953
    }
954
955
1312
    bitscount = 0;
956
    /* first 4 bands will be assigned 5 bits per coefficient */
957
1312
    if (stream_format_code & 0x2) {
958
1180
        bitscount += 15;
959
960
1180
        chctx->bitsBandT[0] = 5;
961
1180
        chctx->CWlengthT[0] = 5;
962
1180
        chctx->CWlengthT[1] = 5;
963
1180
        chctx->CWlengthT[2] = 5;
964
4720
        for (i = 1; i < 4; i++) {
965
3540
            if (stream_format_code & 0x1)
966
                bits = 5;
967
            else
968
3540
                bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
969
3540
            chctx->bitsBandT[i] = bits;
970
14160
            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
971
10620
                chctx->CWlengthT[j] = bits;
972
10620
                bitscount      += bits;
973
            }
974
        }
975
    }
976
1312
    if (avctx->codec_id == AV_CODEC_ID_IAC) {
977
        bitscount += !!chctx->bandWidthT[BANDS - 1];
978
        if (!(stream_format_code & 0x2))
979
            bitscount += 16;
980
    }
981
982
1312
    if ((ret = bit_allocation(q, chctx, stream_format_code,
983
1312
                              512 - bitscount - get_bits_count(&q->gb),
984
                              flag)) < 0) {
985
        av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
986
        chctx->decoder_reset = 1;
987
        return ret;
988
    }
989
990
1312
    if (stream_format_code & 0x1) {
991
        for (i = 0; i < BANDS; i++)
992
            chctx->skipFlags[i] = 0;
993
    } else {
994
1312
        imc_refine_bit_allocation(q, chctx);
995
    }
996
997
43296
    for (i = 0; i < BANDS; i++) {
998
41984
        chctx->sumLenArr[i] = 0;
999
1000
377856
        for (j = band_tab[i]; j < band_tab[i + 1]; j++)
1001
335872
            if (!chctx->skipFlags[j])
1002
301641
                chctx->sumLenArr[i] += chctx->CWlengthT[j];
1003
    }
1004
1005
1312
    memset(chctx->codewords, 0, sizeof(chctx->codewords));
1006
1007
1312
    imc_get_coeffs(avctx, q, chctx);
1008
1009
1312
    if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
1010
        av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
1011
        chctx->decoder_reset = 1;
1012
        return AVERROR_INVALIDDATA;
1013
    }
1014
1015
1312
    memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
1016
1017
1312
    imc_imdct256(q, chctx, avctx->channels);
1018
1019
1312
    return 0;
1020
}
1021
1022
1312
static int imc_decode_frame(AVCodecContext *avctx, void *data,
1023
                            int *got_frame_ptr, AVPacket *avpkt)
1024
{
1025
1312
    AVFrame *frame     = data;
1026
1312
    const uint8_t *buf = avpkt->data;
1027
1312
    int buf_size = avpkt->size;
1028
    int ret, i;
1029
1030
1312
    IMCContext *q = avctx->priv_data;
1031
1032
1312
    LOCAL_ALIGNED_16(uint16_t, buf16, [(IMC_BLOCK_SIZE + AV_INPUT_BUFFER_PADDING_SIZE) / 2]);
1033
1034
1312
    q->avctx = avctx;
1035
1036
1312
    if (buf_size < IMC_BLOCK_SIZE * avctx->channels) {
1037
        av_log(avctx, AV_LOG_ERROR, "frame too small!\n");
1038
        return AVERROR_INVALIDDATA;
1039
    }
1040
1041
    /* get output buffer */
1042
1312
    frame->nb_samples = COEFFS;
1043
1312
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1044
        return ret;
1045
1046
2624
    for (i = 0; i < avctx->channels; i++) {
1047
1312
        q->out_samples = (float *)frame->extended_data[i];
1048
1049
1312
        q->bdsp.bswap16_buf(buf16, (const uint16_t *) buf, IMC_BLOCK_SIZE / 2);
1050
1051
1312
        init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
1052
1053
1312
        buf += IMC_BLOCK_SIZE;
1054
1055
1312
        if ((ret = imc_decode_block(avctx, q, i)) < 0)
1056
            return ret;
1057
    }
1058
1059
1312
    if (avctx->channels == 2) {
1060
        q->butterflies_float((float *)frame->extended_data[0],
1061
                             (float *)frame->extended_data[1], COEFFS);
1062
    }
1063
1064
1312
    *got_frame_ptr = 1;
1065
1066
1312
    return IMC_BLOCK_SIZE * avctx->channels;
1067
}
1068
1069
2
static av_cold int imc_decode_close(AVCodecContext * avctx)
1070
{
1071
2
    IMCContext *q = avctx->priv_data;
1072
1073
2
    ff_fft_end(&q->fft);
1074
1075
2
    return 0;
1076
}
1077
1078
static av_cold void flush(AVCodecContext *avctx)
1079
{
1080
    IMCContext *q = avctx->priv_data;
1081
1082
    q->chctx[0].decoder_reset =
1083
    q->chctx[1].decoder_reset = 1;
1084
}
1085
1086
#if CONFIG_IMC_DECODER
1087
AVCodec ff_imc_decoder = {
1088
    .name           = "imc",
1089
    .long_name      = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
1090
    .type           = AVMEDIA_TYPE_AUDIO,
1091
    .id             = AV_CODEC_ID_IMC,
1092
    .priv_data_size = sizeof(IMCContext),
1093
    .init           = imc_decode_init,
1094
    .close          = imc_decode_close,
1095
    .decode         = imc_decode_frame,
1096
    .flush          = flush,
1097
    .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
1098
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1099
                                                      AV_SAMPLE_FMT_NONE },
1100
    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
1101
};
1102
#endif
1103
#if CONFIG_IAC_DECODER
1104
AVCodec ff_iac_decoder = {
1105
    .name           = "iac",
1106
    .long_name      = NULL_IF_CONFIG_SMALL("IAC (Indeo Audio Coder)"),
1107
    .type           = AVMEDIA_TYPE_AUDIO,
1108
    .id             = AV_CODEC_ID_IAC,
1109
    .priv_data_size = sizeof(IMCContext),
1110
    .init           = imc_decode_init,
1111
    .close          = imc_decode_close,
1112
    .decode         = imc_decode_frame,
1113
    .flush          = flush,
1114
    .capabilities   = AV_CODEC_CAP_DR1,
1115
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1116
                                                      AV_SAMPLE_FMT_NONE },
1117
    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
1118
};
1119
#endif