GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/iirfilter.c Lines: 70 114 61.4 %
Date: 2019-11-22 03:34:36 Branches: 26 77 33.8 %

Line Branch Exec Source
1
/*
2
 * IIR filter
3
 * Copyright (c) 2008 Konstantin Shishkov
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * different IIR filters implementation
25
 */
26
27
#include <math.h>
28
29
#include "libavutil/attributes.h"
30
#include "libavutil/common.h"
31
32
#include "iirfilter.h"
33
34
/**
35
 * IIR filter global parameters
36
 */
37
typedef struct FFIIRFilterCoeffs {
38
    int   order;
39
    float gain;
40
    int   *cx;
41
    float *cy;
42
} FFIIRFilterCoeffs;
43
44
/**
45
 * IIR filter state
46
 */
47
typedef struct FFIIRFilterState {
48
    float x[1];
49
} FFIIRFilterState;
50
51
/// maximum supported filter order
52
#define MAXORDER 30
53
54
1
static av_cold int butterworth_init_coeffs(void *avc,
55
                                           struct FFIIRFilterCoeffs *c,
56
                                           enum IIRFilterMode filt_mode,
57
                                           int order, float cutoff_ratio,
58
                                           float stopband)
59
{
60
    int i, j;
61
    double wa;
62
    double p[MAXORDER + 1][2];
63
64
1
    if (filt_mode != FF_FILTER_MODE_LOWPASS) {
65
        av_log(avc, AV_LOG_ERROR, "Butterworth filter currently only supports "
66
                                  "low-pass filter mode\n");
67
        return -1;
68
    }
69
1
    if (order & 1) {
70
        av_log(avc, AV_LOG_ERROR, "Butterworth filter currently only supports "
71
                                  "even filter orders\n");
72
        return -1;
73
    }
74
75
1
    wa = 2 * tan(M_PI * 0.5 * cutoff_ratio);
76
77
1
    c->cx[0] = 1;
78
3
    for (i = 1; i < (order >> 1) + 1; i++)
79
2
        c->cx[i] = c->cx[i - 1] * (order - i + 1LL) / i;
80
81
1
    p[0][0] = 1.0;
82
1
    p[0][1] = 0.0;
83
5
    for (i = 1; i <= order; i++)
84
4
        p[i][0] = p[i][1] = 0.0;
85
5
    for (i = 0; i < order; i++) {
86
        double zp[2];
87
4
        double th = (i + (order >> 1) + 0.5) * M_PI / order;
88
        double a_re, a_im, c_re, c_im;
89
4
        zp[0] = cos(th) * wa;
90
4
        zp[1] = sin(th) * wa;
91
4
        a_re  = zp[0] + 2.0;
92
4
        c_re  = zp[0] - 2.0;
93
4
        a_im  =
94
4
        c_im  = zp[1];
95
4
        zp[0] = (a_re * c_re + a_im * c_im) / (c_re * c_re + c_im * c_im);
96
4
        zp[1] = (a_im * c_re - a_re * c_im) / (c_re * c_re + c_im * c_im);
97
98
20
        for (j = order; j >= 1; j--) {
99
16
            a_re    = p[j][0];
100
16
            a_im    = p[j][1];
101
16
            p[j][0] = a_re * zp[0] - a_im * zp[1] + p[j - 1][0];
102
16
            p[j][1] = a_re * zp[1] + a_im * zp[0] + p[j - 1][1];
103
        }
104
4
        a_re    = p[0][0] * zp[0] - p[0][1] * zp[1];
105
4
        p[0][1] = p[0][0] * zp[1] + p[0][1] * zp[0];
106
4
        p[0][0] = a_re;
107
    }
108
1
    c->gain = p[order][0];
109
5
    for (i = 0; i < order; i++) {
110
4
        c->gain += p[i][0];
111
4
        c->cy[i] = (-p[i][0] * p[order][0] + -p[i][1] * p[order][1]) /
112
4
                   (p[order][0] * p[order][0] + p[order][1] * p[order][1]);
113
    }
114
1
    c->gain /= 1 << order;
115
116
1
    return 0;
117
}
118
119
static av_cold int biquad_init_coeffs(void *avc, struct FFIIRFilterCoeffs *c,
120
                                      enum IIRFilterMode filt_mode, int order,
121
                                      float cutoff_ratio, float stopband)
122
{
123
    double cos_w0, sin_w0;
124
    double a0, x0, x1;
125
126
    if (filt_mode != FF_FILTER_MODE_HIGHPASS &&
127
        filt_mode != FF_FILTER_MODE_LOWPASS) {
128
        av_log(avc, AV_LOG_ERROR, "Biquad filter currently only supports "
129
                                  "high-pass and low-pass filter modes\n");
130
        return -1;
131
    }
132
    if (order != 2) {
133
        av_log(avc, AV_LOG_ERROR, "Biquad filter must have order of 2\n");
134
        return -1;
135
    }
136
137
    cos_w0 = cos(M_PI * cutoff_ratio);
138
    sin_w0 = sin(M_PI * cutoff_ratio);
139
140
    a0 = 1.0 + (sin_w0 / 2.0);
141
142
    if (filt_mode == FF_FILTER_MODE_HIGHPASS) {
143
        c->gain  =  ((1.0 + cos_w0) / 2.0)  / a0;
144
        x0       =  ((1.0 + cos_w0) / 2.0)  / a0;
145
        x1       = (-(1.0 + cos_w0))        / a0;
146
    } else { // FF_FILTER_MODE_LOWPASS
147
        c->gain  =  ((1.0 - cos_w0) / 2.0)  / a0;
148
        x0       =  ((1.0 - cos_w0) / 2.0)  / a0;
149
        x1       =   (1.0 - cos_w0)         / a0;
150
    }
151
    c->cy[0] = (-1.0 + (sin_w0 / 2.0)) / a0;
152
    c->cy[1] =  (2.0 *  cos_w0)        / a0;
153
154
    // divide by gain to make the x coeffs integers.
155
    // during filtering, the delay state will include the gain multiplication
156
    c->cx[0] = lrintf(x0 / c->gain);
157
    c->cx[1] = lrintf(x1 / c->gain);
158
159
    return 0;
160
}
161
162
1
av_cold struct FFIIRFilterCoeffs *ff_iir_filter_init_coeffs(void *avc,
163
                                                            enum IIRFilterType filt_type,
164
                                                            enum IIRFilterMode filt_mode,
165
                                                            int order, float cutoff_ratio,
166
                                                            float stopband, float ripple)
167
{
168
    FFIIRFilterCoeffs *c;
169
1
    int ret = 0;
170
171

1
    if (order <= 0 || order > MAXORDER || cutoff_ratio >= 1.0)
172
        return NULL;
173
174
1
    FF_ALLOCZ_OR_GOTO(avc, c, sizeof(FFIIRFilterCoeffs),
175
                      init_fail);
176

1
    FF_ALLOC_OR_GOTO(avc, c->cx, sizeof(c->cx[0]) * ((order >> 1) + 1),
177
                     init_fail);
178

1
    FF_ALLOC_OR_GOTO(avc, c->cy, sizeof(c->cy[0]) * order,
179
                     init_fail);
180
1
    c->order = order;
181
182
1
    switch (filt_type) {
183
1
    case FF_FILTER_TYPE_BUTTERWORTH:
184
1
        ret = butterworth_init_coeffs(avc, c, filt_mode, order, cutoff_ratio,
185
                                      stopband);
186
1
        break;
187
    case FF_FILTER_TYPE_BIQUAD:
188
        ret = biquad_init_coeffs(avc, c, filt_mode, order, cutoff_ratio,
189
                                 stopband);
190
        break;
191
    default:
192
        av_log(avc, AV_LOG_ERROR, "filter type is not currently implemented\n");
193
        goto init_fail;
194
    }
195
196
1
    if (!ret)
197
1
        return c;
198
199
init_fail:
200
    ff_iir_filter_free_coeffsp(&c);
201
    return NULL;
202
}
203
204
1
av_cold struct FFIIRFilterState *ff_iir_filter_init_state(int order)
205
{
206
1
    FFIIRFilterState *s = av_mallocz(sizeof(FFIIRFilterState) + sizeof(s->x[0]) * (order - 1));
207
1
    return s;
208
}
209
210
#define CONV_S16(dest, source) dest = av_clip_int16(lrintf(source));
211
212
#define CONV_FLT(dest, source) dest = source;
213
214
#define FILTER_BW_O4_1(i0, i1, i2, i3, fmt)             \
215
    in = *src0    * c->gain  +                          \
216
         c->cy[0] * s->x[i0] +                          \
217
         c->cy[1] * s->x[i1] +                          \
218
         c->cy[2] * s->x[i2] +                          \
219
         c->cy[3] * s->x[i3];                           \
220
    res = (s->x[i0] + in)       * 1 +                   \
221
          (s->x[i1] + s->x[i3]) * 4 +                   \
222
           s->x[i2]             * 6;                    \
223
    CONV_ ## fmt(*dst0, res)                            \
224
    s->x[i0] = in;                                      \
225
    src0    += sstep;                                   \
226
    dst0    += dstep;
227
228
#define FILTER_BW_O4(type, fmt) {           \
229
    int i;                                  \
230
    const type *src0 = src;                 \
231
    type       *dst0 = dst;                 \
232
    for (i = 0; i < size; i += 4) {         \
233
        float in, res;                      \
234
        FILTER_BW_O4_1(0, 1, 2, 3, fmt);    \
235
        FILTER_BW_O4_1(1, 2, 3, 0, fmt);    \
236
        FILTER_BW_O4_1(2, 3, 0, 1, fmt);    \
237
        FILTER_BW_O4_1(3, 0, 1, 2, fmt);    \
238
    }                                       \
239
}
240
241
#define FILTER_DIRECT_FORM_II(type, fmt) {                                  \
242
    int i;                                                                  \
243
    const type *src0 = src;                                                 \
244
    type       *dst0 = dst;                                                 \
245
    for (i = 0; i < size; i++) {                                            \
246
        int j;                                                              \
247
        float in, res;                                                      \
248
        in = *src0 * c->gain;                                               \
249
        for (j = 0; j < c->order; j++)                                      \
250
            in += c->cy[j] * s->x[j];                                       \
251
        res = s->x[0] + in + s->x[c->order >> 1] * c->cx[c->order >> 1];    \
252
        for (j = 1; j < c->order >> 1; j++)                                 \
253
            res += (s->x[j] + s->x[c->order - j]) * c->cx[j];               \
254
        for (j = 0; j < c->order - 1; j++)                                  \
255
            s->x[j] = s->x[j + 1];                                          \
256
        CONV_ ## fmt(*dst0, res)                                            \
257
        s->x[c->order - 1] = in;                                            \
258
        src0              += sstep;                                         \
259
        dst0              += dstep;                                         \
260
    }                                                                       \
261
}
262
263
#define FILTER_O2(type, fmt) {                                              \
264
    int i;                                                                  \
265
    const type *src0 = src;                                                 \
266
    type       *dst0 = dst;                                                 \
267
    for (i = 0; i < size; i++) {                                            \
268
        float in = *src0   * c->gain  +                                     \
269
                   s->x[0] * c->cy[0] +                                     \
270
                   s->x[1] * c->cy[1];                                      \
271
        CONV_ ## fmt(*dst0, s->x[0] + in + s->x[1] * c->cx[1])              \
272
        s->x[0] = s->x[1];                                                  \
273
        s->x[1] = in;                                                       \
274
        src0   += sstep;                                                    \
275
        dst0   += dstep;                                                    \
276
    }                                                                       \
277
}
278
279
1
void ff_iir_filter(const struct FFIIRFilterCoeffs *c,
280
                   struct FFIIRFilterState *s, int size,
281
                   const int16_t *src, ptrdiff_t sstep,
282
                   int16_t *dst, ptrdiff_t dstep)
283
{
284
1
    if (c->order == 2) {
285
        FILTER_O2(int16_t, S16)
286
1
    } else if (c->order == 4) {
287
257
        FILTER_BW_O4(int16_t, S16)
288
    } else {
289
        FILTER_DIRECT_FORM_II(int16_t, S16)
290
    }
291
1
}
292
293
void ff_iir_filter_flt(const struct FFIIRFilterCoeffs *c,
294
                       struct FFIIRFilterState *s, int size,
295
                       const float *src, ptrdiff_t sstep,
296
                       float *dst, ptrdiff_t dstep)
297
{
298
    if (c->order == 2) {
299
        FILTER_O2(float, FLT)
300
    } else if (c->order == 4) {
301
        FILTER_BW_O4(float, FLT)
302
    } else {
303
        FILTER_DIRECT_FORM_II(float, FLT)
304
    }
305
}
306
307
1
av_cold void ff_iir_filter_free_statep(struct FFIIRFilterState **state)
308
{
309
1
    av_freep(state);
310
1
}
311
312
12
av_cold void ff_iir_filter_free_coeffsp(struct FFIIRFilterCoeffs **coeffsp)
313
{
314
12
    struct FFIIRFilterCoeffs *coeffs = *coeffsp;
315
12
    if (coeffs) {
316
1
        av_freep(&coeffs->cx);
317
1
        av_freep(&coeffs->cy);
318
    }
319
12
    av_freep(coeffsp);
320
12
}
321
322
11
void ff_iir_filter_init(FFIIRFilterContext *f) {
323
11
    f->filter_flt = ff_iir_filter_flt;
324
325
    if (HAVE_MIPSFPU)
326
        ff_iir_filter_init_mips(f);
327
11
}